SUMS INVOLVING FLOOR FUNCTION

By

Kritkhajohn Onphaeng

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2016
Copyright of Graduate School, Silpakorn University



SUMS INVOLVING FLOOR FUNCTION

By

Kritkhajohn' Onphaeng

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2016
Copyright of Graduate School, Silpakorn University



[
A

d’ d‘ Y (Y] Jd v
NaUINNINIVBINUNINFUNY

Tag

DAV BOMINA

a a ddq':; U d! = (9 a v A
Inentwusiiluaruniiavesmsanmmunangasiiaginenmansuriiada
a a d
NN AUAFTAS
MAITINAATAAS
U =) ) w L) W Aa
VaumaInenas uriIngagdailing
Umsanu 2559

a A Qd o/ a A o a v A
AVANHTUdIVUNAINGIAE Nﬁ1]ﬂﬂ1ﬁﬂﬂaﬂ1ﬂ§



The Graduate School, Silpakorn University has approved and accredited the
Thesis title of “Sums involving floor function” submitted by Mr. Kritkhajohn
Onphaeng as a partial fulfillment of the requirements for the degree of Master of
Science in Mathematics

(Associate Professor Panjai Tantatsanawong, Ph.D.)
Dean of Graduate School
.......... 1. ek ...

The Thesis Advisor

Assistant Professor Prapanpong Pongsriiam, Ph.D.

The Thesis Examination Committee

.................................................... Chairman

(Chalermpong Worawannotai, Ph.D.)

............ SUTOTOORUPRRURRY SRR
.................................................... Member

(Assistant Professor Kantaphon Kuhapatanakul, Ph.D.)
............ TSR RUROY SSUSRP
.................................................... Member

(Assistant Professor Prapanpong Pongsriiam, Ph.D.)
............ RSO ORI



57305201 : MAJOR : MATHEMATICS
KEY WORDS: FLOOR FUNCTION / FRACTIONAL PART

KRITKHAJOHN ONPHAENG : SUMS INVOLVING FLOOR
FUNCTION. THESIS ADVISOR : ASSISTANT PROFESSOR PRAPANPONG
PONGSRIIAM, Ph.D. 39 pp.

In this thesis, we study the properties of sums defined by Jacobsthal and
generalized by Tverberg. We also introduce a new sum related to those sums and find
their extreme values.

Department of Mathematics Graduate School, Silpakorn University
Student's SINAtUTe .........ccceevireiieniieiienieeieene Academic Year 2016

Thesis Advisor's Signature ...........ccoeceeeevverveenieenieeneenne.



57305201: G IMAMAMANS

(%

°o_ o o X 1
AINY: WINFUNY / aIUAY
1 A A 9 [ J v ti’ P a a 4
NHAVIT DOULNN : HAUINNNYIVINUWINFUNU. fJ']ﬁﬂﬁfJ‘l/l‘].ﬁﬂ‘H'l')“VlfJ']uwu‘ﬁ :

4 J P Y
WAt A5, UTEWUSNIA WIART DY, 39 Hi.

Y
=2 LY

a a 4 a0 X A v
TuIneinus s Ane1auiAn199v0aNaUINB 911 1ag Jacobsthal Laz191

o @ Jq ¥ A A 9 @ a 1 =
‘VI'JUhJIﬂEJ Tverberg Li’lﬂ\ihlﬂsl,ﬂWa‘]J'JﬂLL‘]J‘]JGlWNT]Lﬂﬂ'JGUENﬂUNaﬂﬂﬂllﬂﬂlﬂullagﬂ']ﬂ'lq@]ﬂ]ﬂ

Y
UDNHAUINIUATUU
a a J v Aa a @ a v A
MAIFIAUAATAT wUNAIMIAY urMINeaeAalng
A A o = = =
DIYUDFOUNFANE .o, Un1sfny 2559

A A I a a J
a'IEJlJ@%@@1ﬂ1§ﬂﬂﬂc§ﬂ‘913ﬂ81uwu‘ﬁ ........................................



Acknowledgements

First, I would like to thank Assistant Professor Prapanpong Pongsriiam, my
advisor for giving me valuable suggestions and excellent advices throughout the
study.

I would like to thank Dr. Chalermpong Worawannotai and Assistant
Professor Dr. Kantaphon Kuhapatanakul, thesis committee, for their comments and
suggestions.

I would like to thank the Department of Mathematics, Faculty of Science
Silpakorn University for the facility support.

I wish to thank Development and Promotion of Science and Technology
Talents Project (DPST) for the financial support throughout my undergraduate and
graduate studies.

Finally, I wish to thank my family for understanding and encouragement.



Table of Contents

Page
Abstract in English.........ooooooiiiiiii e d
ADSEract 1N TRAT........ooooiiiiiiiiiiiec et e et e
ACKNOWIESAZMENLS. .....coiiieniieiiiieiie ettt ettt ebeesee e e eenas f
Chapter
I INtrodUCHON. ....cciiiiiie e e 1
2 PrelimMINari€s ......ccocuviiiiiiiiiie e ottt e 6
2.1 Floor function ...............iiice ittt eeiiaeee.. O
2.2 Binomial coefficients ..........coiiieeeiiiie e e 9
3 Proof of Tverberg’ s ASSErtion i urueiicie e iue s deiirsaneeeiie e ees 11
3.1 Lemmas.......... . £ € N - B e, 11
3.2 Tverberg’s ASSCTtiOn .. wu.. . wivs e it e e e e 14
4 Proof of Our Main ReSultS.........ooc.uiiiiiiiiiee o it S 19
3.1 Lemmas..... 80 ML S X2 U e 19
3.2 Proof of Main Results..........ccoeeiiit i .21
References......ccovevveeee e et AN o ) Ll L oo e, 36
PUDIICAIONS ...t eeste ettt e bee T et e e st e e eeaveeeesnseeesseeeaseesnsseeesseesnsaeens 38
Biography......ccccccceeees. I . € Feeeceeeeee BTN Al ) I oo vveeenvveeevnennns 39



Chapter 1

Introduction

For each real number =z, the largest integer which s less than or equal to
x or the floor function of = is denoted by [z]. In addition, the fractional
part of x, denoted by {x}, is defined by {x} = x — |z]. Problems involving
floor function and fractional part-have been of interest to mathematicians,
especially number theorists -and-combinatorialists, for more than 100 years.
For example, the famous Dirichlet divisor problem is to-obtain an estimate for
the sum ) _\d(n), which can be written-in the form.involving floor function

as

> dn) <> {%J , (1.1)

n<N n<N

with an error term as'small as possible. -Here d(n) is the number of positive
divisors of n. In addition;-the sum > _d(n) counts the number of posi-
tive lattice points in the (z,y)-plane under the curve zy = N. So it is also
connected to topics in arithmetic geometry.

Understanding floor function may lead to better estimate of (1.1) and other
similar sums. For more details about Dirichlet’s divisor problem, we refer the
reader to [1, 13, 16, 20]. For other problems concerning with floor function or
fractional part see, for example, in [2, 3,4, 5,6, 8,7,9, 11, 12, 14, 17, 18]. We
are particularly interested in the sum introduced by Jacobsthal and generalized

by Tverberg as given below.



