
 

 

 

 

  

AN UPPER BOUND FOR THE DISTANCE BETWEEN A POINT AND A ROOT OF A 
POLYNOMIAL 

 

By 
MR. Teraporn THONGSIRI 

 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for Master of Science (MATHEMATICS) 

Department of MATHEMATICS 
Graduate School, Silpakorn University 

Academic Year 2017 
Copyright of Graduate School, Silpakorn University 

 

 

 



 

 

 

 

ขอบเขตบนส ำหรับระยะทำงระหวำ่งจุดกบัรำกของพหุนำม 
 

โดย 
นำยธีรพร ทองศิริ  

วทิยำนิพนธ์น้ีเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตรวทิยำศำสตรมหำบณัฑิต 
สำขำวชิำคณิตศำสตร์ แผน ก แบบ ก 2 ระดบัปริญญำมหำบณัฑิต 

ภำควชิำคณิตศำสตร์ 
บณัฑิตวทิยำลยั มหำวทิยำลยัศิลปำกร 

ปีกำรศึกษำ 2560 
ลิขสิทธ์ิของบณัฑิตวทิยำลยั มหำวทิยำลยัศิลปำกร  

 

 



 

 

 

 

AN UPPER BOUND FOR THE DISTANCE BETWEEN A POINT AND A ROOT 
OF A POLYNOMIAL 

 

By 

MR. Teraporn THONGSIRI 
 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for Master of Science (MATHEMATICS) 

Department of MATHEMATICS 
Graduate School, Silpakorn University 

Academic Year 2017 
Copyright of Graduate School, Silpakorn University 

 

 

 



 
 

 

 

Title An upper bound for the distance between a point and a root of a 
polynomial 

By Teraporn THONGSIRI 
Field of Study (MATHEMATICS) 
Advisor Somjate Chaiya 

  
 

Graduate School Silpakorn University in Partial Fulfillment of the Requirements for the 
Master of Science 
 

  
  

 

Dean of graduate school 
(Associate Professor Jurairat Nunthanid, Ph.D.) 

 

  
Approved by 

  
  

 

Chair person 
(Assistant Professor Dr. Jittisak Rakbud ) 

 

  
 

Advisor 
(Assistant Professor Dr. Somjate Chaiya ) 

 

  
 

External Examiner 
(Assistant Professor Dr. Thiradet Jiarasuksakun ) 

 

 

 

 



 iv

56305204 : MAJOR (MATHEMATICS)

KEY WORDS : COMPLEX POLYNOMIALS, NEWTON’S METHOD, UPPER

BOUND

MR. TERAPORN THONGSIRI : AN UPPER BOUND FOR THE DIS-

TANCE BETWEEN A POINT AND A ROOT OF POLYNOMIALS THESIS

ADVISOR : ASSISTANT PROFESSOR Dr. SOMJATE CHAIYA

Newton’s method is one of the most popular root-finding algorithms for

meromorphic functions. In 2002, Dierk Schleicher established an explicit upper

bound for the number of iterations of Newton’s method for complex polynomials

with a prescribed precision. In his work, Schleicher needed an upper bound, namely

fd, for the distance between a starting point z0 and the root α, where z0 is in the

immediate basin of α and d is the degree of the polynomial. In 2011, Somjate

Chaiya gave an algorithm to improve the value of fd. In this research, we establish

a new explicit bound for fd.



  
 

56305204: สาขาวิชาคณิตศาสตร์ 
คําสําคัญ: พหุนามของจํานวนเชิงซ้อน, ระเบียบวิธีของนิวตัน, ค่าขอบเขตบนน้อยที่สุด 
 ธีรพร ทองศิริ:  ขอบเขตบนสําหรับระยะทางระหว่างจุดกับรากของพหุนาม. อาจารย์ที่
ปรึกษาวิทยานิพนธ์: ผศ. ดร. สมเจตน์ ชัยยะ. 46 หน้า. 
 
