

SELF-ORTHOGONAL MATRIX PRODUCT CODES OVER FINITE FIELDS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2016
Copyright of Graduate School, Silpakorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree
Master of Science Program in Mathematics
Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2016
Copyright of Graduate School, Silpakorn University

รหัสผลคูณเมทริกซ์เชิงตั้งฉากในตัวบนฟีลด์จำกัด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์
บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร
ปีการศึกษา 2559
ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

The Graduate School, Silpakorn University has approved and accredited the Thesis title of "Self-Orthogonal Matrix Product Codes over Finite Fields" submitted by Mr. Todsapol Mankean as a partial fulfillment of the requirements for the degree of Master of Science in Mathematics

(Professor Patanee Udomkavanich, Ph.D.)
\qquad ../. \qquad ../. \qquad
\qquad Member
(Somphong Jitman, Ph.D.)
\qquad
\qquad
\qquad

TODSAPOL MANKEAN : SELF-ORTHOGONAL MATRIX PRODUCT CODES OVER FINITE FIELDS. THESIS ADVISOR : SOMPHONG JITMAN, Ph.D. 44 pp.

Self-orthogonal codes form an important class of linear codes due to their rich algebraic structures and wide applications. In this thesis, the well-known matrixproduct construction for linear codes is applied to construct self-orthogonal codes under both the Euclidean and Hermitian inner products. Sufficient conditions on the input codes and matrices used in the construction of self-orthogonal matrix-product codes are given as well as some illustrative examples.

Department of Mathematics Graduate School, Silpakorn University
Student's signature \qquad Academic Year 2016
Thesis Advisor's signature \qquad

57305203: สาขาวิชาคณิตศาสตร์
คำสำคัญ: รหัสเชิงตั้งฉากในตัว / รหัสเชิงเส้น / รหัสผลคูณเมทริกซ์ / ผลคูณภายในแบบยุคลิด / คูณภายในแบบแอร์มีต
ทสพล แม้นเขียน : รหัสผลคูณเมทริกซ์เชิงตั้งฉากในตัวบนฟิลด์จำกัด. อาจารย์ที่ปรึกษาวิทยานิพนธ์ : ดร. สมพงค์ จิตต์มั่น. 44 หน้า.

รหัสเชิงตั้งฉากในตัวเป็นรหัสเชิงเส้นที่มีความสำคัญเนื่องจากเป็นรหัสที่มีโครงสร้างทาง พีชคณิตที่ดีและยังสามารถประยุกต์ใช้ได้อีกหลากหลาย ในวิทยานิพนธ์นี้ได้นำเสนอการสร้างรหัส เชิงตั้งฉากในตัวภายใต้ผลคูณภายในแบบยุคลิดณละแบบแอร์มีตโดยประยุกต์มาจากรหัสผลคูณเม ทริกซ์ พร้อมทั้งให้เงื่อนไขที่เพียงพอสำหรับการรปปนรหัสเเละเมทริกซ์ที่ใช้ในการสร้างรหัสผลคูณเม ทริกซ์ เชิงตั้งฉากในตัว

ภาควิชาคณิตศาสตร์
ลายมือชื่อนักศึกษา. \qquad
ลายมือชื่ออาจารย์ที่ปรึกษาวิทยานิพนธ์ \qquad

Acknowledgements

First of all, I would like to express my gratitude to Dr. Somphong Jitman, my thesis advisor, for his help and support in all stages of my thesis studies.

In addition, I would like to thank Dr. Chalermpong Worawannotai and Professor Dr. Patanee Udomkavanich, the chairman and a member of the thesis committee, for their comments and suggestions.

I would like to thank the Department of Mathematics, Faculty of Science Silpakorn University for the facility support.

I would like to thânk the Development and Promotion of Science and Technology Talents Project (DPST) for the financial support throughout my undergraduate and graduate studies.

Finally, special thanks to my beloved parents for understanding and support.

Table of Contents

Page
Abstract in English. d
Abstract in Thai e
Acknowledgments f
Chapter
1 Introduction 1
2 Preliminaries 3
2.1 Matrices 3
2.2 Linear Codes. 4
2.3 Matrix-Product Codes 5
3 Euclidean Self-othogonal Matrix-Droduct Codes....n... 7
3.1 Constructions 7
3.2 Special Matrices and Applicatiöns. 11
3.2.1 Weakly Quasi-Orthegonal Matices 11
3.2.2 Weakly Anti-Quasi-Orthogonal Matrices 16
3.2.3 Summary. 20
3.3 Examptes. 23
4 Hermitian Self-Orthogonal Matrix-Product Codes 28
4.1 Constructions 28
4.2 Special Matrices and Applications 32
 32
4.2.2 Weakly Anti-Quasi-Unitary Matrices 36
4.2.3 Summary, for........................ 38
4.3 Examples 39
References 41
Presentations and Publications 43
Biography 44

Chapter 1

Introduction

Coding theory is the study of the propenties of godes and deals with the design of error-correcting codes for the reliable transmission of information across noisy channels. Self-orthogonal godes form an mportant chass of linear codes due to their rich algebraic structupes, varions applications, and link winh other objects as shown [14], [8] and references theren such eodes have extensively (been studied by many coding theorists. Self-orthogonal codes can be applies [teconstruct quantum codes [8]. One interesting problem is to construct selforthogonal codes with good parameters.

The matrix-product construction for linear codes has been introduced in [2]. Matrix-product codes are interesting since they can be viewed as a generalization of the well-known $(u \mid u+v)$-construction and $(\bar{u}+v+w|2 u+v| u)$-construction [2]. In [2], properties of matrix-product codes have been studied as well as a lower bound for the minimum distance of the output codes. In some cases, the lower bound given in [2] was shown to be sharped [6].

In [5], the matrix-product construction has been applied to obtain Euclidean selforthogonal codes in the case where the underlying matrix is a square orthogonal matrix and the input codes are Euclidean self-orthogonal. Similarly, this idea has been extended to construct Hermitian self-orthogonal codes in [15] and [13]. However, the input codes are required to be Hermitian self-orthogonal.

In this thesis, we propose a more general set up for self-orthogonal matrix-product
codes under the Euclidean and Hermitian inner products. In many cases, the selforthogonality of the input codes can be relaxed. Some basic properties of matrices, linear codes, self-orthogonal codes and matrix-product codes are discussed in Chapter 2. Matrix-product constructions for Euclidean self-orthogonal codes are discussed in Chapter 3 as well as properties of matrices used for the constructions. In Chapter 4, we present matrix-product constructions for Hermitian self-orthogonal codes.

Chapter 2

Preliminaries

For a prime power $q, \operatorname{let} \mathbb{F} q$ donote the finit fifeld of or der q. In this chapter, some properties of matrices and codes orer atsed in this thesis are recalled.

2.1 Matrices

 entries are in \mathbb{F}_{q}. A matrix A $A_{1},(\mathbb{F}$ q) is said to be fuul-rou-rank if the rows of A are linearly independent. Denote byldiag $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ the $\& *$ s diagonal matrix whose diagonal entries are λ_{1}, λ_{2}, , λ_{s}. Similarty, let adiag $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ denote
the $s \times s$ anti-diagonal matrix whose anti-diagonal entries are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$. Denote by I_{s} and J_{s} the matrices $\operatorname{diag}(1,1, \ldots, 1)$ and $\operatorname{adiag}(1,1, \ldots, 1)$, respectively. For $A=\left[a_{i j}\right] \in M_{s, l}\left(\mathbb{F}_{q}\right)$, and $q=r^{2}$, define $A^{\dagger}=\left[a_{j i}^{r}\right]$. A matrix $A \in M_{s, l}\left(\mathbb{F}_{q}\right)$ is said to be semi-orthogonal (resp., semi-unitary) if $A A^{T}=I_{s}$ (resp., $A A^{\dagger}=I_{s}$). A semiorthogonal (resp., semi-unitary) matrix $A \in M_{s, l}\left(\mathbb{F}_{q}\right)$ is called an orthogonal matrix (resp., unitary matrix) if $s=l$. An $s \times s$ matrix A over \mathbb{F}_{q} is said to be quasiorthogonal (resp., quasi-unitary) if $A A^{T}=\lambda I_{s}$ (resp., $A A^{\dagger}=\lambda I_{s}$) for some non-zero element $\lambda \in \mathbb{F}_{q}$. These matrices are good ingredients in matrix-product constructions for self-orthogonal linear codes. The existence and properties of such matrices will be studied in Sections 3.2 and 4.2.