Definition 1.1. (Jacobsthal [10]) For each a,b € Z and m € Z*, define
Japm : Z — Z and Sy pm : NU{0} — Z by

Fatm (F) = V*bMJ - VH"J - {MJ + FJ cand  (1.2)

m m m m

K
Sapim(K) = fapm(k).
k=0

The above sum is also considered by Carlitz [3, 4] and Grimson [9], and is

generalized by Tverberg [21] as follows:

Definition 1.2. (Twerberg [21]) Let.m and ¢ be positive integers and let C' be
a multiset of £ integers.ay,as,. .. as, i-€., a; = a; is allowed for some i # j.
Define foum 1 Z — Z and Sc., *“NU{0} — Z by

{k HD et

m

fom()= YTl J , and

TE[LY

SC;M(K) — Z fC;m(k)'

We Sometimes write fal,az,...,ag;m(k) and Sal,ag,,..,ae;m(K) inStead Of fC,m(k)
and Sc.m(K), respectively. -The set'[1, €] appearing in the sum: defining f is
{1,2,3,. 0., 8F and it T =0, then Y. .q a; is defined-to be zero.

Example 1.3. If C' = {a,b}; then feu(k) given in Definition 1.2 is the same
as fapm(k) given in (1.2);-and if C"= {a1,a9sa3}, then fo.m(k) is

CL1+CL2+(I3+]€ a1+a2+k CL1+CL3+I€
far,a2.a5:m (k) = - - - il E—

e e




If C = {a1,a2,a3,as}, then fou(k) is

atataztathk a1+ az + ag + k
fa17a2,a3,a4;m(k) - m —

m

B a1+a2+a4—|—kJ La1+a3+a4+kJ
_ CL2+CL3+CL4+I€ CL1+CL2+1€ 1 a1+a3+k
i m
4 CL1+CL4+I€ CL2+CL3+I€ CL2+CL4+I€
i m
1 a3+a4+k CL1+I€ a2+k ag—f—k
A m m
k
R H |
L m m
Jacobsthal obtained the lower and upper-bounds of Sy 4, (K):
Q < SupalB) <112 (1.3)

which are sharp bounds in the sense that one can not improve it to S, p.m (K) >
0 or Sy pm(K) <[ %] Tverberg [21] gave another proof of (1.3) and claimed
(without proof) that

) {%J <t an il K < L%J . (1.4)

In this thesis, we.give the proof of Tverberg’s assertion and extends the
result to the case of any positive integer #-<"2. We also obtain sharp upper
and lower bounds for the sum f,, 4o, m (k). -In addition, we introduce the
function g similar to frand obtain its bounds as well. Some of our results are
published in Journal of Integer Sequences [15]. The function g and our main

results are the following.

Definition 1.4. Let g : R™ — Z be given by

g(x1, 0,23, ..., 2,) = Z E Z |, + i, |

1<i<n 1<i1<i2<n

+ Z inl + Liqy + JIZ'BJ —

1<i1<i2<iz<n

+ ()" Mo+ aa @z 44 @)



In other words,

g(‘r17'r27x37"'7xn) = Z <_1)|T‘71 \\ZJEZJ .
0£TC[1,1)

€T
Theorem 1.5. (Onphaeng and Pongsriiam [15]) For each n > 2, the function
g given in Definition 1.4 has maximum value 2"~% — 1 and minimum value
—2"=2 The minimum occurs at least when ), = % for every 1 < k <mn. The

mazimum occurs at least when xp == — n—12 for every 1 <k <n.

1
2
Theorem 1.6. (Onphaeng and Pongsriiam [15]) For each { > 2, ay, as, ..., apk €

Z and m > 1, we have

_2672 S fa1,a27~-~,az;m(k) S 2£—2'

4

Moreover, —2'=2 and 2'=2 are best possible in the sense that there are a,, as, . .

°

ag, m, k which make the inequality becomes equality. More precisely the follow-

ing statements hold.

(i) If € is odd; my is even,-and a; =TT for every i = 1,2,... L, then

fa17a2v---7az§m(0) H T and fa1,a2,.,.,ae;m(%) o N2

(ii) If £ is even, m'is even, and a; =2 for-every i = 1,2,... (, then

2
falva2:---7lltz§m(0) =242 and fal,az,‘..,aﬁm(%) 7R

Theorem 1.7. (Onphaeng and Pongsriiam [15]) Foreach{ > 2, ay,ay, ..., a5 €
Z, meN, and K € NU{0}, we have

_ot=? {%J < Surananm (K) < 2672 {%J . (1.5)

Moreover, If { is odd, then the lower bound —2°2 L%J 1s sharp and if ¢

is even, then the upper bound 22 L%J 1s sharp in the sense that there are

ai,as, ..., ap, m,k which make the inequality becomes equality. More precisely,

the following statements hold.

(i) If € is odd, m is even, and a; = § for every i = 1,2,...,(, then

Sal,az,---7ae;m(K) =207 L%J



(ii) If € is even, m is even, and a; = 5 for every i = 1,2,...,(, then

Sa17a2,...7a¢;m(K) = 26_2 \_%J .

We remark that the extreme values of the functions g and
fa1.a0....ap:m (k) are connected with Jacobsthal numbers J,, and Jacobsthal-

Lucas numbers j,, defined, respectively, by the recurrence relations
Jo == 0, J1 = 1, Jn — Jn—l -+ 2Jn_2 for n Z 2,

and

Jjo=2, 1 =1, Jp=Jnei+ 2n_n formn>2.

The sequences (J,)n>o and (4, )n>0 are, respectively, A001045 and A014551
in OEIS [19]. Recall that the Binet forms-of Jacobsthal numbers J, and

Jacobsthal-Lucas numbers j,,-are
iy G B
7 +) and YT I (1.6)
for every n > 0. Therefore we obtain the connection between Jacobsthal
and Jacobsthal-Lucas numbers and sums. introduced by -Jacobsthal [10] and

Tverberg [21] as follows.

Corollary 1.8. (Onphaeng and Pongsriiam [15]) If n.is.odd; then the maxi-
mum and the minimum value of g(B15x2, T3, xy) are jo_o and —1 — j, o,
respectively. If n is even, then the maximum and the minimum value of

g(x1, 29,3, .., x,) are 3J,_o and 1 — j,_o, Tespectively.

We organize this thesis as follows. In Chapter 2, we give preliminaries. In
Chapter 3, we give the proof of (1.4). Finally, we give the proof of Theorems
1.5, 1.6, 1.7, and other related results in Chapter 4.



Chapter 2

Preliminaries

In this chapter, we recall some basic-properties of floor-function and binomial
coefficients. Most of them can be found in any standard text in number theory

and combinatorics but we give a proof for completeness.

2.1 Floor function

As introduced in-the first chapter, for-each ' € R, we let |z] be the largest
integer less than or equal to «,and let {z} =z =]z . Basic properties of |z

and {x} are as follows.
Lemma 2.1. Let.x be a real number.” Then the following statements hold.
(i) |z] €Z and 0 < {z} < 1.

(i) [[#]) = 2] and {{x}} = {«}.

(iii) If n is a positive integer, then LKJ = HJ

(iv) If n is an integer, then |x +n] = |x] + n.
Proof. The statement (i) follows immediately from the definition that |z | € Z

and |z| < x < |x] + 1. Since |z| € Z, ||z]| = |z]. In addition, since
{z} €10,1), we have {{z}} = {2} — [{z}| = {=} — 0 = {2}.So (ii) is proved.



Next we prove (iii). By (i), there exists an integer m such that m = |£]|. By

the definition of floor function, we have

x
m< —<m+ 1.
n

Therefore

nm < x <n(m+1).