 ระเบียบวิธีของนิวตันเป็นวิธีการที่นิยมใช้ในการหารากของฟังก์ชันเมโรมอร์ฟิก ในปี ค.ศ. 
2002 เดิร์ค ไชเชอร์ได้ให้ค่าขอบเขตบนของจํานวนการกระทําซ้ําของระเบียบวิธีการของนิวตัวสําหรับ
พหุนามเชิงซ้อนภายใต้ค่าความคลาดเคลื่อนที่กําหนดไว้  ในการหาค่าขอบเขตบนนั้น เดิร์ค ไชเชอร์ 
ต้องใช้ค่าขอบเขตบนของระยะทางระหว่างจุด 0z  ซึ่งอยู่ในอิมมิเดียทเบสินของราก   กับราก 
โดยให้ df  แทนค่าขอบเขตบนของระยะทางนี้ ในปี ค.ศ. 2011 สมเจตน์ ชัยยะได้นําแสนอขั้นตอนวิธี
ที่ทําให้ได้ค่าขอบเขตบนของ df  ที่ดีขึ้น ในงานวิจัยน้ีเราได้ให้ค่าขอบเขตบนอันใหม่ของ df  ที่อยู่ในรูป
ชัดแจ้ง 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi

Acknowledgements

This thesis has been completed by the involvement of people whom I

would like to mention here.

I would like to express my deep gratitude to my thesis advisor, Assis-

tant Professor Dr. Somjate Chaiya, for insightful suggestions on my work. He

encouraged and advised me through the thesis process.

I also would like to thank to my thesis committees, Assistant Professor

Dr. Jittisak Rakbud and Assistant Professor Dr. Thiradet Jiarasuksakun for their

comments and suggestions.

Moreover, I would like to thank all the teachers who instructed and

taught me for valuable knowledge.

In addition, I would like to thank the Development and Promotion of

Science and Technology Talents Project (DPST) for financial support throughout

my undergraduate and graduate studies.

Finally, I would like to thank my family, my friends and those whose

names are not mentioned here but have greatly inspired and encouraged me through-

out the period of this research.

Teraporn THONGSIRI



 

Table of contents

page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in Thai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2 Complex Dynamics of the Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . .4

3 The Upper Bound of M(d, y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



 

Chapter 1

Introduction

Let P be a polynomial of degree d. The Newton map induced by P is

the function Np(z) = z − P (z)
P ′(z)

. Let N be the set of positive integers. For each

k ∈ N, let Nk
p denote the k-iteration of Np, that is, N1

p = Np, N
2
p = Np ◦Np, and

Nk
p = Nk−1

p ◦ Np. For a root α of P , we say that a set U ⊆ C∞ is the immediate

basin of α if U ⊆ C is the largest connected open set containing α and Nk
p (z)→ α,

as k → ∞, for all z ∈ U . Every immediate basin U is forward invariant, that is,

Np(U) = U , and is simply connected. (See [1], [2])

In 2002, Dierk Schleicher (See [3]) provided an upper bound for the

number of iterations of Newton’s method for complex polynomials of a fixed degree

with a prescribed precision. More precisely, Schleicher proved that if all roots of

P are inside the unit disc and 0 < ε < 1, there is a constant n(d, ε) such that for

every root α of P , there is a point z with |z| = 2 such that
∣∣Nn

p (z)− α
∣∣ < ε for all

n > n(d, ε). Schleicher showed that n(d, ε) can be chosen so that

n(d, ε) ≤ 9πd4f 2
d

ε2 log 2
+
|log ε|+ log 13

log 2
+ 1 (1.1)

with

fd =
d2(d− 1)

2(2d− 1)

(
2d

d

)
. (1.2)
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To obtain this eslimate, Schleicher employed several rough estimates

which cause the bound far from an efficient upper bound, The main point that

causes the extreme inefficiency is the way Schleicher used to obtain fd which arose

when he estimated an upper bound for the distance of a point z to a root α.

Schleicher showed that if z is in the immediate basin of α and |Np(z)− z| = δ,

then the distance between z and α is at most δfd.

In 2011, Somjate Chaiya (See [4]) gave an algorithm to improve the

value of fd. Even though, it is not an explicit formula, it can be easily computed.

The following is the result established by Chaiya.