2.2 Linear Codes

For each positive integer n, denote by \mathbb{F}_{q}^{n} the \mathbb{F}_{q}-vector space of all vectors of length n over \mathbb{F}_{q}. For \boldsymbol{u} and \boldsymbol{v} in \mathbb{F}_{q}^{n}, let $\operatorname{wt}_{\mathrm{H}}(\boldsymbol{u})$ and $\mathrm{d}_{\mathrm{H}}(\boldsymbol{u}, \boldsymbol{v})$ denote the Hamming weight of \boldsymbol{u} and the Hamming distance between \boldsymbol{u} and \boldsymbol{v}, respectively. Precisely, for $\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \cdots, \mu_{n}\right)$ in $\mathbb{F}_{q}^{n}, \operatorname{wt}_{\mathrm{H}}(\boldsymbol{u})=\left|\left\{i \mid u_{i} \neq 0\right\}\right|$ and $\mathrm{d}_{\mathrm{H}}(\boldsymbol{u}, \boldsymbol{v})=\left|\left\{i \mid u_{i} \neq v_{i}\right\}\right|$. A set $C \subseteq \mathbb{F}_{q}^{n}$ is called a linear code of length n over \mathbb{F}_{q} if it is a subspace of the \mathbb{F}_{q}-vector spage \mathbb{F}^{n}. Amear cade © of length n over \mathbb{F}_{q} is said to have parameters $[n, k, d]_{q}$ if the ${ }_{q}$ dimension of q is $k \operatorname{con}^{2}$ d the minimum Hamming distance of C is

For a linear code C, it is

An $k \times n$ matrix G over F_{q} ssathed a generator matrix for an $\left.n, h, d\right]_{q}$ code C if the rows of G form a basis of

For $\boldsymbol{u}=\left(u_{1}, u_{22}, \ldots, u_{n}\right)$ and $\boldsymbol{v} \in\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \mathbb{F}_{q}^{n}, we consider the following inner products between $\boldsymbol{\mu}$ and

1. $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{E}:=\sum_{i=1}^{n} u_{i} v_{i}$ is called the Euctidecin inner product between \boldsymbol{u} and \boldsymbol{v}.
2. For $q=r^{2},\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{H}:=\sum_{i=1}^{n} u_{i} \overline{v_{i}}=\langle\boldsymbol{u}, \overline{\boldsymbol{v}}\rangle_{E}$ is called the Hermitian inner product between \boldsymbol{u} and \boldsymbol{v}, where $\bar{a}=a^{r}$ for all $a \in \mathbb{F}_{q}$.

The Euclidean dual and (resp., Hermitian dual) of a code C is defined to be the set

$$
\begin{aligned}
C^{\perp_{E}} & :=\left\{\boldsymbol{u} \in \mathbb{F}_{q}^{n} \mid\langle\boldsymbol{u}, \boldsymbol{c}\rangle_{E}=0 \text { for all } \boldsymbol{c} \in C\right\} \\
\text { (resp., } C^{\perp_{H}} & :=\left\{\boldsymbol{u} \in \mathbb{F}_{q}^{n} \mid\langle\boldsymbol{u}, \boldsymbol{c}\rangle_{H}=0 \text { for all } \boldsymbol{c} \in C\right\} \text {). }
\end{aligned}
$$

A code C is said to be Euclidean (resp., Hermitian) self-orthogonal if $C \subseteq C^{\perp_{E}}$ (resp., $C \subseteq C^{\perp_{H}}$). A linear code C is said to be Euclidean (resp., Hermitian) self-dual if $C=C^{\perp_{E}}$ (resp., $C=C^{\perp_{H}}$).

For linear codes C_{1} and C_{2} of the same length over \mathbb{F}_{q}, if C_{i} is generated by a generator matrix G_{i} for $i \in\{1,2\}$, then it is not difficult to see that ([12, p.67]), $G_{1} G_{2}^{T}=[\mathbf{0}]$ if and only if $C_{1} \subseteq C_{2}^{\perp_{E}}$. In particular, $G_{1} G_{1}^{T}=[\mathbf{0}]$ if and only if C_{1} is Euclidean self-orthogonal. For $q=r^{2}, G_{1} G_{2}^{\dagger}=[\mathbf{0}]$ if and only if $C_{1} \subseteq C_{2}^{\perp_{H}}$. In particular, $G_{1} G_{1}^{\dagger}=[\mathbf{0}]$ if and only if C_{1} is Hermitian self-orthogonal.

2.3 Matrix-Produrat Codes

The matrix-product construction for linear coles has been introduced in [2] and extensively studied in [6] and [3). The major resuls are summarized as follows. For each integers $1 \leq s \leq l$, let $\left.A=Q_{i}\right] \in M_{s, 1}\left(\right.$ (世d) For cach integer $1 \leq i \leq s$, let C_{i} be a linear $\left[m, k_{i}, d_{i}\right]_{q}$ code over \mathbb{F} q with generator natux G_{i}. The matrix-product code $\left[C_{1}, C_{2}, \cdots, C_{s}\right] \cdot A$ is defined to be the linear code of lengthml over \mathbb{F}_{q} generated by

The matrix-product code $\left[C_{1}, C_{2}, \cdots, C_{s}\right] \cdot A$ is simply denoted by C_{A} if C_{1}, C_{2}, \ldots, C_{s} are clear in the context.

For each $A \in M_{s, l}\left(\mathbb{F}_{q}\right)$ and for each $1 \leq i \leq s$, denote by $\delta_{i}(A)$ the minimum distance of the linear code of length l over \mathbb{F}_{q} generated by the first i rows of A. Some properties of matrix-product codes (see [2] and [3]) can be summarized as follows.

Theorem 2.3.1. With the notations given above, the following statements hold.

1. C_{A} is a linear code of length $m l$ over \mathbb{F}_{q}.
2. $\operatorname{dim}\left(C_{A}\right) \leq \sum_{i=1}^{s} k_{i}$.
3. If A is full-row-rank, then

$$
\operatorname{dim}\left(C_{A}\right)=\sum_{i=1}^{s} k_{i} .
$$

4. $\mathrm{d}_{\mathrm{H}}\left(C_{A}\right) \geq \min _{1 \leq i \leq s}\left\{d_{i} \delta_{i}(A)\right\}$.
5. If $C_{1} \supseteq C_{2} \supseteq \cdots \supseteq C_{s}$, then

$$
\mathrm{d}_{\mathrm{H}}\left(C_{A}\right)=\min _{1 \leq i \leq s}\left\{d_{i} \delta_{i}(A)\right\}
$$

If A is an invertible square matrix, the fuclidean dual of a matrix-product code is again a matrix-product code and it is defermined as follows.

Theorem 2.3.2 ([2, p. 19]). invertible $s \times s$ matrix, then

From Theorem 2.3.2, the matrix-producteonstruction for Euclidean self-orthogonal codes has been given, whereatis a s orthogonal matrix and the input codes C_{i}

In general the dual ofl matrix-product code does not needw be matrix-product. In this paper, we focus on a mere general set tre for Euglidean andHermitian selforthogonal matrix-produet codes where the restriction on the seff-orthogonality of the input codes are relaxed. The detailed constructions are given in the following chapters.

Chapter 3

Euclidean Self-onthogonal Matrix-Productacodes
 In this chapter, sufficient conditions for matrix-product codes to be Euclidean self-

 orthogonal are given. Two matrix-product constructions for Euctidean self-orthogonal linear codes are presented. (~)
3.1 Constractions

In the following theorem, a matrix-product construction for Enclidean self-orthogonal codes whose input codes are self-orthogonal is discussed. This results is a bit more general than the ones in [5] since the underlying matrix does not need to be orthogonal.

Theorem 3.1.1. Let $s \leq l$ be positive integers. Let $C_{1}, C_{2}, \ldots, C_{s}$ be linear codes of the same length over \mathbb{F}_{q} and let $A \in M_{s \times l}\left(\mathbb{F}_{q}\right)$. If $A A^{T}$ is diagonal and $C_{i} \subseteq C_{i}^{\perp_{E}}$ for all $1 \leq i \leq s$, then $C_{A} \subseteq C_{A}^{\perp_{E}}$.

Proof. Assume that $A A^{T}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ and $C_{i} \subseteq C_{i}^{\perp_{E}}$ for all $1 \leq i \leq$ s. For each $1 \leq i \leq s$, let G_{i} be a generator matrix for the code C_{i}. Let $A=$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 l} \\
a_{21} & a_{22} & \cdots & a_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} & a_{s 2} & \cdots & a_{s l}
\end{array}\right] \text {, the matrix-product code } C_{A} \text { is generated by }
$$

It follows that

Since $C_{i} \subseteq C_{i}^{\perp_{E}}$ for all $1 \leq i \leq s$, we have that $G_{i} G_{i}^{T}=[0]$ for all $1 \leq i \leq s$. It follows that $G G^{T}=[\mathbf{0}]$. Hence, $C_{A} \subseteq C_{A}^{\perp_{E}}$ as desired.

Example 3.1.2. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1\end{array}\right] \in M_{2,4}\left(\mathbb{F}_{3}\right)$. Then A is full-row-rank, $A A^{T}=$ $\operatorname{diag}(1,2), \delta_{1}(A)=4$, and $\delta_{2}(A)=2$. Let C_{1} and C_{2} be the linear codes of length 6 over \mathbb{F}_{3} generated by

$$
G_{1}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right],
$$

respectively. Then $C_{2} \subseteq C_{1}$ are Euclidean self-orthogonal with parameters $[6,2,3]_{3}$ and $[6,1,6]_{3}$, respectively. By Theorems 2.3.1 and 3.1.1, C_{A} is a Euclidean self-orthogonal code with parameters $[24,3,12]_{3}$.