Since nm € Z and nm < x, we obtain nmm < |z] <z < n(m +1). Then

]

TP o\ N
n

n

By the definition of floor function; L%J S LMJ
Next we prove (iv). Let'm € Z be such that m-=|x]. Then

mIzr<m+1

mFn<r+n<mtn+tl
By the definition of floor function, we see that

e 2 ) RPNt e

]

Lemma 2.2. Let x and y be real numbers. Then 0 < |z+y| —|z] — |y] < 1.

Proof. By the definition of fractional-part-and by Lemma 2.1 (iv), we have

le+y] = o) = ly) = =) +{e} + [y] +{y}] =[] = [y]
= Wz +{yH + 2] = =) + v = lv)
= [z +{y}l.

By Lemma 2.1 (i), 0 < {z} + {y} < 2. Soif 0 < {z} + {y} < 1, then
{z} +{y}] =0. If 1 <{x}+{y} <2, then |{z} + {y}] = 1. This implies

the desired result.



Lemma 2.3. (Hermite’s Identity) Let x be a real number and m a positive

integer. Then
m—1

> FJF %J = |mz]. (2.1)

k=0

Proof. Case 1: © € Z. By Lemma 2.1 (iv), the left hand side of (2.1) is
-1 m—1
k k
(e o
0 0
Case 2: ¢ Z. Then 0.< {z} < 1. We consider

LxJSLx%—%Jg...S {“mT_lJ:P“‘%J

:Uxﬁ{x}ﬂ_ﬂ

3

i

7 18 YN {{x}—%J

SN L
Then there exists4.€{1,2,...,m} such that
1 /L
S
m m
and
’ - T —1
Lx—%iJ:[x%—H— Jz---z{x%—m—J:LxJ—l—l. (2.2)
m m m
Note that if [z] = |z + | =--- = [z + 1|, we take i = m and (2.2) does

not appear in the sum on the left hand side of (2.1). Hence

m—1

>

k:_o Lx+ %J =ilz] + (m—1i)(lz] +1) =m|z] +m — 1,

7 —1 7
+—— <1, and >,
{z} p- an {x}—I—m_

The above two inequalities give us

m—i<m{z}<m-—i+l.



Then
mlx] +m—i<mlz] +m{z} =mz <ml|z]+m—i+1.

Therefore

2.2 Binomial coefficients

Recall that the binomial coefficients (Z) is defined for n.€ N and k& € Z by

k
0, if Kk <0or k> n.
The following are well-known identities which will be used in the proof of

main results.

Lemma 2.4. The following holds for all n"e N and k € Z.
0 G) = (")
(" )<t (i)

Proof. 1t k <0 or k >n, then-both sides of (i) and of (ii) arezero. If 0 < k < n,

~~
—
—-
~—
/N
> 3
N~
I

then this can be proved by straightforward algebraicmanipulation. O]

Theorem 2.5. (Binomial Theorem) Let a and b be real numbers and n a

(Z) an—kbk
k=0

Proof. This can be proved by induction on n together with Lemma 2.4 (ii). O

nonnegative integer. Then

(a+0b)"

Lemma 2.6. Let n be a positive integer. Then the following statements hold.



10

k=1
- n __on—1
(iv) Z (k‘) =2
k=0
k=0 (mod 2)
_ n
1§ 2n—1
0 % (i)
k=1 (mod 2)

Proof. By binomial theorem; we have
(a4 b)" = Zn: (n) v il
P :
k=0
Substituting a = b =1, we obtain (i). Similarly,(ii) follows from the substi-

tution a = 1 and b= —1. For.(iii), we consider-the following as a function of

xT.

(14D zn: (Z) o (2.3)

k=0

Differentiating -both sides of (2.3) with respect toz, we obtain

il + 7)== kzi; k (Z) ol (2.4)

Substituting x = —1 in (2.4), we obtain (iii). By adding (i) and (ii), we see

that ) n
T )-Eeeon()r

This implies (iv). Similarly, by subtracting (i) by (ii), we obtain (v). O



Chapter 3

Proof of Tverberg’s Assertion

3.1 Lemmas

As mentioned in the first, chapter, Tverberg generalized the sums introduced
by Jacobsthal, gave another proof of Jacobsthal’s result,-and claimed (without
proof) that

25

In this section, we give-the proof of his assertion. First, we prove the following

lemma.
Lemma 3.1. Lét aq, as, a3 € Z-and.m € Z*. The following statements hold.

(1) f is periodic with period m in each variable a,,as, as, k. In other words,
Jor any q € Z, fa1+qm,a2,a3;m(k) = fa1,a2+qm,a3;m(k) = fa17a2,a3+qm;m(k) =
Jfar,a3,a5m (K + qm).

(ii) -f(1176127a3;m(k) = faz,aha:s;m(k) == fag,az,aum(k)' In other words, the

permutation of ay,as, as does not change the value of fa, as.a5:m(k)-

(iii) fO,aQ,a:«};m(k) = fa170,a3;m(k) = fa1,a270;m(k) =0.

Remark 3.2. Lemma 3.1 can be generalized to the case of ¢ variables ay, as, . ..

Nevertheless, for the purpose of this section, we only need the case £ = 3. The

11

, Ay
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general case of (1) is used in the proof of our main results and will be proved
in the next chapter (see Lemma 4.2 (ii)). The general cases of (ii) and (iii)

are not needed in this thesis.

Proof. By Definition 1.2 and by Lemma 2.1 (iv), we obtain

a1 +qm+as +az+k a1 +qgm+as+k
fa1+qm,a2,a3;m<k) = —

m m
_|amtgntaztk| |ataztk N ar +qm +k
m m m
X /AR
+ °r N (B
m m m
La1+a2+a3+kJ Laﬁ—ag%—kJ
= 2 ol B\ < rag
m m
k k k
_{MJ_C]*MJ%M J*q
m m m

\‘GQ—FICJ \‘&34‘]{3“ \‘kJ
- - — =
m m m
- {a1+a2+a3+kJ / \\al—i‘(lg—‘—kJ - \‘CL1+G3+I€J

m m m
{ {a2+a3+kJ A VI—H{:J - {ag—i—k" N V?)—HGJ
m m m m
\ k
m

7 4 fal,az,a?,;m(k)'

The equation fo, a;¥gm,asim(k) = far,az.as-ramim(K)*=" far,az,a3m(k + qm) =
fa1.a2,a5;m (k) can be obtained in the same way as fo, +gm.az,a5:m (k) = far a.a5:m(K)-
This proves (i). The statement (ii) follows immediately from Definition 1.2.

Next we prove (iii). By Definition 1.2, we have

fO,ag,ag;m(k> _ \‘O‘{‘CLZ“‘CLS‘{‘]{J B \‘O—I—QQ—}—]{,‘J B \‘WJ

m m m
La2+a3+kJ LOHcJ LafrkJ VﬁkJ VJ
-+ + + — | —
m m m m m
=0.

Similarly, fau, 0.a5:m(K) = fay.a0.0m(k) = 0. O
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Lemma 3.3. For each { > 2, ay,aq,...,a0 € Z, m € N, and K € NU{0}, we

have

Sal,az,..-,az;m<m - 1) =0.

