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Chapter 1

Introduction

For each real number x, the largest integer which is less than or equal to

x or the floor function of x is denoted by ⌊x⌋. In addition, the fractional

part of x, denoted by {x}, is defined by {x} = x − ⌊x⌋. Problems involving

floor function and fractional part have been of interest to mathematicians,

especially number theorists and combinatorialists, for more than 100 years.

For example, the famous Dirichlet divisor problem is to obtain an estimate for

the sum
∑

n≤N d(n), which can be written in the form involving floor function

as
∑

n≤N

d(n) =
∑

n≤N

⌊
N

n

⌋
, (1.1)

with an error term as small as possible. Here d(n) is the number of positive

divisors of n. In addition, the sum
∑

n≤N d(n) counts the number of posi-

tive lattice points in the (x, y)-plane under the curve xy = N . So it is also

connected to topics in arithmetic geometry.

Understanding floor function may lead to better estimate of (1.1) and other

similar sums. For more details about Dirichlet’s divisor problem, we refer the

reader to [1, 13, 16, 20]. For other problems concerning with floor function or

fractional part see, for example, in [2, 3, 4, 5, 6, 8, 7, 9, 11, 12, 14, 17, 18]. We

are particularly interested in the sum introduced by Jacobsthal and generalized

by Tverberg as given below.
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Definition 1.1. (Jacobsthal [10]) For each a, b ∈ Z and m ∈ Z+, define

fa,b;m : Z → Z and Sa,b;m : N ∪ {0} → Z by

fa,b;m(k) =

⌊
a+ b+ k

m

⌋
−
⌊
a+ k

m

⌋
−
⌊
b+ k

m

⌋
+

⌊
k

m

⌋
, and (1.2)

Sa,b;m(K) =
K∑

k=0

fa,b;m(k).

The above sum is also considered by Carlitz [3, 4] and Grimson [9], and is

generalized by Tverberg [21] as follows.

Definition 1.2. (Tverberg [21]) Let m and ℓ be positive integers and let C be

a multiset of ℓ integers a1, a2, . . . , aℓ, i.e., ai = aj is allowed for some i ̸= j.

Define fC;m : Z → Z and SC;m : N ∪ {0} → Z by

fC;m(k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k +

∑
i∈T ai

m

⌋
, and

SC;m(K) =
K∑

k=0

fC;m(k).

We sometimes write fa1,a2,...,aℓ;m(k) and Sa1,a2,...,aℓ;m(K) instead of fC;m(k)

and SC;m(K), respectively. The set [1, ℓ] appearing in the sum defining f is

{1, 2, 3, . . . , ℓ} and if T = ∅, then
∑

i∈T ai is defined to be zero.

Example 1.3. If C = {a, b}, then fC;m(k) given in Definition 1.2 is the same

as fa,b;m(k) given in (1.2), and if C = {a1, a2, a3}, then fC;m(k) is

fa1,a2,a3;m(k) =

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
.
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If C = {a1, a2, a3, a4}, then fC;m(k) is

fa1,a2,a3,a4;m(k) =

⌊
a1 + a2 + a3 + a4 + k

m

⌋
−
⌊
a1 + a2 + a3 + k

m

⌋

−
⌊
a1 + a2 + a4 + k

m

⌋
−
⌊
a1 + a3 + a4 + k

m

⌋

−
⌊
a2 + a3 + a4 + k

m

⌋
+

⌊
a1 + a2 + k

m

⌋
+

⌊
a1 + a3 + k

m

⌋

+

⌊
a1 + a4 + k

m

⌋
+

⌊
a2 + a3 + k

m

⌋
+

⌊
a2 + a4 + k

m

⌋

+

⌊
a3 + a4 + k

m

⌋
−
⌊
a1 + k

m

⌋
−
⌊
a2 + k

m

⌋
−
⌊
a3 + k

m

⌋

−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
.

Jacobsthal obtained the lower and upper bounds of Sa,b;m(K):

0 ≤ Sa,b;m(K) ≤
⌊m
2

⌋
(1.3)

which are sharp bounds in the sense that one can not improve it to Sa,b;m(K) >

0 or Sa,b;m(K) <
⌊
m
2

⌋
. Tverberg [21] gave another proof of (1.3) and claimed

(without proof) that

−2
⌊m
2

⌋
≤ Sa1,a2,a3;m(K) ≤

⌊m
3

⌋
. (1.4)

In this thesis, we give the proof of Tverberg’s assertion and extends the

result to the case of any positive integer ℓ ≤ 2. We also obtain sharp upper

and lower bounds for the sum fa1,a2,...,aℓ;m(k). In addition, we introduce the

function g similar to f and obtain its bounds as well. Some of our results are

published in Journal of Integer Sequences [15]. The function g and our main

results are the following.

Definition 1.4. Let g : Rn → Z be given by

g(x1, x2, x3, . . . , xn) =
∑

1≤i≤n

⌊xi⌋ −
∑

1≤i1<i2≤n

⌊xi1 + xi2⌋

+
∑

1≤i1<i2<i3≤n

⌊xi1 + xi2 + xi3⌋ − · · ·

+ (−1)n−1⌊x1 + x2 + x3 + · · ·+ xn⌋.
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In other words,

g(x1, x2, x3, . . . , xn) =
∑

∅≠T⊆[1,n]

(−1)|T |−1

⌊
∑

i∈T

xi

⌋
.

Theorem 1.5. (Onphaeng and Pongsriiam [15]) For each n ≥ 2, the function

g given in Definition 1.4 has maximum value 2n−2 − 1 and minimum value

−2n−2. The minimum occurs at least when xk = 1
2 for every 1 ≤ k ≤ n. The

maximum occurs at least when xk =
1
2 −

1
n2 for every 1 ≤ k ≤ n.

Theorem 1.6. (Onphaeng and Pongsriiam [15]) For each ℓ ≥ 2, a1, a2, . . . , aℓ, k ∈

Z and m ≥ 1, we have

−2ℓ−2 ≤ fa1,a2,...,aℓ;m(k) ≤ 2ℓ−2.

Moreover, −2ℓ−2 and 2ℓ−2 are best possible in the sense that there are a1, a2, . . . ,

aℓ,m, k which make the inequality becomes equality. More precisely the follow-

ing statements hold.

(i) If ℓ is odd, m is even, and ai = m
2 for every i = 1, 2, . . . , ℓ, then

fa1,a2,...,aℓ;m(0) = −2ℓ−2 and fa1,a2,...,aℓ;m(
m
2 ) = 2ℓ−2.

(ii) If ℓ is even, m is even, and ai = m
2 for every i = 1, 2, . . . , ℓ, then

fa1,a2,...,aℓ;m(0) = 2ℓ−2 and fa1,a2,...,aℓ;m(
m
2 ) = −2ℓ−2.

Theorem 1.7. (Onphaeng and Pongsriiam [15]) For each ℓ ≥ 2, a1, a2, . . . , aℓ ∈

Z, m ∈ N, and K ∈ N ∪ {0}, we have

−2ℓ−2
⌊m
2

⌋
≤ Sa1,a2,...,aℓ;m(K) ≤ 2ℓ−2

⌊m
2

⌋
. (1.5)

Moreover, If ℓ is odd, then the lower bound −2ℓ−2
⌊
m
2

⌋
is sharp and if ℓ

is even, then the upper bound 2ℓ−2
⌊
m
2

⌋
is sharp in the sense that there are

a1, a2, . . . , aℓ,m, k which make the inequality becomes equality. More precisely,

the following statements hold.

(i) If ℓ is odd, m is even, and ai = m
2 for every i = 1, 2, . . . , ℓ, then

Sa1,a2,...,aℓ;m(K) = −2ℓ−2
⌊
m
2

⌋
.
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(ii) If ℓ is even, m is even, and ai = m
2 for every i = 1, 2, . . . , ℓ, then

Sa1,a2,...,aℓ;m(K) = 2ℓ−2
⌊
m
2

⌋
.

We remark that the extreme values of the functions g and

fa1,a2,...,aℓ;m(k) are connected with Jacobsthal numbers Jn and Jacobsthal-

Lucas numbers jn defined, respectively, by the recurrence relations

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2,

and

j0 = 2, j1 = 1, jn = jn−1 + 2jn−2 for n ≥ 2.

The sequences (Jn)n≥0 and (jn)n≥0 are, respectively, A001045 and A014551

in OEIS [19]. Recall that the Binet forms of Jacobsthal numbers Jn and

Jacobsthal-Lucas numbers jn are

Jn =
2n − (−1)n

3
and jn = 2n + (−1)n (1.6)

for every n ≥ 0. Therefore we obtain the connection between Jacobsthal

and Jacobsthal-Lucas numbers and sums introduced by Jacobsthal [10] and

Tverberg [21] as follows.

Corollary 1.8. (Onphaeng and Pongsriiam [15]) If n is odd, then the maxi-

mum and the minimum value of g(x1, x2, x3, . . . , xn) are jn−2 and −1 − jn−2,

respectively. If n is even, then the maximum and the minimum value of

g(x1, x2, x3, . . . , xn) are 3Jn−2 and 1− jn−2, respectively.

