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Chapter 1

Introductio

formation across noisy

inear codes due to their

studied by many

uantum codes [8].

In [2], properties of matrix-product codes have been studied as well as a lower bound
for the minimum distance of the output codes. In some cases, the lower bound given
in [2] was shown to be sharped [6].

In [5], the matrix-product construction has been applied to obtain Euclidean self-
orthogonal codes in the case where the underlying matrix is a square orthogonal
matrix and the input codes are Euclidean self-orthogonal. Similarly, this idea has
been extended to construct Hermitian self-orthogonal codes in [15] and [13]. However,
the input codes are required to be Hermitian self-orthogonal.

In this thesis, we propose a more general set up for self-orthogonal matrix-product



codes under the Euclidean and Hermitian inner products. In many cases, the self-
orthogonality of the input codes can be relaxed. Some basic properties of matrices,
linear codes, self-orthogonal codes and matrix-product codes are discussed in Chapter
2. Matrix-product constructions for Euclidean self-orthogonal codes are discussed in
Chapter 3 as well as properties of matrices used for the constructions. In Chapter 4,

we present matrix-product constructions f@r Wermitian self-orthogonal codes.




Chapter 2

agonal matriz
.., As) denote

are A\, Ao, ..., As. Denote

by I, and J, the matrices diag(1,1,...,1) and adiag(1,1,...,1), respectively. For
A = [ay] € Myy(F,), and ¢ = r?, define A" = [a7;]. A matrix A € M, (F,) is said
to be semi-orthogonal (resp., semi-unitary) if AAT = I, (vesp., AAT = I,). A semi-
orthogonal (resp., semi-unitary) matrix A € M, (F,) is called an orthogonal matric
(resp., unitary matriz) if s = [. An s x s matrix A over F, is said to be quasi-
orthogonal (vesp., quasi-unitary) if AAT = X, (resp., AAT = \I,) for some non-zero
element A € F,. These matrices are good ingredients in matrix-product constructions
for self-orthogonal linear codes. The existence and properties of such matrices will

be studied in Sections 3.2 and 4.2.



2.2 Linear Codes

For each positive integer n, denote by Fj the F-vector space of all vectors of
length n over Fy. For u and v in F, let wty(u) and dg(u,v) denote the Hamming

weight of u and the Hamming distance between u and v, respectively. Precisely, for

An k£ x n matrix GG

rows of G form

2. Forq=r? (u,v)y =Y i, w; = (u,)p is called the Hermitian inner product

between w and v, where @ = a" for all a € IF,.
The Euclidean dual and (resp., Hermitian dual) of a code C' is defined to be the set
Ci={ucF}|(u,c)p=0forall ceC}
(resp., CH# = {u € F7 | (u,c)p =0 for all c € C'}).

A code C'is said to be Euclidean (vesp., Hermitian) self-orthogonal if C C C*# (resp.,
C C C*#). A linear code C' is said to be Fuclidean (vesp., Hermitian) self-dual if

C = C** (resp., C = Ctn),



For linear codes € and (5 of the same length over Fy, if C; is generated by a
generator matrix G; for ¢ € {1,2}, then it is not difficult to see that ([12, p.67]),
G1GT = [0] if and only if C; C Cy”. In particular, G1GT = [0] if and only if C,
is Euclidean self-orthogonal. For ¢ = r2, GG} = [0] if and only if C; C C5#. In

particular, G,G| = [0] if and only if Cy is Hermitian self-orthogonal.

2.3 Matrix-Prod o
s Q)
C 3y
The matrix-product constyitetiol £ li de een introduced in [2] and
&

s Bifimfidod as follows. For

’Qt'; 1 <1 <s, let C; be

(F

] he matriz-product code

0 Qg1 ‘H
The matrix-product eede wl?h =G

..., Cs are clear in the conté

For each A € M,,;(F,) and for each 1 < i < s, denote by 9;(A) the minimum

distance of the linear code of length [ over I, generated by the first ¢ rows of A. Some

properties of matrix-product codes (see [2] and [3]) can be summarized as follows.
Theorem 2.3.1. With the notations given above, the following statements hold.