Proof. By Definition 1.2 and by Lemma 2.3, we obtain

m—1
Sal,az,m,ae;m(m - 1) = fa1 a2,..0p m(k)
k=0
m—1
A o\ VHEZGT%J
k=0 1'Cli4] £
m=1
DY ()ERY [’f ¥ Xier %J
TC[L k=0 "

- Z (ail LA e aie—1)

1<i1 <ig <. <ip 3 <L

- > (i, +ay, 7 Fa, )+ +

1<i1 <2< <ip_ o<W

DT Do ()

1<i1<t
Next, we consider
E (ail T Qjp= - + aiZ—k) (31)
1<ii << .. <ip_p </t

where k € {1,2,...,¢ — 1}. The number of a; appearing in the sum (3.1) is

(gf;il) for each r € {1,2,...,¢}. By Lemma 2.4 (i) and Lemma 2.6 (ii), we



obtain

Sa1,a27~-,az;m<m - 1) - (al +ag+---+ az) N ( 1

-1
+( N )(a1+a2+-~+a5)+~~+

e

— (-1
= (a1 + ag/ r - ag) <—1>k( k )ZO'
k=0

Recall from (1.3) that

0 < Soim(K) < {%J :

)(a1+a2+---

-+ (Zg)

We will apply the above inequality in the proof-of the following theorem.

3.2 Tverberg’s Assertion
Theorem 3.4. Let-aj;ag,az € Z and-m & 7' . Then

- &) JE ST

Proof. First, we.proof =242 | <S4y om(K )< Recall that

fa1,a2,a3;m(k) = \‘

m m m

o
Iy

o[22 2] |2t

By Definition 1.2, we have

m m m

fa1+a27a3;m(/{,‘) _ {al + a2 + as —|—]€J _ \‘Gl + as —|—]€J _ \‘&3 + kJ

3

= {a2+a3 +/-cJ N {a2+kJ N LagﬂgJ B {

m m m

CL1+CL2+CL3+I€J _ {al—l—angkJ _ {al—l—ag—l—k

3=

m

|

14
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Summing (3.2), (3.3), and (3.4), we see that

fal,azvas;m(k) = fa1+a2,a3;m(k> - fa1,a3;m(k) - fa27a3;m(k)- (3~5)

By the definition of Sg, 4,.04:m(K), (3.5), and (1.3), we obtain
K
Sa1,a2,a3;m(K) = Z fahaz,as;m(k)
k=0

K K K
= Z Jar+asiazm (k) — Z Jarayim (k) — Z Jaz.azim (k)
k=0 k=0 k=0

= a1+a2,a3;m<K) - Sa1,a3;m(K) - Saz,as;m(K>
203 [l e 2]k

Next, we prove Sg, asasm(K) < |2]. By Lemma 3.1 (i) and Lemma 3.3, we
can assume that ay,aq, a3, k, K & [0, m —=1]. By Lemma 3.1 (ii) and Lemma
3.1 (iii), we can assume that 0-.< a1 < as < as:

Case 1: a; +ay +az < m. “Then a; + ay + a3 > ay+as > a; + az >
max{a; + ay, a3} = min{a; + as, a3} > ag > ay. k€ [0;m—a; —as — a3),
then f(k) = 0.- 1Lk € [m—a; —as—as, m—az = ag), then f(k) = 1. Itk € [m—
as —as, m—aj =as), then f(k)y= 0. If k€ [m—ar— a3, m— max{a, +as,as}),
then f(k).==1_Ifk € [m — max{a; + a2, as}t, m = min{a; + as,as}), then
f(k) = —=2orf(k) = 0. If k' €|m—min{ar+as,as}, m— as), then f(k) = —1.
If k € [m —ay,m —ay), then f(k) =0. If k. € [m —a;,m), then f(k) =1. By

Lemma 3.3, we obtain

S‘ll’“?’a&m(K) < Sal,az,as;m<m — Qg — CL3)

=m—ay—az— (Mm—a —ay —az) = a.

By a; < ay < az and ay+az+az < m, we have a; < L%J Then Sy, ay.a5:m(K) <
2]

Case 2: m < a; + as + az < 2m.

Case 2.1: m < a; + as +as < 2m and as + az < m. Then ay + a3 > a; + az >

max{a; + az,az} > min{a; + as,a3} > ay > a3 > a3 + as + ag — m. If



16

k€ ]0,m — ay — ag), then f(k) = 1. If k € [m — ay — az,m — a1 — ag), then
f(k) =0. If £ € [m —a; — a3, m — max{a; + ag,as}), then f(k) = —1. If
k € [m—max{aj +az, az}, m —min{a; 4+ as, az}), then f(k) = =2 or f(k) = 0.
If k£ € [m—min{a; +as, a3}, m —ay), then f(k) = —1. If k € [m —ay,m—ay),
then f(k) = 0. If kK € [m — ay,2m — ay — ay — agz), then f(k) = 1. If
k € [2m — ay — ay — as,m), then f(k) = 2. By Lemma 3.3, we obtain

Sal,az,as;m(K> < Sa1,a2,a3;m(m — a — ag)

=m—as—a3— 0=m — as — as.

By m < a;+as+as, as+as < mand ap<‘ay < as, we have m—as —az < L%J
Then Sy, az.05im (K) <[ 2]

Case 2.2: m < ay +as +az < 2m, ay +az > m and a; + az < m.

Then a; + a3 > max{aj +aq; a3} >min{a; + asya3}> as > a1 +as+az—m >
max{a, as + a3 —m} > min{a;as + a3 —m}. If k € {0,m — a; — a3), then
f(k) = 0. Itk € [m—a;r—az,m— max{ai +ag;as}); then f(k) = —1. If
k € [m—max{ay+ as as}, m—min{a; +as,a3}), then f(k) = —2 or f(k) = 0.
If k € [m—min{a; +as,a3}, m—as), then f(k) =—1. 1k € [m—as,2m—a; —
as — agz); then f(k) =0.1f 'k € [2m —ai —as — ag,m— max{a, as + ag —m}),
then f(k)=1.If k €{m —max{ay, ay+as—=m}, m — min{a;as + a3 — m}),
then f(k) = 2or f(k) = 0. If k € {m=min{ay, as+a3—m}, m), then f(k) = 1.
By Lemma 3.3, we have .Sy, 45 a5:m (&) <0.

Case 2.3: m < a1 +as+as <2m, a; +az > m and a; + as < m.

Then max{a; + as,az} > min{a; + as,a3} > a1 +as +az3 —m > ay >
max{a, as + az —m} > min{ay,as + a3 —m} > a; +az —m. If k € [0,m —
max{aj +as,as}), then f(k) = —1. If k € [m—max{a; +ag, az}, m —min{a; +
az,az}), then f(k) = =2 or f(k) = 0. If & € [m — min{ay + as,as},2m —
a; — ag — ag), then f(k) = —1. If k € [2m — a1 — ay — az,m — az), then
f(k) = 0. If £k € [m — as,m — max{ay,as + a3 — m}), then f(k) = 1. If
k € [m — max{ay, as + a3 — m}, m — min{ay, ay + a3 — m}), then f(k) =2 or

f(k)=0.If k € [m —min{a, as + a3 — m},2m — a; — a3), then f(k) =1. If
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k € [2m—ay —ag, m), then f(k) = 0. By Lemma 3.3, we have Sy, 45 .05:m(K) <
0.

Case 2.4: m < ay +as +az < 2m and a; + as > m.

