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Chapter 1

Introduction

Coding theory is the study of the properties of codes and deals with the design

of error-correcting codes for the reliable transmission of information across noisy

channels. Self-orthogonal codes form an important class of linear codes due to their

rich algebraic structures, various applications, and link with other objects as shown

[14], [8] and references therein. Such codes have extensively been studied by many

coding theorists. Self-orthogonal codes can be applied to construct quantum codes [8].

One interesting problem is to construct self-orthogonal codes with good parameters.

The matrix-product construction for linear codes has been introduced in [2].

Matrix-product codes are interesting since they can be viewed as a generalization

of the well-known (u|u + v)-construction and (u + v + w|2u + v|u)-construction [2].

In [2], properties of matrix-product codes have been studied as well as a lower bound

for the minimum distance of the output codes. In some cases, the lower bound given

in [2] was shown to be sharped [6].

In [5], the matrix-product construction has been applied to obtain Euclidean self-

orthogonal codes in the case where the underlying matrix is a square orthogonal

matrix and the input codes are Euclidean self-orthogonal. Similarly, this idea has

been extended to construct Hermitian self-orthogonal codes in [15] and [13]. However,

the input codes are required to be Hermitian self-orthogonal.

In this thesis, we propose a more general set up for self-orthogonal matrix-product
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codes under the Euclidean and Hermitian inner products. In many cases, the self-

orthogonality of the input codes can be relaxed. Some basic properties of matrices,

linear codes, self-orthogonal codes and matrix-product codes are discussed in Chapter

2. Matrix-product constructions for Euclidean self-orthogonal codes are discussed in

Chapter 3 as well as properties of matrices used for the constructions. In Chapter 4,

we present matrix-product constructions for Hermitian self-orthogonal codes.



Chapter 2

Preliminaries

For a prime power q, let Fq denote the finite field of order q. In this chapter, some

properties of matrices and codes over Fq used in this thesis are recalled.

2.1 Matrices

For positive integers s ≤ l, denote by Ms,l(Fq) the set of s × l matrices whose

entries are in Fq. A matrix A ∈ Ms,l(Fq) is said to be full-row-rank if the rows of

A are linearly independent. Denote by diag(λ1,λ2, . . . ,λs) the s× s diagonal matrix

whose diagonal entries are λ1,λ2, . . . ,λs. Similarly, let adiag(λ1,λ2, . . . ,λs) denote

the s× s anti-diagonal matrix whose anti-diagonal entries are λ1,λ2, . . . ,λs. Denote

by Is and Js the matrices diag(1, 1, . . . , 1) and adiag(1, 1, . . . , 1), respectively. For

A = [aij] ∈ Ms,l(Fq), and q = r2, define A† = [arji]. A matrix A ∈ Ms,l(Fq) is said

to be semi-orthogonal (resp., semi-unitary) if AAT = Is (resp., AA† = Is). A semi-

orthogonal (resp., semi-unitary) matrix A ∈ Ms,l(Fq) is called an orthogonal matrix

(resp., unitary matrix) if s = l. An s × s matrix A over Fq is said to be quasi-

orthogonal (resp., quasi-unitary) if AAT = λIs (resp., AA† = λIs) for some non-zero

element λ ∈ Fq. These matrices are good ingredients in matrix-product constructions

for self-orthogonal linear codes. The existence and properties of such matrices will

be studied in Sections 3.2 and 4.2.

3
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2.2 Linear Codes

For each positive integer n, denote by Fn
q the Fq-vector space of all vectors of

length n over Fq. For u and v in Fn
q , let wtH(u) and dH(u,v) denote the Hamming

weight of u and the Hamming distance between u and v, respectively. Precisely, for

u = (u1, u2, · · · , un) and v = (v1, v2, · · · , vn) in Fn
q , wtH(u) = |{i | ui ̸= 0}| and

dH(u,v) = |{i | ui ̸= vi}|. A set C ⊆ Fn
q is called a linear code of length n over Fq if it

is a subspace of the Fq-vector space Fn
q . A linear code C of length n over Fq is said to

have parameters [n, k, d]q if the Fq-dimension of C is k and the minimum Hamming

distance of C is

d = dH(C) := min{dH(u,v) | u,v ∈ C,u ̸= v}.

For a linear code C, it is well-known (see [12, p. 48]) that

dH(C) = wtH(C) := min{wtH(u) | u ∈ C \ {0}}.

An k × n matrix G over Fq is called a generator matrix for an [n, k, d]q code C if the

rows of G form a basis of C.

For u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in Fn
q , we consider the following

inner products between u and v.

1. ⟨u,v⟩E :=
∑n

i=1 uivi is called the Euclidean inner product between u and v.

2. For q = r2, ⟨u,v⟩H :=
∑n

i=1 uivi = ⟨u,v⟩E is called the Hermitian inner product

between u and v, where a = ar for all a ∈ Fq.

The Euclidean dual and (resp., Hermitian dual) of a code C is defined to be the set

C⊥E := {u ∈ Fn
q | ⟨u, c⟩E = 0 for all c ∈ C}

(resp., C⊥H := {u ∈ Fn
q | ⟨u, c⟩H = 0 for all c ∈ C}).

A code C is said to be Euclidean (resp., Hermitian) self-orthogonal if C ⊆ C⊥E (resp.,

C ⊆ C⊥H ). A linear code C is said to be Euclidean (resp., Hermitian) self-dual if

C = C⊥E (resp., C = C⊥H ).
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For linear codes C1 and C2 of the same length over Fq, if Ci is generated by a

generator matrix Gi for i ∈ {1, 2}, then it is not difficult to see that ([12, p.67]),

G1GT
2 = [0] if and only if C1 ⊆ C⊥E

2 . In particular, G1GT
1 = [0] if and only if C1

is Euclidean self-orthogonal. For q = r2, G1G
†
2 = [0] if and only if C1 ⊆ C⊥H

2 . In

particular, G1G
†
1 = [0] if and only if C1 is Hermitian self-orthogonal.

2.3 Matrix-Product Codes

The matrix-product construction for linear codes has been introduced in [2] and

extensively studied in [6] and [3]. The major results are summarized as follows. For

each integers 1 ≤ s ≤ l, let A = [aij] ∈ Ms,l(Fq). For each integer 1 ≤ i ≤ s, let Ci be

a linear [m, ki, di]q code over Fq with a generator matrix Gi. The matrix-product code

[C1, C2, · · · , Cs] ·A is defined to be the linear code of length ml over Fq generated by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix-product code [C1, C2, · · · , Cs] · A is simply denoted by CA if C1, C2,

. . . , Cs are clear in the context.

For each A ∈ Ms,l(Fq) and for each 1 ≤ i ≤ s, denote by δi(A) the minimum

distance of the linear code of length l over Fq generated by the first i rows of A. Some

properties of matrix-product codes (see [2] and [3]) can be summarized as follows.

Theorem 2.3.1. With the notations given above, the following statements hold.

1. CA is a linear code of length ml over Fq.

2. dim(CA) ≤
s∑

i=1
ki.

3. If A is full-row-rank, then

dim(CA) =
s∑

i=1

ki.
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4. dH(CA) ≥ min
1≤i≤s

{diδi(A)}.

5. If C1 ⊇ C2 ⊇ · · · ⊇ Cs, then

dH(CA) = min
1≤i≤s

{diδi(A)}.

If A is an invertible square matrix, the Euclidean dual of a matrix-product code

is again a matrix-product code and it is determined as follows.

Theorem 2.3.2 ([2, p. 19]). With the notations given above and s = ℓ. If A is an

invertible s× s matrix, then

([C1, C2, · · · , Cs] · A)⊥E = [C⊥E
1 , C⊥E

2 , · · · , C⊥E
s ] · (A−1)T .

From Theorem 2.3.2, the matrix-product construction for Euclidean self-orthogonal

codes has been given, where A is a s × s orthogonal matrix and the input codes Ci

are Euclidean self-orthogonal (see [5], [15] and [13]) .