1. Cy 1s a linear code of length ml over IF,.
2. dim(Cy) < > k.
i=1

3. If A is full-row-rank, then



4. du(Ca) > min {d;6;(A)}.
5 IfC1 2 Cy D -+ D, then

du(Cy) = 11@111%18{0251-(A)}.

If A is an invertible square matrix, the/Buclidean dual of a matrix-product code

L)l

Theorem 2.3.2 ([2, p. 19]). W e pdlalionagietiabove and s = (. If A is an
 /

([C1, Gy, -+

From Theorem 2.3.2, th

codes has been given,

-

./ S
2R
LX

451

are BEuclidean self-orth o 00w

,@}
\
In general the dusg d)i_l

= Ry !"

In this paper,

chapters.




Chapter 3

more general than the ones in [5] since the underlying matrix does not need to be

orthogonal.

Theorem 3.1.1. Let s < [ be positive integers. Let Cy,Cy, ..., Cy be linear codes of
the same length over F, and let A € My (F,). If AAT is diagonal and C; C C’fE for

all 1 <i<s, then Cy C CjE.

Proof. Assume that AAT = diag(\;,As,...,A) and C; € CFF forall 1 < i <

s. For each 1 < i < s, let G; be a generator matrix for the code C;. Let A =



apir a2 - ay
Qg1 G2 -+ Ay . .

, the matrix-product code C}y is generated by
as1 Qg2 - Qg

It follows that

follows that GGT = [0]. Hence, C'y C C4* as desired. O

1 1 1 2
€ My 4(F3). Then A is full-row-rank, AAT =

0011
diag(1,2), 01(A) = 4, and 02(A) = 2. Let Cy and Cy be the linear codes of length 6

111111
G, =
010101

G2=[1 1 111 1},

Example 3.1.2. Let A = [

over 3 generated by

and



respectively. Then Cy C Cy are Euclidean self-orthogonal with parameters [6,2, 3]3 and
6,1, 6]3, respectively. By Theorems 2.3.1 and 3.1.1, Cy is a Euclidean self-orthogonal

code with parameters [24,3,12]3.
If A is a square quasi-orthogonal, then the next corollary can be deduced.

Corollary 3.1.3. If A € M, ((F,) is such ghtag AAT = NI for some non-zero A in F,

L
Oi g Cs—Ei-l-l
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It follows that

anGr apGy - auGh allG{ azng te asle

aGT — anGy  anGz -+ ayG 012G1T azng T aszGZ
asle asQGs e asle afllG{ a2ng e aslGZ
O(G1G1T) T O(G ¢ T Al(GlGZ)

0(GoGT) s" Ao 5/@"\\ 0 Qfﬁ:“.

fg,.‘ )
A\ W

Since C; C C1= 41 for all

GGT = [0]. Therefore, Cy

~

v
Example 3.1.5. Let A

[
adiag(2,2), 0;(A) = ("‘,'

over s generated.ba

and

G2:[1 1111 1},

respectively. Then Cy and Cy have parameters [6,5,2]3 and [6,1,6]s, respectively.
Since Cy C C C C’jE, by Theorems 2.53.1 and 3.1.4, C4 is a Euclidean self-orthogonal

code with parameters [18,6, 6]3.

The following corollaries can be obtained directly from Theorem 3.1.4. The proofs

are omitted.
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Corollary 3.1.6. If A € M, ((F,) is such that AAT = \J; for some non-zero element

X in T, and C; C CH5,, for all1 <i < s, then Cq C Cy".
By choosing C; = Csl_Ei 41 in Corollary 3.1.6, the next corollary follows.

Corollary 3.1.7. If A € M, 4(F,) is such that AAT = \J; for some non-zero element

AinFy and C; = C’j_EZ-H forall1 <i <s, ghen Cy is Euclidean self-dual.

In order to apply the

obtain Euclidean self-ortha

el
7wl

n
AL g
HE

"
Q/..‘«,\J’\
{(§
In the case where A 18«sgii k‘_ "j

N

In this subsection, the existence of some weakly quasi-orthogonal matrices are given.