Then a; + as + a3 —m > ag > as > max{ay, as + az —m} > min{ay, as + az —
m} >a;+az—m > ay+ay—m. If k €[0,2m—a; —ay—az), then f(k) = —2.
If k € [2m —a; —as —az,m — a3), then f(k) = —1. If k € [m — azg,m — ay),
then f(k) = 0. If k € [m — az, m =~ max{ay,as + a3 —m}), then f(k) =1. If
k € [m — max{ay, as + a3 — m};m— min{ay, as + az — m}), then f(k) =2 or
f(k) =0. If k € m —min{a,as+ ag—m},2m = a; — a3), then f(k) = 1. If
k € [2m —ay — a3, 2m/— a1 —(as), then f(k)= 0. 1f k € 2m — a; — az, m), then
f(k) = —1. By Lemma 3.3, we obtain

Sa1,a2,a3(K) S Sal,aQ,ag (2m a1/ 02— 1)
m—1

== Sa17(127113 (m - 1) \= Z fal,a2,a3<k)

=0 ~(=1)(m = (2m— a; —ay))

=m ~(2m — ay.— ay) =1+ ay =m.

By a14as+ag < 2m,a;+a> > m and-ay; <ay < az, we havea; +a,—m < L%J
Then S, 50, (K) < [2].

Case 3: 2m < ay.+'as + as:

Then ag > ay > max{aiyas+az—m} >min{ay,as+a3—m} > a;+a3—m >
a; +ay—m > ay +ag+az—2m. If k € [0,m — a3), then f(k) = —1. If
k € [m—as,m—az), then f(k) =0. If k € [m—as, m —max{ay, as+a3—m}),
then f(k) = 1. If k € [m — max{a, az + a3 — m}, m — min{ay, as + a3 — m}),
then f(k) =2or f(k) =0. If £ € [m — min{ay, as + a3 — m},2m — a; — a3),
then f(k) = 1. If K € [2m — a; — a3,2m — a1 — ag), then f(k) = 0. If

k € 2m—a;—as, 3m—ay—as—as), then f(k) = —1. If k € [3m—a;—as—as, m),
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then f(k) = 0. By Lemma 3.3, we obtain

Sal,a2,a3 (K) < Sal,az,as (2m —ay —az — 1)

=3m—a; —ay —az— (2m — a; — ag) = m — as.

By 2m < a; + az + a3 and a; < ay < a3, we have m — a3 < [2|. Then

Saya,as (K) < \_%J By Case 1, Case 2, and Case 3 S, ay,a5 (K) < \_mJ Next
we show that L%J is sharp: if m = 0 (mod 3) and a; = as = a3 = 7. It easy

to see that f(0) = f(1) =




Chapter 4

Proof of Our Main Results

4.1 Lemmas
Lemma 4.1. For'each (.> 2, we have
(D) 1,02, 0emQ=LEHG (2,227 14)
() for 2, s (B) 72 (D gL 52 AT ) (DT g (T 52, 5)

Proof. 'This follows easily from the definitions of f and g but'we give a proof

for completeness. "We have

fal,ag,...,ae;m(o) B Z (_1)£_|T| {Z (%)J
TC,y

-y ()]
0#TC[1,0) i€T
= (-~ > (=p+ {Z (%)J
OATC[1,0) i€eT
= (—1)6_19 <%, %, ceey %) .

19
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Next let a1 = k. Then we obtain

e, (a2 a R e (01 G
1) ) ug (2

y P
m m m m

sl DD CE Vil {Z(%)J— > (- {Z(%)J
PATC[1,041] i€T P£TC[1,4] i€T
=(-1)" Y (~p {Z (%)J
T%ll,é;l] ieT
=(-1)" > (=) [—H%J
TC[1,4)

:f(ll,(ZQ,...,(lg;m<k) .

Lemma 4.2. The following statements hold.
(i) For each i€ {1,2,. ..,n} and.q-€Z; we have
(£S5, T/ 0, | Aw) =gl (T A ).
In particular, g has period 1/ in each variable.
(ii) For eachd € {1,2,... 4} and q € Z;we have
fa1,02,...arqmm, £.dgrtl B) T .8, N appn(B) =4 as.....a0m (K + qm).

In particular, f has period m in each variable ai,as, ..., a; and k.
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Proof. Since |q + x] = ¢+ |x] for every ¢ € Z and = € R, we see that

g(wlax27-"axi+qa"'7xn) = <Q+2Lle)
=1

n—1
_ (( 1 q+ Z LCEZ‘I +3§'12J>
1<i1<ig<n
n—1
+<( 9 )q+ 4 Z in1+xi2+xi3j)
1<i1<i2<iz<n

_...-|-(—1)”_1((Z:1>q+Lm1+x2+...+m)
= g(x1, Ta, .. 42p) Fq Z (_1)k(n;1)

0<k<m=1
= SO T3, VK9 T N\

This proves (i). Next we prove-(ii). By Lemma 4.1 (ii) and by (i), we obtain

ar. G a; ar k
fal,zzg ..... ai—l—qm,..‘,ag;m(k) = (_1)€g (_17 _27 ey T + Q-5 — _)

m’'m m m’'m
L a1 -as a; Ay
+(_1)£ 19 (_a_a 7_+q7 7_>
mm m
a; Qo ar k
(R ) S P N Nt
( )g(m7m, X m)
ay @ @
+ RS A
m-m m

= f(ll,(lz,...,dz;m(k‘)‘

Similarly, fo, 4o, apm(K+qm) = fo, as...aym(k)This completes the proof. [J

4.2 Proof of Main Results

Proof of Theorem 1.5. If n = 2, then the result is the same as Lemma 2.2 that
—1<|z]+y] - lz+y] <0

The inequality in Lemma 2.2 is sharp: if z = y = % the left inequality in
Lemma 2.2 becomes equality, and if z =y = i the right inequality in Lemma

2.2 becomes equality. The result when n > 3 is obtained from the case n = 2
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and a careful selection of pairs. For illustration purpose, we first give a proof
for the case n = 3 and n = 4. Recall that

g(l’l, X9, 373) = \_.le + Ll’gJ + Ll’gJ — \_.1'1 +LZ'2J — |_$1 +LIZ’3J — |_£C2+LC3J + I_.Z'l +$2+$3J .

We obtain by Lemma 2.2 that

0 S LZL‘l + T +ZL‘3J N Ll'l —|—ZE2J — Ll’gJ S 1, (41)
—1< — |2y tws)+ |2 + (@3] <0, (4.2)
1< —|zvFmsd+{x | +las] <O0. (4.3)

Summing (4.1), (4.2), and (4.3),-the middle terms give g(x,x2,23). Then
T~

—2 < g(xy1, w9, x3) Next we consider

g($1,$2,$3,$4) = LiElJ X L:UQJ U L.T?,J + L.CE4J — Ll‘l +£C2J — Ll’l +.1'3J
T |_331 + .T4_I = |_332 + ngJ 7 |_$2 B .’B4J — |_333 + ZB4J
AL LI1+1’2+ZE3J -y LI1+ZE2+$4J + L$1+IL‘3+JI4J

+L.’E2+.T3+(L‘4J—L$1+$2+$3+$4J.