If A is a square quasi-orthogonal, then the next corollary can be deduced.
Corollary 3.1.3. If $A \in M_{s, s}\left(\mathbb{F}_{q}\right)$ is such that $A A^{T}=\lambda I_{s}$ for some non-zero λ in \mathbb{F}_{q} and $C_{i} \subseteq C_{i}^{\perp_{E}}$ for all $1 \leq i \leq s$ then

Next, a matrix-product constructionfor Euchidean selforthogonal codes is studied while the Euclidean self-orthogonality of the input godes is relaxed.

Theorem 3.1.4. Let $s \leq l$ bogositive intègers. Let $6_{1}, c_{2} \ldots, C_{s}$ be linear codes of the same length over \mathbb{F}_{q} and let $A \in(1)_{s} \times\left(H_{q}\right)\left(\right.$ If $A A^{T}$ is anti-diagonal and $C_{i} \subseteq C_{s-i+1}^{\perp_{E}}$ for all $1 \leq i s_{i}$ then $C_{A} C_{A}$.

s. For each $1 \leq i \leq s$, $C_{\text {t }}$ be a generator matrix of the code C_{i}. Since $A=$ $\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{11} \\ a_{21} & a_{22} & \cdots & a_{2 l} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s 1} & a_{s 2} & \cdots & a_{s l}\end{array}\right]$, the matrix-product code C_{4} is generated by

$$
G=\left[\begin{array}{cccc}
a_{11} G_{1} & a_{12} G_{1} & \cdots & a_{1 l} G_{1} \\
a_{21} G_{2} & a_{22} G_{2} & \cdots & a_{2 l} G_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} G_{s} & a_{s 2} G_{s} & \cdots & a_{s l} G_{s}
\end{array}\right] .
$$

It follows that

$$
G G^{T}=\left[\begin{array}{cccc}
a_{11} G_{1} & a_{12} G_{1} & \cdots & a_{1 l} G_{1} \\
a_{21} G_{2} & a_{22} G_{2} & \cdots & a_{2 l} G_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} G_{s} & a_{s 2} G_{s} & \cdots & a_{s l} G_{s}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} G_{1}^{T} & a_{21} G_{2}^{T} & \cdots & a_{s 1} G_{s}^{T} \\
a_{12} G_{1}^{T} & a_{22} G_{2}^{T} & \cdots & a_{s 2} G_{s}^{T} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 l} G_{1}^{T} & a_{2 l} G_{2}^{T} & \cdots & a_{s l} G_{s}^{T}
\end{array}\right]
$$

 $G G^{T}=[\mathbf{0}]$. Therefore, $C_{A} \subseteq q_{A}^{L_{A}}$ as desifed:.
 over \mathbb{F}_{3} generated by
and

$$
G_{2}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right],
$$

respectively. Then C_{1} and C_{2} have parameters $[6,5,2]_{3}$ and $[6,1,6]_{3}$, respectively. Since $C_{2} \subseteq C_{1} \subseteq C_{2}^{\perp_{E}}$, by Theorems 2.3.1 and 3.1.4, C_{A} is a Euclidean self-orthogonal code with parameters $[18,6,6]_{3}$.

The following corollaries can be obtained directly from Theorem 3.1.4. The proofs are omitted.

Corollary 3.1.6. If $A \in M_{s, s}\left(\mathbb{F}_{q}\right)$ is such that $A A^{T}=\lambda J_{s}$ for some non-zero element λ in \mathbb{F}_{q} and $C_{i} \subseteq C_{s-i+1}^{\perp_{E}}$ for all $1 \leq i \leq s$, then $C_{A} \subseteq C_{A}^{\perp_{E}}$.

By choosing $C_{i}=C_{s-i+1}^{\perp_{E}}$ in Corollary 3.1.6, the next corollary follows.

Corollary 3.1.7. If $A \in M_{s, s}\left(\mathbb{F}_{q}\right)$ is such that $A A^{T}=\lambda J_{s}$ for some non-zero element λ in \mathbb{F}_{q} and $C_{i}=C_{s-i+1}^{\perp_{E}}$ for all $1 \leq i \leq s$, Ahen C_{A} is Euclidean self-dual.

3.2 Special Matrices and Applications

In order to apply the matrix-praducta constructions discussed in Section 3.1 to obtain Euclidean self-orthogonaseodes, a am atio $A \in M$ with the property that $A A^{T}$ is diagonal or anti-diagonat is required. To the best of our knowledge, there are no proper names for such matrices. For convenienee, the following definitions are given. A matrix A Ms, (\mathbb{F}) is said to be weathy semi-arthogonal if $A A^{T}$ is diagonal and it is sadt to berteakly antivsemi-orthogonal if AAt is anti-diagonal. In the case where A is square, such matrices are called weokly quasi-orthogonal and weakly anti-quasi-orthogonal respectively, These two famines of natrices are studied in Subsections 3.2.1 and 3.2.2 respectively.

3.2.1 Weakly Quasi-Orthogonal Matrices

In this subsection, the existence of some weakly quasi-orthogonal matrices are given.

Lemma 3.2.1. Let α be a primitive element of \mathbb{F}_{q}. Then the following statements hold.

1. If q is odd, then $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ is invertible and (weakly) quasi-orthogonal with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.
2. If $q>2$ is even, then $A=\left[\begin{array}{ll}1 & \alpha \\ \alpha & 1\end{array}\right]$ is invertible and (weakly) quasi-orthogonal with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.

Proof. To prove 1, assume that q is odd and $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Clearly, A is invertible, $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. Since

$$
A A^{T}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\operatorname{diag}(2,2)
$$

A is (weakly) quasi-orthogonal.
To prove 2, assume that $q>$ 2 is) even and $1=\left[\begin{array}{l}1 \\ \text { a }\end{array}\right]$. Clearly, A is invertible, $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.
A is (weakly) quasi-orthogonal.)

$$
A A^{T}=\left[\begin{array}{ll}
1 & \alpha \\
\alpha & 1
\end{array}\right]
$$

Applying Theoren3.1. and Lemma 3. 2. 1, we conclude the following corollary.
Corollary 3.2.2. Let q be a prime power. If there exist Euclidean self-orthogonal $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ codes, then a Euclidean self-drthogonal $\left.2 m, k_{1}+k_{2}, d\right]_{q}$ code can be constructed with $d \geq \min \left\{9 d_{1}, d_{2}\right\}$.
Proof. Assume that there exist Euclidean self-orthogonal codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$. By Lemma 3.2.1, there exist a 2×2 invertible and weakly quasi-orthogonal matrix A over \mathbb{F}_{q} with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. By Theorems 2.3.1 and 3.1.1, the matrix-product code C_{A} is Euclidean self-orthogonal with parameters $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ and $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Example 3.2.3. Let α be a primitive element of \mathbb{F}_{4}. By Lemma 3.2.1, $A=\left[\begin{array}{ll}1 & \alpha \\ \alpha & 1\end{array}\right] \in$ $M_{2,2}\left(\mathbb{F}_{4}\right)$ is invertible, $A A^{T}=\operatorname{diag}\left(1+\alpha^{2}, 1+\alpha^{2}\right), \delta_{1}(A)=2$, and $\delta_{2}(A)=1$. Let C_{1} and C_{2} be the linear codes of length 4 over \mathbb{F}_{4} generated by

$$
G_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & \alpha & 0 & \alpha
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

respectively. Then $C_{2} \subseteq C_{1}$ are Euclidean self-orthogonal with parameters $[4,2,2]_{4}$ and $[4,1,4]_{4}$, respectively. By Theorem 2.3.1 and Corollary 3.2.2, C_{A} is a Euclidean self-orthogonal code with parameters $[8,3,4]_{4}$.

In the following theorem, the existence $\times 3$ (weakly) quasi-orthogonal matrices are given.
 Then the following statements hold.

orthogonal with $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$.
Proof. To prove 1, assume that $\operatorname{Char}\left(\mathbb{F}_{q}\right)=2$ and $A=\left[\begin{array}{ccc}1 & a & 1 \\ a & 1 & 0 \\ 1 & a & a^{2}+1\end{array}\right]$. Clearly, $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$. Since $\operatorname{det}(A)=a^{2}(a+1)^{2}, \operatorname{det}(A) \neq 0$ if and
only if $a \notin\{0,1\}$. Hence, A is invertible. Since

$$
A A^{T}=\left[\begin{array}{ccc}
1 & a & 1 \\
a & 1 & 0 \\
1 & a & a^{2}+1
\end{array}\right]\left[\begin{array}{ccc}
1 & a & 1 \\
a & 1 & a \\
1 & 0 & a^{2}+1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
a^{2} & 0 & 0 \\
0 & a^{2}+1 & 0 \\
0 & 0 \text { OU } & a^{4}+a^{2}
\end{array}\right)=\operatorname{diag}\left(a^{2}, a^{2}+1, a^{4}+a^{2}\right)
$$

A is weakly quasi-orthogonal.