Lemma 3.2.1. Let o be a primitive element of F,. Then the following statements

hold.
1
1. If q is odd, then A = is invertible and (weakly) quasi-orthogonal
1 -1
with 61(A) = 2 and 62(A) = 1.
1 «
2. If q > 2 is even, then A = is invertible and (weakly) quasi-orthogonal
a 1

with 61(A) = 2 and 05(A) = 1.
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1 1
Proof. To prove 1, assume that ¢ is odd and A = . Clearly, A is invertible,

91(A) =2 and 62(A) = 1. Since

2/
@%@ owing corollary.

S

dean self-orthogonal

and weakly quasi-orthogonal matrix A over [, with §;(A) = 2 and d,(A) = 1. By

Theorems 2.3.1 and 3.1.1, the matrix-product code C, is Euclidean self-orthogonal

with parameters [2m, k1 + ko, d], and d > min{2d;, d>}. O

1 «
Example 3.2.3. Let a be a primitive element of Fy. By Lemma 3.2.1, A = €

a 1
My 5(Fy) is invertible, AAT = diag(1+ a2, 1+ a?), §;(A) = 2, and §2(A) = 1. Let Cy

and Cy be the linear codes of length 4 over Fy generated by

1 1 11
G| =
0 o 0 «
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and
G2=[1 11 1},

respectively. Then Cy C Cy are Fuclidean self-orthogonal with parameters [4,2,2],
and [4,1, 4]y, respectively. By Theorem 2.3.1 and Corollary 3.2.2, Cy is a Euclidean

self-orthogonal code with parameters [8,3,4],.

—a a 2a

orthogonal with 6;(A) = 3, d2(A) =2 and 63(A) = 1.

3. If Char(F,) > 5, then A := \‘ 1 1 0‘ is invertible and weakly quasi-

1 a 1
Proof. To prove 1, assume that Char(F,) = 2 and A = |4 1 0 |. Clearly,
1 a a?2+1

61(A) = 3, 02(A) = 2 and d3(A) = 1. Since det(A) = a*(a + 1)?, det(A) # 0 if and
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only if @ ¢ {0,1}. Hence, A is invertible. Since

1 a 1 1 a 1
AAT =14 1 0 al a

| 0 i\" a
A is weakly quasi-orthogonal. ‘i
U

To prove 2, assume that C' '-’ﬁlll?;)‘ 3
J2(A) =2 and 03(A) = 1. J‘os‘g
and only if a ¢ {0,1,2} @ ,%i
G2
P
! % § (

0 .-

A is weakly quasi-orthogonal.

To prove 3, assume that Char(F,) >5and A= |1 1 0 |. Clearly, §;(A) =3,

—a a 2a

02(A) = 2 and §3(A) = 1. Since det(A) = 6a?, det(A) # 0 if and only if a # 0. Hence,

A is invertible. Since

a —a a a 1 —a 3a2 0 0
AAT=11 1 ol||=a 1 al=]0 2 o0 |=dag@3a26ad%),
—a a 2a a 0 2a 0 0 6a?

A is weakly quasi-orthogonal. O



15

Theorem 3.2.4 can be applied to construct a Euclidean self-orthogonal code as

follows.

Corollary 3.2.5. Let ¢ > 4 be a prime power. If there exist Fuclidean self-orthogonal
[m, k1, dilg, [m, k2, da], and [m, ks, ds], codes, then a Euclidean self-orthogonal [3m, ki

ko + k3, d], code can be constructed with d 3 min{3d;, 2d,, ds}.