Again, we obtain by Lemma 2.2 the following inequalities:

=1 < = |2+ 2o+ H 0y | o+ 2o + 23] F [24) <0, (4.4)
0< (o + 2o ol — {on 2] = (2] < 1, (4.5)
0<|z1+a3+za] — |21+ 23] — |24] <1, (4.6)
0 < |2+ 25+ 24| — |70+ 73] — |74] < 1, (4.7)

1< @1+ a4 + |21 ] + |za] <0, (4.8)
—1 < —|zo+ x4 + [22]| + |24] <0, (4.9)
1< —|as + 2] + |23) + [2a) 0. (4.10)

Summing (4.4) to (4.10), we see that —4 < g(xq, x2, x3,14) < 3.
Next we prove the general case n > 5. The expression of the form |z;, +

Ti, + -+ + ;| will be called a k-bracket. So for each 1 < k < n, there are
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(Z) k-brackets appearing in the sum defining g(z1,x2, ..., x,). We first pair
up the n-bracket with an (n — 1)-bracket and a 1-bracket as follows:

s1=(—1)"ardzet-+a, (1) Pl o+ Az |+ (1) @]

(4.11)
Notice that the sign of |z,] in (4.11) may or may not be the same as that
appearing in the sum defining g(xi,@s, ..., x,) but it is the same as the sign
of |[zy + 22+ -+ x,-1] so that we can apply Lemma 2.2 to obtain the bound
for s;. Next we pair up the remaining (n ~ 1)-brackets with (n — 2)-brackets

and 1-brackets as follows:

(_1)7%2 inl T iyt .+xin71J +<_1)nﬁ3 inl iyt '+:’U7:7L72_‘ +<_1)n73 inn 1J )

where 1 < i; < ip/< .10 < Gp_yp-<'m. We note again that the sign of |z;, +
Tiy + -y, | and |2y, +@g, o+ 2y, | in(4.12) are the same as those
appearing in the-sum defining g(zy;®9; .+ 1, ) while the.sign of |z; | in
(4.12) may or/'may not be-the-same, but we can apply,Lemma 2.2 to obtain
the bound of (4:12). Since |zy+@y + -+ + z,,_1 |-appearsin (4.11), the term
x;, _, appearing in the (n—1)-bracketsin (4.12) is always x,. So in fact (4.12)
1s
(=1)" 72 @iy + By £ F B, F T+ (=173, daigts - tai,_, | +H(—1)"7° [,) .
(4.13)

Then we sum (4.13) over all possibles 1 < i) < iy < ... < i,_2 < n, and call

it s9. That is

sp = (—1)"? Z (@i + Ty + -+ @iy + T
1<i1<12<...<ip—2<n
+ (_l)n_3 Z |_$h + Tijg + 0+ + xin—QJ

1<11<12<...<ip—2<n

(=1 <” - 1) 2.

n—2
We continue doing this process as follows. For each 0 < ¢ < mn — 1, let ¢, be

the sum of all |z;, + x4 + -+, | with 1 <4y <idp < ... <ipy <n, a
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the sum of all such terms with 7,_, = n, and b, the sum of all such terms with
In—e < m. Therefore ¢, = a; + by. As usual, the empty sum is defined to be
zero, so by = 0. The number of (n — £)-brackets appearing in the sum defining
e 18 (nﬁ e)v the number of (n — ¢)-brackets appearing in the sum defining a, is
(nﬁil), and the number of (n — ¢)-brackets appearing in the sum defining b,

is (z:;) In addition, we have

s1=(=1)" a0 + (F1)"7b0t (—1)" 2 @),

sy = (—1)72a; ¥ (LOP=3tpa (— 1) (Z - ;) END

In general, for each 1 < ¥ <n — 1, we let

s = (—1)"Zayed+ (=125 b + (D e (Z - 2) |20 .

Then
Z s == 1) ag Z (1A, At Z )" by + by
1<0<n—1 2%6<n~1 1<0<n =2
.
Pz DT | (=D 1( £>. (4.14)
1<0<n -1 Lo

Recall from Lemma 2.6 (ii) that Y7, (=1)* (3)=0for alln > 1. Therefore
the last sum on‘the right-hand side of (4.14) is

e (s o)

1<0<n—1

) (_1)8(”21)+1—1.

0<l<n—1

Therefore the last term in (4.14) is |z, |. Replacing ¢ by ¢+ 1 in the first
sum on the right hand side of (4.14), we see that
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o ose=(D)"ao+ D ()" ar+be) + by + L)

1<e<n—1 1<0<n—2

=(=D)"eo+ Y (=1 e+ buoy + )
1<¥<n—2

=(-)"a+ > (=)t (4.15)
1<0<n=2

— ( 1>n—£—lce

0</<n~1
= 9(1'173727 Y & 7xn)7

where (4.15) can be obtained from the definition ef ¢,;~1,b,_1, and a,_; that

Clns (o] A Lo o Alandls
bn—l = I_CE1J m |_$2_| = NG an—lj s
ano1 =1{n}, and

Cn=1, =-0y=1-1 bn—l-
We apply Lemma 2.2-and (4.1) to-(4.11) to obtain
0 <s; < lifnisodd,and —1 < 57 < 0if nis-even.

Similarly, applying Lemma.2.2 and (4.1) to (4:13), we see that such sum lies
in [0, 1] if n is even, and lies'in [=1,0] if n is odd. Therefore

n—1

2) < 85 < 0if n is odd.

n —

0<s9< (n 2) if n is even, and —(
In general, for each 1 < /¢ < n — 1, we have

< s < ( B ), if n and ¢ have the same parity,
<

0
n—1 . . .
—( ¢ s¢ <0, if n and ¢ have a different parity.
n —_—

Since g(z1, T2, ..., Ty) = Z1§egn—1 S¢, we obtain, for odd n,
n—1 n—1
- < ) <) ,
(n—ﬁ) < g1, 22, ..., 1) < (n—ﬁ)
1<t<n-1 1<t<n—1

£ is even ¢ is odd
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and for even n,

-y <Z:D§g(x1,x2,...,xn)§ 3 (Z:é)

1<¥<n-—1 1<t<n-—1
£ is odd £ is even

Recall from Lemma 2.6 (iv) and Lemma 2.6 (v) that

og;gn (Z> B ng;n (Z) —on-1,

k is even ks odd

Therefore if n is odd, then

3 (Z:E): X (n21>:2”‘2—1,and

1<¥<n—1 1<l<n—1
£ is odd £.is even
n—1 ) n—1 N n—1 _ gn-2
Z n—1~ Z ¢ Z 14
1<4<n—1 1<t<n—1 0<l<n—1
£ is even £ is odd £'is odd

Similarly, if n is even, then

IR P AR - 1

1<l<n—-1 1<¢<n—1
£ is odd £.is even

Hence —2"=% < g(wy, %9, . - 5Zy). < 2°°% — 1, as required. Next we show
that the lower bound —2" 2 and the upper bound 2”2 < 1 are actually the
minimum and the maximum of g(xi,zs, ..., x,), respectively. Recall that the
fractional part of a real number 2, denoted by {z},is defined by {z} = v — |z].
Let ) = % for every k = 1,2,...,n. Then

9w, @, w) = > (—1)F EJ (Z)
=S e (5) (1) - S e s

1<k<n 1<k<n

= Z L lk( ) %K;n (Z) (4.16)

l<k<n SKS
k is odd

where the last equality is obtained from the fact that {g} = 0if k is even and
{£} =1if kis odd. By Lemmas 2.6 (iii) and 2.6 (v), we obtain

g(r1,x9,.. ., 2,) =0 — % (2"_1) =22
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1
— 3 for

This shows that —2"72 is the minimun value of g. Next let x;, = %

every k=1,2,...,n. Then

glan, 2o, a) = Y (~1)F E - %J (Z) (4.17)

2 n 2
kis odd, then |5 — 5| = |52 + 1 ~ £ | = | 51|, Therefore (4.17) becomes
E—1
dlonamsn) 2% (0 KA () (4.13)

Now we can evaluate the sum (4.18) by using the same method as in (4.16).