Theorem 1.1. Let P (z) be a polynomial of degree d ≥ 3, and let y be a posi-

tive number larger than 4d − 3. If z0 is in an immediate basin of a root α and

|Np(z0)− z0| = ε, then |zo − α| ≤ εM(d, y), where M(d, y) = max{y, Ad + y(d−1)
y−1 }

and Ad can be derived from the following iterative algorithm.

Let b = y(y−d)
y−1 , and

A2 =
y(d− 1)[2d(y − 2d+ 3)− 3y − 1]

(y − 1)(y − 4d+ 3)
. (1.3)

For k = 2, . . . , d− 1, set ak = 1 +
∑k−1

j=2
Ak

Ak+Aj
.

If 2Ak < b then let

Ak+1 = Ak

(
(ak + d− k)Ak + b(k + 1− ak − d)

Ak(ak + 1)− bak

)
. (1.4)

Otherwise let

Ak+1 = Ak

(
ak + d− k

ak

)
. (1.5)
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Note that the value of M(d, y) in the theorem depends only on the

constant y and the degree d. In this thesis, we first want to study the value of

M(d, y) as a function of y so that we can determine the best possible bound for

M(d, y) under this algorithm. Furthermore we want to find an explicit upper

bound for fd.

In chapter 2, we present definitions and some properties about dynamics

of rational functions.

In chapter 3, we will find an upper bound of M(d, y) in the cases of

d = 3 and d ≥ 4 when the value y satisfies 2A2 ≥ b. In the case d = 3, we choose

y = 12 +
√

95, then M(d, y) ≤ 12 +
√

95 which is the best bound for this case. In

the case d ≥ 4, we choose y = 4d2 − 7d+ 3, so that 2A2 ≥ b. Then we obtain

M(d, y) ≤ 2C(d− 1)(4d2 − 7d+ 3)

(4d2 − 7d+ 2)(4d2 − 11d+ 6)
(4d3 − 13d2 + 13d− 2)

when C = (d− 1)
∏d−1

k=3

(
2d2−(k−1)d−2

(k+1)d−2

)
.

In chapter 4, instead of finding y, we find an upper bound of fd in a

different way. We obtain that the distance of a point z and a root α of a polynomial

of degree d ≥ 4 is less than (Md + 1)dε, where

Md = (7 +
√

17)

bd/2c∏
k=3

2d2 − k2 + 3k − 2d− 2

(k − 1)(2d− k + 2)

d−1∏
n=bd/2c+1

9d2 − 4kd− 2d− 3

d2 + 4kd− 2d− 3
.

In chapter 5, we will compare the upper bounds of the distance between

a point z ∈ C and a root of α, derived in Chapter 3 and Chapter 4, to the upper

bound fd, given by D. Schleicher.



 

Chapter 2

Complex Dynamics of the Rational Functions

We denote C∪{∞} by C∞ and call it the extended complex plane.

Theorem 2.1. [5] The function σ : C∞ × C∞ → R, which is defined by

σ (z, w) =



2|z−w|

(1+|z|2)
1/2

(1+|w|2)
1/2 , if z, w ∈ C;

2

(1+|z|2)
1/2 , if z ∈ C and w =∞;

0, if z = w =∞,

is a metric on C∞.

The metric σ is called the chordal metric on C∞. Note that the

chordal metric on C∞ is bounded.

2.1 Rational Functions

Definition 2.2. We say that P is a polynomial function or a polynomial

map if P is of the form

P (z) = a0 + a1z + a2z
2 + . . .+ an−1z

n−1 + anz
n

when n ∈ N∪{0}, an 6= 0 and ai ∈ C, for all i = 0, 1, . . . , n. We call n the degree

of the polynomial of P , denoted by degP . We call 0 the zero polynomial

function.
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Definition 2.3. Let P and Q be polynomial functions. A function R which is

defined by

R(z) =
P (z)

Q(z)
,

is called a rational function. If P is a zero function, R is then also a zero

function. If Q is a zero function but P is not a zero function, R is a constant

function∞. We define R (∞) as the limit of R(z) as z →∞. The degree of R is

defined by degR = max {degP, degQ}. If R = 0 or R =∞, we define degR = 0.

Definition 2.4. Let D ⊆ C. A function f : D → C is holomorphic in D if f ′(x)

exists for all x ∈ D.