(N
(m, ki, di)g, [m, k2, ds], and | seg‘ d ) 3 e’.',,; there exist a 3 x 3 invert-
[ WL

ith % (A) = 3, 65(A) = 2 and
e

DrodiLe de C'4 is Euclidean

d3(A) = 1. By Theorems 2:3-40a04
2V O

self-orthogonal [3m, ky + kb

Example 3.2.6. Let « [be_a 4§'.- -, By Theorem 3.2.4, A =
a —a 1 ”@) 5
N \l'n ‘
1 1 € Mg (Fo)2i5~ s vextible) | A .
—a a 207 ( &: >,
= !‘:..‘))\.\
</

3, 02(A) = 2 andudald oflength 6 over

Fy generated b

and
Gs = [1 1111 1]
respectively. Then C3 C Cy C C) are Fuclidean self-orthogonal codes with parameters

6,3, 3], [6,2,4]9 and [6,1, 6]y, respectively. By Theorem 2.3.1 and Corollary 3.2.5,

Cy is a Buclidean self-orthogonal code with parameters [18,6,6]g.
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3.2.2 Weakly Anti-Quasi-Orthogonal Matrices

In this subsection, we focus on the existence of weakly anti-quasi-orthogonal ma-
trices. In a finite field F, of characteristic p, it is well-known (Quadratic Reciprocity
Law) (see [12, p. 185]) that if p = 1 mod 4, or ¢ is square and p = 3mod 4, then —1
is square in F,. Precisely, there exists b € F, such that v* + 1 = 0. Hence, we have

the following results.

‘.
is square and p = 3mod 4,/ the
A= is invertible=ana

1 b ’\P
5a(A) = 1 )

Corollary 3.2.8. Let F, be a ] 1stic p such that p = 1mod4,
or q is square and p = 3mod 4. If there exist linear codes Cy and Cs with parameters
(m, k1, d1], and [m, ko, ds], such that Cy C C’;E, then a FEuclidean self-orthogonal

2m, ky + ko, d], code can be constructed with d > min{2d;, ds}.

Proof. Assume that there exist linear codes Cy and Cy with parameters [m, ky, di],
and [m, ko, ds], such that C; C C’QLE. By Lemma 3.2.7, there exist a 2 x 2 invertible
and anti-quasi-orthogonal matrix A over F, with 0,(A) = 2 and §(A) = 1. By
Theorems 2.3.1 and 3.1.1, the matrix-product code C4 is FEuclidean self-orthogonal

with parameters [2m, k1 + k2, d], with d > min{2d;, d»}. O
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Example 3.2.9. Let ¢ = 5. By Quadratic Reciprocity Law, there exists b € Fs5 such

1 2
that b¥* +1=0. By Lemma 3.2.7 and b := 2, we have that A = € My (Fs) is
13

invertible, AAT = adiag(2,2), §1(A) = 2, and 53(A) = 1. Let Cy and Cy be the linear

codes of length 5 over F5 generated by

clidean self-

= d(CtF).

over 5 generated by

11111
G_-l012 3 4
302 2 3
Then C and C+= have parameters [5,3,3]5 and [5,2,4]5, respectively. By Corollary

3.2.7, Cy is a Euclidean self-dual code with parameters [10,5, d']5 where d > 4.
Let p be a prime. In [10, p. 50], it has been shown that 1) if p = 1 mod8 or
p = 3mod 8, then —2 is a square in F,,, and 2) if p = —1mod 8 or p = —3mod 8, then

—2 is not square in F,. In an extension field F, of [F,, we have the following results.
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Proposition 3.2.12. Let p be odd prime and F, be a finite field of characteristic p.

Then —2 is a square if one of the following statements hold.
1. p=1mod8.

2. p=3modS8.

cases.

~
. 1
Case 3 ¢ is a square and p\=

F,, we have that

s known that K

p?. Since ¢ is a

the next theorem can be deduced.

Theorem 3.2.13. Let F, be a finite field of characteristic p. If p = 1mod8, or

p=3modS8, orq is a square and p = —1mod8, or q is a square and p = —3mod 8,
1 =10

then there exists b € F, such that P+2=0and A= |1 1 0l s invertible and

-1 1
anti-quasi-orthogonal with 61(A) = 3, §2(A) = 2 and 63(A) = 1.