In general the dual of a matrix-product code does not need to be matrix-product.

In this paper, we focus on a more general set up for Euclidean and Hermitian self-

orthogonal matrix-product codes where the restriction on the self-orthogonality of

the input codes are relaxed. The detailed constructions are given in the following

chapters.



Chapter 3

Euclidean Self-Orthogonal

Matrix-Product Codes

In this chapter, sufficient conditions for matrix-product codes to be Euclidean self-

orthogonal are given. Two matrix-product constructions for Euclidean self-orthogonal

linear codes are presented.

3.1 Constructions

In the following theorem, a matrix-product construction for Euclidean self-orthogo-

nal codes whose input codes are self-orthogonal is discussed. This results is a bit

more general than the ones in [5] since the underlying matrix does not need to be

orthogonal.

Theorem 3.1.1. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes of

the same length over Fq and let A ∈ Ms×l(Fq). If AAT is diagonal and Ci ⊆ C⊥E
i for

all 1 ≤ i ≤ s, then CA ⊆ C⊥E
A .

Proof. Assume that AAT = diag(λ1,λ2, . . . ,λs) and Ci ⊆ C⊥E
i for all 1 ≤ i ≤

s. For each 1 ≤ i ≤ s, let Gi be a generator matrix for the code Ci. Let A =

7
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⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, the matrix-product code CA is generated by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that

GGT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11GT
1 a21GT

2 · · · as1GT
s

a12GT
1 a22GT

2 · · · as2GT
s

...
...

. . .
...

a1lGT
1 a2lGT

2 · · · aslGT
s

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λ1(G1GT
1 ) 0(G1GT

2 ) · · · 0(G1GT
s )

0(G2GT
1 ) λ2(G2GT

2 ) · · · 0(G2GT
s )

...
...

. . .
...

0(GsGT
1 ) 0(GsGT

2 ) · · · λs(GsGT
s )

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Since Ci ⊆ C⊥E
i for all 1 ≤ i ≤ s, we have that GiGT

i = [0] for all 1 ≤ i ≤ s. It

follows that GGT = [0]. Hence, CA ⊆ C⊥E
A as desired.

Example 3.1.2. Let A =

⎡

⎣1 1 1 2

0 0 1 1

⎤

⎦ ∈ M2,4(F3). Then A is full-row-rank, AAT =

diag(1, 2), δ1(A) = 4, and δ2(A) = 2. Let C1 and C2 be the linear codes of length 6

over F3 generated by

G1 =

⎡

⎣1 1 1 1 1 1

0 1 0 1 0 1

⎤

⎦

and

G2 =
[
1 1 1 1 1 1

]
,
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respectively. Then C2 ⊆ C1 are Euclidean self-orthogonal with parameters [6, 2, 3]3 and

[6, 1, 6]3, respectively. By Theorems 2.3.1 and 3.1.1, CA is a Euclidean self-orthogonal

code with parameters [24, 3, 12]3.

If A is a square quasi-orthogonal, then the next corollary can be deduced.

Corollary 3.1.3. If A ∈ Ms,s(Fq) is such that AAT = λIs for some non-zero λ in Fq

and Ci ⊆ C⊥E
i for all 1 ≤ i ≤ s, then CA ⊆ C⊥E

A .

Next, a matrix-product construction for Euclidean self-orthogonal codes is studied

while the Euclidean self-orthogonality of the input codes is relaxed.

Theorem 3.1.4. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes

of the same length over Fq and let A ∈ Ms×l(Fq). If AAT is anti-diagonal and

Ci ⊆ C⊥E
s−i+1 for all 1 ≤ i ≤ s, then CA ⊆ C⊥E

A .

Proof. Assume that AAT = adiag(λ1,λ2, . . . ,λs) and Ci ⊆ C⊥E
s−i+1 for all 1 ≤ i ≤

s. For each 1 ≤ i ≤ s, let Gi be a generator matrix of the code Ci. Since A =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, the matrix-product code CA is generated by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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It follows that

GGT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11GT
1 a21GT

2 · · · as1GT
s

a12GT
1 a22GT

2 · · · as2GT
s

...
...

. . .
...

a1lGT
1 a2lGT

2 · · · aslGT
s

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0(G1GT
1 ) · · · 0(G1GT

s−1) λ1(G1GT
s )

0(G2GT
1 ) · · · λ2(G2GT

s−1) 0(G2GT
s )

... . . .
...

...

λs(GsGT
1 ) · · · 0(GsGT

s−1) 0(GsGT
s )

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Since Ci ⊆ C⊥E
s−i+1 for all 1 ≤ i ≤ s, we have GiGT

s−i+1 = [0] for all 1 ≤ i ≤ s. Hence,

GGT = [0]. Therefore, CA ⊆ C⊥E
A as desired.

Example 3.1.5. Let A =

⎡

⎣1 1 2

2 1 1

⎤

⎦ ∈ M2,3(F3). Then A is full-row-rank, AAT =

adiag(2, 2), δ1(A) = 3, and δ2(A) = 1. Let C1 and C2 be the linear codes of length 6

over F3 generated by

G1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

0 2 1 0 0 0

0 0 2 1 0 0

0 0 0 2 1 0

0 0 0 0 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

G2 =
[
1 1 1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [6, 5, 2]3 and [6, 1, 6]3, respectively.

Since C2 ⊆ C1 ⊆ C⊥E
2 , by Theorems 2.3.1 and 3.1.4, CA is a Euclidean self-orthogonal

code with parameters [18, 6, 6]3.

The following corollaries can be obtained directly from Theorem 3.1.4. The proofs

are omitted.



11

Corollary 3.1.6. If A ∈ Ms,s(Fq) is such that AAT = λJs for some non-zero element

λ in Fq and Ci ⊆ C⊥E
s−i+1 for all 1 ≤ i ≤ s, then CA ⊆ C⊥E

A .

By choosing Ci = C⊥E
s−i+1 in Corollary 3.1.6, the next corollary follows.

Corollary 3.1.7. If A ∈ Ms,s(Fq) is such that AAT = λJs for some non-zero element

λ in Fq and Ci = C⊥E
s−i+1 for all 1 ≤ i ≤ s, then CA is Euclidean self-dual.

3.2 Special Matrices and Applications

In order to apply the matrix-product constructions discussed in Section 3.1 to

obtain Euclidean self-orthogonal codes, a matrix A ∈ Ms,l(Fq) with the property that

AAT is diagonal or anti-diagonal is required. To the best of our knowledge, there

are no proper names for such matrices. For convenience, the following definitions

are given. A matrix A ∈ Ms,l(Fq) is said to be weakly semi-orthogonal if AAT is

diagonal and it is said to be weakly anti-semi-orthogonal if AAT is anti-diagonal.

In the case where A is square, such matrices are called weakly quasi-orthogonal and

weakly anti-quasi-orthogonal, respectively. These two families of matrices are studied

in Subsections 3.2.1 and 3.2.2, respectively.

3.2.1 Weakly Quasi-Orthogonal Matrices

In this subsection, the existence of some weakly quasi-orthogonal matrices are given.

Lemma 3.2.1. Let α be a primitive element of Fq. Then the following statements

hold.

1. If q is odd, then A =

⎡

⎣ 1 1

1 −1

⎤

⎦ is invertible and (weakly) quasi-orthogonal

with δ1(A) = 2 and δ2(A) = 1.

2. If q > 2 is even, then A =

⎡

⎣ 1 α

α 1

⎤

⎦ is invertible and (weakly) quasi-orthogonal

with δ1(A) = 2 and δ2(A) = 1.
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Proof. To prove 1, assume that q is odd and A =

⎡

⎣ 1 1

1 −1

⎤

⎦. Clearly, A is invertible,

δ1(A) = 2 and δ2(A) = 1. Since

AAT =

⎡

⎣1 1

1 −1

⎤

⎦

⎡

⎣1 1

1 −1

⎤

⎦ =

⎡

⎣2 0

0 2

⎤

⎦ = diag(2, 2),

A is (weakly) quasi-orthogonal.