We organize this thesis as follows. In Chapter 2, we give preliminaries. In

Chapter 3, we give the proof of (1.4). Finally, we give the proof of Theorems

1.5, 1.6, 1.7, and other related results in Chapter 4.



Chapter 2

Preliminaries

In this chapter, we recall some basic properties of floor function and binomial

coefficients. Most of them can be found in any standard text in number theory

and combinatorics but we give a proof for completeness.

2.1 Floor function

As introduced in the first chapter, for each x ∈ R, we let ⌊x⌋ be the largest

integer less than or equal to x, and let {x} = x− ⌊x⌋. Basic properties of ⌊x⌋

and {x} are as follows.

Lemma 2.1. Let x be a real number. Then the following statements hold.

(i) ⌊x⌋ ∈ Z and 0 ≤ {x} < 1.

(ii) ⌊⌊x⌋⌋ = ⌊x⌋ and {{x}} = {x}.

(iii) If n is a positive integer, then
⌊
⌊x⌋
n

⌋
=
⌊
x
n

⌋
.

(iv) If n is an integer, then ⌊x+ n⌋ = ⌊x⌋+ n.

Proof. The statement (i) follows immediately from the definition that ⌊x⌋ ∈ Z

and ⌊x⌋ ≤ x < ⌊x⌋ + 1. Since ⌊x⌋ ∈ Z, ⌊⌊x⌋⌋ = ⌊x⌋. In addition, since

{x} ∈ [0, 1), we have {{x}} = {x}− ⌊{x}⌋ = {x}− 0 = {x}.So (ii) is proved.

6
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Next we prove (iii). By (i), there exists an integer m such that m =
⌊
x
n

⌋
. By

the definition of floor function, we have

m ≤ x

n
< m+ 1.

Therefore

nm ≤ x < n(m+ 1).

Since nm ∈ Z and nm ≤ x, we obtain nm ≤ ⌊x⌋ ≤ x < n(m+ 1). Then

m ≤ ⌊x⌋
n

< m+ 1.

By the definition of floor function,
⌊
x
n

⌋
= m =

⌊
⌊x⌋
n

⌋
.

Next we prove (iv). Let m ∈ Z be such that m = ⌊x⌋. Then

m ≤ x < m+ 1

m+ n ≤ x+ n < m+ n+ 1

By the definition of floor function, we see that

⌊x+ n⌋ = m+ n = ⌊x⌋+ n.

Lemma 2.2. Let x and y be real numbers. Then 0 ≤ ⌊x+ y⌋−⌊x⌋−⌊y⌋ ≤ 1.

Proof. By the definition of fractional part and by Lemma 2.1 (iv), we have

⌊x+ y⌋ − ⌊x⌋ − ⌊y⌋ = ⌊⌊x⌋+ {x}+ ⌊y⌋+ {y}⌋ − ⌊x⌋ − ⌊y⌋

= ⌊{x}+ {y}⌋+ ⌊x⌋ − ⌊x⌋+ ⌊y⌋ − ⌊y⌋

= ⌊{x}+ {y}⌋.

By Lemma 2.1 (i), 0 ≤ {x} + {y} < 2. So if 0 ≤ {x} + {y} < 1, then

⌊{x} + {y}⌋ = 0. If 1 ≤ {x} + {y} < 2, then ⌊{x} + {y}⌋ = 1. This implies

the desired result.
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Lemma 2.3. (Hermite’s Identity) Let x be a real number and m a positive

integer. Then
m−1∑

k=0

⌊
x+

k

m

⌋
= ⌊mx⌋. (2.1)

Proof. Case 1: x ∈ Z. By Lemma 2.1 (iv), the left hand side of (2.1) is

m−1∑

k=0

(
x+

⌊
k

m

⌋)
= mx+

m−1∑

k=0

⌊
k

m

⌋

= mx = ⌊mx⌋.

Case 2: x /∈ Z. Then 0 < {x} < 1. We consider

⌊x⌋ ≤
⌊
x+

1

m

⌋
≤ · · · ≤

⌊
x+

m− 1

m

⌋
=

⌊
x+ 1− 1

m

⌋

=

⌊
⌊x⌋+ {x}+ 1− 1

m

⌋

= ⌊x⌋+ 1 +

⌊
{x}− 1

m

⌋

≤ ⌊x⌋+ 1.

Then there exists i ∈ {1, 2, . . . ,m} such that

⌊x⌋ =
⌊
x+

1

m

⌋
= · · · =

⌊
x+

i− 1

m

⌋

and ⌊
x+

i

m

⌋
=

⌊
x+

i+ 1

m

⌋
= · · · =

⌊
x+

m− 1

m

⌋
= ⌊x⌋+ 1. (2.2)

Note that if ⌊x⌋ =
⌊
x+ 1

m

⌋
= · · · =

⌊
x+ m−1

m

⌋
, we take i = m and (2.2) does

not appear in the sum on the left hand side of (2.1). Hence

m−1∑

k=0

⌊
x+

k

m

⌋
= i⌊x⌋+ (m− i)(⌊x⌋+ 1) = m⌊x⌋+m− i,

{x}+ i− 1

m
< 1, and {x}+ i

m
≥ 1.

The above two inequalities give us

m− i ≤ m{x} < m− i+ 1.
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Then

m⌊x⌋+m− i ≤ m⌊x⌋+m{x} = mx < m⌊x⌋+m− i+ 1.

Therefore

⌊mx⌋ = m⌊x⌋+m− i =
m−1∑

k=0

⌊
x+

k

m

⌋
.

2.2 Binomial coefficients

Recall that the binomial coefficients
(
n
k

)
is defined for n ∈ N and k ∈ Z by

(
n
k

)
=

⎧
⎪⎨

⎪⎩

n!
k!(n−k)! , if 0 ≤ k ≤ n;

0, if k < 0 or k > n.

The following are well-known identities which will be used in the proof of

main results.

Lemma 2.4. The following holds for all n ∈ N and k ∈ Z.

(i)
(
n
k

)
=
(

n
n−k

)
.

(ii)
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Proof. If k < 0 or k > n, then both sides of (i) and of (ii) are zero. If 0 ≤ k ≤ n,

then this can be proved by straightforward algebraic manipulation.

Theorem 2.5. (Binomial Theorem) Let a and b be real numbers and n a

nonnegative integer. Then

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk

Proof. This can be proved by induction on n together with Lemma 2.4 (ii).

Lemma 2.6. Let n be a positive integer. Then the following statements hold.

(i)
n∑

k=0

(
n

k

)
= 2n.
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(ii)
n∑

k=0

(−1)k
(
n

k

)
= 0.

(iii)
n∑

k=1

(−1)k−1k

(
n

k

)
= 0 for n ≥ 2.

(iv)
n∑

k=0
k≡0 (mod 2)

(
n

k

)
= 2n−1.

(v)
n∑

k=0
k≡1 (mod 2)

(
n

k

)
= 2n−1.

Proof. By binomial theorem, we have

(a+ b)n =
n∑

k=0

(
n

k

)
an−kbk.

Substituting a = b = 1, we obtain (i). Similarly, (ii) follows from the substi-

tution a = 1 and b = −1. For (iii), we consider the following as a function of

x:

(1 + x)n =
n∑

k=0

(
n

k

)
xk. (2.3)

Differentiating both sides of (2.3) with respect to x, we obtain

n(1 + x)n−1 =
n∑

k=1

k

(
n

k

)
xk−1. (2.4)

Substituting x = −1 in (2.4), we obtain (iii). By adding (i) and (ii), we see

that
n∑

k=0
k≡0 (mod 2)

2

(
n

k

)
=

n∑

k=0

(
1 + (−1)k

)(n
k

)
= 2n.

This implies (iv). Similarly, by subtracting (i) by (ii), we obtain (v).



Chapter 3

Proof of Tverberg’s Assertion

3.1 Lemmas

As mentioned in the first chapter, Tverberg generalized the sums introduced

by Jacobsthal, gave another proof of Jacobsthal’s result, and claimed (without

proof) that

−2
⌊m
2

⌋
≤ Sa1,a2,a3;m(K) ≤

⌊m
3

⌋
.

In this section, we give the proof of his assertion. First, we prove the following

lemma.

Lemma 3.1. Let a1, a2, a3 ∈ Z and m ∈ Z+. The following statements hold.

(i) f is periodic with period m in each variable a1, a2, a3, k. In other words,

for any q ∈ Z, fa1+qm,a2,a3;m(k) = fa1,a2+qm,a3;m(k) = fa1,a2,a3+qm;m(k) =

fa1,a2,a3;m(k + qm).

(ii) fa1,a2,a3;m(k) = fa2,a1,a3;m(k) = · · · = fa3,a2,a1;m(k). In other words, the

permutation of a1, a2, a3 does not change the value of fa1,a2,a3;m(k).

(iii) f0,a2,a3;m(k) = fa1,0,a3;m(k) = fa1,a2,0;m(k) = 0.

Remark 3.2. Lemma 3.1 can be generalized to the case of ℓ variables a1, a2, . . . , aℓ.