Proof. From Proposition 3.2.12, there exists b € F, such that 0> +2 = 0. Let A =
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1 -1

O

Theorem 3.2.13 can be ¢

follows.

such that Cy C Cf
Euclidean self-o

over F, with 6;(A) = 3, 62(4) =
the matrix-product code Cy4 is Euclidean self-orthogonal [3m, ki + kg + ks, d], with
d Z min{3d1, 2d2, dg} O

Example 3.2.15. Let ¢ = 9. Then p = 3mod8. By Proposition 3.2.12, we have

that —2 is a square in Fg. Precisely, by chosen b = 1, we have that b* +2 = 0 and
1 21

A= |1 1 0| € M33(Fy) is invertible, AAT = adiag(2,2,2), 61(A) =3, d2(A) =2

211
and 65(A) = 1. Let v be a primitive element of Fy and Cy, Cy and Cs be linear codes
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of length 6 over F3 generated by

ces play an important role in the matrix-product construction for Euclidean self-

orthogonal codes. However, the construction where the matrices have larger size or

where the matrices are non-square is an interesting problem as well.
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Table 3.1: Existence of Weakly Quasi-Orthogonal Matrices.

q
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A 2
A €1°¢'¢ W09y
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{ powt =
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3.3 Examples

In this part, we focus on applications of Corollaries 3.2.2, 3.2.8 and 3.2.10 in
constructing Euclidean self-orthogonal and Euclidean self-dual codes.
First, we consider applications of Corollary 3.2.2 to Fuclidean self-orthogonal

codes in [1] and Euclidean self-orthogonal Reed-Solomon codes.

code C' of length

(CO, C1y- - ,Cn—l)

L-,;..s

The polynomial H(z) is called the cheek=polgiiomial of C. Since H(0) # 0, the

reciprocal polynomial of H(x) can be defined and it is defined to be
H(x) = (H(0)) 'z H (271)].

The polynomial H(x) is said to be self-reciprocal over F, is H(x) = H*(x). Note that
H*(z) is a monic divisor of 2™ — 1 over F, and it is the generator polynomial of C+#

(see [12, p. 142]).

Lemma 3.3.1 ([12, p. 154]). Let gi1(z) and ga(x) be the generator polynomials of
q-ary cyclic codes Cy and Cy of the same length, respectively. Then Cy C Cs if and

only if g1(x) is divisible by ga(x).
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A Reed-Solomon code over F, is a cyclic code of length ¢ — 1 over F, generated
by G(z) = (x — a®)(z — a®*) -+ (z — a®*972), where « is a primitive element of F,,
a>0and 2 <§ < qg—2. From [12, Theorem 8.2.3], the Reed-Solomon code of length
q— 1 over F, with the generator polynomial G(z) has parameters [¢ —1,q — 0, ],. In

some cases, Reed-Solomon codes are Euclidean self-orthogonal.

Lemma 3.3.2. Let ¢ > 8 be a prime polvew and let o be a primitive element of .
with parity check polynomial
H(z) = (x — a)(x — o?)(z —@43). 6 C whuelidean self-orthogonal code with

parameters ¢ — 1,3,q — 3],

Proof. Note that H*(z) = e - lerator polynomial of a
code C+2. Then

it follows that H(x)|G*(x). This implies that H*(z)|G(z). By Lemma 3.3.1, we have

that C' C C+#. Hence, C is a Euclidean self-orthogonal code. O

By setting €'y and Cs5 to be g—ary Euclidean self-orthogonal code with parameters
¢ — 1,%~, %], and [¢ — 1,3,q — 3],, respectively, in Corollary 3.2.2, we have the

following result.

Corollary 3.3.3. Let ¢ = 1mod4 such that 8 < q < 113. Then there exists a

Euclidean self-orthogonal [2(q— 1), %1 +3,d], code can be constructed with d > q— 3.
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Based on Corollary 3.3.3 and Reed-Solomon codes explained above, some examples
of Euclidean self-orthogonal matrix-product codes over F, with good parameters are

given in Table 3.3.

Table 3.3: Euclidean self-Orthogonal Matrix-Product Codes over I,

Parametes /\
A
AN

In [4], it has been shown that there exist a pair of generalized Reed-Solomon codes
GRS (m,k) =: C C D := GRS ,(m, k + i) with parameters [m,k,m — k + 1], and
m,k+im—k—i+1],forall1 <k <m-—1and 0<i<m— k. Moreover, D-#
has parameters [m,m — k — i,k + 1+ 1],.