To prove 2, assume that q > 2 is even and A =

⎡

⎣ 1 α

α 1

⎤

⎦. Clearly, A is invertible,

δ1(A) = 2 and δ2(A) = 1. Since

AAT =

⎡

⎣1 α

α 1

⎤

⎦

⎡

⎣1 α

α 1

⎤

⎦ =

⎡

⎣1 + α2 0

0 1 + α2

⎤

⎦ = diag(1 + α2, 1 + α2),

A is (weakly) quasi-orthogonal.

Applying Theorem 3.1.1 and Lemma 3.2.1, we conclude the following corollary.

Corollary 3.2.2. Let q be a prime power. If there exist Euclidean self-orthogonal

[m, k1, d1]q and [m, k2, d2]q codes, then a Euclidean self-orthogonal [2m, k1 + k2, d]q

code can be constructed with d ≥ min{2d1, d2}.

Proof. Assume that there exist Euclidean self-orthogonal codes C1 and C2 with pa-

rameters [m, k1, d1]q and [m, k2, d2]q. By Lemma 3.2.1, there exist a 2 × 2 invertible

and weakly quasi-orthogonal matrix A over Fq with δ1(A) = 2 and δ2(A) = 1. By

Theorems 2.3.1 and 3.1.1, the matrix-product code CA is Euclidean self-orthogonal

with parameters [2m, k1 + k2, d]q and d ≥ min{2d1, d2}.

Example 3.2.3. Let α be a primitive element of F4. By Lemma 3.2.1, A =

⎡

⎣1 α

α 1

⎤

⎦ ∈

M2,2(F4) is invertible, AAT = diag(1+α2, 1+α2), δ1(A) = 2, and δ2(A) = 1. Let C1

and C2 be the linear codes of length 4 over F4 generated by

G1 =

⎡

⎣1 1 1 1

0 α 0 α

⎤

⎦
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and

G2 =
[
1 1 1 1

]
,

respectively. Then C2 ⊆ C1 are Euclidean self-orthogonal with parameters [4, 2, 2]4

and [4, 1, 4]4, respectively. By Theorem 2.3.1 and Corollary 3.2.2, CA is a Euclidean

self-orthogonal code with parameters [8, 3, 4]4.

In the following theorem, the existence 3×3 (weakly) quasi-orthogonal matrices

are given.

Theorem 3.2.4. Let Fq be a finite field such that q ≥ 4 and let a ∈ Fq \ {0, 1, 2}.

Then the following statements hold.

1. If Char(Fq) = 2, then A :=

⎡

⎢⎢⎢⎣

1 a 1

a 1 0

1 a a2 + 1

⎤

⎥⎥⎥⎦
is invertible and weakly quasi-

orthogonal with δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1.

2. If Char(Fq) = 3, then A :=

⎡

⎢⎢⎢⎣

a −a 1

1 1 0

−a a 2a2

⎤

⎥⎥⎥⎦
is invertible and weakly quasi-

orthogonal with δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1.

3. If Char(Fq) ≥ 5, then A :=

⎡

⎢⎢⎢⎣

a −a a

1 1 0

−a a 2a

⎤

⎥⎥⎥⎦
is invertible and weakly quasi-

orthogonal with δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1.

Proof. To prove 1, assume that Char(Fq) = 2 and A =

⎡

⎢⎢⎢⎣

1 a 1

a 1 0

1 a a2 + 1

⎤

⎥⎥⎥⎦
. Clearly,

δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1. Since det(A) = a2(a + 1)2, det(A) ̸= 0 if and



14

only if a /∈ {0, 1}. Hence, A is invertible. Since

AAT =

⎡

⎢⎢⎢⎣

1 a 1

a 1 0

1 a a2 + 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 a 1

a 1 a

1 0 a2 + 1

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

a2 0 0

0 a2 + 1 0

0 0 a4 + a2

⎤

⎥⎥⎥⎦
= diag(a2, a2 + 1, a4 + a2),

A is weakly quasi-orthogonal.

To prove 2, assume that Char(Fq) = 3 and A =

⎡

⎢⎢⎢⎣

a −a 1

1 1 0

−a a 2a2

⎤

⎥⎥⎥⎦
. Clearly, δ1(A) = 3,

δ2(A) = 2 and δ3(A) = 1. Since det(A) = a(a2 − 1) = a(a− 1)(a + 1), det(A) ̸= 0 if

and only if a /∈ {0, 1, 2}. Hence, A is invertible. Since

AAT =

⎡

⎢⎢⎢⎣

a −a 1

1 1 0

−a a 2a2

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a 1 −a

−a 1 a

1 0 2a2

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

2a2 + 1 0 0

0 2 0

0 0 a4 + 2a2

⎤

⎥⎥⎥⎦
= diag(2a2 + 1, 2, a4 + 2a2),

A is weakly quasi-orthogonal.

To prove 3, assume that Char(Fq) ≥ 5 and A =

⎡

⎢⎢⎢⎣

a −a a

1 1 0

−a a 2a

⎤

⎥⎥⎥⎦
. Clearly, δ1(A) = 3,

δ2(A) = 2 and δ3(A) = 1. Since det(A) = 6a2, det(A) ̸= 0 if and only if a ̸= 0. Hence,

A is invertible. Since

AAT =

⎡

⎢⎢⎢⎣

a −a a

1 1 0

−a a 2a

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a 1 −a

−a 1 a

a 0 2a

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

3a2 0 0

0 2 0

0 0 6a2

⎤

⎥⎥⎥⎦
= diag(3a2, 2, 6a2),

A is weakly quasi-orthogonal.
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Theorem 3.2.4 can be applied to construct a Euclidean self-orthogonal code as

follows.

Corollary 3.2.5. Let q ≥ 4 be a prime power. If there exist Euclidean self-orthogonal

[m, k1, d1]q, [m, k2, d2]q and [m, k3, d3]q codes, then a Euclidean self-orthogonal [3m, k1+

k2 + k3, d]q code can be constructed with d ≥ min{3d1, 2d2, d3}.

Proof. Assume that there are three Euclidean self-orthogonal codes with parameters

[m, k1, d1]q, [m, k2, d2]q and [m, k3, d3]q. By Theorem 3.2.4, there exist a 3× 3 invert-

ible and weakly quasi-orthogonal matrix A over Fq with δ1(A) = 3, δ2(A) = 2 and

δ3(A) = 1. By Theorems 2.3.1 and 3.1.1, the matrix-product code CA is Euclidean

self-orthogonal [3m, k1 + k2 + k3, d]q with d ≥ min{3d1, 2d2, d3}.

Example 3.2.6. Let α be a primitive element of F9. By Theorem 3.2.4, A =⎡

⎢⎢⎢⎣

α −α 1

1 1 0

−α α 2α2

⎤

⎥⎥⎥⎦
∈ M3,3(F9) is invertible, AAT = diag(2α2 +1, 2,α4 +2α2), δ1(A) =

3, δ2(A) = 2 and δ2(A) = 1. Let C1, C2 and C3 be the linear codes of length 6 over

F9 generated by

G1 =

⎡

⎢⎢⎢⎣

1 1 1 1 1 1

α6 α5 α5 α7 α3 1

1 2 1 2 1 2

⎤

⎥⎥⎥⎦
,

G2 =

⎡

⎣ 1 1 1 1 1 1

α6 α5 α5 α7 α3 1

⎤

⎦

and

G3 =
[
1 1 1 1 1 1

]

respectively. Then C3 ⊆ C2 ⊆ C1 are Euclidean self-orthogonal codes with parameters

[6, 3, 3]9, [6, 2, 4]9 and [6, 1, 6]9, respectively. By Theorem 2.3.1 and Corollary 3.2.5,

CA is a Euclidean self-orthogonal code with parameters [18, 6, 6]9.
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3.2.2 Weakly Anti-Quasi-Orthogonal Matrices

In this subsection, we focus on the existence of weakly anti-quasi-orthogonal ma-

trices. In a finite field Fq of characteristic p, it is well-known (Quadratic Reciprocity

Law) (see [12, p. 185]) that if p ≡ 1mod 4, or q is square and p ≡ 3mod 4, then −1

is square in Fq. Precisely, there exists b ∈ Fq such that b2 + 1 = 0. Hence, we have

the following results.