Nevertheless, for the purpose of this section, we only need the case ℓ = 3. The

11
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general case of (i) is used in the proof of our main results and will be proved

in the next chapter (see Lemma 4.2 (ii)). The general cases of (ii) and (iii)

are not needed in this thesis.

Proof. By Definition 1.2 and by Lemma 2.1 (iv), we obtain

fa1+qm,a2,a3;m(k) =

⌊
a1 + qm+ a2 + a3 + k

m

⌋
−
⌊
a1 + qm+ a2 + k

m

⌋

−
⌊
a1 + qm+ a3 + k

m

⌋
−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + qm+ k

m

⌋

+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋

=

⌊
a1 + a2 + a3 + k

m

⌋
+ q −

⌊
a1 + a2 + k

m

⌋
− q

−
⌊
a1 + a3 + k

m

⌋
− q −

⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+ q

+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋

=

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋

−
⌊
k

m

⌋

= fa1,a2,a3;m(k).

The equation fa1,a2+qm,a3;m(k) = fa1,a2,a3+qm;m(k) = fa1,a2,a3;m(k + qm) =

fa1,a2,a3;m(k) can be obtained in the same way as fa1+qm,a2,a3;m(k) = fa1,a2,a3;m(k).

This proves (i). The statement (ii) follows immediately from Definition 1.2.

Next we prove (iii). By Definition 1.2, we have

f0,a2,a3;m(k) =

⌊
0 + a2 + a3 + k

m

⌋
−
⌊
0 + a2 + k

m

⌋
−
⌊
0 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
0 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋

= 0.

Similarly, fa1,0,a3;m(k) = fa1,a2,0;m(k) = 0.
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Lemma 3.3. For each ℓ ≥ 2, a1, a2, . . . , aℓ ∈ Z, m ∈ N, and K ∈ N∪ {0}, we

have

Sa1,a2,...,aℓ;m(m− 1) = 0.

Proof. By Definition 1.2 and by Lemma 2.3, we obtain

Sa1,a2,...,aℓ;m(m− 1) =
m−1∑

k=0

fa1,a2,...,aℓ;m(k)

=
m−1∑

k=0

∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k +

∑
i∈T ai

m

⌋

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
m−1∑

k=0

⌊
k +

∑
i∈T ai

m

⌋

=
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

⌊
∑

i∈T

ai

⌋

= (a1 + a2 + · · ·+ aℓ)

−
∑

1≤i1<i2<...<iℓ−1≤ℓ

(
ai1 + ai2 + · · ·+ aiℓ−1

)

+
∑

1≤i1<i2<...<iℓ−2≤ℓ

(
ai1 + ai2 + · · ·+ aiℓ−2

)
+ · · ·+

(−1)ℓ−1
∑

1≤i1≤ℓ

(ai1).

Next, we consider

∑

1≤i1<i2<...<iℓ−k≤ℓ

(
ai1 + ai2 + · · ·+ aiℓ−k

)
(3.1)

where k ∈ {1, 2, . . . , ℓ − 1}. The number of air appearing in the sum (3.1) is
(

ℓ−1
ℓ−k−1

)
for each r ∈ {1, 2, . . . , ℓ}. By Lemma 2.4 (i) and Lemma 2.6 (ii), we
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obtain

Sa1,a2,...,aℓ;m(m− 1) = (a1 + a2 + · · ·+ aℓ)−
(
ℓ− 1

1

)
(a1 + a2 + · · ·+ aℓ)

+

(
ℓ− 1

2

)
(a1 + a2 + · · ·+ aℓ) + · · ·+

+ (−1)ℓ−1

(
ℓ− 1

ℓ− 1

)
(a1 + a2 + · · ·+ aℓ)

= (a1 + a2 + · · ·+ aℓ)
ℓ−1∑

k=0

(−1)k
(
ℓ− 1

k

)
= 0.

Recall from (1.3) that

0 ≤ Sa,b;m(K) ≤
⌊m
2

⌋
.

We will apply the above inequality in the proof of the following theorem.

3.2 Tverberg’s Assertion

Theorem 3.4. Let a1, a2, a3 ∈ Z and m ∈ Z+. Then

−2
⌊m
2

⌋
≤ Sa1,a2,a3;m(K) ≤

⌊m
3

⌋

Proof. First, we proof −2
⌊
m
2

⌋
≤ Sa1,a2,a3;m(K). Recall that

fa1,a2,a3;m(k) =

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
.

By Definition 1.2, we have

fa1+a2,a3;m(k) =

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a3 + k

m

⌋
+

⌊
k

m

⌋
,

(3.2)

−fa1,a3;m(k) = −
⌊
a1 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
, (3.3)

−fa2,a3;m(k) = −
⌊
a2 + a3 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
. (3.4)
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Summing (3.2), (3.3), and (3.4), we see that

fa1,a2,a3;m(k) = fa1+a2,a3;m(k)− fa1,a3;m(k)− fa2,a3;m(k). (3.5)

By the definition of Sa1,a2,a3;m(K), (3.5), and (1.3), we obtain

Sa1,a2,a3;m(K) =
K∑

k=0

fa1,a2,a3;m(k)

=
K∑

k=0

fa1+a2,a3;m(k)−
K∑

k=0

fa1,a3;m(k)−
K∑

k=0

fa2,a3;m(k)

= Sa1+a2,a3;m(K)− Sa1,a3;m(K)− Sa2,a3;m(K)

≥ 0−
⌊m
2

⌋
−
⌊m
2

⌋
= −2

⌊m
2

⌋
.

Next, we prove Sa1,a2,a3;m(K) ≤
⌊
m
3

⌋
. By Lemma 3.1 (i) and Lemma 3.3, we

can assume that a1, a2, a3, k,K ∈ [0,m − 1]. By Lemma 3.1 (ii) and Lemma

3.1 (iii), we can assume that 0 < a1 ≤ a2 ≤ a3.

Case 1: a1 + a2 + a3 ≤ m. Then a1 + a2 + a3 ≥ a2 + a3 ≥ a1 + a3 ≥

max{a1 + a2, a3} ≥ min{a1 + a2, a3} ≥ a2 ≥ a1. If k ∈ [0,m − a1 − a2 − a3),

then f(k) = 0. If k ∈ [m−a1−a2−a3,m−a2−a3), then f(k) = 1. If k ∈ [m−

a2−a3,m−a1−a3), then f(k) = 0. If k ∈ [m−a1−a3,m−max{a1+a2, a3}),

then f(k) = −1. If k ∈ [m − max{a1 + a2, a3},m − min{a1 + a2, a3}), then

f(k) = −2 or f(k) = 0. If k ∈ [m−min{a1+a2, a3},m−a2), then f(k) = −1.

If k ∈ [m− a2,m− a1), then f(k) = 0. If k ∈ [m− a1,m), then f(k) = 1. By

Lemma 3.3, we obtain

Sa1,a2,a3;m(K) ≤ Sa1,a2,a3;m(m− a2 − a3)

= m− a2 − a3 − (m− a1 − a2 − a3) = a1.

By a1 ≤ a2 ≤ a3 and a1+a2+a3 ≤ m, we have a1 ≤
⌊
m
3

⌋
. Then Sa1,a2,a3;m(K) ≤

⌊
m
3

⌋
.

Case 2: m < a1 + a2 + a3 < 2m.

Case 2.1: m < a1 + a2 + a3 < 2m and a2 + a3 < m. Then a2 + a3 ≥ a1 + a3 ≥

max{a1 + a2, a3} ≥ min{a1 + a2, a3} ≥ a2 ≥ a1 ≥ a1 + a2 + a3 − m. If
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k ∈ [0,m − a2 − a3), then f(k) = 1. If k ∈ [m − a2 − a3,m − a1 − a3), then

f(k) = 0. If k ∈ [m − a1 − a3,m − max{a1 + a2, a3}), then f(k) = −1. If

k ∈ [m−max{a1+a2, a3},m−min{a1+a2, a3}), then f(k) = −2 or f(k) = 0.

If k ∈ [m−min{a1+a2, a3},m−a2), then f(k) = −1. If k ∈ [m−a2,m−a1),

then f(k) = 0. If k ∈ [m − a1, 2m − a1 − a2 − a3), then f(k) = 1. If

k ∈ [2m− a1 − a2 − a3,m), then f(k) = 2. By Lemma 3.3, we obtain

Sa1,a2,a3;m(K) ≤ Sa1,a2,a3;m(m− a2 − a3)

= m− a2 − a3 − 0 = m− a2 − a3.

By m < a1+a2+a3, a2+a3 < m and a1 ≤ a2 ≤ a3, we have m−a2−a3 ≤
⌊
m
3

⌋
.

Then Sa1,a2,a3;m(K) ≤
⌊
m
3

⌋
.

Case 2.2: m < a1 + a2 + a3 < 2m, a2 + a3 ≥ m and a1 + a3 < m.