By setting C; = C' and Cy = D+# in Corollary 3.2.8, we have the following result.

Corollary 3.3.4. Let F, be a finite field of characteristic p such that p = 1mod4,

or q is square and p = 3mod4. Then there exists a matriz-product Fuclidean self-
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orthogonal code [2m, m—i,d), with d > min{2(m—k+1), k+i+1} foralll <k < m—1

and 0 <i<m—k.

Based on Corollary 3.3.4 and a pair of generalized Reed-Solomon codes explained

above, some examples of Euclidean self-orthogonal matrix-product codes over 5 with

good parameters are given in Table 3.4.
Table 3.4: Euclidean Se @\ i

Corollary 3.3.5. Let IF, be a finite field of characteristic p such that p = 1mod4, or
q 1s square and p = 3mod4. Then there exists a matriz-product Euclidean self-dual

code [2m,m,d|, with d > min{2(m —k+1),k+ 1} for all1 <k <m —1.

Based on Corollary 3.3.5 and generalized Reed-Solomon codes discussed above,
some examples of Euclidean self-dual matrix-product codes over F5 with good pa-

rameters are given in Table 3.5.



Table 3.5: Euclidean Self-Dual Matrix-Product Codes over Fj

m | k | parameters

[4,2,d]s with d > 2
6,3,d]; with d > 3

2 |1

3 12|

4 | 3| [8,4,d)s withd >4
5 [ 3] ]




Chapter 4

me power. Sufficient

In this section, we .-Fn- ',‘ :
w
conditions for matrixprodiiet-€odes te
‘ \
t f . '-'l’ -_p.
ypes of matrix-proc g& [t

are given. Two

jnad linear codes are

introduced.

INF-1
e rguac%t pio11 for Hermitian self-orthogo-

nal codes whose input codes are Hermitian self-orthogonal is discussed. The results

In the following theorem, a m#ts

in this part are a bit more general than the ones in [5] since the underlying matrix

does not need to be unitary. The construction is given as follows.

Theorem 4.1.1. Let s <[ be positive integers. Let Cy,Cy, ..., Cy be linear codes of
the same length over F, and let A € Myy(F,). If AAT is diagonal and C; C C’iLH for

all 1 <1 <s, thenC’AngH.

Proof. Assume that AAT = diag(Ai, X, ..., A\s) and C; C C’iLH forall 1 <1 < s.

For each 1 < i < s, let GG; be a generator matrix for the code C;. Since A =

28
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11 Qi - Ay

Qg1 G2 -+ Ay . .
, the matrix-product code C}y is generated by

Gs1 Qg2 - Qg

a11G1 ap@N - anGh
291G 22 ayG
G =
1 aGz !
‘e
It follows that =

a11G1 2Gy ayy 1 Gy - aglGi
ot — a1Go - aq GI b aZ2Gl
_a 1 7 1 lGl_

follows that GG = [0]. Hence, C4 C C3x" as desired. O

If A is a square quasi-unitary, then the following corollary can be deduced.

Corollary 4.1.2. If A € M, ((F,) is such that AAT = \I, for some non-zero X in F,

and C; C CH¥ for all 1 <i < s, then Cy C C3".

1 1 1
Example 4.1.3. Let 8 be a primitive element of Fy and Let A = (1 5 p?| €

1 g B
M 3(Fy). Then A is invertible, AAT = diag(1,1,1), 6;(A) = 3,02(A) = 2 and 63(A) =
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1. Let C1,Cs and Cs be the linear codes of length 6 over Fy generated by

1 1 1 1 1 1
Gi=|1 g g 8 p* p°
1 ﬂ2 B4 56 BS 510

and
respectively. Then Ch,Cs with parameters
[6,3,2]4,6,2,4]4 and [6, 1,16 dCy, by Theorems 2.3.1

& 4
of the same len thﬁ nd_[& R Ly ; C
Ct, forall 1 < ;

Proof. Assume that AAT =

s. For each 1 < i < s, let G be a generator matrix of the code Cj. Since A =

@11 Q12 Ay
Q21 Q22 - Ag] . .