Lemma 3.2.7. Let Fq be a finite field of characteristic p. If p ≡ 1mod 4, or q

is square and p ≡ 3mod 4, then there exists b ∈ Fq such that b2 + 1 = 0 and

A =

⎡

⎣ 1 b

1 −b

⎤

⎦ is invertible and (weakly) anti-quasi-orthogonal with δ1(A) = 2 and

δ2(A) = 1.

Proof. From the discussion above, there exists b ∈ Fq such that b2 + 1 = 0. Let

A =

⎡

⎣1 b

1 −b

⎤

⎦. Clearly, A is invertible, δ1(A) = 2 and δ2(A) = 1. Since

AAT =

⎡

⎣1 b

1 −b

⎤

⎦

⎡

⎣1 1

b −b

⎤

⎦ =

⎡

⎣ 0 1− b2

1− b2 0

⎤

⎦ = adiag(1− b2, 1− b2),

A is (weakly) anti-quasi-orthogonal.

Corollary 3.2.8. Let Fq be a finite field of characteristic p such that p ≡ 1mod 4,

or q is square and p ≡ 3mod 4. If there exist linear codes C1 and C2 with parameters

[m, k1, d1]q and [m, k2, d2]q such that C1 ⊆ C⊥E
2 , then a Euclidean self-orthogonal

[2m, k1 + k2, d]q code can be constructed with d ≥ min{2d1, d2}.

Proof. Assume that there exist linear codes C1 and C2 with parameters [m, k1, d1]q

and [m, k2, d2]q such that C1 ⊆ C⊥E
2 . By Lemma 3.2.7, there exist a 2× 2 invertible

and anti-quasi-orthogonal matrix A over Fq with δ1(A) = 2 and δ2(A) = 1. By

Theorems 2.3.1 and 3.1.1, the matrix-product code CA is Euclidean self-orthogonal

with parameters [2m, k1 + k2, d]q with d ≥ min{2d1, d2}.
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Example 3.2.9. Let q = 5. By Quadratic Reciprocity Law, there exists b ∈ F5 such

that b2 +1 = 0. By Lemma 3.2.7 and b := 2, we have that A =

⎡

⎣1 2

1 3

⎤

⎦ ∈ M2,2(F5) is

invertible, AAT = adiag(2, 2), δ1(A) = 2, and δ2(A) = 1. Let C1 and C2 be the linear

codes of length 5 over F5 generated by

G1 =

⎡

⎢⎢⎢⎣

1 1 1 1 1

0 1 2 3 4

3 0 2 2 3

⎤

⎥⎥⎥⎦

and

G2 =
[
1 1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [5, 3, 3]5 and [5, 1, 5]5, respectively.

Since C2 ⊆ C1 ⊆ C⊥E
2 , by Theorem 2.3.1 and Corollary 3.2.8, CA is a Euclidean

self-orthogonal code with parameters [10, 4, 6]5.

By choosing C2 = C⊥E
1 in Corollary 3.2.8, the next corollary follows.

Corollary 3.2.10. Let Fq be a finite field of characteristic p such that p ≡ 1mod 4, or

q is square and p ≡ 3mod 4. If there exists an [m, k, d]q code C, then a Euclidean self-

dual [2m,m, d′]q code can be constructed with d′ ≥ min{2d, d⊥E} and d⊥E = d(C⊥E).

Example 3.2.11. From Example 3.2.9, the matrix A =

⎡

⎣1 2

1 3

⎤

⎦ ∈ M2,2(F5) is invert-

ible, AAT = adiag(2, 2), δ1(A) = 2, and δ2(A) = 1. Let C be linear codes of length 5

over F5 generated by

G=

⎡

⎢⎢⎢⎣

1 1 1 1 1

0 1 2 3 4

3 0 2 2 3

⎤

⎥⎥⎥⎦

Then C and C⊥E have parameters [5, 3, 3]5 and [5, 2, 4]5, respectively. By Corollary

3.2.7 , CA is a Euclidean self-dual code with parameters [10, 5, d
′
]5 where d

′ ≥ 4.

Let p be a prime. In [10, p. 50], it has been shown that 1) if p ≡ 1mod 8 or

p ≡ 3mod 8, then −2 is a square in Fp, and 2) if p ≡ −1mod 8 or p ≡ −3mod 8, then

−2 is not square in Fp. In an extension field Fq of Fp, we have the following results.
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Proposition 3.2.12. Let p be odd prime and Fq be a finite field of characteristic p.

Then −2 is a square if one of the following statements hold.

1. p ≡ 1mod 8.

2. p ≡ 3mod 8.

3. q is square and p ≡ −1mod 8.

4. q is square and p ≡ −3mod 8.

Proof. Assume that one of the four statements holds. We consider the proof into four

cases.

Case 1 p ≡ 1mod 8. We have that −2 is square Fp ⊆ Fq.

Case 2 p ≡ 3mod 8. The proof is similar to Case 1.

Case 3 q is a square and p ≡ −1mod 8. Since −2 is not square in Fp, we have that

x2 + 2 is irreducible over Fp. So, K = Fp[x]/⟨x2 + 2⟩ is a field. It is known that K

contains the roots of x2 + 2. We have that [K : Fp] = 2. So, |K| = p2. Since q is a

square, K = Fp2 ⊆ Fq.

Case 4 q is square and p ≡ −3mod 8. The proof is similar to Case 3.

From the four cases, −2 is square in Fq.

Proposition 3.2.12 can be applied to construct anti-diagonal 3× 3 matrices. Then

the next theorem can be deduced.

Theorem 3.2.13. Let Fq be a finite field of characteristic p. If p ≡ 1mod 8, or

p ≡ 3mod 8, or q is a square and p ≡ −1mod 8, or q is a square and p ≡ −3mod 8,

then there exists b ∈ Fq such that b2 + 2 = 0 and A =

⎡

⎢⎢⎢⎣

1 −1 b

1 1 0

−1 1 b

⎤

⎥⎥⎥⎦
is invertible and

anti-quasi-orthogonal with δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1.

Proof. From Proposition 3.2.12, there exists b ∈ Fq such that b2 + 2 = 0. Let A =
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⎡

⎢⎢⎢⎣

1 −1 b

1 1 0

−1 1 b

⎤

⎥⎥⎥⎦
. Clearly, A is invertible, δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1. Since

AAT =

⎡

⎢⎢⎢⎣

1 −1 b

1 1 0

−1 1 b

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

1 1 −1

−1 1 1

b 0 b

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

0 0 b2 − 2

0 2 0

b2 − 2 0 0

⎤

⎥⎥⎥⎦
,

AAT = adiag(b2 − 2, 2, b2 − 2). So, A is weakly anti-quasi-orthogonal.

Theorem 3.2.13 can be applied to construct a Euclidean self-orthogonal code as

follows.

Corollary 3.2.14. Let Fq be a finite field of characteristic p such that p ≡ 1mod 8, or

p ≡ 3mod 8, or q is a square and p ≡ −1mod 8, or q is a square and p ≡ −3mod 8. If

there exist codes C1, C2 and C3 with parameters [m, k1, d1]q, [m, k2, d2]q and [m, k3, d3]q

such that C1 ⊆ C⊥E
3 and C2 is Euclidean self-orthogonal code, then there exists a

Euclidean self-orthogonal [3m, k1 + k2 + k3, d]q code with d ≥ min{3d1, 2d2, d3}.