To prove 2, assume that $C h a r(\mathbb{E})=3$ and $\frac{A}{2}=1$
$\delta_{2}(A)=2$ and $\delta_{3}(A)=1$. Since jdet $(A)=a\left(a^{2}-1\right)=a(a-1)(a+1)$, $\operatorname{det}(A) \neq 0$ if and only if $a \notin\{0,1,2\}$.

A is weakly quasi-orthogonal.
To prove 3, assume that $\operatorname{Char}\left(\mathbb{F}_{q}\right) \geq 5$ and $A=\left[\begin{array}{ccc}a & -a & a \\ 1 & 1 & 0 \\ -a & a & 2 a\end{array}\right]$. Clearly, $\delta_{1}(A)=3$, $\delta_{2}(A)=2$ and $\delta_{3}(A)=1$. Since $\operatorname{det}(A)=6 a^{2}, \operatorname{det}(A) \neq 0$ if and only if $a \neq 0$. Hence, A is invertible. Since

$$
A A^{T}=\left[\begin{array}{ccc}
a & -a & a \\
1 & 1 & 0 \\
-a & a & 2 a
\end{array}\right]\left[\begin{array}{ccc}
a & 1 & -a \\
-a & 1 & a \\
a & 0 & 2 a
\end{array}\right]=\left[\begin{array}{ccc}
3 a^{2} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6 a^{2}
\end{array}\right]=\operatorname{diag}\left(3 a^{2}, 2,6 a^{2}\right)
$$

A is weakly quasi-orthogonal.

Theorem 3.2.4 can be applied to construct a Euclidean self-orthogonal code as follows.

Corollary 3.2.5. Let $q \geq 4$ be a prime power. If there exist Euclidean self-orthogonal $\left[m, k_{1}, d_{1}\right]_{q},\left[m, k_{2}, d_{2}\right]_{q}$ and $\left[m, k_{3}, d_{3}\right]_{q}$ codes, then a Euclidean self-orthogonal $\left[3 m, k_{1}+\right.$ $\left.k_{2}+k_{3}, d\right]_{q}$ code can be constructed with $d \geq \min \left\{3 d_{1}, 2 d_{2}, d_{3}\right\}$.

Proof. Assume that there are three Euclidean self-orthogonal codes with parameters $\left[m, k_{1}, d_{1}\right]_{q},\left[m, k_{2}, d_{2}\right]_{q}$ and $\left[m, k_{3}, d_{3}\right]_{q}$. By Theorem 3.2 .4.$\left.\right)$ there exist a 3×3 invertible and weakly quasi-orthogonal matrix Hover with $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$. By Theorems 23.10and 3.1.1.7 the natixix-produet Eode C_{A} is Euclidean self-orthogonal [3m, $k_{1}+k_{2}$

Example 3.2.6. Let α be d-primitive clement of \mathbb{F}_{9}. By Theorem 3.2.4, $A=$

\mathbb{F}_{9} generated b

$$
G_{2}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
\alpha^{6} & \alpha^{5} & \alpha^{5} & \alpha^{7} & \alpha^{3} & 1
\end{array}\right]
$$

and

$$
G_{3}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

respectively. Then $C_{3} \subseteq C_{2} \subseteq C_{1}$ are Euclidean self-orthogonal codes with parameters $[6,3,3]_{9},[6,2,4]_{9}$ and $[6,1,6]_{9}$, respectively. By Theorem 2.3.1 and Corollary 3.2.5, C_{A} is a Euclidean self-orthogonal code with parameters $[18,6,6]_{9}$.

3.2.2 Weakly Anti-Quasi-Orthogonal Matrices

In this subsection, we focus on the existence of weakly anti-quasi-orthogonal matrices. In a finite field \mathbb{F}_{q} of characteristic p, it is well-known (Quadratic Reciprocity Law) (see [12, p. 185]) that if $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3 \bmod 4$, then -1 is square in \mathbb{F}_{q}. Precisely, there exists $b \in \mathbb{F}_{q}$ such that $b^{2}+1=0$. Hence, we have the following results.
Lemma 3.2.7. Let \mathbb{F}_{q} be a cinute fielof characteristeo p. If $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3 \bmod 4$, then there evists b f tic such that $b^{2}+1=0$ and $A=\left[\begin{array}{cc}1 & b \\ 1 & -b\end{array}\right]$ $\delta_{2}(A)=1$.

Proof. From the discussion aboye there exists b F suth that $b^{2}+1=0$. Let

A is (weakly) anti-quasi-orthogonal.

ทยาลัยกล

Corollary 3.2.8. Let \mathbb{F}_{q} be a finite field of characteristic p such that $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3 \bmod 4$. If there exist linear codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ such that $C_{1} \subseteq C_{2}^{\perp_{E}}$, then a Euclidean self-orthogonal $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ code can be constructed with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Proof. Assume that there exist linear codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ such that $C_{1} \subseteq C_{2}^{\perp_{E}}$. By Lemma 3.2.7, there exist a 2×2 invertible and anti-quasi-orthogonal matrix A over \mathbb{F}_{q} with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. By Theorems 2.3.1 and 3.1.1, the matrix-product code C_{A} is Euclidean self-orthogonal with parameters $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Example 3.2.9. Let $q=5$. By Quadratic Reciprocity Law, there exists $b \in \mathbb{F}_{5}$ such that $b^{2}+1=0$. By Lemma 3.2.7 and $b:=2$, we have that $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right] \in M_{2,2}\left(\mathbb{F}_{5}\right)$ is invertible, $A A^{T}=\operatorname{adiag}(2,2), \delta_{1}(A)=2$, and $\delta_{2}(A)=1$. Let C_{1} and C_{2} be the linear codes of length 5 over \mathbb{F}_{5} generated by
and
respectively. Then C_{1} and C_{2} qadue parameters $[5,3,3,1)$ and $[5,1,5]_{5}$, respectively. Since $C_{2} \subseteq C_{1} \subseteq C_{2}^{\perp_{E}}$, by Theorem sed idm Corollary p.2.8, C_{A} is a Euclidean self-orthogonal code with parameters $\{10,4,6]_{5}$.

By choosing $C_{2} \neq G$ in Corowary 3, 2), the next corollagy follows.
Corollary 3.2.10. Det \mathbb{F}_{q} be a fimite field of characteristigp suth that $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3$ mod 4 . If there exists an $\operatorname{mong} q$ code C, then a Euclidean selfdual $\left[2 m, m, d^{\prime}\right]_{q}$ codecan be constructed with $d^{2} \geq \min \left\{2 d, d{ }^{-}\right\}$and $d \downarrow^{-E}=d\left(C^{\perp_{E}}\right)$. Example 3.2.11. Fromexample 3.2.9, thematrix A ible, $A A^{T}=\operatorname{adiag}(2,2), \delta_{1}(A)=2$, and $\delta_{2}(A)=1$. Let C be linear codes of length 5 over \mathbb{F}_{5} generated by

$$
G_{=}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
3 & 0 & 2 & 2 & 3
\end{array}\right]
$$

Then C and $C^{\perp_{E}}$ have parameters $[5,3,3]_{5}$ and $[5,2,4]_{5}$, respectively. By Corollary 3.2.7, C_{A} is a Euclidean self-dual code with parameters $\left[10,5, d^{\prime}\right]_{5}$ where $d^{\prime} \geq 4$.

Let p be a prime. In [10, p. 50], it has been shown that 1) if $p \equiv 1 \bmod 8$ or $p \equiv 3 \bmod 8$, then -2 is a square in \mathbb{F}_{p}, and 2$)$ if $p \equiv-1 \bmod 8$ or $p \equiv-3 \bmod 8$, then -2 is not square in \mathbb{F}_{p}. In an extension field \mathbb{F}_{q} of \mathbb{F}_{p}, we have the following results.

Proposition 3.2.12. Let p be odd prime and \mathbb{F}_{q} be a finite field of characteristic p.
Then -2 is a square if one of the following statements hold.

1. $p \equiv 1 \bmod 8$.
2. $p \equiv 3 \bmod 8$.
3. q is square and $p \equiv-1 \bmod 8$.
4. q is square and $p \equiv-3$ mod) 8 .

Proof. Assume that one of the fgur stacments ho 1 cases.

Case $1 p \equiv 1 \bmod 8$. We
Case $2 p \equiv 3 \bmod 8$. The
Case $3 q$ is a square and $p u 1$ nods. Since -2 is notsquare in \mathbb{F}_{p}, we have that
 contains the roots of $x^{2} 4$. We have that $\left[K: \mathbb{F}_{p}\right]=2, \mathrm{So}, 4 K \mid=p^{2}$. Since q is a square, $K=\mathbb{F}_{p^{2}} \subseteq \mathbb{F}_{q}$
Case $4 q$ is squareand $p=-3 \bmod 8$. The proof is sinitiar to case 3.
From the four cases, 2 is square in \mathbb{F}_{q}.
Proposition 3.2.12 can be applied to construct anti-diagonal 3×3 matrices. Then the next theorem can be deduced.