Then a1+a3 ≥ max{a1+a2, a3} ≥ min{a1+a2, a3} ≥ a2 ≥ a1+a2+a3−m ≥

max{a1, a2 + a3 −m} ≥ min{a1, a2 + a3 −m}. If k ∈ [0,m − a1 − a3), then

f(k) = 0. If k ∈ [m − a1 − a3,m − max{a1 + a2, a3}), then f(k) = −1. If

k ∈ [m−max{a1+a2, a3},m−min{a1+a2, a3}), then f(k) = −2 or f(k) = 0.

If k ∈ [m−min{a1+a2, a3},m−a2), then f(k) = −1. If k ∈ [m−a2, 2m−a1−

a2 − a3), then f(k) = 0. If k ∈ [2m− a1 − a2 − a3,m−max{a1, a2 + a3 −m}),

then f(k) = 1. If k ∈ [m−max{a1, a2 + a3 −m},m−min{a1, a2 + a3 −m}),

then f(k) = 2 or f(k) = 0. If k ∈ [m−min{a1, a2+a3−m},m), then f(k) = 1.

By Lemma 3.3, we have Sa1,a2,a3;m(K) ≤ 0.

Case 2.3: m < a1 + a2 + a3 < 2m, a1 + a3 ≥ m and a1 + a2 < m.

Then max{a1 + a2, a3} ≥ min{a1 + a2, a3} ≥ a1 + a2 + a3 − m ≥ a2 ≥

max{a1, a2 + a3 −m} ≥ min{a1, a2 + a3 −m} ≥ a1 + a3 −m. If k ∈ [0,m −

max{a1+a2, a3}), then f(k) = −1. If k ∈ [m−max{a1+a2, a3},m−min{a1+

a2, a3}), then f(k) = −2 or f(k) = 0. If k ∈ [m − min{a1 + a2, a3}, 2m −

a1 − a2 − a3), then f(k) = −1. If k ∈ [2m − a1 − a2 − a3,m − a2), then

f(k) = 0. If k ∈ [m − a2,m − max{a1, a2 + a3 − m}), then f(k) = 1. If

k ∈ [m−max{a1, a2 + a3 −m},m−min{a1, a2 + a3 −m}), then f(k) = 2 or

f(k) = 0. If k ∈ [m−min{a1, a2 + a3 −m}, 2m− a1 − a3), then f(k) = 1. If
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k ∈ [2m−a1−a3,m), then f(k) = 0. By Lemma 3.3, we have Sa1,a2,a3;m(K) ≤

0.

Case 2.4: m < a1 + a2 + a3 < 2m and a1 + a2 ≥ m.

Then a1 + a2 + a3 −m ≥ a3 ≥ a2 ≥ max{a1, a2 + a3 −m} ≥ min{a1, a2 + a3 −

m} ≥ a1+a3−m ≥ a1+a2−m. If k ∈ [0, 2m−a1−a2−a3), then f(k) = −2.

If k ∈ [2m − a1 − a2 − a3,m − a3), then f(k) = −1. If k ∈ [m − a3,m − a2),

then f(k) = 0. If k ∈ [m − a2,m −max{a1, a2 + a3 −m}), then f(k) = 1. If

k ∈ [m−max{a1, a2 + a3 −m},m−min{a1, a2 + a3 −m}), then f(k) = 2 or

f(k) = 0. If k ∈ [m−min{a1, a2 + a3 −m}, 2m− a1 − a3), then f(k) = 1. If

k ∈ [2m−a1−a3, 2m−a1−a2), then f(k) = 0. If k ∈ [2m−a1−a2,m), then

f(k) = −1. By Lemma 3.3, we obtain

Sa1,a2,a3(K) ≤ Sa1,a2,a3(2m− a1 − a2 − 1)

= Sa1,a2,a3(m− 1)−
m−1∑

k=2m−a1−a2

fa1,a2,a3(k)

= 0− (−1)(m− (2m− a1 − a2))

= m− (2m− a1 − a2) = a1 + a2 −m.

By a1+a2+a3 < 2m, a1+a2 ≥ m and a1 ≤ a2 ≤ a3, we have a1+a2−m ≤
⌊
m
3

⌋
.

Then Sa1,a2,a3(K) ≤
⌊
m
3

⌋
.

Case 3: 2m ≤ a1 + a2 + a3.

Then a3 ≥ a2 ≥ max{a1, a2+a3−m} ≥ min{a1, a2+a3−m} ≥ a1+a3−m ≥

a1 + a2 − m ≥ a1 + a2 + a3 − 2m. If k ∈ [0,m − a3), then f(k) = −1. If

k ∈ [m−a3,m−a2), then f(k) = 0. If k ∈ [m−a2,m−max{a1, a2+a3−m}),

then f(k) = 1. If k ∈ [m−max{a1, a2 + a3 −m},m−min{a1, a2 + a3 −m}),

then f(k) = 2 or f(k) = 0. If k ∈ [m−min{a1, a2 + a3 −m}, 2m − a1 − a3),

then f(k) = 1. If k ∈ [2m − a1 − a3, 2m − a1 − a2), then f(k) = 0. If

k ∈ [2m−a1−a2, 3m−a1−a2−a3), then f(k) = −1. If k ∈ [3m−a1−a2−a3,m),
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then f(k) = 0. By Lemma 3.3, we obtain

Sa1,a2,a3(K) ≤ Sa1,a2,a3(2m− a1 − a3 − 1)

= 3m− a1 − a2 − a3 − (2m− a1 − a2) = m− a3.

By 2m ≤ a1 + a2 + a3 and a1 ≤ a2 ≤ a3, we have m − a3 ≤
⌊
m
3

⌋
. Then

Sa1,a2,a3(K) ≤
⌊
m
3

⌋
. By Case 1, Case 2, and Case 3 Sa1,a2,a3(K) ≤

⌊
m
3

⌋
. Next

we show that
⌊
m
3

⌋
is sharp: if m ≡ 0 (mod 3) and a1 = a2 = a3 =

m
3 . It easy

to see that f(0) = f(1) = · · · = f
(
m
3 − 1

)
= 1. Then Sa1,a2,a3

(
m
3 − 1

)
= m

3 .



Chapter 4

Proof of Our Main Results

4.1 Lemmas

Lemma 4.1. For each ℓ ≥ 2, we have

(i) fa1,a2,...,aℓ;m(0) = (−1)ℓ−1g
(
a1
m , a2m , · · · , aℓm

)
,

(ii) fa1,a2,...,aℓ;m(k) = (−1)ℓg
(
a1
m , a2m , · · · , aℓm , k

m

)
+ (−1)ℓ−1g

(
a1
m , a2m , · · · , aℓm

)
.

Proof. This follows easily from the definitions of f and g but we give a proof

for completeness. We have

fa1,a2,...,aℓ;m(0) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |

⌊
∑

i∈T

(ai
m

)⌋

=
∑

∅̸=T⊆[1,ℓ]

(−1)ℓ−|T |

⌊
∑

i∈T

(ai
m

)⌋

= (−1)ℓ−1
∑

∅≠T⊆[1,ℓ]

(−1)1−|T |

⌊
∑

i∈T

(ai
m

)⌋

= (−1)ℓ−1g
(a1
m
,
a2
m
, . . . ,

aℓ
m

)
.
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Next let aℓ+1 = k. Then we obtain

(−1)ℓg

(
a1
m
,
a2
m
, · · · , aℓ

m
,
k

m

)
+ (−1)ℓ−1g

(a1
m
,
a2
m
, · · · , aℓ

m

)

=(−1)ℓ

⎛

⎝
∑

∅≠T⊆[1,ℓ+1]

(−1)|T |−1

⌊
∑

i∈T

(ai
m

)⌋
−

∑

∅̸=T⊆[1,ℓ]

(−1)|T |−1

⌊
∑

i∈T

(ai
m

)⌋
⎞

⎠

=(−1)ℓ
∑

T⊆[1,ℓ+1]
ℓ+1∈T

(−1)|T |−1

⌊
∑

i∈T

(ai
m

)⌋

=(−1)ℓ
∑

T⊆[1,ℓ]

(−1)|T |
⌊
k +

∑
i∈T ai

m

⌋

=fa1,a2,...,aℓ;m(k).

Lemma 4.2. The following statements hold.

(i) For each i ∈ {1, 2, . . . , n} and q ∈ Z, we have

g(x1, x2, . . . , xi + q, . . . , xn) = g(x1, x2, . . . , xn).

In particular, g has period 1 in each variable.

(ii) For each i ∈ {1, 2, . . . , ℓ} and q ∈ Z, we have

fa1,a2,...,ai+qm,...,aℓ;m(k) = fa1,a2,...,aℓ;m(k) = fa1,a2,...,aℓ;m(k + qm).