Proof. Assume that there are three linear codes with parameters [m, k1, d1]q, [m, k2, d2]q

and [m, k3, d3]q such that C1 ⊆ C⊥E
3 and C2 is Euclidean self-orthogonal. By The-

orem 3.2.13, there exist a 3 × 3 invertible and weakly quasi-orthogonal matrix A

over Fq with δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1. By Theorems 2.3.1 and 3.1.4,

the matrix-product code CA is Euclidean self-orthogonal [3m, k1 + k2 + k3, d]q with

d ≥ min{3d1, 2d2, d3}.

Example 3.2.15. Let q = 9. Then p ≡ 3mod 8. By Proposition 3.2.12, we have

that −2 is a square in F9. Precisely, by chosen b = 1, we have that b2 + 2 = 0 and

A :=

⎡

⎢⎢⎢⎣

1 2 1

1 1 0

2 1 1

⎤

⎥⎥⎥⎦
∈ M3,3(F9) is invertible, AAT = adiag(2, 2, 2), δ1(A) = 3, δ2(A) = 2

and δ2(A) = 1. Let α be a primitive element of F9 and C1, C2 and C3 be linear codes
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of length 6 over F3 generated by

G1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

0 2 1 0 0 0

0 0 2 1 0 0

0 0 0 2 1 0

0 0 0 0 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 =

⎡

⎣1 1 1 1 1 1

α 2α α 2α α 2α

⎤

⎦

and

G3 =
[
1 1 1 1 1 1

]
,

respectively. Then C1, C2 and C3 have parameters [6, 5, 2]9, [6, 2, 4]9 and [6, 1, 6]9,

respectively. Since C1 ⊆ C⊥E
3 and C2 is Euclidean self-orthogonal code, by Theorem

2.3.1 and Corollary 3.2.14, we have that CA is a Euclidean self-orthogonal code with

parameters [18, 8, d]9 with d ≥ min{2 · 3, 4 · 2, 6 · 1} = 6.

3.2.3 Summary

In this subsection, we summarize the existence of weakly quasi-orthogonal and

weakly anti-quasi-orthogonal discussed in Subsection 3.2.1 and 3.2.2. These matri-

ces play an important role in the matrix-product construction for Euclidean self-

orthogonal codes. However, the construction where the matrices have larger size or

where the matrices are non-square is an interesting problem as well.
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Table 3.1: Existence of Weakly Quasi-Orthogonal Matrices.

s

q
F2 F3 Fq, q ≥ 4

2 Lemma 3.2.1 Lemma 3.2.1 Lemma 3.2.1

3 ? ? Theorem 3.2.4

s ≥ 4 ? ? ?

Note that ? indicates the case where such matrices are not studied in this work.
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3.3 Examples

In this part, we focus on applications of Corollaries 3.2.2, 3.2.8 and 3.2.10 in

constructing Euclidean self-orthogonal and Euclidean self-dual codes.

First, we consider applications of Corollary 3.2.2 to Euclidean self-orthogonal

codes in [1] and Euclidean self-orthogonal Reed-Solomon codes.

In [1], it has been shown that for any q ≡ 1mod 4 such that q ≤ 113, there exists

a Euclidean self-dual code over Fq with parameter [q − 1, q−1
2 , q−1

2 ]q.

In order to determine the algebraic structures and properties of Reed-Solomon

codes, a brief introduction to cyclic codes is given as follows. A linear code C of length

n over Fq is said to be cyclic if (cn−1, c0, . . . , cn−2) ∈ C provided that (c0, c1, . . . , cn−1)

is a codeword in C. It is well-known that there is a one-to-one correspondence between

a vector c = (c0, c1, . . . , cn−1) in Fn
q and the polynomial c(x) = c0+c1x+· · ·+cn−1xn−1

in Fq[x] of degree at most n − 1. Under this correspondence, a code C of length n

over Fq can be considered as a principal ideal in the quotient ring Rn := Fq/⟨xn − 1⟩.

Here, C is regarded as an ideal in Rn. Among all the generators of ideal C, there

exists a unique monic one with minimal degree that divides xn − 1. It is called the

generator polynomial C and denoted by G(x). Let

H(x) =
xn − 1

G(x)
.

The polynomial H(x) is called the check polynomial of C. Since H(0) ̸= 0, the

reciprocal polynomial of H(x) can be defined and it is defined to be

H∗(x) = (H(0))−1[xdegH(x)H(x−1)].

The polynomial H(x) is said to be self-reciprocal over Fq is H(x) = H∗(x). Note that

H∗(x) is a monic divisor of xn − 1 over Fq and it is the generator polynomial of C⊥E

(see [12, p. 142]).

Lemma 3.3.1 ([12, p. 154]). Let g1(x) and g2(x) be the generator polynomials of

q-ary cyclic codes C1 and C2 of the same length, respectively. Then C1 ⊆ C2 if and

only if g1(x) is divisible by g2(x).
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A Reed-Solomon code over Fq is a cyclic code of length q − 1 over Fq generated

by G(x) = (x− αa)(x− αa+1) · · · (x− αa+δ−2), where α is a primitive element of Fq,

a ≥ 0 and 2 ≤ δ ≤ q−2. From [12, Theorem 8.2.3], the Reed-Solomon code of length

q− 1 over Fq with the generator polynomial G(x) has parameters [q− 1, q− δ, δ]q. In

some cases, Reed-Solomon codes are Euclidean self-orthogonal.

Lemma 3.3.2. Let q ≥ 8 be a prime power and let α be a primitive element of Fq.

Let C be a Reed Solomon code of length q − 1 over Fq with parity check polynomial

H(x) = (x − α)(x − α2)(x − α3). Then C is a Euclidean self-orthogonal code with

parameters [q − 1, 3, q − 3]q.

Proof. Note that H∗(x) = (x− α)∗(x− α2)∗(x− α3)∗ is a generator polynomial of a

code C⊥E . Then

G(x) =

(
xn − 1

H(x)

)

=
(x− α)(x− α2) · · · (x− αq−1)

(x− α)(x− α2)(x− α3)

= (x− α4)(x− α5) · · · (x− αq−1)

is the generator polynomial for C. Hence, C is a [q − 1, 3, q − 3]q code.

Since αq−1 = 1 and q ≥ 8, we have that (x−α)∗, (x−α2)∗, (x−α3)∗, [(x−α)(x−

α2)]∗, [(x− α)(x− α3)]∗ and [(x− α2)(x− α3)]∗ are not self-reciprocal. Since

G∗(x) = (x− α4)∗(x− α5)∗ · · · (x− αq−1)∗,

it follows that H(x)|G∗(x). This implies that H∗(x)|G(x). By Lemma 3.3.1, we have

that C ⊆ C⊥E . Hence, C is a Euclidean self-orthogonal code.

By setting C1 and C2 to be q−ary Euclidean self-orthogonal code with parameters

[q − 1, q−1
2 , q−1

2 ]q and [q − 1, 3, q − 3]q, respectively, in Corollary 3.2.2, we have the

following result.

Corollary 3.3.3. Let q ≡ 1mod 4 such that 8 ≤ q ≤ 113. Then there exists a

Euclidean self-orthogonal [2(q−1), q−1
2 +3, d]q code can be constructed with d ≥ q−3.
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Based on Corollary 3.3.3 and Reed-Solomon codes explained above, some examples

of Euclidean self-orthogonal matrix-product codes over Fq with good parameters are

given in Table 3.3.

Table 3.3: Euclidean self-Orthogonal Matrix-Product Codes over Fq

q
Parametes

C1 C2 CA

9 [8, 4, 4]9 [8, 3, 6]9 [16, 7, d]9 with d ≥ 6

13 [12, 6, 6]13 [12, 3, 10]13 [24, 9, d]13 with d ≥ 10

17 [16, 8, 8]17 [16, 3, 14]17 [32, 11, d]14 with d ≥ 14

25 [24, 12, 12]25 [24, 3, 22]25 [48, 15, d]25 with d ≥ 22

Based on Euclidean self-orthogonal codes in [9] and nested pairs of General-

ized Reed-Solomon codes characterized in [4] and Corollaries 3.2.8 and 3.2.10, self-

orthogonal and self-dual codes with good parameters can be obtained.