Definition 2.5. Let D ⊆ C. A function f : D → C∞ is meromorphic in D if

each point of z ∈ D has a neighborhood in which either f or
1

f
is holomorphic.

Definition 2.6. Let D1 and D2 be subsets of C. A function f : D1 → D2 is

analytic in D1 if f is holomorphic or meromorphic in D1

In fact, if R is a rational map with degR = d, then the number of the

solutions of the equation f(z) = w is exactly d (counting multiplicities).

Theorem 2.7. [5] Let D ⊆ C and let R and S be the finite degree rational functions

on the domain D. Then

(i) deg(RS) = deg(R) deg(S),

(ii) deg(Rn) = (deg(R))n.
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Theorem 2.8. [5] The rational functions of degree one are Möbius transforma-

tions.

Definition 2.9. Let R and S be rational functions. We say that R and S are

conjugate if there exists a Möbius transformation g such that S = gRg−1

Theorem 2.10. [5] Let R and S be rational functions. If R and S are conjugate

with a Möbius transformation g, i.e. S = gRg−1, then

(i) deg(R) = deg(S),

(ii) Sn = gRng−1,

(iii) g(z) is a fixed point of S if and only if z is a fixed point of R.

Theorem 2.11. [5] Let R be rational function. Then R is a polynomial if and

only if R−1 {∞} = {∞}. In general, a non-constant rational R is conjugate to a

polynomial if and only if there exists w ∈ C∞ such that R−1 {w} = {w}.

Theorem 2.12. [5] A non-constant rational function of degree d has precisely d+1

fixed points in C∞.

Next, let (X1, d1) and (X2, d2) be metric spaces.

Definition 2.13. A family F of maps from (X1, d1) into (X2, d2) is equicontin-

uous at x0 if for every positive real number ε, there exists a positive real number

δ such that

d2 (f (x0) , f (x))) < ε

for all x ∈ X, d1 (x0, x) < δ, and for all f ∈ F .
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Definition 2.14. A sequence {fn} of maps from (X, d) into (X1, d1) converges

locally uniformly on X to some function f if for each point x ∈ X has a neigh-

borhood on which fn converges uniformly to f .

Definition 2.15. A family F of maps from (X1, d1) into (X2, d2) is normal in

X1 if for every sequence of functions in F contains a subsequence which converges

locally uniformly on X1.

Theorem 2.16 (Arzela-Ascoli Theorem). [5] Let D be an open connected subset

of the complex sphere, and let F be a family of continuous maps on D into the

sphere. Then F is equicontinuous in D if and only if it is a normal family in D.

Theorem 2.17 (Vitali’s Theorem). [5] Let D be a sub-domain of the complex

sphere, and a sequence of analytic functions {fn} be normal in D. If fn converge

pointwise to some function f on some non-empty open subset W of D, then there

exists an analytic F on D such that fn converge locally uniformly to F on D and

f = F on W .

Let C be the class of continuous functions of C∞ into itself and let R

be the subclass of rational functions.

Theorem 2.18. [5] Let fn be the sequence of analytic functions in a domain D of

C∞. If fn converges uniformly on D to f with respect to σ. Then f is analytic in

D

Theorem 2.19. [5] The map deg : R → N0 is continuous. In particular, if the

rational functions Rn converge uniformly on the complex sphere to a function R,

then R is rational and for all sufficiently large n, degRn = degR.
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2.2 Fatou Sets and Julia Sets

In this section, let X be a set and g : X → X be a map.

Definition 2.20. Let E ⊆ X. We say that E is

(i) forward invariant under g if g (E) = E;

(ii) backward invariant under g if g−1 (E) = E;

(iii) completely invariant under g if g is both forward and backward invariant.

Note that if g is surjective then g (g−1 (E)) = E. So if E is backward

invariant under g, E is completely invariant under g.

Theorem 2.21. [5] Let R be a rational map of degree at least two. If a finite set

E is completely invariant under R, then E has at most two elements.

Lemma 2.22. [5] Let E be a subset of X and g, h : X → X be functions. Suppose

that g is surjective and h is bijective. If E is completely invariant under g, then

h(E) is completely invariant under hgh−1.