, the matrix-product code C4 is generated by
g1 Qg2 --° Qg

a1Gy aGr -0 anGh

as1Gy aGy -+ ayGy

asle a's2Gs asle
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It follows that

anGr aGy - auGh aﬁGI (151G£ T a’glGl
aat — as1Gy axGy -+ ayGs angI GEQGE T a§2Gl
asle astGs o aslG aglG'{ CLSIG; e aZ;lGl

Since C; C O 4 for all

GG' = [0]. Therefore, Cy

linear codes of length 4 over Fy generated by

111 1
G, =
_0055]

and

G2:1111},

respectively. Then Cy and Co have parameters [4,2,2], and [4,1,4]4, respectively.
Since Cy C Cy C C’QLH, by Theorems 2.3.1 and 4.1.4, Ca is a Hermitian self-

orthogonal code with parameters [8,3,4]4.
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By choosing C; = C’Sl_’”; 41 in Corollary 4.1.5, we have the following results.

Corollary 4.1.7. If A € M, ((F,) is such that AAT = \J, for some non-zero X in F,

and C; = C'SL_Hi+1 for all1 <i<s, then Cy is Hermitian self-dual.

4.2 Special Matrices andnApplications

The existence an

4.2.1 Weakl

In this subsection,

as follows.

Lemma 4.2.1. Let « be a primitive element of F,, where ¢ = r* is a prime power.

Then the following statements holds.

1
1. If q is odd, then A = is invertible and (weakly) quasi-unitary with
1 -1
1l «o
2. If ¢ > 2 is even, then A = is invertible and (weakly) quasi-unitary
a1

with 61(A) = 2 and 62(A) = 1.
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1
Proof. 1. Assume that ¢ is odd and A = [

1
] . Clearly, A is invertible, 6;(A) =

2 and 62(A) = 1. Since

A is (weakly) quasi-unitary.
2. Assume that ¢ > 2 is(¢

91(A) =2 and 62(A) =

A is (weakly) quasi

Unitary matrices in Le

orthogonal codes as follows.

Corollary 4.2.2. Let F, be a finite field. If there exist Hermitian self-orthogonal
[m, k1, di], and [m, ke, ds], codes, then a Hermitian self-orthogonal [2m, ki + ko, d],

code can be constructed with d > min{2d;,ds}.

Proof. Assume that there exist Hermitian self-orthogomal codes € and Cy with pa-
rameters [m, ki, dq], and [m, kg, ds],. By Lemma 4.2.1, there exist a 2 x 2 invertible
and (weakly) quasi-unitary matrix A over F, with 6;(4) = 2 and d3(A) = 1. By
Theorems 2.3.1 and 4.1.1, the matrix-product code Cy is Hermitain self-orthogonal

with parameters [2m, k1 + k2, d], with d > min{2d;, d»}. O



34

Example 4.2.3. Let 8 be a primitive element of Fy. By Lemma 4.2.1, we have that

g1
d2(A) = 1. Let Cy and Cy be the linear codes of length 4 over Fy generated by

1
A= [ B] € My5(Fy) is invertible, AAT = diag(1 + 84,1+ %), 6:(A) = 2 and

and

M]|(r 4+ 1), then theye 7
i(A)=M—i+1

Define
[ (a0)0 (al)o (aM—l)O ]
. (%) (o)t (@M-1)!
-(aO)M—l (a)M-1 (aM—l)M—l_
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Let B = AA'. Then, for all 1 <i,j < M, we have

M—-1 M—-1
by = Y (") @yt = Y (@) el
k=0 k=0
M—-1 M—-1
_ Z(ak)i—l(a—ky—l _ (az—y)k
k=0 k=0
M40

Theorem 3.2, we have d;( i Lﬁ AN . O

Corollary 4.2.5. Let q v?» integer such that
M| (r+1). If there exist Hej ¢ 1 AL ko, ds)g, ..., [m, ka,
durg codes, then a Hermz ) 4k, d], code can be

constructed with d > r

ﬂ !
Proof. Assume tha .'Ab
4
B ereexist a M x M

[m kladl Q> m, mm
invertible and uas uiitary ]%52 1) = (M —
1),...,0m(A) % -n 3. o= w%ct code Cy is