For 1 ≤ m ≤ q and 1 ≤ k ≤ m, let Fq[x]k denote the set of all polynomials over Fq

of degree less than k and let α1,α2, . . . ,αm be distinct elements in Fq. A generalized

Reed-Solomon code of length n and dimension k over Fq is defined to be the set

GRSq(m, k) := {(f(α1), f(α2), . . . , f(αm)) | f(x) ∈ Fq[x]k}.

In [4], it has been shown that there exist a pair of generalized Reed-Solomon codes

GRSq(m, k) =: C ⊆ D := GRSq(m, k + i) with parameters [m, k,m − k + 1]q and

[m, k + i,m − k − i + 1]q for all 1 ≤ k ≤ m − 1 and 0 ≤ i ≤ m − k. Moreover, D⊥E

has parameters [m,m− k − i, k + i+ 1]q.

By setting C1 = C and C2 = D⊥E in Corollary 3.2.8, we have the following result.

Corollary 3.3.4. Let Fq be a finite field of characteristic p such that p ≡ 1mod 4,

or q is square and p ≡ 3mod 4. Then there exists a matrix-product Euclidean self-
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orthogonal code [2m,m−i, d]q with d ≥ min{2(m−k+1), k+i+1} for all 1 ≤ k ≤ m−1

and 0 ≤ i ≤ m− k.

Based on Corollary 3.3.4 and a pair of generalized Reed-Solomon codes explained

above, some examples of Euclidean self-orthogonal matrix-product codes over F5 with

good parameters are given in Table 3.4.

Table 3.4: Euclidean Self-Orthogonal Matrix-Product Codes over F5

m k i parameters

2 1 0 [4, 2, d]5 with d ≥ 2

3 2 0 [6, 3, d]5 with d ≥ 3

1 [6, 2, d]5 with d ≥ 4

4 1 2 [8, 2, d]5 with d ≥ 4

2 1 [8, 3, d]5 with d ≥ 4

3 0 [8, 4, d]5 with d ≥ 4

5 2 0 [10, 3, d]5 with d ≥ 6

3 0 [10, 5, d]5 with d ≥ 4

1 [10, 4, d]5 with d ≥ 5

2 [10, 3, d]5 with d ≥ 6

By setting C1 = C and C2 = C⊥ in Corollary 3.2.10, we have the following result.

Corollary 3.3.5. Let Fq be a finite field of characteristic p such that p ≡ 1mod 4, or

q is square and p ≡ 3mod 4. Then there exists a matrix-product Euclidean self-dual

code [2m,m, d]q with d ≥ min{2(m− k + 1), k + 1} for all 1 ≤ k ≤ m− 1.

Based on Corollary 3.3.5 and generalized Reed-Solomon codes discussed above,

some examples of Euclidean self-dual matrix-product codes over F5 with good pa-

rameters are given in Table 3.5.
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Table 3.5: Euclidean Self-Dual Matrix-Product Codes over F5

m k parameters

2 1 [4, 2, d]5 with d ≥ 2

3 2 [6, 3, d]5 with d ≥ 3

4 3 [8, 4, d]5 with d ≥ 4

5 3 [10, 5, d]5 with d ≥ 4



Chapter 4

Hermitian Self-Orthogonal

Matrix-Product Codes

In this section, we assume that q = r2, where r is a prime power. Sufficient

conditions for matrix-product codes to be Hermitian self-orthogonal are given. Two

types of matrix-product constructions for Hermitian self-orthogonal linear codes are

introduced.

4.1 Constructions

In the following theorem, a matrix-product construction for Hermitian self-orthogo-

nal codes whose input codes are Hermitian self-orthogonal is discussed. The results

in this part are a bit more general than the ones in [5] since the underlying matrix

does not need to be unitary. The construction is given as follows.

Theorem 4.1.1. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes of

the same length over Fq and let A ∈ Ms×l(Fq). If AA† is diagonal and Ci ⊆ C⊥H
i for

all 1 ≤ i ≤ s, then CA ⊆ C⊥H
A .

Proof. Assume that AA† = diag(λ1,λ2, . . . ,λs) and Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s.

For each 1 ≤ i ≤ s, let Gi be a generator matrix for the code Ci. Since A =

28
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⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, the matrix-product code CA is generated by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that

GG† =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ar11G
†
1 ar21G

†
2 · · · ars1G

†
s

ar12G
†
1 ar22G

†
2 · · · ars2G

†
s

...
...

. . .
...

ar1lG
†
1 ar2lG

†
2 · · · arslG

†
s

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λ1(G1G
†
1) 0(G1G

†
2) · · · 0(G1G†

s)

0(G2G
†
1) λ2(G2G

†
2) · · · 0(G2G†

s)
...

...
. . .

...

0(GsG
†
1) 0(GsG

†
2) · · · λs(GsG†

s)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Since Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s, we have that GiG

†
i = [0] for all 1 ≤ i ≤ s. It

follows that GG† = [0]. Hence, CA ⊆ C⊥H
A as desired.

If A is a square quasi-unitary, then the following corollary can be deduced.

Corollary 4.1.2. If A ∈ Ms,s(Fq) is such that AA† = λIs for some non-zero λ in Fq

and Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s, then CA ⊆ C⊥H

A .

Example 4.1.3. Let β be a primitive element of F4 and Let A =

⎡

⎢⎢⎢⎣

1 1 1

1 β β2

1 β2 β

⎤

⎥⎥⎥⎦
∈

M3,3(F4). Then A is invertible, AA† = diag(1, 1, 1), δ1(A) = 3, δ2(A) = 2 and δ3(A) =
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1 . Let C1, C2 and C3 be the linear codes of length 6 over F4 generated by

G1 =

⎡

⎢⎢⎢⎣

1 1 1 1 1 1

1 β β2 β3 β4 β5

1 β2 β4 β6 β8 β10

⎤

⎥⎥⎥⎦
,

G2 =

⎡

⎣1 1 1 1 1 1

1 β β2 β3 β4 β5

⎤

⎦ ,

and

G3 =
[
1 1 1 1 1 1

]

respectively. Then C1, C2 and C3 are Hermitian self-orthogonal with parameters

[6, 3, 2]4, [6, 2, 4]4 and [6, 1, 6]4 respectively. Since C3 ⊆ C2 ⊆ C1, by Theorems 2.3.1

and 4.1.1, CA is a Hermitian self-orthogonal code with parameters [18, 6, 6]4.

Next, a matrix-product construction for Hermitian self-orthogonal codes is studied

while the Hermitian self-orthogonality of the input codes is relaxed.

Theorem 4.1.4. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes

of the same length over Fq and let A ∈ Ms×l(Fq). If AA† is anti-diagonal and Ci ⊆

C⊥H
s−i+1 for all 1 ≤ i ≤ s, then CA ⊆ C⊥H

A .

Proof. Assume that AA† = adiag(λ1,λ2, . . . ,λs) and Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤

s. For each 1 ≤ i ≤ s, let Gi be a generator matrix of the code Ci. Since A =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, the matrix-product code CA is generated by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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It follows that

GG† =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ar11G
†
1 ar21G

†
2 · · · ars1G

†
s

ar12G
†
1 ar22G

†
2 · · · ars2G

†
s

...
...

. . .
...

ar1lG
†
1 ar2lG

†
2 · · · arslG

†
s

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0(G1G
†
1) · · · 0(G1G

†
s−1) λ1(G1G†

s)

0(G2G
†
1) · · · λ2(G2G

†
s−1) 0(G2G†

s)
... . . .

...
...