Lemma 2.23. [5] Let g : X → X be surjective. The intersection of a family of

completely invariant sets under g is completely invariant under g.

Let E0 be a subset of X. By lemma 2.23, we have that

E =
⋂
{F ⊆ X : F is completely invariant and E0 ⊆ F}

is completely invariant. In the other words, E is the smallest completely invariant

set that contains E0. We say that E0 generates E.
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Next, we define the relation ∼ on X by x ∼ y if and only if there exist

non-negative integers m and n such that

gm(x) = gn(y). (2.1)

Theorem 2.24. [5] The relation ∼ that is defined by the relation (2.1) is an

equivalence relation.

In Theorem 2.24. We call the equivalence class containing x ”orbit of

x”, denoted by [x].

Theorem 2.25. [5] Let x be a point in X. If g be surjective, then [x] is the

completely invariant set generated by {x}.

By Theorem 2.25, we have that a set E is completely invariant if and

only if E is a union of equivalence classes [x].

Theorem 2.26. [5] Let g be a continuous and open map of a topological space X

onto itself. If E is completely invariant, then the complement (X − E), the interior

(IntE), the boundary (∂E) and the closure
(
Ē
)

of E are completely invariant.

Next, let R be a rational map. We consider the equivalence class [z].

By Theorem 2.25, the equivalence class [z] is the smallest completely invariant set

that contains z.

Definition 2.27. A point z is said to be an exceptional point for R if [z] is

finite, and the set of all exceptional points for R is denoted by E (R).

Theorem 2.28. [5] If deg (R) ≥ 2, then R has at most two exceptional points.

Moreover,
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(i) if E(R) = {ζ}, then R is conjugate to a polynomial with ζ corresponding to

∞;

(ii) if E(R) = {ζ1, ζ2} and ζ1 6= ζ2, then R is conjugate to a map z → zd, for

some integer d, where ζ1 and ζ2 correspond to 0 and ∞.

Definition 2.29. For each z, the backward orbit of z, denoted by O−(z), is

the set

O−(z) = {w : ∃n ∈ N0, R
n(w) = z} =

⋃
n∈N0

R−n {z} .

We call the points in O−(z) the predecessors of z.

Remark 2.30. [5] For each z ∈ X, O−(z) ⊆ [z].

Theorem 2.31. [5] The backward orbit O−(z) of z is finite if and only if z is an

exceptional point.

Theorem 2.32. [5] Let (X1, d1) and (X2, d2) be metric spaces and let F be a

family of maps of (X1, d1) into (X2, d2). Then there is a maximal open subset of

X1 on which F is equicontinuous. In particular, if f maps a metric space (X, d)

into itself, then there is a maximal open subset of X on the the family of iterates

{fn} is equicontinuous.

Definition 2.33. Let R be a non-constant rational function. The Fatou set of

R is the maximal open subset of C∞ on which {Rn} is equicontinuous, denoted by

F (R). And the Julia set of R is the complement of the Fatou set of R in C∞,

denoted by J (R).
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By the definition of the Fatou set and the Julia set, we have that the

Fatou set is open and the Julia set is closed. Moreover, the Julia set is compact

under the chordal metric.

Theorem 2.34. [5] Let R be a non-constant rational function, let g be a Möbius

map, and let S = gRg−1. Then F (S) = g (F (R)) and J (S) = g (J (S)).

Theorem 2.35. [5] Let R be a non-constant rational function and p ∈ N. Then

F (Rp) = F (R) and J (Rp) = J (R).

Next, let R be a rational function of degree greater than or equal to 2.

Theorem 2.36. [5] Let R be a rational function. Then F (R) and J (R) are

complete invariant under R.

Theorem 2.37. [5] Let P be a polynomial map such that degP ≥ 2. Then ∞ ∈

F (P ) and the component of F (P ) that contains ∞ is complete invariant under P .

Corollary 2.38. [5] If deg (R) ≥ 2, then the exceptional points of R lie in F(R).

Theorem 2.39. [5] Let f be continuous map of a topological space X onto itself,

and suppose that X has only a finite number of components Xj. Then for some

integer m, each Xj is completely invariant under fm.