J"{ﬁejirs ‘ ?‘% 4 kg, d), with d >

Il’llIl{Mdl( —1d2,..., M- O

ith parameters

Hermitian self-orthogoita

Example 4.2.6. Let o be a primitive element of Fy. Then, « is primitive 3-root
1 1 1

unity in Fy. By lemma 4.2.4, we have that A = |1 « «2| is invertible, AAT =

1 o ot
diag(1,1,1), 51(A) = 3,02(A) = 2 and 6,(A) = 1. Let C, ,Cy and C5 be the linear

codes of length 6 over Fy generated by

111111
Gi=10 011 a a
000O0T11
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111111

Gy =

001 1 a a

and

G3=[111111,

respectively. Then C3 C Cy C C4 are

[6,3,2]4,[6,2.4]s and [6,1,6]

witian self-orthogonal with parameters

Hermitian self-orthogonal codé

I/
.. (.%-
4

Lemma 4.2.7.
hold.

o«
2. Ifq > 2 is even, then A = is invertible and (weakly) anti-quasi-unitary
1 1

with 61(A) =2 and 05(A) = 1.

Proof. 1. Since the norm is surjective and —1 € F,, there exists b € F, such that
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10
bl =—1. Let A= [ ] . Clearly, A is invertible, 0;(A) = 2 and d9(A) = 1. Since
b 1

a4+« 0

= adiag(a” + a,a" + ),
A is (weakly) anti-quasi-unitary. O

Corollary 4.2.8. Let F, be a finite field of order ¢ > 2. If there exist codes Cy and
Cy with parameters [m, ky, dy), and [m, ky, d3), such that Cy C Cy™, then a Hermitian

self-orthogonal [2m, ky + ko, d], code can be constructed with d > min{2d;,d,}.

Proof. Assume that there exist linear codes Cy and Cy with parameters [m, ky, di],

and [m, ks, ds], such that C; C Cy". By Lemma 4.2.7, there exist a 2 x 2 invertible
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and anti-quasi-orthogonal matrix A over F, with 6;(A) = 2 and d3(A) = 1. By
Theorems 2.3.1 and 4.1.4, the matrix-product code C4 is Hermitian self-orthogonal

with parameters [2m, k; + ko, d], with d > min{2d;, ds}. O

Example 4.2.9. Let 8 be a primitive element of Fy. By Lemma 4.2.7, we have that
5 AU
A= € My o(Fy) is invertible, AA
1 1

= adiag(1,1), 6:(A) =2, and 62(A) = 1.

and

and [6,1,6]4, respectively.

1,//7) s a Hermitian self-
.@@
s>

)
r 4
O..
& \)

P ehers

Q@»)

codes. However, the existence of suc whcre the matrices have larger size or

where the matrices are non-square is an interesting problem as well.

Table 4.1: Existence of Weakly Quasi-Unitary Matrices over F,, ¢ = r?

-
r>2
s
2 Lemma 4.2.1
s|(r+1) Lemma 4.2.4
s#2Nst(r+1) ?

Note that 7 indicates the case where such matrices are not studied in this work.
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Table 4.2: Existence of Weakly Anti-Quasi-Unitary Matrices

1 even odd
s
Lemma 4.2.7 Lemma 4.2.7
s>3 ? ?

4.3 Examples

(W)

In this part, we focus on app

of Hermitian self-orthogonal matrix-prodt O0des over IF, with good parameters are

given in Table 4.3.



Table 4.3: Hermitian self-Orthogonal Matrix-Product Codes over F,

Parametes
q
C]_ 02 CA
49 [50, 3, 48]49 [50, 2, 49]49 [100, 5, d]49 with d > 49
64 (65,4, 62]64 (65,8, 83 [130,7, d]gs with d > 63
81 [82,4,79]g ,7,d]g1 with d > 80
121 [122,5,118 / ,4, E%]j -\'\ \9, d]121 with d > 119

Q

40
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