λs(GsG
†
1) · · · 0(GsG

†
s−1) 0(GsG†

s)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Since Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤ s, we have GiG

†
s−i+1 = [0] for all 1 ≤ i ≤ s. Hence,

GG† = [0]. Therefore, CA ⊆ C⊥H
A as desired.

The following corollaries can be obtained directly from Theorem 4.1.4. The proofs

are omitted.

Corollary 4.1.5. If A ∈ Ms,s(Fq) is such that AA† = λJs for some non-zero λ in Fq

and Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤ s, then CA ⊆ C⊥H

A .

Example 4.1.6. Let β be a primitive element of F4 and let A =

⎡

⎣1 β

β 1

⎤

⎦ ∈ M2,2(F4)

is invertible, AA† = adiag(1, 1), δ1(A) = 2, and δ2(A) = 1. Let C1 and C2 be the

linear codes of length 4 over F4 generated by

G1 =

⎡

⎣1 1 1 1

0 0 β β

⎤

⎦

and

G2 =
[
1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [4, 2, 2]4 and [4, 1, 4]4, respectively.

Since C2 ⊆ C1 ⊆ C⊥H
2 , by Theorems 2.3.1 and 4.1.4, CA is a Hermitian self-

orthogonal code with parameters [8, 3, 4]4.
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By choosing Ci = C⊥E
s−i+1 in Corollary 4.1.5, we have the following results.

Corollary 4.1.7. If A ∈ Ms,s(Fq) is such that AA† = λJs for some non-zero λ in Fq

and Ci = C⊥H
s−i+1 for all 1 ≤ i ≤ s, then CA is Hermitian self-dual.

4.2 Special Matrices and Applications

In order to apply the matrix-product constructions discussed in Section 4.1 to

obtain Hermitian self-orthogonal codes, a matrix A ∈ Ms,l(Fq) with the property

that AA† is diagonal or anti-diagonal is required. To the best of our knowledge, there

are no proper names for such matrices. For convenience, the following definitions are

given. A matrix A ∈ Ms,l(Fq) is said to be weakly semi-unitary if AA† is diagonal and

it is said to be weakly anti-semi-unitary if AA† is anti-diagonal. In the case where A

is square, such matrices are called weakly quasi-unitary and weakly anti-quasi-unitary,

respectively.

The existence and properties of such matrices are given as follows.

4.2.1 Weakly Quasi-Unitary Matrices

In this subsection, the existence of weakly quasi-unitary matrices defined are given

as follows.

Lemma 4.2.1. Let α be a primitive element of Fq, where q = r2 is a prime power.

Then the following statements holds.

1. If q is odd, then A =

⎡

⎣ 1 1

1 −1

⎤

⎦ is invertible and (weakly) quasi-unitary with

δ1(A) = 2 and δ2(A) = 1.

2. If q > 2 is even, then A =

⎡

⎣ 1 α

αr 1

⎤

⎦ is invertible and (weakly) quasi-unitary

with δ1(A) = 2 and δ2(A) = 1.
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Proof. 1. Assume that q is odd and A =

⎡

⎣ 1 1

1 −1

⎤

⎦. Clearly, A is invertible, δ1(A) =

2 and δ2(A) = 1. Since

AAT =

⎡

⎣1 1

1 −1

⎤

⎦

⎡

⎣1 1

1 −1

⎤

⎦ =

⎡

⎣2 0

0 2

⎤

⎦ = diag(2, 2),

A is (weakly) quasi-unitary.

2. Assume that q > 2 is even and let A =

⎡

⎣ 1 α

αr 1

⎤

⎦. Clearly, A is invertible,

δ1(A) = 2 and δ2(A) = 1. Since

AA† =

⎡

⎣ 1 α

αr 1

⎤

⎦

⎡

⎣ 1 αr2

αr 1

⎤

⎦

=

⎡

⎣1 + αr+1 αr2 + α

αr + αr 1 + αr+1

⎤

⎦

=

⎡

⎣1 + αr+1 0

0 1 + αr+1

⎤

⎦

= diag(1 + αr+1, 1 + αr+1),

A is (weakly) quasi-unitary.

Unitary matrices in Lemma 4.2.1 can be applied to construct Hermitian self-

orthogonal codes as follows.

Corollary 4.2.2. Let Fq be a finite field. If there exist Hermitian self-orthogonal

[m, k1, d1]q and [m, k2, d2]q codes, then a Hermitian self-orthogonal [2m, k1 + k2, d]q

code can be constructed with d ≥ min{2d1, d2}.

Proof. Assume that there exist Hermitian self-orthogomal codes C1 and C2 with pa-

rameters [m, k1, d1]q and [m, k2, d2]q. By Lemma 4.2.1, there exist a 2 × 2 invertible

and (weakly) quasi-unitary matrix A over Fq with δ1(A) = 2 and δ2(A) = 1. By

Theorems 2.3.1 and 4.1.1, the matrix-product code CA is Hermitain self-orthogonal

with parameters [2m, k1 + k2, d]q with d ≥ min{2d1, d2}.
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Example 4.2.3. Let β be a primitive element of F4. By Lemma 4.2.1, we have that

A =

⎡

⎣ 1 β

β2 1

⎤

⎦ ∈ M2,2(F4) is invertible, AA† = diag(1 + β4, 1 + β4), δ1(A) = 2 and

δ2(A) = 1. Let C1 and C2 be the linear codes of length 4 over F4 generated by

G1 =

⎡

⎣1 1 1 1

1 0 1 0

⎤

⎦ ,

and

G2 =
[
1 1 1 1

]

respectively. Then C1 and C2 are Hermitian self-orthogonal with parameters [4, 2, 2]4

and [4, 2, 1]4 respectively. Since C2 ⊆ C1, by Theorem 2.3.1 and Corollary 4.2.2, CA

is a Hermitian self-orthogonal code with parameters [8, 3, 4]4.

Lemma 4.2.4. Let M be a positive integer and let q = r2 be a prime power. If

M |(r + 1), then there exists a (weakly) quasi-unitary M × M matrix over Fq with

δi(A) = M − i+ 1 for all 1 ≤ i ≤ M .

Proof. Assume that M |(r+1). Then Fq contains a primitive M -th root unity. Let α

be a fixed primitive M -th root unity in Fq. Since r ≡ −1modM , we have

α = αr = α−1.

Define

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(α0)0 (α1)0 · · · (αM−1)0

(α0)1 (α1)1 · · · (αM−1)1

...
...

. . .
...

(α0)M−1 (α1)M−1 · · · (αM−1)M−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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Let B = AA†. Then, for all 1 ≤ i, j ≤ M , we have

bij =
M−1∑

k=0

(αk)i−1(αk)j−1 =
M−1∑

k=0

(αk)i−1(αk)
j−1

=
M−1∑

k=0

(αk)i−1(α−k)j−1 =
M−1∑

k=0

(αi−j)k

=

⎧
⎨

⎩
M ̸= 0 if i = j,

0 if otherwise.

Hence, AA† = diag(M,M, . . . ,M). Therefore, A is (weakly) quasi-unitary. From [2,

Theorem 3.2], we have δi(A) = M − i+ 1 for all 1 ≤ i ≤ M .

Corollary 4.2.5. Let q be a prime power and let M be positive integer such that

M |(r+1). If there exist Hermitian self-orthogonal [m, k1, d1]q, [m, k2, d2]q, . . . , [m, kM ,

dM ]q codes, then a Hermitian self-orthogonal [Mm, k1+ k2+ · · ·+ kM , d]q code can be

constructed with d ≥ min{Md1, (M − 1)d2, . . . , dM}.

Proof. Assume that there are M Hermitian self-orthogonal codes with parameters

[m, k1, d1]q, [m, k2, d2]q, . . . , [m, kM , dM ]q. By Lemma 4.2.4, there exist a M × M

invertible and quasi-unitary matrix A over Fq with δ1(A) = M, δ2(A) = (M −

1), . . . , δM(A) = 1. By Theorems 2.3.1 and 4.1.1, the matrix-product code CA is

Hermitian self-orthogonal with parameters [Mm, k1 + k2 + · · · + kM , d]q with d ≥

min{Md1, (M − 1)d2, . . . , dM}.