Theorem 3.2.13. Let \mathbb{F}_{q} be a finite field of characteristic p. If $p \equiv 1 \bmod 8$, or $p \equiv 3 \bmod 8$, or q is a square and $p \equiv-1 \bmod 8$, or q is a square and $p \equiv-3 \bmod 8$, then there exists $b \in \mathbb{F}_{q}$ such that $b^{2}+2=0$ and $A=\left[\begin{array}{ccc}1 & -1 & b \\ 1 & 1 & 0 \\ -1 & 1 & b\end{array}\right]$ is invertible and anti-quasi-orthogonal with $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$.

Proof. From Proposition 3.2.12, there exists $b \in \mathbb{F}_{q}$ such that $b^{2}+2=0$. Let $A=$
$\left[\begin{array}{ccc}1 & -1 & b \\ 1 & 1 & 0 \\ -1 & 1 & b\end{array}\right]$. Clearly, A is invertible, $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$. Since

$$
A A^{T}=\left[\begin{array}{ccc}
1 & -1 & b \\
1 & 1 & 0 \\
-1 & 1 & b
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -1 \\
-1 & 1 & 1 \\
b & 0 & \Delta
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & b^{2}-2 \\
0 & 2 & 0 \\
b^{2}-\bar{A}^{2} & 0 & 0
\end{array}\right]
$$

$A A^{T}=\operatorname{adiag}\left(b^{2}-2,2, b^{2}-2\right)$ So, a is weakly anti-quasi-orthogonal.

Theorem 3.2.13 can be appljed to eonstruet a Euclidean self-orthogonal code as follows.
 $p \equiv 3 \bmod 8$, or q is a square and $p=1 \bmod 8$, on q is a square and $p \equiv-3 \bmod 8$. If there exist codes C_{1}, C_{2} and G_{3} with parameters ma, $k_{1}, d_{1+q}, m_{2}, k_{2} d_{2}$, and $\left[m, k_{3}, d_{3}\right]_{q}$ such that $C_{1} \subseteq C_{3}^{-E}$ and C_{2} is \&ucliden self-anthogonal code, then there exists a Euclidean self-orthogonal $\left.3 m_{1} k_{1}+k_{2}\right)+k_{3}$ dqacode with $d^{2} \geq \min \left\{3 d_{1}, 2 d_{2}, d_{3}\right\}$. Proof. Assume that there are three linear eodes with parameters $\left[m, k_{i}, d_{1}\right]_{q},\left[m, k_{2}, d_{2}\right]_{q}$ and $\left[m, k_{3}, d_{3}\right]_{q}$ such that $Q_{1}=C_{3}^{\perp E}$ and C_{2} is Euelidean self-orthogonal. By Theorem 3.2.13, there exist a 3×3 invertibleand weakly quasi-orthogonal matrix A over \mathbb{F}_{q} with $\delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=1$. By Theorems 2.3.1 and 3.1.4, the matrix-product code C_{A} is Euclidean self-orthogonal $\left[3 m, k_{1}+k_{2}+k_{3}, d\right]_{q}$ with $d \geq \min \left\{3 d_{1}, 2 d_{2}, d_{3}\right\}$.

Example 3.2.15. Let $q=9$. Then $p \equiv 3 \bmod 8$. By Proposition 3.2.12, we have that -2 is a square in \mathbb{F}_{9}. Precisely, by chosen $b=1$, we have that $b^{2}+2=0$ and $A:=\left[\begin{array}{ccc}1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1\end{array}\right] \in M_{3,3}\left(\mathbb{F}_{9}\right)$ is invertible, $A A^{T}=\operatorname{adiag}(2,2,2), \delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{2}(A)=1$. Let α be a primitive element of \mathbb{F}_{9} and C_{1}, C_{2} and C_{3} be linear codes
of length 6 over \mathbb{F}_{3} generated by
 ces play an important role in the matrix-product construction for Euclidean selforthogonal codes. However, the construction where the matrices have larger size or where the matrices are non-square is an interesting problem as well.

Table 3.1: Existence of Weakly Quasi-Orthogonal Matrices.

Note that? indicates the case where such matriegs are no studied in this work.

3.3 Examples

In this part, we focus on applications of Corollaries 3.2.2, 3.2.8 and 3.2.10 in constructing Euclidean self-orthogonal and Euclidean self-dual codes.

First, we consider applications of Corollary 3.2.2 to Euclidean self-orthogonal codes in [1] and Euclidean self-orthogonal Reed-Solomon codes.

In [1], it has been shown that for any $q \mathcal{A} \bmod 4$ such that $q \leq 113$, there exists a Euclidean self-dual code over $1 y_{q}$ with parameten $\left.q-\sigma q_{q} \frac{q-1}{2}, \frac{q-1}{2}\right]_{q}$.

In order to determine the algepraie structures andeproperties of Reed-Solomon codes, a brief introduction to cyclic codes is (giten asfollows.) A finear code C of length n over \mathbb{F}_{q} is said to be cyclic if ($\left.e_{n}, c_{0}, \ldots, \overline{\bar{\epsilon}}_{n}-2\right) \in C$ provided that $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ is a codeword in C. It is well-known that there is a onefto-one correspondence between a vector $c=\left(c_{0}, c_{1}, \ldots, c_{n}\right.$) inf ${ }^{n}$ na the polynomial $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$ in $\mathbb{F}_{q}[x]$ of degree at most $n=1$ Under this conrespondence, a code C of length n over \mathbb{F}_{q} can be consideredasaprincipal ideal in thequotient ino $R_{n}:=\mathbb{F}_{q} /\left\langle x^{n}-1\right\rangle$. Here, C is regarded as an idearin R_{η}, Among all the generators of ideal C, there exists a unique monic one with minimal acgree that divides $x^{n}-1$. It is called the generator polynomial C and denoted by $G(x)$ Let

The polynomial $H(x)$ is called the check polynomial of C. Since $H(0) \neq 0$, the reciprocal polynomial of $H(x)$ can be defined and it is defined to be

$$
H^{*}(x)=(H(0))^{-1}\left[x^{\operatorname{deg} H(x)} H\left(x^{-1}\right)\right] .
$$

The polynomial $H(x)$ is said to be self-reciprocal over \mathbb{F}_{q} is $H(x)=H^{*}(x)$. Note that $H^{*}(x)$ is a monic divisor of $x^{n}-1$ over \mathbb{F}_{q} and it is the generator polynomial of $C^{\perp_{E}}$ (see [12, p. 142]).

Lemma 3.3.1 ([12, p. 154]). Let $g_{1}(x)$ and $g_{2}(x)$ be the generator polynomials of q-ary cyclic codes C_{1} and C_{2} of the same length, respectively. Then $C_{1} \subseteq C_{2}$ if and only if $g_{1}(x)$ is divisible by $g_{2}(x)$.

A Reed-Solomon code over \mathbb{F}_{q} is a cyclic code of length $q-1$ over \mathbb{F}_{q} generated by $G(x)=\left(x-\alpha^{a}\right)\left(x-\alpha^{a+1}\right) \cdots\left(x-\alpha^{a+\delta-2}\right)$, where α is a primitive element of \mathbb{F}_{q}, $a \geq 0$ and $2 \leq \delta \leq q-2$. From [12, Theorem 8.2.3], the Reed-Solomon code of length $q-1$ over \mathbb{F}_{q} with the generator polynomial $G(x)$ has parameters $[q-1, q-\delta, \delta]_{q}$. In some cases, Reed-Solomon codes are Euclidean self-orthogonal.

Lemma 3.3.2. Let $q \geq 8$ be a prime pquen and let α be a primitive element of \mathbb{F}_{q}. Let C be a Reed Solomon code of length A over \mathbb{F} quith parity check polynomial $H(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right.$. Thencls a \#uclidean self-orthogonal code with parameters $[q-1,3, q-3]_{q}$.
 code $C^{\perp_{E}}$. Then

Since $\alpha^{q-1}=1$ and $q \geq 8$, we have that $(x-\alpha)^{2}\left(x-a^{2}\right)^{*},\left(x-\alpha^{3}\right)^{*},[(x-\alpha)(x-$
$]^{*},\left[(x-\alpha)\left(x-\alpha^{3}\right)\right]^{*}$ and $\left[\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\right]^{*}$ are not self-reciprocal. Since

$$
G^{*}(x)=\left(x-\alpha^{4}\right)^{*}\left(x-\alpha^{5}\right)^{*} \cdots\left(x-\alpha^{q-1}\right)^{*},
$$

it follows that $H(x) \mid G^{*}(x)$. This implies that $H^{*}(x) \mid G(x)$. By Lemma 3.3.1, we have that $C \subseteq C^{\perp_{E}}$. Hence, C is a Euclidean self-orthogonal code.

By setting C_{1} and C_{2} to be q-ary Euclidean self-orthogonal code with parameters $\left[q-1, \frac{q-1}{2}, \frac{q-1}{2}\right]_{q}$ and $[q-1,3, q-3]_{q}$, respectively, in Corollary 3.2 .2 , we have the following result.