Theorem 2.40. [5] J (R) is infinite.

Theorem 2.41. [5] Let E be a closed, completely invariant subset of complex

sphere. Then either:

(i) E has at most two elements and E ⊆ E(R) ⊆ F (R); or
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(ii) E is infinite and J (R) ⊆ E.

By Theorem 2.41, we conclude that J (R) is the smallest closed and

completely invariant set with at least three points.

Theorem 2.42. [5] Either J (R) = C∞ or Int J (R) = φ.

Theorem 2.43. [5] J (R) is a perfect set and uncountable.

Theorem 2.44. [5] Let W be a non-empty open set such that W ∩ J (R) 6= φ.

Then:

(i) C∞ − E(R) ⊆
⋃∞
n=0R

n (W ); and

(ii) J (R) ⊆ Rn (W ), for all sufficiently large integers n.

Definition 2.45. Let ζ ∈ C∞. We said to be ζ is a periodic point of R if there

is an integer n such that ζ is a fixed point of Rn.

Theorem 2.46. [5] J (R) is contained in the closure of the set of periodic points

of R.

Theorem 2.47. [5] Let z ∈ C∞.

(i) if z is not exceptional, then J (R) is contained in the closure of O− (z),

(ii) if z ∈ J (R), then J (R) is the closure of O− (z).

Theorem 2.48. [5] Let E be a compact subset of the complex sphere with the

property that for all z ∈ F (R), the sequence {Rn (z) : n ∈ N} does not accumulate

at any point of E. Then given for any open set U which contains J (R), R−n (E) ⊆

U for all sufficiently large n.
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Theorem 2.49. [5] Let R and S be are rational maps such that the degree of R

and S are at least two. If R and S commute, then J (R) = J (S).

2.3 Dynamics of Newton’s Method

In 1669, Newton investigates a method to approximate a real root ζ of the equation

x3 − 2x− 5 = 0. (2.2)

He started with an approximation x0 = 2, and wrote x = 2 + y. If x is a real root

of the equation, then the original equation becomes

y3 + 6y2 + 10y − 1 = 0.

Neglecting the non-linear terms, he then got y = 1
10

and so took x1 = 2.1 as his

next approximation to ζ. He then substituted x = 2.1 + q into the equation (2.2)

and obtained the equation

q3 +
63

10
q2 +

1123

100
q − 61

1000
= 0.

Again neglecting the non-linear terms, he then got q = − 61
11230

and took x2 =

x1 + q = 11761
5615

= 2.0946... as his next approximation to ζ. By repeat the pro-

cess, he got a better approximation for the actual root ζ = 2.09455148.... His

method was systematicllly discussed by Joseph Raphson in 1690. Raphson de-

scribed the method in terms of the successive approximations xn instead of the

more complicated sequence of polynomials used by Newton. However, both New-

ton and Raphson used purely an algebraic method to derive the method and they
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restricted its use to polynomials.

In 1740, Thomas Simpson described Nemton’s method as an iterative method for

solving general nonlinear equation by using fluxional calculus. Simpson’s method

is now known as the Newton-Raphson method or Newton’s method [5, 6, 7]. New-

ton’s method is the iterative algorithm

xn+1 = xn −
f(xn)

f ′(xn)
(2.3)

for n ≤ 1, where f is a differentiable real function. If we choose a real number

x0 well enough, the sequence xn will converge to a real root ζ of the equation

f(x) = 0.

In 1879, Cayley [8, 9] ignored the restriction of reality of the function f

in Newton’s method and used Newton’s Method to find complex roots of complex

functions. He called this method the Newton-Fourier method. So the problem

concerning to the area of the initial points x0 such that the sequence xn will

converge to a root of the equation f(x) = 0 falls into the scope of the study of the

Fatou set of the function

F (z) = z − f(z)

f ′(z)
(2.4)

when f is a meromorphic or non-constant entire function.