We write L%J = % — {%} and we know that {%} = 0 if k is odd and

{%} = % if k& is even..Then (4:18) can be written as

G(z1, T2, - 7) :% Y (-1)’%%(2)—% 30 () (Z)% gk;n (Z)

1<k<n 1<k<n
k is even

The first sum-is zero by Lemma 2.6 (iii). . The second sunt is. 1 by Lemma 2.6

(ii). By Lemma 2.6/ (iv), we obtain
1 1 n—1 n—2
9z, 2o, pg) =0 e (20T 1) =20
2\ 2
0

Proof of Corollary.1.8. This follows immediately from (1.6) and Theorem 1.5.
]

Next we give the proof of Theorem 1.6. Although we can write fu, 45 apm(K)
in terms of g(z1,xs,...,2,) as given in Lemma 4.1, we do not know the proof
which applies Theorem 1.5 to obtain Theorem 1.6. Nevertheless, we can use

the same idea in the proof of Theorem 1.5 to prove Theorem 1.6.

Proof of Theorem 1.6. By Lemma 4.2 (ii), we can assume that a; € [0,m — 1]

for every 1 < i < /. Therefore

{&J =0 for every i € {1,2,...,(}. (4.19)

m
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If ¢ = 2, then the result follows from (4.19) and Lemma 2.2, and we have

OS{CL1+CE2+I€J_{G1+1€JSL (4.20)
m m
and
1< - VQ i kJ + FJ <. (4.21)
m m

Summing (4.20) and (4.21), we obtain —1 < fu, 4,:m (k) < 1. The result when
¢ > 3 is based on a careful selection of pairs and the case ¢ = 2. For illustration
purpose, we first give a proof for the case ¢ = 3 and ¢ = 4. Recall that

a; +ag +az+k ar +az +k a; +az +k
fa1,a2,a3;m(k> - ' =~ X - m

[t |o)

We obtain by Lemma 2.2 and (4.19) that

OSVﬁaﬁaﬁkJ—VﬁaﬁkJ§1, (4.22)
m m
_1§_V1+a3+kJ+Vl+kJ§0’ (4.23)
m m
_1§_{a2+a3+kJ+{a2+ngo’ (4.24)
m m
0< [aﬁk"J - FJ <. (4.25)
m m

Summing (4.22); (4.23), (4:24), and (4.25); we see that the middle term is
far,a2,a5,m (k). Therefore =2 < fo, o) agm(k) < 2. Next we consider

a1+a2+a3+a4+kJ B {al—%ag%—ag—l—kJ

m m
a1+a2+a4—|—kJ La1+a3+a4+kJ

fal,a27a3,a4;m(k) = \‘

a2+a3+a4—|—kJ \‘a1+a2+k’J+\‘a1+a3+k’J
m

N a1+a4+kJ {a2+a3+kJ {a2+a4+kJ
L m

n as + aq + k:J {al —|—k‘J {ag + k:J {ag - k:J
L m m

1] 2]



29

Again, we obtain by Lemma 2.2 and (4.19) the following inequalities:

OSLa1+a2+a3+a4+kJ_La1+a2+a3—|—k SL (426)
m m |
_1§_ a1+@2+a4+k + a1+a2+k SO, (427)
L m | L m
_]_S— a/1+a3+a4+k —I— al+a3+k SO, (428)
k k
1< - @y + a3 Fady + G2 taz+k <0, (4.29)
k k
ofd| L= e |l <1 (4.30)
m [ Ly
OS CL2+CL4+I€ A (lg"i‘k Sl, <431)
m | | m |
k k
OS a3—|—a4+ B a3—1— Sl, (432)
m A L m
k k
_1§_V4+ JJﬂ—Jgo. (4.33)
m m

Summing (4.26) to (4.33), wesee that —4 < fo. o wsaam(k) < 4.

Next we prove the general case £ > 5. The expression of the form

aiy +ai,+tai +k
m

J will be ealled an r-bracket. So for each 1 <r </, there are

gooe

the method used in the proof of Theorem 1.5.-So we first pair up the ¢-bracket
with an (¢ — 1)-bracket as follows:

o La1+a2+---+az+kJ - {a1+a2+-”+ae—1+kJ, (4.34)

m m

and we can apply Lemma 2.2 and (4.19) to obtain the bound for s;. Next we
pair up the remaining (¢ — 1)-brackets with (¢ — 2)-brackets as follows:

B {ail—i-aig—i-“'—i—aiel—i—kJ n {ai1+ai2+---+ai42+k
m

J . (4.35)

m

and we sum (4.35) over all 1 <4y < iy < ... < i1 </ and call it sy. Since a,

does not appear in the second term on the right hand side of (4.34), the term
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a;, , appearing in (4.35) is always a,. So in fact

S9g = —
m

Z \‘ail+ai2+"‘+ai22+a5+kJ

1<i1 <i2<...<iyp_o<l

ai1+ai2+"'+ai5—2+k
rox | - -

1<i1<ia<. .. <ig_o</l

We continue doing this process as follows. For each 1 < r < /¢, let ¢, be the
aiqtaiy++ai.+k
m

sumofall{ with' L < 11 < iy < --- < 4, < ¥, a, the sum
of all such terms with i,.= ¢, and b, the sum of all such terms with 7, < /.
Therefore ¢, = a, + b,,-the number of summands of ¢, is (f) the number of
summands of a, is (6 1) and the number of summands of b, is (e 1) As usual,
the empty sum is defined to be zero, so by = 0. -We have s, = ay — by_, and
S9g = —ayp_1 + by_o. In general, for each 1 <r < £ —1, we let

sp = (=1)" Pay_aed + (=1)bp=pand s, = (=1)"ta; + (-1)° {ﬁJ '

m

Then

0<s, < ( if ris.odd; and — £l <s-<0 if r is even,
l—r (=1

Z S = Qg+ Z H—lag r4+1 T Z bg r ( 1)£_1b1 + S¢

1<r<t 2<r<£-1 1<r<i—=2
k
=ar+ Y =1"(as, F o) (=D b + (1) a +{ J
1<r<¢—2
= Cg—i— Z ( 1) Co—p + (—1)67101 + \‘—J
1<r<f—2
, k
= Z (—1) Co—p + \‘EJ
0<r<¢—1

- fa1,a2,---,az;m(k)‘

Therefore

- > (ﬁ:i) < faranaem() < (i :7{)

1<r<t 1<r<e
r is even r is odd



31

Replacing r by r + 1, we see that

/-1 /-1
Z (é—r): Z <£—1—T).
1<r<¢ 0<r<t—1

r is odd r is even

By Lemma 2.4 (i) and Lemma 2.6 (iv), we obtain

()= ()=

0<r<—1 0<r<(—1
Similarly,
£—1
g} \_ _2[—2‘

AT

1.§7’§€
Therefore

2 < fale d (BT (4.36)

revery 1 <1 </, we obtain by

as required. If £ is odd;m/is even; and.a; = %

fo
Lemma 4.1 and Theorem 1.5 that f,, a, fam(0) =g (%, %, L. %) = —272and
Jar00,aem (BY LD GG h3) AA=NGm ) ) 3) =272 I ¢
is even, m is.even, and.a; = 5for every 1 <7 < {, we-obtain similarly that
Satsaz,..dilON= 27 endifa 104, ) apimt 2 h=-=252 55022 and=2‘"2 in (4.36)

cannot be improved. This completes The proof. O]

Proof of Theorem 1.7-1f ' =2, then the result is already proved by Jacobsthal
[10]. See also another proof by Tverberg [21]. We recall from (1.3) that

0 < Surm(K) < | 5| (4.37)