Corollary 3.3.3. Let $q \equiv 1 \bmod 4$ such that $8 \leq q \leq 113$. Then there exists a Euclidean self-orthogonal $\left[2(q-1), \frac{q-1}{2}+3, d\right]_{q}$ code can be constructed with $d \geq q-3$.

Based on Corollary 3.3.3 and Reed-Solomon codes explained above, some examples of Euclidean self-orthogonal matrix-product codes over \mathbb{F}_{q} with good parameters are given in Table 3.3.

Table 3.3: Euclidean self-Orthogonal Matrix-Product Codes over \mathbb{F}_{q}
 ized Reed-Solomon codes characterizec in (4] and Corollaries 3.2.8 and 3.2.10, selforthogonal and self-dual codes with good parameters canbe obtained.

For $1 \leq m \leq q$ and $1 \leq k \leq m$, let $\mathbb{F}_{q}(x)$ denote the set of all polynomials over \mathbb{F}_{q} of degree less than k and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ be distinct elements in \mathbb{F}_{q}. A generalized Reed-Solomon code of length n and dimension k over \mathbb{F}_{q} is defined to be the set

$$
G R S_{q}(m, k):=\left\{\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \ldots, f\left(\alpha_{m}\right)\right) \mid f(x) \in \mathbb{F}_{q}[x]_{k}\right\}
$$

In [4], it has been shown that there exist a pair of generalized Reed-Solomon codes $G R S_{q}(m, k)=: C \subseteq D:=G R S_{q}(m, k+i)$ with parameters $[m, k, m-k+1]_{q}$ and $[m, k+i, m-k-i+1]_{q}$ for all $1 \leq k \leq m-1$ and $0 \leq i \leq m-k$. Moreover, $D^{\perp_{E}}$ has parameters $[m, m-k-i, k+i+1]_{q}$.

By setting $C_{1}=C$ and $C_{2}=D^{\perp_{E}}$ in Corollary 3.2.8, we have the following result.

Corollary 3.3.4. Let \mathbb{F}_{q} be a finite field of characteristic p such that $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3 \bmod 4$. Then there exists a matrix-product Euclidean self-
orthogonal code $[2 m, m-i, d]_{q}$ with $d \geq \min \{2(m-k+1), k+i+1\}$ for all $1 \leq k \leq m-1$ and $0 \leq i \leq m-k$.

Based on Corollary 3.3.4 and a pair of generalized Reed-Solomon codes explained above, some examples of Euclidean self-orthogonal matrix-product codes over \mathbb{F}_{5} with good parameters are given in Table 3.4.

Table 3.4: Euclidean Self-Orthosonat Matrix-Product Codes over \mathbb{F}_{5}

By setting $C_{1}=C$ and $C_{2}=C^{\perp}$ in Corellary 3.2.10, we have the following result.
Corollary 3.3.5. Let \mathbb{F}_{q} be a finite field of characteristic p such that $p \equiv 1 \bmod 4$, or q is square and $p \equiv 3 \bmod 4$. Then there exists a matrix-product Euclidean self-dual code $[2 m, m, d]_{q}$ with $d \geq \min \{2(m-k+1), k+1\}$ for all $1 \leq k \leq m-1$.

Based on Corollary 3.3.5 and generalized Reed-Solomon codes discussed above, some examples of Euclidean self-dual matrix-product codes over \mathbb{F}_{5} with good parameters are given in Table 3.5.

Table 3.5: Euclidean Self-Dual Matrix-Product Codes over \mathbb{F}_{5}

Chapter 4

Hermitian Sdffominosenal Matrix-Product Codes

 In this section, we assumeltitat $\frac{r^{2} \text {, where } r \text { is a prime power. Sufficient }}{}$

 conditions for matrix-ptoduet codes to be) Hermitian self-orthogonal are given. Two types of matrix-product constructions tor Hermitian selt-orthogonal linear codes are introduced.

4.1 Constructions

In the following theorem, a matrix-produet-construction for Hermitian self-orthogonal codes whose input codes are Hermitian self-orthogonal is discussed. The results in this part are a bit more general than the ones in [5] since the underlying matrix does not need to be unitary. The construction is given as follows.

Theorem 4.1.1. Let $s \leq l$ be positive integers. Let $C_{1}, C_{2}, \ldots, C_{s}$ be linear codes of the same length over \mathbb{F}_{q} and let $A \in M_{s \times l}\left(\mathbb{F}_{q}\right)$. If $A A^{\dagger}$ is diagonal and $C_{i} \subseteq C_{i}^{\perp_{H}}$ for all $1 \leq i \leq s$, then $C_{A} \subseteq C_{A}^{\perp}$.

Proof. Assume that $A A^{\dagger}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ and $C_{i} \subseteq C_{i}^{\perp_{H}}$ for all $1 \leq i \leq s$. For each $1 \leq i \leq s$, let G_{i} be a generator matrix for the code C_{i}. Since $A=$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 l} \\
a_{21} & a_{22} & \cdots & a_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} & a_{s 2} & \cdots & a_{s l}
\end{array}\right] \text {, the matrix-product code } C_{A} \text { is generated by }
$$

It follows that

Since $C_{i} \subseteq C_{i}^{\perp_{H}}$ for all $1 \leq i \leq s$, we have that $G_{i} G_{i}=[0]$ for all $1 \leq i \leq s$. It follows that $G G^{\dagger}=[\mathbf{0}]$. Hence, $C_{A} \subseteq C_{A}^{\perp_{H}}$ as desired.

If A is a square quasi-unitary, then the following corollary can be deduced.

Corollary 4.1.2. If $A \in M_{s, s}\left(\mathbb{F}_{q}\right)$ is such that $A A^{\dagger}=\lambda I_{s}$ for some non-zero λ in \mathbb{F}_{q} and $C_{i} \subseteq C_{i}^{\perp_{H}}$ for all $1 \leq i \leq s$, then $C_{A} \subseteq C_{A}^{\perp_{H}}$.

Example 4.1.3. Let β be a primitive element of \mathbb{F}_{4} and Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \beta & \beta^{2} \\ 1 & \beta^{2} & \beta\end{array}\right] \in$ $M_{3,3}\left(\mathbb{F}_{4}\right)$. Then A is invertible, $A A^{\dagger}=\operatorname{diag}(1,1,1), \delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{3}(A)=$

1．Let C_{1}, C_{2} and C_{3} be the linear codes of length 6 over \mathbb{F}_{4} generated by

$$
G_{1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & \beta & \beta^{2} & \beta^{3} & \beta^{4} & \beta^{5} \\
1 & \beta^{2} & \beta^{4} & \beta^{6} & \beta^{8} & \beta^{10}
\end{array}\right]
$$

and
 and 4．1．1，C_{A} is a Hermitian self－orthagonal code with parameters $[18,6,6]_{4}$ ．

Next，a matrix－product comstuction for Hermitian self－orthogenal codes is studied while the Hermitian selforthogenaxity of the inputcodes is relaxed
 of the same length over \mathbb{F}_{q} and let $A \in M_{s \times l}\left(\mathbb{F}_{q}^{-}\right)$If $A A^{\dagger}$ is anti－diagonal and $C_{i} \subseteq$ $C_{s-i+1}^{\perp_{H}}$ for all $1 \leq i \leq s$, then $C_{A} \subseteq C_{A}^{\perp_{H}}$ ．

リクリフフังล2

Proof．Assume that $A A^{\dagger}=\operatorname{adiag}\left(\lambda_{1}, \lambda_{2}, C_{s}\right)$ and $C \leq C_{s-i+1}^{\perp_{H}}$ for all $1 \leq i \leq$
s ．For each $1 \leq i \leq s$ ，let G_{i} be a generator matrix of the code C_{i} ．Since $A=$ $\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 l} \\ a_{21} & a_{22} & \cdots & a_{2 l} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s 1} & a_{s 2} & \cdots & a_{s l}\end{array}\right]$ ，the matrix－product code C_{A} is generated by

$$
G=\left[\begin{array}{cccc}
a_{11} G_{1} & a_{12} G_{1} & \cdots & a_{1 l} G_{1} \\
a_{21} G_{2} & a_{22} G_{2} & \cdots & a_{2 l} G_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} G_{s} & a_{s 2} G_{s} & \cdots & a_{s l} G_{s}
\end{array}\right] .
$$

It follows that

$$
G G^{\dagger}=\left[\begin{array}{cccc}
a_{11} G_{1} & a_{12} G_{1} & \cdots & a_{1 l} G_{1} \\
a_{21} G_{2} & a_{22} G_{2} & \cdots & a_{2 l} G_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} G_{s} & a_{s 2} G_{s} & \cdots & a_{s l} G_{s}
\end{array}\right]\left[\begin{array}{cccc}
a_{11}^{r} G_{1}^{\dagger} & a_{21}^{r} G_{2}^{\dagger} & \cdots & a_{s 1}^{r} G_{s}^{\dagger} \\
a_{12}^{r} G_{1}^{\dagger} & a_{22}^{r} G_{2}^{\dagger} & \cdots & a_{s 2}^{r} G_{s}^{\dagger} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 l}^{r} G_{1}^{\dagger} & a_{2 l}^{r} G_{2}^{\dagger} & \cdots & a_{s l}^{r} G_{s}^{\dagger}
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
0\left(G_{1} G_{1}^{\dagger}\right) & \ldots \\
0\left(G_{2} G_{1}^{\dagger}\right) & \ddots \cdot) \\
\vdots & \ddots \\
\lambda_{s}\left(G_{s} G_{1}^{\dagger}\right) & \ddots
\end{array}\right)
$$

Since $C_{i} \subseteq C_{s-i+1}^{\perp_{H}}$ for all $\left.1 \not\right)^{i} f$, we have: $t_{i} q_{s-f i f 1}^{\dagger} 10$ for all $1 \leq i \leq s$. Hence, $G G^{\dagger}=[\mathbf{0}]$. Therefore, $C_{A} \subseteq C_{A}^{\dagger}$

The following corollaries cam be obtained directly fromTheorem 4.1.4. The proofs are omitted.