In particular, f has period m in each variable a1, a2, . . . , aℓ and k.
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Proof. Since ⌊q + x⌋ = q + ⌊x⌋ for every q ∈ Z and x ∈ R, we see that

g(x1, x2, . . . , xi + q, . . . , xn) =

(
q +

n∑

i=1

⌊xi⌋
)

−
((

n− 1

1

)
q +

∑

1≤i1<i2≤n

⌊xi1 + xi2⌋
)

+

((
n− 1

2

)
q +

∑

1≤i1<i2<i3≤n

⌊xi1 + xi2 + xi3⌋
)

− · · ·+ (−1)n−1

((
n− 1

n− 1

)
q + ⌊x1 + x2 + · · ·+ xn⌋

)

= g(x1, x2, . . . , xn) + q
∑

0≤k≤n−1

(−1)k
(
n− 1

k

)

= g(x1, x2, . . . , xn).

This proves (i). Next we prove (ii). By Lemma 4.1 (ii) and by (i), we obtain

fa1,a2,...,ai+qm,...,aℓ;m(k) = (−1)ℓg

(
a1
m
,
a2
m
, . . . ,

ai
m

+ q, . . . ,
aℓ
m
,
k

m

)

+ (−1)ℓ−1g
(a1
m
,
a2
m
, . . . ,

ai
m

+ q, . . . ,
aℓ
m

)

= (−1)ℓg

(
a1
m
,
a2
m
, . . . ,

aℓ
m
,
k

m

)

+ (−1)ℓ−1g
(a1
m
,
a2
m
, . . . ,

aℓ
m

)

= fa1,a2,...,aℓ;m(k).

Similarly, fa1,a2,...,aℓ;m(k+qm) = fa1,a2,...,aℓ;m(k). This completes the proof.

4.2 Proof of Main Results

Proof of Theorem 1.5. If n = 2, then the result is the same as Lemma 2.2 that

−1 ≤ ⌊x⌋+ ⌊y⌋ − ⌊x+ y⌋ ≤ 0.

The inequality in Lemma 2.2 is sharp: if x = y = 1
2 the left inequality in

Lemma 2.2 becomes equality, and if x = y = 1
4 the right inequality in Lemma

2.2 becomes equality. The result when n ≥ 3 is obtained from the case n = 2
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and a careful selection of pairs. For illustration purpose, we first give a proof

for the case n = 3 and n = 4. Recall that

g(x1, x2, x3) = ⌊x1⌋+⌊x2⌋+⌊x3⌋−⌊x1+x2⌋−⌊x1+x3⌋−⌊x2+x3⌋+⌊x1+x2+x3⌋.

We obtain by Lemma 2.2 that

0 ≤ ⌊x1 + x2 + x3⌋ − ⌊x1 + x2⌋ − ⌊x3⌋ ≤ 1, (4.1)

−1 ≤ −⌊x2 + x3⌋+ ⌊x2⌋+ ⌊x3⌋ ≤ 0, (4.2)

−1 ≤ −⌊x1 + x3⌋+ ⌊x1⌋+ ⌊x3⌋ ≤ 0. (4.3)

Summing (4.1), (4.2), and (4.3), the middle terms give g(x1, x2, x3). Then

−2 ≤ g(x1, x2, x3) ≤ 1. Next we consider

g(x1, x2, x3, x4) = ⌊x1⌋+ ⌊x2⌋+ ⌊x3⌋+ ⌊x4⌋ − ⌊x1 + x2⌋ − ⌊x1 + x3⌋

− ⌊x1 + x4⌋ − ⌊x2 + x3⌋ − ⌊x2 + x4⌋ − ⌊x3 + x4⌋

+ ⌊x1 + x2 + x3⌋+ ⌊x1 + x2 + x4⌋+ ⌊x1 + x3 + x4⌋

+ ⌊x2 + x3 + x4⌋ − ⌊x1 + x2 + x3 + x4⌋.

Again, we obtain by Lemma 2.2 the following inequalities:

−1 ≤ −⌊x1 + x2 + x3 + x4⌋+ ⌊x1 + x2 + x3⌋+ ⌊x4⌋ ≤ 0, (4.4)

0 ≤ ⌊x1 + x2 + x4⌋ − ⌊x1 + x2⌋ − ⌊x4⌋ ≤ 1, (4.5)

0 ≤ ⌊x1 + x3 + x4⌋ − ⌊x1 + x3⌋ − ⌊x4⌋ ≤ 1, (4.6)

0 ≤ ⌊x2 + x3 + x4⌋ − ⌊x2 + x3⌋ − ⌊x4⌋ ≤ 1, (4.7)

−1 ≤ −⌊x1 + x4⌋+ ⌊x1⌋+ ⌊x4⌋ ≤ 0, (4.8)

−1 ≤ −⌊x2 + x4⌋+ ⌊x2⌋+ ⌊x4⌋ ≤ 0, (4.9)

−1 ≤ −⌊x3 + x4⌋+ ⌊x3⌋+ ⌊x4⌋ ≤ 0. (4.10)

Summing (4.4) to (4.10), we see that −4 ≤ g(x1, x2, x3, x4) ≤ 3.

Next we prove the general case n ≥ 5. The expression of the form ⌊xi1 +

xi2 + · · · + xik⌋ will be called a k-bracket. So for each 1 ≤ k ≤ n, there are
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(
n
k

)
k-brackets appearing in the sum defining g(x1, x2, . . . , xn). We first pair

up the n-bracket with an (n− 1)-bracket and a 1-bracket as follows:

s1 = (−1)n−1⌊x1+x2+ · · ·+xn⌋+(−1)n−2⌊x1+x2+ · · ·+xn−1⌋+(−1)n−2⌊xn⌋.

(4.11)

Notice that the sign of ⌊xn⌋ in (4.11) may or may not be the same as that

appearing in the sum defining g(x1, x2, . . . , xn) but it is the same as the sign

of ⌊x1+x2+ · · ·+xn−1⌋ so that we can apply Lemma 2.2 to obtain the bound

for s1. Next we pair up the remaining (n− 1)-brackets with (n− 2)-brackets

and 1-brackets as follows:

(−1)n−2⌊xi1+xi2+· · ·+xin−1⌋+(−1)n−3⌊xi1+xi2+· · ·+xin−2⌋+(−1)n−3⌊xin−1⌋,

(4.12)

where 1 ≤ i1 < i2 < . . . < in−1 ≤ n. We note again that the sign of ⌊xi1 +

xi2 + · · ·+ xin−1⌋ and ⌊xi1 + xi2 + · · ·+ xin−2⌋ in (4.12) are the same as those

appearing in the sum defining g(x1, x2, . . . , xn) while the sign of ⌊xin−1⌋ in

(4.12) may or may not be the same, but we can apply Lemma 2.2 to obtain

the bound of (4.12). Since ⌊x1 + x2 + · · ·+ xn−1⌋ appears in (4.11), the term

xin−1 appearing in the (n− 1)-brackets in (4.12) is always xn. So in fact (4.12)

is

(−1)n−2⌊xi1+xi2+· · ·+xin−2+xn⌋+(−1)n−3⌊xi1+xi2+· · ·+xin−2⌋+(−1)n−3⌊xn⌋.

(4.13)

Then we sum (4.13) over all possibles 1 ≤ i1 < i2 < . . . < in−2 < n, and call

it s2. That is

s2 = (−1)n−2
∑

1≤i1<i2<...<in−2<n

⌊xi1 + xi2 + · · ·+ xin−2 + xn⌋

+ (−1)n−3
∑

1≤i1<i2<...<in−2<n

⌊xi1 + xi2 + · · ·+ xin−2⌋

+ (−1)n−3

(
n− 1

n− 2

)
⌊xn⌋.

We continue doing this process as follows. For each 0 ≤ ℓ ≤ n − 1, let cℓ be

the sum of all ⌊xi1 + xi2 + · · · + xin−ℓ
⌋ with 1 ≤ i1 < i2 < . . . < in−ℓ ≤ n, aℓ
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the sum of all such terms with in−ℓ = n, and bℓ the sum of all such terms with

in−ℓ < n. Therefore cℓ = aℓ + bℓ. As usual, the empty sum is defined to be

zero, so b0 = 0. The number of (n− ℓ)-brackets appearing in the sum defining

cℓ is
(

n
n−ℓ

)
, the number of (n− ℓ)-brackets appearing in the sum defining aℓ is

(
n−1

n−ℓ−1

)
, and the number of (n− ℓ)-brackets appearing in the sum defining bℓ

is
(
n−1
n−ℓ

)
. In addition, we have

s1 = (−1)n−1a0 + (−1)n−2b1 + (−1)n−2⌊xn⌋,

s2 = (−1)n−2a1 + (−1)n−3b2 + (−1)n−3

(
n− 1

n− 2

)
⌊xn⌋.

In general, for each 1 ≤ ℓ ≤ n− 1, we let

sℓ = (−1)n−ℓaℓ−1 + (−1)n−ℓ−1bℓ + (−1)n−ℓ−1

(
n− 1

n− ℓ

)
⌊xn⌋.