Example 4.2.6. Let α be a primitive element of F4. Then, α is primitive 3-root

unity in F4. By lemma 4.2.4, we have that A =

⎡

⎢⎢⎢⎣

1 1 1

1 α α2

1 α2 α4

⎤

⎥⎥⎥⎦
is invertible, AA† =

diag(1, 1, 1), δ1(A) = 3, δ2(A) = 2 and δ1(A) = 1. Let C1 ,C2 and C3 be the linear

codes of length 6 over F4 generated by

G1 =

⎡

⎢⎢⎢⎣

1 1 1 1 1 1

0 0 1 1 a a

0 0 0 0 1 1

⎤

⎥⎥⎥⎦
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,

G2 =

⎡

⎣1 1 1 1 1 1

0 0 1 1 a a

⎤

⎦

and

G3 =
[
1 1 1 1 1 1

]
,

respectively. Then C3 ⊆ C2 ⊆ C1 are Hermitian self-orthogonal with parameters

[6, 3, 2]4, [6, 2, 4]4 and [6, 1, 6]4, respectively. By Theorems 2.3.1 and 4.2.5 CA is a

Hermitian self-orthogonal code with parameters [18, 6, 6]4.

4.2.2 Weakly Anti-Quasi-Unitary Matrices

In this subsection, we focus on the existence of weakly anti-quasi-unitary matrices.

In a finite field Fq where q = r2, the norm function N : Fq → Fr is defined by

N(α) = αr+1 for all α in Fq. In [11, p. 57], it has been shown that N is surjective.

Hence, we have the following lemma and corollaries can be deduced.

Lemma 4.2.7. Let α be a primitive element of Fq. Then the following statements

hold.

1. If q is odd, then there exists b ∈ Fq such that br+1 = −1 and A =

⎡

⎣ 1 b

b 1

⎤

⎦ is

invertible and (weakly) anti-quasi-unitary with δ1(A) = 2 and δ2(A) = 1.

2. If q > 2 is even, then A =

⎡

⎣α αr

1 1

⎤

⎦ is invertible and (weakly) anti-quasi-unitary

with δ1(A) = 2 and δ2(A) = 1.

Proof. 1. Since the norm is surjective and −1 ∈ Fq, there exists b ∈ Fq such that
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br+1 = −1. Let A =

⎡

⎣1 b

b 1

⎤

⎦. Clearly, A is invertible, δ1(A) = 2 and δ2(A) = 1. Since

AA† =

⎡

⎣1 b

b 1

⎤

⎦

⎡

⎣ b br

br 1

⎤

⎦

=

⎡

⎣1 + br+1 b+ br

b+ br 1 + br+1

⎤

⎦

=

⎡

⎣ 0 b+ br

b+ br 0

⎤

⎦

= adiag(b+ br, b+ br),

A is (weakly) anti-quasi-unitary.

2. Assume that q > 2 is even and let A =

⎡

⎣α αr

1 1

⎤

⎦. Clearly, A is invertible, δ1(A) = 2

and δ2(A) = 1. Since

AA† =

⎡

⎣α αr

1 1

⎤

⎦

⎡

⎣αr 1

αr2 1

⎤

⎦

=

⎡

⎣α
r+1 + αr+1 αr + α

αr + α 1 + 1

⎤

⎦

=

⎡

⎣ 0 αr + α

αr + α 0

⎤

⎦

= adiag(αr + α,αr + α),

A is (weakly) anti-quasi-unitary.

Corollary 4.2.8. Let Fq be a finite field of order q > 2. If there exist codes C1 and

C2 with parameters [m, k1, d1]q and [m, k2, d2]q such that C1 ⊆ C⊥H
2 , then a Hermitian

self-orthogonal [2m, k1 + k2, d]q code can be constructed with d ≥ min{2d1, d2}.

Proof. Assume that there exist linear codes C1 and C2 with parameters [m, k1, d1]q

and [m, k2, d2]q such that C1 ⊆ C⊥H
2 . By Lemma 4.2.7, there exist a 2× 2 invertible
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and anti-quasi-orthogonal matrix A over Fq with δ1(A) = 2 and δ2(A) = 1. By

Theorems 2.3.1 and 4.1.4, the matrix-product code CA is Hermitian self-orthogonal

with parameters [2m, k1 + k2, d]q with d ≥ min{2d1, d2}.

Example 4.2.9. Let β be a primitive element of F4. By Lemma 4.2.7, we have that

A =

⎡

⎣β β2

1 1

⎤

⎦ ∈ M2,2(F4) is invertible, AA† = adiag(1, 1), δ1(A) = 2, and δ2(A) = 1.

Let C1 and C2 be the linear codes of length 6 over F4 generated by

G1 =

⎡

⎣1 1 1 1 1 1

β β2 β3 β3 β4 β5

⎤

⎦

and

G2 =
[
1 1 1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [6, 2, 4]4 and [6, 1, 6]4, respectively.

Since C2 ⊆ C1 ⊆ C⊥H
2 , by Theorems 2.3.1 and 4.1.4, CA is a Hermitian self-

orthogonal code with parameters [12, 3, 6]4.

4.2.3 Summary

In this subsection, we summarize the existence of weakly quasi-unitary and weakly

anti-quasi-unitary discussed in Subsections 4.2.1 and 4.2.2. These matrices play

an important role in the matrix-product construction for Hermitain self-orthogonal

codes. However, the existence of such matrices where the matrices have larger size or

where the matrices are non-square is an interesting problem as well.

Table 4.1: Existence of Weakly Quasi-Unitary Matrices over Fq, q = r2

s

r
r ≥ 2

2 Lemma 4.2.1

s|(r + 1) Lemma 4.2.4

s ̸= 2 ∧ s ! (r + 1) ?

Note that ? indicates the case where such matrices are not studied in this work.
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Table 4.2: Existence of Weakly Anti-Quasi-Unitary Matrices

s

q
even odd

2 Lemma 4.2.7 Lemma 4.2.7

s ≥ 3 ? ?

4.3 Examples

In this part, we focus on applications of Corollary 4.2.2. Based on Hermitian self-

orthogonal codes in [8] and Corollary 4.2.2, Hermitian self-orthogonal codes with good

parameters can be obtained.

In [8, Theorem 2.6], it has been shown that there exists a q-ary Hermitian self-

orthogonal [q + 1, k, q − k + 2]q for all 2 ≤ k ≤ r
2 .

By setting C1 and C2 be a q-ary Hermitian self-orthogonal codes with parameter

[q + 1,
⌊
r
2

⌋
, q −

⌊
r
2

⌋
+ 2] and [q + 1,

⌊
r
2

⌋
− 1, q −

⌊
r
2

⌋
+ 3] in Corollary 4.2.2, we have

the following result.

Corollary 4.3.1. Let q = r2 be a prime power. Then a Hermitian self-orthogonal

[2(q + 1), 2
⌊
r
2

⌋
− 1, d]q code can be constructed with d ≥ q −

⌊
r
2

⌋
+ 3.

Based on Corollary 4.3.1 and Hermitian self-orthogonal codes in [8], some examples

of Hermitian self-orthogonal matrix-product codes over Fq with good parameters are

given in Table 4.3.
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Table 4.3: Hermitian self-Orthogonal Matrix-Product Codes over Fq

q
Parametes

C1 C2 CA

49 [50, 3, 48]49 [50, 2, 49]49 [100, 5, d]49 with d ≥ 49

64 [65, 4, 62]64 [65, 3, 63]64 [130, 7, d]64 with d ≥ 63

81 [82, 4, 79]81 [82, 3, 80]81 [164, 7, d]81 with d ≥ 80

121 [122, 5, 118]121 [122, 4, 119]121 [244, 9, d]121 with d ≥ 119
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