Corollary 4.1.5. If $A \in \lambda_{s, s(\mathbb{F} q)}$ is syy that $A A \leq \lambda \lambda^{\prime}$ for some non-zero λ in \mathbb{F}_{q} and $C_{i} \subseteq C_{s-i}^{\perp_{H}}$
 is invertible, $A A^{\dagger}=\operatorname{adiag}(1,1), \delta_{4}(A)=2$, and $\delta_{2}(A)=1$. Let C_{1} and C_{2} be the linear codes of length 4 over \mathbb{F}_{4} generated by

$$
G_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & \beta & \beta
\end{array}\right]
$$

and

$$
G_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

respectively. Then C_{1} and C_{2} have parameters $[4,2,2]_{4}$ and $[4,1,4]_{4}$, respectively. Since $C_{2} \subseteq C_{1} \subseteq C_{2}^{\perp_{H}}$, by Theorems 2.3.1 and 4.1.4, C_{A} is a Hermitian selforthogonal code with parameters $[8,3,4]_{4}$.

By choosing $C_{i}=C_{s-i+1}^{\perp_{E}}$ in Corollary 4.1.5, we have the following results.

Corollary 4.1.7. If $A \in M_{s, s}\left(\mathbb{F}_{q}\right)$ is such that $A A^{\dagger}=\lambda J_{s}$ for some non-zero λ in \mathbb{F}_{q} and $C_{i}=C_{s-i+1}^{\perp_{H}}$ for all $1 \leq i \leq s$, then C_{A} is Hermitian self-dual.

4.2 Special Matrices andApplications

In order to apply the matrixpprodact/constructionsdiscussed in Section 4.1 to obtain Hermitian self-orthogonal codco matriv \& $\in C M_{s, l}\left(\mathbb{F}_{q}\right)$ with the property that $A A^{\dagger}$ is diagonal or anti-Aiagonal is required. Ta thebest of our knowledge, there are no proper names for suchmatrices. For convenience, the following definitions are given. A matrix $A \in M_{s, l}\left(\mathbb{F} q\right.$ is said to be wéadshy semalunitary if $A A^{\dagger}$ is diagonal and it is said to be weakly anti-semifunitary if At anti-diagonal. In the case where A is square, such matrices are called wenky quasi-unitdry and weakly anti-quasi-unitary, respectively.

The existence and properties of stech matrices are given as follows.

4.2.1 Weakly Quasi-Unitary Matrices

In this subsection, the existence of weakly quasi-unitary matrices defined are given as follows.

Lemma 4.2.1. Let α be a primitive element of \mathbb{F}_{q}, where $q=r^{2}$ is a prime power.
Then the following statements holds.

1. If q is odd, then $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ is invertible and (weakly) quasi-unitary with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.
2. If $q>2$ is even, then $A=\left[\begin{array}{cc}1 & \alpha \\ \alpha^{r} & 1\end{array}\right]$ is invertible and (weakly) quasi-unitary with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.

Proof. 1. Assume that q is odd and $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Clearly, A is invertible, $\delta_{1}(A)=$ 2 and $\delta_{2}(A)=1$. Since

$$
A A^{T}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\operatorname{diag}(2,2)
$$

A is (weakly) quasi-unitary.
2. Assume that $q>2$ is deven and $A=1$ ad. Clearly, A is invertible, $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. Sinces

A is (weakly) quasi-unitary

774

Unitary matrices in Lemma 4.2 .1 cande applied to construct Hermitian selforthogonal codes as follows.

Corollary 4.2.2. Let \mathbb{F}_{q} be a finite field. If there exist Hermitian self-orthogonal $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ codes, then a Hermitian self-orthogonal $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ code can be constructed with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Proof. Assume that there exist Hermitian self-orthogomal codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$. By Lemma 4.2.1, there exist a 2×2 invertible and (weakly) quasi-unitary matrix A over \mathbb{F}_{q} with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. By Theorems 2.3.1 and 4.1.1, the matrix-product code C_{A} is Hermitain self-orthogonal with parameters $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Example 4.2.3. Let β be a primitive element of \mathbb{F}_{4}. By Lemma 4.2.1, we have that $A=\left[\begin{array}{cc}1 & \beta \\ \beta^{2} & 1\end{array}\right] \in M_{2,2}\left(\mathbb{F}_{4}\right)$ is invertible, $A A^{\dagger}=\operatorname{diag}\left(1+\beta^{4}, 1+\beta^{4}\right), \delta_{1}(A)=2$ and $\delta_{2}(A)=1$. Let C_{1} and C_{2} be the linear codes of length 4 over \mathbb{F}_{4} generated by
and

$$
G_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

respectively. Then C_{1} and C_{2} are Hermitian selfforthog anal yithoparameters $[4,2,2]_{4}$ and $[4,2,1]_{4}$ respectively. is a

Lemma 4.2.4. Let M be aspositwe integer and let $q()^{2}$ be a prime power. If $M \mid(r+1)$, then therexists a weakly) quasi-unitary M AN matrix over \mathbb{F}_{q} with $\delta_{i}(A)=M-i+1$

Let $B=A A^{\dagger}$. Then, for all $1 \leq i, j \leq M$, we have

$$
\begin{aligned}
& b_{i j}=\sum_{k=0}^{M-1}\left(\alpha^{k}\right)^{i-1} \overline{\left(\alpha^{k}\right)^{j-1}}=\sum_{k=0}^{M-1}\left(\alpha^{k}\right)^{i-1}{\overline{\left(\alpha^{k}\right)}}^{j-1} \\
& =\sum_{k=0}^{M-1}\left(\alpha^{k}\right)^{i-1}\left(\alpha^{-k}\right)^{j-1}=\sum_{k=0}^{M-1}\left(\alpha^{i-j}\right)^{k} \\
& =\left\{\begin{array}{cc}
M \neq 0 & \text { if } \boldsymbol{\lambda} j, \\
0 & \text { fotherwise } .
\end{array}\right.
\end{aligned}
$$

Hence, $A A^{\dagger}=\operatorname{diag}(M, M, \ldots M r)$. Therefore, A is (weakly) quasi-unitary. From [2,

Corollary 4.2.5. Let q be anmine porver =and let M be (oesitive integer such that
 $\left.d_{M}\right]_{q}$ codes, then a Hermitian sed-othogonal $\left.M m, k_{1}+k_{2}+\cdots+k_{M}, d\right]_{q}$ code can be

Proof. Assume that there are M Memitian self-orthogonalcones with parameters $\left.\left.\left[m, k_{1}, d_{1}\right]_{q},\left[m, k_{2}, d_{2}\right]_{q}, \ldots, m, k_{2}, d_{M}\right)\right] g$ By comma, 4.2.4, there exist a $M \times M$ invertible and quasisunitary matrix A oyer wif wieh $\delta_{1}(A)=M, \delta_{2}(A)=(M-$ 1), $\ldots, \delta_{M}(A)=1$ By Theorems 2.3.1 and 4.1.1, the natrix-product code C_{A} is Hermitian self-orthogonal with parameters $\left.A m, k_{1}+k_{2}+.+k_{M}, d\right]_{q}$ with $d \geq$ $\min \left\{M d_{1},(M-1) d_{2}, \ldots, d_{M}\right\}$.

Example 4.2.6. Let α be a primitive element of \mathbb{F}_{4}. Then, α is primitive 3-root unity in \mathbb{F}_{4}. By lemma 4.2.4, we have that $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^{2} \\ 1 & \alpha^{2} & \alpha^{4}\end{array}\right]$ is invertible, $A A^{\dagger}=$ $\operatorname{diag}(1,1,1), \delta_{1}(A)=3, \delta_{2}(A)=2$ and $\delta_{1}(A)=1$. Let C_{1}, C_{2} and C_{3} be the linear codes of length 6 over \mathbb{F}_{4} generated by

$$
G_{1}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & a & a \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

$$
G_{2}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & a & a
\end{array}\right]
$$

and

$$
G_{3}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right],
$$

respectively. Then $C_{3} \subseteq C_{2} \subseteq C_{1}$ are Hermitian self-orthogonal with parameters $[6,3,2]_{4},[6,2,4]_{4}$ and $[6,1,6]_{4}$ Arespectively. $B y$ Theorems 2.3.1 and 4.2.5 C_{A} is a Hermitian self-orthogonal codeanith parameters 18, 6, 64.4.