Let f be a meromorphic or non-constant entire function. We define

Nf : C∞ → C∞ by

Nf (z) = z − f(z)

f ′(z)
(2.5)

for all z ∈ C∞. The function Nf is called the Newton map induced by f .
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We will denote Nf by N if there is no need to specify functions. Given

a zero α of f , it is clear that α is a fixed point of N . From Lemma 2.52, it follows

that α ∈ F (N). If Uα is the component of F (N) containing α, then every point z

in Uα will converge to α under the iteration of N , i.e. lim
k→∞

Nk(z) = α. Moreover,

every point z ∈ ∪∞k=0N
−k(Uα) converges to α under the iteration of N , where

N−k(Uα) denotes the inverse image of Uα under Nk.

Now, let f denote a polynomial of degree k ≥ 2, and let N be the

Newton map induced by f . From the definition, we easily derive the following

results:

Lemma 2.50. We have degN = k if all roots of f are simple, and degN < k if

the polynomial f has at least one multiple root.

By Theorem 2.12, we have the following remark.

Remark 2.51. A point ζ is a fixed point of N if and only if either ζ is a root of

f or ζ = ∞. If degN = k, then N has k + 1 fixed points counting multiplicities

in C̄.

Lemma 2.52. If ζ is a fixed point of N , then ζ is

(i) a superattracting fixed point if ζ is a simple root of f ;

(ii) an attracting fixed point if ζ is a multiple root of f ; or

(iii) a repelling fixed point if ζ =∞.

The Julia set J (Nf ) of a Newton map induced by a polynomial has a

special structure. Shishikura [10] proved that J (Nf ) is connected.
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Theorem 2.53 (Shishikura’s Theorem). [11] For every Newton map induced by a

polynomial, the Julia set is connected.

Definition 2.54. For every root ζ of a function f , the basin of attraction of

ζ is the open set of points z ∈ C such that Nk → ζ as k → ∞. The immediate

basin of ζ is the component of the Fatou set F (N) containing ζ.

Theorem 2.55. (Mayer-Schleicher’s Theorem) [12] Let f be a nonlinear entire

function, and let ζ be a root of f . Then the immediate basin of ζ for the Newton

map Nf is simply connected and unbounded.

Corollary 2.56. [12] Every immediate basin for the Newton map induced by a

polynomial of degree at least two is simply connected and unbounded. Moreover,

every component of a basin of attraction is simply connected.



 

Chapter 3

The Upper Bound of M(d, y)

In 2011, Chaiya gave an algorithm to improve the value of fd which was

initially introdued by Schleicher. Even though, it is not an explicit formula, it can

be easily computed. The following is the result established by Chaiya.

Theorem 3.1. [4] Let P (z) be a polynomial of degree d ≥ 3, and let y be a

positive number larger than 4d− 3. If z0 is in an immediate basin of a root α and

|Np(z0)− z0| = ε, then |z0 − α| ≤M(d, y)ε, where M(d, y) = max{y, Ad + y(d−1)
y−1 }

and Ad can be derived from the following iterative algorithm.

Let b = y(y−d)
y−1 , and

A2 =
y(d− 1)[2d(y − 2d+ 3)− 3y − 1]

(y − 1)(y − 4d− 3)
.

For k = 2, 3, . . . , d− 1, set ak = 1 +
∑k−1

j=2
Ak

Ak+Aj
. If 2Ak < b then let

Ak+1 = Ak

(
(ak + d− k)Ak − (ak + d− k − 1)b

(ak + 1)Ak − akb

)
.

Otherwise

Ak+1 = Ak

(
ak + d− k

ak

)
.

In the theorem, M(d, y)ε, an upper bound for the distance of a point z0

to the a root α, depends on y > 4d − 3. In this chapter, we will find the value y

to optimize the upper bound of M(d, y) for some easy cases.



 18

3.1 Some properties of Ak and ak

Here, we study some properties of Ak and ak appearing in Theorem 3.1

Lemma 3.2. Let d be a positive integer greater than 3. For each k = 2, 3, . . . , d−1,

let Ak, ak and Ad satisfy the algorithm in Theorem 3.1. We have that

(i) Ak > 0 for all k = 2, 3, . . . , d,

(ii) ak ≥ 1 for all k = 2, 3, . . . , d− 1,

(iii) A2 ≤ A3 ≤ . . . ≤ Ad,

(iv) a2 ≤ a3 ≤ . . . ≤ ad−1,

(v) ak ≤ k for each k = 2, 3, . . . , d− 1.