Then

∑

1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

2≤ℓ≤n−1

(−1)n−ℓaℓ−1 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1bℓ + bn−1

+ ⌊xn⌋
∑

1≤ℓ≤n−1

(−1)n−ℓ−1

(
n− 1

n− ℓ

)
. (4.14)

Recall from Lemma 2.6 (ii) that
∑

0≤ℓ≤n(−1)ℓ
(
n
ℓ

)
= 0 for all n ≥ 1. Therefore

the last sum on the right hand side of (4.14) is

−
∑

1≤ℓ≤n−1

(−1)n−ℓ

(
n− 1

n− ℓ

)
= −

∑

1≤ℓ≤n−1

(−1)ℓ
(
n− 1

ℓ

)

= −
∑

0≤ℓ≤n−1

(−1)ℓ
(
n− 1

ℓ

)
+ 1 = 1.

Therefore the last term in (4.14) is ⌊xn⌋. Replacing ℓ by ℓ + 1 in the first

sum on the right hand side of (4.14), we see that
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∑

1≤ℓ≤n−1

sℓ = (−1)n−1a0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1(aℓ + bℓ) + bn−1 + ⌊xn⌋

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + bn−1 + ⌊xn⌋

= (−1)n−1c0 +
∑

1≤ℓ≤n−2

(−1)n−ℓ−1cℓ + cn−1 (4.15)

=
∑

0≤ℓ≤n−1

(−1)n−ℓ−1cℓ

= g(x1, x2, . . . , xn),

where (4.15) can be obtained from the definition of cn−1, bn−1, and an−1 that

cn−1 = ⌊x1⌋+ ⌊x2⌋+ · · ·+ ⌊xn⌋ ,

bn−1 = ⌊x1⌋+ ⌊x2⌋+ · · ·+ ⌊xn−1⌋ ,

an−1 = ⌊xn⌋ , and

cn−1 = an−1 + bn−1.

We apply Lemma 2.2 and (4.1) to (4.11) to obtain

0 ≤ s1 ≤ 1 if n is odd, and −1 ≤ s1 ≤ 0 if n is even.

Similarly, applying Lemma 2.2 and (4.1) to (4.13), we see that such sum lies

in [0, 1] if n is even, and lies in [−1, 0] if n is odd. Therefore

0 ≤ s2 ≤
(
n− 1

n− 2

)
if n is even, and −

(
n− 1

n− 2

)
≤ s2 ≤ 0 if n is odd.

In general, for each 1 ≤ ℓ ≤ n− 1, we have

0 ≤ sℓ ≤
(
n− 1

n− ℓ

)
, if n and ℓ have the same parity,

−
(
n− 1

n− ℓ

)
≤ sℓ ≤ 0, if n and ℓ have a different parity.

Since g(x1, x2, . . . , xn) =
∑

1≤ℓ≤n−1 sℓ, we obtain, for odd n,

−
∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
≤ g(x1, x2, . . . , xn) ≤

∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
,
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and for even n,

−
∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
≤ g(x1, x2, . . . , xn) ≤

∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
.

Recall from Lemma 2.6 (iv) and Lemma 2.6 (v) that

∑

0≤k≤n
k is even

(
n

k

)
=
∑

0≤k≤n
k is odd

(
n

k

)
= 2n−1.

Therefore if n is odd, then

∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
=

∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

ℓ

)
= 2n−2 − 1, and

∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
=

∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

ℓ

)
=

∑

0≤ℓ≤n−1
ℓ is odd

(
n− 1

ℓ

)
= 2n−2.

Similarly, if n is even, then

∑

1≤ℓ≤n−1
ℓ is odd

(
n− 1

n− ℓ

)
= 2n−2 and

∑

1≤ℓ≤n−1
ℓ is even

(
n− 1

n− ℓ

)
= 2n−2 − 1.

Hence −2n−2 ≤ g(x1, x2, . . . , xn) ≤ 2n−2 − 1, as required. Next we show

that the lower bound −2n−2 and the upper bound 2n−2 − 1 are actually the

minimum and the maximum of g(x1, x2, . . . , xn), respectively. Recall that the

fractional part of a real number x, denoted by {x}, is defined by {x} = x−⌊x⌋.

Let xk =
1
2 for every k = 1, 2, . . . , n. Then

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊
k

2

⌋(
n

k

)

=
∑

1≤k≤n

(−1)k−1

(
k

2

)(
n

k

)
−
∑

1≤k≤n

(−1)k−1

{
k

2

}(
n

k

)

=
1

2

∑

1≤k≤n

(−1)k−1k

(
n

k

)
− 1

2

∑

1≤k≤n
k is odd

(
n

k

)
, (4.16)

where the last equality is obtained from the fact that
{

k
2

}
= 0 if k is even and

{
k
2

}
= 1

2 if k is odd. By Lemmas 2.6 (iii) and 2.6 (v), we obtain

g(x1, x2, . . . , xn) = 0− 1

2

(
2n−1

)
= −2n−2.
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This shows that −2n−2 is the minimun value of g. Next let xk = 1
2 − 1

n2 for

every k = 1, 2, . . . , n. Then

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊
k

2
− k

n2

⌋(
n

k

)
. (4.17)

If 1 ≤ k ≤ n and k is even, then
⌊
k
2 −

k
n2

⌋
= k

2 − 1 =
⌊
k−1
2

⌋
. If 1 ≤ k ≤ n and

k is odd, then
⌊
k
2 −

k
n2

⌋
=
⌊
k−1
2 + 1

2 −
k
n2

⌋
=
⌊
k−1
2

⌋
. Therefore (4.17) becomes

g(x1, x2, . . . , xn) =
∑

1≤k≤n

(−1)k−1

⌊
k − 1

2

⌋(
n

k

)
. (4.18)

Now we can evaluate the sum (4.18) by using the same method as in (4.16).

We write
⌊
k−1
2

⌋
= k−1

2 −
{

k−1
2

}
and we know that

{
k−1
2

}
= 0 if k is odd and

{
k−1
2

}
= 1

2 if k is even. Then (4.18) can be written as

g(x1, x2, . . . , xn) =
1

2

∑

1≤k≤n

(−1)k−1k

(
n

k

)
−1

2

∑

1≤k≤n

(−1)k−1

(
n

k

)
+
1

2

∑

1≤k≤n
k is even

(
n

k

)
.

The first sum is zero by Lemma 2.6 (iii). The second sum is 1 by Lemma 2.6

(ii). By Lemma 2.6 (iv), we obtain

g(x1, x2, . . . , xn) = 0− 1

2
+

1

2

(
2n−1 − 1

)
= 2n−2 − 1.

Proof of Corollary 1.8. This follows immediately from (1.6) and Theorem 1.5.

Next we give the proof of Theorem 1.6. Although we can write fa1,a2,...,aℓ;m(k)

in terms of g(x1, x2, . . . , xn) as given in Lemma 4.1, we do not know the proof

which applies Theorem 1.5 to obtain Theorem 1.6. Nevertheless, we can use

the same idea in the proof of Theorem 1.5 to prove Theorem 1.6.

Proof of Theorem 1.6. By Lemma 4.2 (ii), we can assume that ai ∈ [0,m− 1]

for every 1 ≤ i ≤ ℓ. Therefore

⌊ai
m

⌋
= 0 for every i ∈ {1, 2, . . . , ℓ}. (4.19)



28

If ℓ = 2, then the result follows from (4.19) and Lemma 2.2, and we have

0 ≤
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + k

m

⌋
≤ 1, (4.20)

and

−1 ≤ −
⌊
a2 + k

m

⌋
+

⌊
k

m

⌋
≤ 0. (4.21)

Summing (4.20) and (4.21), we obtain −1 ≤ fa1,a2;m(k) ≤ 1. The result when

ℓ ≥ 3 is based on a careful selection of pairs and the case ℓ = 2. For illustration

purpose, we first give a proof for the case ℓ = 3 and ℓ = 4. Recall that

fa1,a2,a3;m(k) =

⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
−
⌊
a1 + a3 + k

m

⌋

−
⌊
a2 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
+

⌊
a2 + k

m

⌋
+

⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
.

We obtain by Lemma 2.2 and (4.19) that

0 ≤
⌊
a1 + a2 + a3 + k

m

⌋
−
⌊
a1 + a2 + k

m

⌋
≤ 1, (4.22)

−1 ≤ −
⌊
a1 + a3 + k

m

⌋
+

⌊
a1 + k

m

⌋
≤ 0, (4.23)

−1 ≤ −
⌊
a2 + a3 + k

m

⌋
+

⌊
a2 + k

m

⌋
≤ 0, (4.24)

0 ≤
⌊
a3 + k

m

⌋
−
⌊
k

m

⌋
≤ 1. (4.25)

Summing (4.22), (4.23), (4.24), and (4.25), we see that the middle term is

fa1,a2,a3,m(k). Therefore −2 ≤ fa1,a2,a3;m(k) ≤ 2. Next we consider

fa1,a2,a3,a4;m(k) =

⌊
a1 + a2 + a3 + a4 + k

m

⌋
−
⌊
a1 + a2 + a3 + k

m

⌋

−
⌊
a1 + a2 + a4 + k

m

⌋
−
⌊
a1 + a3 + a4 + k

m

⌋

−
⌊
a2 + a3 + a4 + k

m

⌋
+

⌊
a1 + a2 + k

m

⌋
+

⌊
a1 + a3 + k

m

⌋

+

⌊
a1 + a4 + k

m

⌋
+

⌊
a2 + a3 + k

m

⌋
+

⌊
a2 + a4 + k

m

⌋

+

⌊
a3 + a4 + k

m

⌋
−
⌊
a1 + k

m

⌋
−
⌊
a2 + k

m

⌋
−
⌊
a3 + k

m

⌋

−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
.
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Again, we obtain by Lemma 2.2 and (4.19) the following inequalities:

0 ≤
⌊
a1 + a2 + a3 + a4 + k

m

⌋
−
⌊
a1 + a2 + a3 + k

m

⌋
≤ 1, (4.26)

−1 ≤ −
⌊
a1 + a2 + a4 + k

m

⌋
+

⌊
a1 + a2 + k

m

⌋
≤ 0, (4.27)

−1 ≤ −
⌊
a1 + a3 + a4 + k

m

⌋
+

⌊
a1 + a3 + k

m

⌋
≤ 0, (4.28)

−1 ≤ −
⌊
a2 + a3 + a4 + k

m

⌋
+

⌊
a2 + a3 + k

m

⌋
≤ 0, (4.29)

0 ≤
⌊
a1 + a4 + k

m

⌋
−
⌊
a1 + k

m

⌋
≤ 1, (4.30)

0 ≤
⌊
a2 + a4 + k

m

⌋
−
⌊
a2 + k

m

⌋
≤ 1, (4.31)

0 ≤
⌊
a3 + a4 + k

m

⌋
−
⌊
a3 + k

m

⌋
≤ 1, (4.32)

−1 ≤ −
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
≤ 0. (4.33)

Summing (4.26) to (4.33), we see that −4 ≤ fa1,a2,a3,a4,m(k) ≤ 4.

Next we prove the general case ℓ ≥ 5. The expression of the form
⌊
ai1+ai2+···+air+k

m

⌋
will be called an r-bracket. So for each 1 ≤ r ≤ ℓ, there are

(
ℓ
r

)
r-brackets appearing in the sum defining fa1,a2,...,aℓ;m(k). We follow closely

the method used in the proof of Theorem 1.5. So we first pair up the ℓ-bracket

with an (ℓ− 1)-bracket as follows:

s1 =

⌊
a1 + a2 + · · ·+ aℓ + k

m

⌋
−
⌊
a1 + a2 + · · ·+ aℓ−1 + k

m

⌋
, (4.34)

and we can apply Lemma 2.2 and (4.19) to obtain the bound for s1. Next we

pair up the remaining (ℓ− 1)-brackets with (ℓ− 2)-brackets as follows:

−
⌊
ai1 + ai2 + · · ·+ aiℓ−1

+ k

m

⌋
+

⌊
ai1 + ai2 + · · ·+ aiℓ−2

+ k

m

⌋
, (4.35)

and we sum (4.35) over all 1 ≤ i1 < i2 < . . . < iℓ−1 ≤ ℓ and call it s2. Since aℓ

does not appear in the second term on the right hand side of (4.34), the term
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aiℓ−1
appearing in (4.35) is always aℓ. So in fact

s2 = −
∑

1≤i1<i2<...<iℓ−2<ℓ

⌊
ai1 + ai2 + · · ·+ aiℓ−2

+ aℓ + k

m

⌋

+
∑

1≤i1<i2<...<iℓ−2<ℓ

⌊
ai1 + ai2 + · · ·+ aiℓ−2

+ k

m

⌋
.

We continue doing this process as follows. For each 1 ≤ r ≤ ℓ, let cr be the

sum of all
⌊
ai1+ai2+···+air+k

m

⌋
with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ, ar the sum

of all such terms with ir = ℓ, and br the sum of all such terms with ir < ℓ.

Therefore cr = ar + br, the number of summands of cr is
(
ℓ
r

)
, the number of

summands of ar is
(
ℓ−1
r−1

)
, and the number of summands of br is

(
ℓ−1
r

)
. As usual,

the empty sum is defined to be zero, so bℓ = 0. We have s1 = aℓ − bℓ−1 and

s2 = −aℓ−1 + bℓ−2. In general, for each 1 ≤ r ≤ ℓ− 1, we let

sr = (−1)r+1aℓ−r+1 + (−1)rbℓ−r and sℓ = (−1)ℓ+1a1 + (−1)ℓ
⌊
k

m

⌋
.

Then

0 ≤ sr ≤
(
ℓ− 1

ℓ− r

)
if r is odd, and −

(
ℓ− 1

ℓ− r

)
≤ sr ≤ 0 if r is even,

∑

1≤r≤ℓ

sr = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1 + sℓ

= aℓ +
∑

1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1 +

⌊
k

m

⌋

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 +

⌊
k

m

⌋

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r +

⌊
k

m

⌋

= fa1,a2,...,aℓ;m(k).

Therefore

−
∑

1≤r≤ℓ
r is even

(
ℓ− 1

ℓ− r

)
≤ fa1,a2,...,aℓ;m(k) ≤

∑

1≤r≤ℓ
r is odd

(
ℓ− 1

ℓ− r

)
.
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Replacing r by r + 1, we see that

∑

1≤r≤ℓ
r is odd

(
ℓ− 1

ℓ− r

)
=

∑

0≤r≤ℓ−1
r is even

(
ℓ− 1

ℓ− 1− r

)
.

By Lemma 2.4 (i) and Lemma 2.6 (iv), we obtain

∑

0≤r≤ℓ−1
r is even

(
ℓ− 1

ℓ− 1− r

)
=

∑

0≤r≤ℓ−1
r is even

(
ℓ− 1

r

)
= 2ℓ−2.

Similarly,

−
∑

1≤r≤ℓ
r is even

(
ℓ− 1

ℓ− r

)
= −2ℓ−2.

Therefore

−2ℓ−2 ≤ fa1,a2,...,aℓ;m(k) ≤ 2ℓ−2, (4.36)

as required. If ℓ is odd, m is even, and ai =
m
2 for every 1 ≤ i ≤ ℓ, we obtain by

Lemma 4.1 and Theorem 1.5 that fa1,a2,...,aℓ;m(0) = g
(
1
2 ,

1
2 , . . . ,

1
2

)
= −2ℓ−2and

fa1,a2,...,aℓ;m(
m
2 ) = (−1)ℓg

(
1
2 ,

1
2 , . . . ,

1
2

)
+ (−1)ℓ−1g

(
1
2 ,

1
2 , . . . ,

1
2

)
= 2ℓ−2 . If ℓ

is even, m is even, and ai =
m
2 for every 1 ≤ i ≤ ℓ, we obtain similarly that

fa1,a2,...,aℓ;m(0) = 2ℓ−2 and fa1,a2,...,aℓ;m(
m
2 ) = −2ℓ−2. So 2ℓ−2 and −2ℓ−2 in (4.36)

cannot be improved. This completes The proof.

Proof of Theorem 1.7. If ℓ = 2, then the result is already proved by Jacobsthal

[10]. See also another proof by Tverberg [21]. We recall from (1.3) that

0 ≤ Sa,b;m(K) ≤
⌊m
2

⌋
. (4.37)

As before the result when ℓ ≥ 3 is based on the case ℓ = 2 and a careful

selection of pairs. The case ℓ = 3 is already shown in the proof of Theorem

3.4. So we show more ideas by giving the proof for the case ℓ = 4. We have

the following equalities:

fa1+a2+a3,a4;m(k) =

⌊
a1 + a2 + a3 + a4 + k

m

⌋
−
⌊
a1 + a2 + a3 + k

m

⌋

−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
, (4.38)
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−fa1+a2,a4;m(k) = −
⌊
a1 + a2 + a4 + k

m

⌋
+

⌊
a1 + a2 + k

m

⌋
+

⌊
a4 + k

m

⌋
−
⌊
k

m

⌋
,

(4.39)

−fa1+a3,a4;m(k) = −
⌊
a1 + a3 + a4 + k

m

⌋
+

⌊
a1 + a3 + k

m

⌋
+

⌊
a4 + k

m

⌋
−
⌊
k

m

⌋
,

(4.40)

−fa2+a3,a4;m(k) = −
⌊
a2 + a3 + a4 + k

m

⌋
+

⌊
a2 + a3 + k

m

⌋
+

⌊
a4 + k

m

⌋
−
⌊
k

m

⌋
,

(4.41)

fa1,a4;m(k) =

⌊
a1 + a4 + k

m

⌋
−
⌊
a1 + k

m

⌋
−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
, (4.42)

fa2,a4;m(k) =

⌊
a2 + a4 + k

m

⌋
−
⌊
a2 + k

m

⌋
−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
, (4.43)

fa3,a4;m(k) =

⌊
a3 + a4 + k

m

⌋
−
⌊
a3 + k

m

⌋
−
⌊
a4 + k

m

⌋
+

⌊
k

m

⌋
. (4.44)

Summing (4.38) to (4.44) and recalling the definition of fa1,a2,a3,a4;m(k), we see

that

fa1,a2,a3,a4;m(k) = fa1+a2+a3,a4;m(k)− fa1+a2,a4;m(k)− fa1+a3,a4;m(k)

− fa2+a3,a4;m(k) + fa1,a4;m(k) + fa2,a4;m(k) + fa3,a4;m(k).