4.2.2 Weakly Anti-Quasi-Unitary Matrices

In this subsection, we focus on the existence of weaky anti-quasi-unitary matrices.
In a finite field \mathbb{F}_{q} where $\left.q=1\right)^{2}$, the norn function $N: \mathbb{F}_{q} \rightarrow \mathbb{F}_{r}$ is defined by $N(\alpha)=\alpha^{r+1}$ for all α in In $[11,2.57]$, it hasbeen shown that N is surjective. Hence, we have the forlowing lenma and corollaries ean be deduced.

Lemma 4.2.7. Let α be aprimitive delementsfic. Then the following statements hold.

1. If q is odd, then there exists $b \in \mathbb{F}_{q}$ such thatbr+1 $=1$ and $A=$

$$
\text { exists } b \in \mathbb{F}_{q} \text { such ther } 1=-1 \text { and } A=
$$

$$
\left[\begin{array}{ll}
1 & b \\
b & 1
\end{array}\right] \text { is }
$$ invertible and (weakly) anti-quasi-unitary with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.

2. If $q>2$ is even, then $A=\left[\begin{array}{ll}\alpha & \alpha^{r} \\ 1 & 1\end{array}\right]$ is invertible and (weakly) anti-quasi-unitary with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$.

Proof. 1. Since the norm is surjective and $-1 \in \mathbb{F}_{q}$, there exists $b \in \mathbb{F}_{q}$ such that
$b^{r+1}=-1$. Let $A=\left[\begin{array}{ll}1 & b \\ b & 1\end{array}\right]$. Clearly, A is invertible, $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. Since

A is (weakly) anti-quasi-unitary.

Corollary 4.2.8. Let \mathbb{F}_{q} be a finite field of order $q>2$. If there exist codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ such that $C_{1} \subseteq C_{2}^{\perp_{H}}$, then a Hermitian self-orthogonal $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ code can be constructed with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Proof. Assume that there exist linear codes C_{1} and C_{2} with parameters $\left[m, k_{1}, d_{1}\right]_{q}$ and $\left[m, k_{2}, d_{2}\right]_{q}$ such that $C_{1} \subseteq C_{2}^{\perp_{H}}$. By Lemma 4.2.7, there exist a 2×2 invertible
and anti-quasi-orthogonal matrix A over \mathbb{F}_{q} with $\delta_{1}(A)=2$ and $\delta_{2}(A)=1$. By Theorems 2.3.1 and 4.1.4, the matrix-product code C_{A} is Hermitian self-orthogonal with parameters $\left[2 m, k_{1}+k_{2}, d\right]_{q}$ with $d \geq \min \left\{2 d_{1}, d_{2}\right\}$.

Example 4.2.9. Let β be a primitive element of \mathbb{F}_{4}. By Lemma 4.2.7, we have that $A=\left[\begin{array}{cc}\beta & \beta^{2} \\ 1 & 1\end{array}\right] \in M_{2,2}\left(\mathbb{F}_{4}\right)$ is invertible, $A A^{\dagger}=\operatorname{adiag}(1,1), \delta_{1}(A)=2$, and $\delta_{2}(A)=1$. Let C_{1} and C_{2} be the linear codes of length Θ over \mathbb{F}_{4} generated by
and

respectively. Then C_{1} and C_{2} have parameters $\left.\sqrt{6}, 2,4\right]_{4}$ and $[6,1,6]_{4}$, respectively. Since $C_{2} \subseteq C_{1} \subseteq C_{2}^{\perp_{H}}$ by Pheorems 2.3.1 and 4.1.5.C4 is a Hermitian selforthogonal code with parameters 1

4.2.3

In this subsection, we summarize the existence of weakly quasi-unitary and weakly anti-quasi-unitary discrissed in subsections 4.2.1 and 4.2.2. These matrices play an important role in the matrix-product construction for Hermitain self-orthogonal codes. However, the existence of such matrices where the matrices have larger size or where the matrices are non-square is an interesting problem as well.

Table 4.1: Existence of Weakly Quasi-Unitary Matrices over $\mathbb{F}_{q}, q=r^{2}$

s	$r \geq 2$
2	Lemma 4.2.1
$s \mid(r+1)$	Lemma 4.2.4
$s \neq 2 \wedge s \nmid(r+1)$	$?$

Note that? indicates the case where such matrices are not studied in this work.

Table 4.2: Existence of Weakly Anti-Quasi-Unitary Matrices

4.3 Examples

In this part, we focus on appticationsof Corothary 42.2. Based on Hermitian selforthogonal codes in [8] and Corollary 4.2.2 Hermeian self-ethegenal codes with good parameters can be obtained.

In [8, Theorem 2.6], it has been shown thet therg exists a q-ary Hermitian selforthogonal $[q+1, k, q-k+2]_{q}$ for all 2

By setting C_{1} and as be a q-ary Hermitianselforthogonal codes with parameter $\left[q+1,\left\lfloor\frac{r}{2}\right\rfloor, q-\left\lfloor\frac{r}{2}\right\rfloor\left(2\left(\operatorname{anc}\left(q+1, \frac{r}{2}+\rightarrow\right), q-\frac{r}{2}+3\right]\right.\right.$ in Codilary 4.2.2, we have the following result.
 $\left[2(q+1), 2\left\lfloor\frac{r}{2}\right\rfloor-1, d\right\rfloor$ code can be constructed with $d \geq q-\left\lfloor\frac{r}{2}\right\rfloor+3$

Based on Corollary 4.3.1 and Hermitian self-orthogonat codes in [8], some examples of Hermitian self-orthogonal matrix-product codes over \mathbb{F}_{q} with good parameters are given in Table 4.3.

Table 4.3: Hermitian self-Orthogonal Matrix-Product Codes over \mathbb{F}_{q}

References

[1] T. Aaron, J. L. Kim, Y. Le, Codes," IEEE Trans. Inf. Th

[2] T. Blackmore and G. H. Norton, anatrix-product lode ever. \mathbb{F}_{q}," Appl. Algebra Eng., Common. Comput, vol. 12, no. $5:$ pp. 471 F500, 2001.
[3] M. Bouse and M. Said, "Mat ix product codespyerfo", Gulf j. math., vol. 3, no. 2, pp. 44-48 2015.
[4] M. F. Ezerman, S. Jitman. H. M. Kiah, and S. Ling, P ire asymmetric quantum MDS codes from CSS construction: A complete characterization," Int. J. of
Quantum Information, vol. A1, no. 3, p. 1350027, 2013.
[5] C. Galindo, F. Hernando, and D. Ruano, "New quantum codes from evaluation and matrix-product codes,' Finite Fields Appl., vol. 36, pp. 98-120, 2015.
[6] F. Hernando, K. Lally, and D. Ruano, "Construction and decoding of matrixproduct codes from nested codes," Appl. Algebra Eng., Common. Compute, vol. 20, pp. 497-507, 2009.
[7] W. C. Human and V. Bless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
[8] L. Jin, S. Ling, J. Luo, and C. Xing, "Application of classical Hermitian selforthogonal MDS codes to quantum MDS codes," IEEE Trans. Inf. Theory, vol. 53, no. 9, pp. 4735-4740, 2010.
[9] L. Jin and C. Xing, "Euclidean and Hermitian self-orthogonal algebraic geometry and their application to quantum codes," IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5484-5489, 2012.
[10] N. Koblitz, A Course in Number Theory and Cryptography. 2d ed. New York: Springer-Verlag.
[11] R. Lidl and H. Niederreiter, Finite fields, Oambridge University Press, 1997.
[12] S. Ling and C. Xing, Coding Theory.Afirst Course, Cambridge University Press, 2004.
[13] X. Liu, H. Liu, and L. Vu, 2016, Aug=1 On new quantum codes from matrix product codes [Online]. Available httos: /arxivorg/abs/1604.05823
[14] V. Pless, "A classificatien of self-orthogonal dodes over GF(2)," Discrete Math,

[15] T. Zhang and G. Ge. 2016 , Aug. 1). Quantum codes from gener-

Presentations and Publications

Presentations

- M. Todsapol and S. Jitman, Matrix-Product construction for self-orthogonal linear codes, Proceedings of the $12^{\text {th }}$ International Conference On Mathematics, Statistics and Their Applications, Syiah Kuala University, Banda Aceh Indonesia, 4-6 October, 2016.

Publications

- M. Todsapol and S. Jitman, Matrix-product construction for self-orthogonal linear codes, Proceedings of the International Conference, On Mathematics, Statistics and Their Applications (ICM̄SA), Banda Aech, Indonesia, accepted.

Biography

Name
Address