As before the result when ¢ > 3 is based on the case ¢/ = 2 and a careful
selection of pairs. The case ¢ = 3 is already shown in the proof of Theorem
3.4. So we show more ideas by giving the proof for the case ¢ = 4. We have

the following equalities:

fa1+a2+a3,a4§m<k) -

mtatatat+k| |atatatk
m m

~ Vﬁlﬂ: ’fJ N {%J | (4.38)
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k k e I
—farrazanm(k) = — a1 +az +aq + n a, + as + . aq + e
(4.39)
ap +az+ay+k a, +az + k ai+k i
_fa1+a3,a4;m<k:) = — ! + 1 + R
L m 1"l = || m | 7]
(4.40)
k k e )
_fa2+a3’a4;m<k) - _ Qs + az + a4 + " as + as + N ay + i
(4.41)
k k k I
fopmum(k) = | AR L) AER ) BRI (449)
m A m | L m | m
k k L i
fll2,€14;m<k) = w 12 N (e + LAy (4.43)
L m < - | L om m
k L L I
Jazasm (k) = Z Y4 3 AN + = (4.44)
m ] m S |

Summing (4.38) to (4.44) and recalling the definition of f,, 4, as.0.:m(k), We see
that

fal,a2,a3,a4;m(k) < fa1+a2+a3,a4;m(k) - fa1+a2,a4;m(k) ) fa1+a3,a4;m(k)

7= fa2+a33a4§m(k) + fal,a4;m(k) + fag,a4;m(k) —"_ fa3:a4;m(k)'
(4.45)

Then we obtain from (4.45) and (4.37) that

Sal,az,a3,a4;m(K) v Sa1+a2+a3,a4;m(K) N Sa1+a2,a4;m(K) " Sa1+a3,a4;m(K)

i a4 O () + ()
<|[Fr=to o T lT T+ (3] =4 5]

Similarly, Sy, as.05,00m(K) > —4[2]. Next we prove the general case ¢ > 5.

The expression of the form V”M"QZ'M”MJ will be called an r-bracket. So

for each 0 < r < /., there are (f) r-brackets appearing in the sum defining
far.as....apm (k). We first pair up the ¢-bracket with an (¢ — 1)-bracket, a 1-

bracket and a O-bracket as follows:

al—i—ag—i—---—i—ag—}-k‘J B La1+a2+---+ag_1+kJ B Lamth
m

s1(k) = {
+ L—J . (4.46)

m m
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So s1(k) is in fact fo,+ast-tap_y,aem (k) and we can apply (4.37) to obtain the

inequality

K
m
0 < Saytapttaryapm(K) = Z s1(k) < {EJ .
k=0

Next we pair up the remaining (¢—1)-brackets with (/—2)-brackets, 1-brackets

and 0-brackets as follows:

_ L&i1+ai2+"'+aiel+kJ + \‘ail+ai2+"'+aie2+kJ + \‘ail1 +kJ

m m m
k

— | — 4.4
Kt (1.47)

and we sum (4.47) over all - < i <y < --+ < gy < ¢ and call it

so(k). Since ay does-not-appear in-the second term on-the right hand side
of (4.46), the term a;, , ‘appearing in (4.47)is always a,. So in fact (4.47) is
—fail+ai2+---+aie,2,ae;m(k) and

$a(k) ="~ Z fail+ai2+-~~+aié_2,az;m(k)

1<i1<ig <. <ig_o </

Furthermore,

K
ZSQ(k) TSN Z S“i1+“i2+"'+aiz_2vaf;m(K) <0,

k=0 1<y <i9<..:<ipl o<l

where the last. inequality is obtained from (4.37).  We continue doing this
process and follow clesely the method used in the proof of Theorems 1.5 and

1.6. The well-known identities previously recalled will be applied without

@iy +aiy+-tai, +k
m

reference. For each 1 < r < /¢, let ¢.(k) be the sum of all L
with 1 <y < iy < -+ < i, </, a.(k) the sum of all such terms with i, = ¢, and
b, (k) the sum of all such terms with i, < ¢. Therefore ¢, (k) = a,(k)+b,(k), the

number of r-brackets appearing in the sum defining ¢, (k) is (f), the number of

-1

r-brackets appearing in the sum defining a,(k) is (r—l)’ and the number of r-

-1
r

is defined to be zero, so by(k) = 0. We have s1(k) = a¢(k)—be_1(k)—a1 (k)+| £ |
and sa(k) = —ap—1(k) + be—a(k) + (g:l)al(k) — (Z_l) \_ﬁj In general, for each

2 0—2 m

brackets appearing in the sum defining b, (k) is ( ) As usual, the empty sum
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1<r<l—1, welet

5o F) = (=17 (6) + (1)) + (<17 (7 Dt

(=1 | &
(62 o
= (_I)H_l Z fail+ai2+~~-+aie,ﬂae;m(k’)'

1<y <ig<...<ig_p <L

Then

K
7‘+1
E 31" E Sai1+a¢2+---+aié,T,az;m<K)'
=0

1<i1<io<. .. <tp_,. <l

So by (4.37), we see that

£ LA AR XX
O§Zsr(l€)§ (€—r> LEJ if ris odd,
and

¢ =1\ |m s o
_(ﬁ—r) LEJ < ZST(k) < 0if r is even.

k=0
Similar to the proof-of Theorems-1.5 and 1.6, we obtain

Z ST(k) = ay Z (— T+1(lg r+1 == Z bg r + )eilbl

1<r<t—1 9<r<l—1 1<r<l=2
k
]. /+1 _1 Y/ =%
(SN e (S0
=+ (D (as F b ) A (=) oA (-1
1<e<i-2

1<r<f—2 m
k
= Z (—1)7“Cg,r + (—1)4 \\—J
0<r<t—1 m

= fal,GQ,...,ag;m(k>.

Therefore
/-1 /-1 m
-2 (1& N J Zf“l“? AUREDY <e—r) {?J
1<r<t—1 1<¢§£&11
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The middle term in (4.48) is Sy, a9,....ap:m (). The left and right most terms
n (4.48) are, respectively, equal to —272 | 2| and 272 | 2| which can be
evaluated by the well-known identity previously recalled. This proves the first
part of the theorem. Next we show that one of the upper bound or lower
bound is sharp. Let C' = {aj,as,...,a,}. Suppose ¢ is odd, m is even, and
a; = g for every 1 <4 < /. Then we obtain by Lemma 4.1 (i) and Theorem
1.5 that fo,m(0) =g (3,3,...,4) = =272 Let 0 < k < Z. By the definition

of fe.m(k), we see that

Flr(RY =TS =1y Lm !Z’!J

DCiL A
¢
l =% e
=ON(=1)YF e 4.49
BE (THEEG (1.49)
Since 0 < k < 2, we have,Z < E4+L < I Soifyiseven, then | £ + L] =1 =
GJ and if r is odd, then L% 2 = % o L—J In any-case, L% + gJ =5 =
| 2 + £|. This implies that. feum (k) = fcm(0) forevery k=10,1,2,...,%2 — 1.
Then
LN
m 3 m m
: ——1>: PN :_22—2L_J
Se. (2 ch, (k) 2fc, (0) 5

So —2¢2 \_%J in (1.5) cannot be improved when ¢ is odd. Next suppose ¢ is
even, m is even, and a; = 7 forevery 1 <.i-</. Then we obtain similarly that
fem(k) = foum(0) =22 for every k=0,1,2,. .., Z2=1. Then Scyn (% —1) =
2= ZL J So 262 LEJ in (1.5) cannot be improved when ¢ is even. This

completes the proof.
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