(4.45)

Then we obtain from (4.45) and (4.37) that

Sa1,a2,a3,a4;m(K) = Sa1+a2+a3,a4;m(K)− Sa1+a2,a4;m(K)− Sa1+a3,a4;m(K)

− Sa2+a3,a4;m(K) + Sa1,a4;m(K) + Sa2,a4;m(K) + Sa3,a4;m(K)

≤
⌊m
2

⌋
− 0− 0− 0 +

⌊m
2

⌋
+
⌊m
2

⌋
+
⌊m
2

⌋
= 4

⌊m
2

⌋
.

Similarly, Sa1,a2,a3,a4;m(K) ≥ −4
⌊
m
2

⌋
. Next we prove the general case ℓ ≥ 5.

The expression of the form
⌊
ai1+ai2+···+air+k

m

⌋
will be called an r-bracket. So

for each 0 ≤ r ≤ ℓ, there are
(
ℓ
r

)
r-brackets appearing in the sum defining

fa1,a2,...,aℓ;m(k). We first pair up the ℓ-bracket with an (ℓ − 1)-bracket, a 1-

bracket and a 0-bracket as follows:

s1(k) =

⌊
a1 + a2 + · · ·+ aℓ + k

m

⌋
−
⌊
a1 + a2 + · · ·+ aℓ−1 + k

m

⌋
−
⌊
aℓ + k

m

⌋

+

⌊
k

m

⌋
. (4.46)
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So s1(k) is in fact fa1+a2+···+aℓ−1,aℓ;m(k) and we can apply (4.37) to obtain the

inequality

0 ≤ Sa1+a2+···+aℓ−1,aℓ;m(K) =
K∑

k=0

s1(k) ≤
⌊m
2

⌋
.

Next we pair up the remaining (ℓ−1)-brackets with (ℓ−2)-brackets, 1-brackets

and 0-brackets as follows:

−
⌊
ai1 + ai2 + · · ·+ aiℓ−1

+ k

m

⌋
+

⌊
ai1 + ai2 + · · ·+ aiℓ−2

+ k

m

⌋
+

⌊
aiℓ−1

+ k

m

⌋

−
⌊
k

m

⌋
, (4.47)

and we sum (4.47) over all 1 ≤ i1 < i2 < · · · < iℓ−1 ≤ ℓ and call it

s2(k). Since aℓ does not appear in the second term on the right hand side

of (4.46), the term aiℓ−1
appearing in (4.47) is always aℓ. So in fact (4.47) is

−fai1+ai2+···+aiℓ−2
,aℓ;m(k) and

s2(k) = −
∑

1≤i1<i2<...<iℓ−2<ℓ

fai1+ai2+···+aiℓ−2
,aℓ;m(k)

Furthermore,

K∑

k=0

s2(k) = −
∑

1≤i1<i2<...<iℓ−2<ℓ

Sai1+ai2+···+aiℓ−2
,aℓ;m(K) ≤ 0,

where the last inequality is obtained from (4.37). We continue doing this

process and follow closely the method used in the proof of Theorems 1.5 and

1.6. The well-known identities previously recalled will be applied without

reference. For each 1 ≤ r ≤ ℓ, let cr(k) be the sum of all
⌊
ai1+ai2+···+air+k

m

⌋

with 1 ≤ i1 < i2 < · · · < ir ≤ ℓ, ar(k) the sum of all such terms with ir = ℓ, and

br(k) the sum of all such terms with ir < ℓ. Therefore cr(k) = ar(k)+br(k), the

number of r-brackets appearing in the sum defining cr(k) is
(
ℓ
r

)
, the number of

r-brackets appearing in the sum defining ar(k) is
(
ℓ−1
r−1

)
, and the number of r-

brackets appearing in the sum defining br(k) is
(
ℓ−1
r

)
. As usual, the empty sum

is defined to be zero, so bℓ(k) = 0. We have s1(k) = aℓ(k)−bℓ−1(k)−a1(k)+
⌊

k
m

⌋

and s2(k) = −aℓ−1(k) + bℓ−2(k) +
(
ℓ−1
ℓ−2

)
a1(k)−

(
ℓ−1
ℓ−2

) ⌊
k
m

⌋
. In general, for each
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1 ≤ r ≤ ℓ− 1, we let

sr(k) = (−1)r+1aℓ−r+1(k) + (−1)rbℓ−r(k) + (−1)r
(
ℓ− 1

ℓ− r

)
a1(k)

+ (−1)r+1

(
ℓ− 1

ℓ− r

)⌊
k

m

⌋

= (−1)r+1
∑

1≤i1<i2<...<iℓ−r<ℓ

fai1+ai2+···+aiℓ−r
,aℓ;m(k).

Then
K∑

k=0

sr(k) = (−1)r+1
∑

1≤i1<i2<...<iℓ−r<ℓ

Sai1+ai2+···+aiℓ−r
,aℓ;m(K).

So by (4.37), we see that

0 ≤
K∑

k=0

sr(k) ≤
(
ℓ− 1

ℓ− r

)⌊m
2

⌋
if r is odd,

and

−
(
ℓ− 1

ℓ− r

)⌊m
2

⌋
≤

K∑

k=0

sr(k) ≤ 0 if r is even.

Similar to the proof of Theorems 1.5 and 1.6, we obtain

∑

1≤r≤ℓ−1

sr(k) = aℓ +
∑

2≤r≤ℓ−1

(−1)r+1aℓ−r+1 +
∑

1≤r≤ℓ−2

(−1)rbℓ−r + (−1)ℓ−1b1

+ (−1)ℓ+1a1 + (−1)ℓ
⌊
k

m

⌋

= aℓ +
∑

1≤r≤ℓ−2

(−1)r(aℓ−r + bℓ−r) + (−1)ℓ−1b1 + (−1)ℓ+1a1

+ (−1)ℓ
⌊
k

m

⌋

= cℓ +
∑

1≤r≤ℓ−2

(−1)rcℓ−r + (−1)ℓ−1c1 + (−1)ℓ
⌊
k

m

⌋

=
∑

0≤r≤ℓ−1

(−1)rcℓ−r + (−1)ℓ
⌊
k

m

⌋

= fa1,a2,...,aℓ;m(k).

Therefore

−
∑

1≤r≤ℓ−1
r is even

(
ℓ− 1

ℓ− r

)⌊m
2

⌋
≤

K∑

k=0

fa1,a2,...,aℓ;m(k) ≤
∑

1≤r≤ℓ−1
r is odd

(
ℓ− 1

ℓ− r

)⌊m
2

⌋
.

(4.48)
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The middle term in (4.48) is Sa1,a2,...,aℓ;m(K). The left and right most terms

in (4.48) are, respectively, equal to −2ℓ−2
⌊
m
2

⌋
and 2ℓ−2

⌊
m
2

⌋
which can be

evaluated by the well-known identity previously recalled. This proves the first

part of the theorem. Next we show that one of the upper bound or lower

bound is sharp. Let C = {a1, a2, . . . , aℓ}. Suppose ℓ is odd, m is even, and

ai =
m
2 for every 1 ≤ i ≤ ℓ. Then we obtain by Lemma 4.1 (i) and Theorem

1.5 that fC;m(0) = g
(
1
2 ,

1
2 , . . . ,

1
2

)
= −2ℓ−2. Let 0 < k < m

2 . By the definition

of fC;m(k), we see that

fC;m(k) =
∑

T⊆[1,ℓ]

(−1)ℓ−|T |
⌊
k

m
+

|T |
2

⌋

=
ℓ∑

r=0

(−1)ℓ−r

(
ℓ

r

)⌊
k

m
+

r

2

⌋
(4.49)

Since 0 < k < m
2 , we have

r
2 < k

m+ r
2 < r+1

2 . So if r is even, then
⌊

k
m + r

2

⌋
= r

2 =
⌊
r
2

⌋
and if r is odd, then

⌊
k
m + r

2

⌋
= r−1

2 =
⌊
r
2

⌋
. In any case,

⌊
k
m + r

2

⌋
= r

2 =
⌊

0
m + r

2

⌋
. This implies that fC;m(k) = fC;m(0) for every k = 0, 1, 2, . . . , m2 − 1.

Then

SC;m

(m
2
− 1
)
=

m
2 −1∑

k=0

fC;m(k) =
m

2
fC;m(0) = −2ℓ−2

⌊m
2

⌋

So −2ℓ−2
⌊
m
2

⌋
in (1.5) cannot be improved when ℓ is odd. Next suppose ℓ is

even, m is even, and ai =
m
2 for every 1 ≤ i ≤ ℓ. Then we obtain similarly that

fC;m(k) = fC;m(0) = 2ℓ−2 for every k = 0, 1, 2, . . . , m2 −1. Then SC;m(
m
2 −1) =

2ℓ−2
⌊
m
2

⌋
. So 2ℓ−2

⌊
m
2

⌋
in (1.5) cannot be improved when ℓ is even. This

completes the proof.
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