Proof. We will prove first that the statements (1) and (2) are true. Since y > 4d−3,

we have that

A2 =
y(d− 1)[2d(y − 2d+ 3)− 3y − 1]

(y − 1)(y − 4d− 3)

=
y(d− 1)[(2d− 3)y − 4d2 + 6d− 1]

(y − 1)(y − 4d− 3)

>
y(d− 1)[(2d− 3)(4d− 3)− 4d2 + 6d− 1]

(y − 1)(y − 4d− 3)

=
4y(d− 1)2(d− 2)

(y − 1)(y − 4d− 3)
> 0

It clear that a2 = 1 ≥ 1.

Assume that there exists k = 2, 3, . . . , d−2 such that Al > 0 and al > 1

for all l ≤ k. we will prove that Ak+1 > 0 and ak+1 > 0. If 2Ak ≥ b, we have that
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Ak+1 = Ak

(
ak+d−k

ak

)
= Ak

(
1 + d−k

ak

)
> 0. If 2Ak < b, we get

Ak+1 = Ak

(
(ak + d− k)Ak − (ak + d− k − 1)b

(ak + 1)Ak − akb

)
.

= Ak

1 +
(d− k − 1)(b− Ak)

ak

(
b− (1 + 1

ak
)Ak

)
 .

Since ak ≥ 1, then 1 ≤ 1 + 1
ak
≤ 2. It implies that b − A2 ≥ b − (1 + 1

ak
)A2 ≥

b− 2A2 > 0. So Ak+1 > 0. Since Al > 0 for all l = 2, 3, . . . , k + 1,

ak = 1 +
k−1∑
j=2

Ak
Ak + Aj

≥ 1.

Next, we will prove that Ad > 0. If 2Ad−1 ≥ b, we have that Ad = Ad−1

(
ad−1+1

ad−1

)
=

Ad−1

(
1 + 1

ad−1

)
> 0. If 2Ad−1 < b, we get

Ad = Ad−1

(
(ad−1 + 1)Ak − ad−1b
(ad−1 + 1)Ak − ad−1b

)
= Ad−1 > 0.

Hence, the statements (1) and (2) are true.

Next, we will prove that the statement (3) is true. If 2A2 < b, we have

that

A3 − A2 = A2

(
(d− 3)(b− A2)

b− 2A2

)
≥ 0.

If 2A2 ≥ b, we have that

A3 − A2 = (d− 2)A2 ≥ 0.

For each k = 3, 4, 5, . . . , d− 1. If 2Ak < b, we have that

Ak+1 − Ak =
(d− k − 1)(b− Ak)

ak

(
b− (1 + 1

ak
)Ak

)Ak ≥ 0.
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If 2Ak ≥ b, we have that

Ak+1 − Ak =
d− k
ak

Ak ≥ 0.

From both cases, we conclude that Ak+1 ≥ Ak for all k = 2, 3, 4, . . . , d − 1.

Next, we will prove that the statement (5) is true. Since (1) is true,

we have that

ak = 1 +
k−1∑
j=2

Ak
Ak + Aj

≤ 1 +
k−1∑
j=2

1 = k − 1 < k

for each k = 2, 3, . . . , d− 1.

Finally, we will prove that the statement (4) is true. For each k =

2, 3, . . . , d− 1, since (3) is true, Ak ≤ Ak+1. By (1), we have that AkAl ≤ Ak+1Al

which yields that AkAk+1 + AkAl ≤ AkAk+1 + Ak+1Al. Hence,

Ak
Ak + Al

≤ Ak+1

Ak+1 + Al

for all k = 2, 3, . . . , d− 1 and for all l = 2, 3, . . . , k. For each k = 2, 3, . . . , d− 1,

ak = 1 +
k−1∑
j=2

Ak
Ak + Aj

≤ 1 +
k−1∑
j=2

Ak+1

Ak+1 + Aj

≤ 1 +
k∑
j=2

Ak+1

Ak+1 + Aj

= ak+1.

The proof is complete.
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3.2 An upper bound of M(d, y) in the case of d = 3

In this section, we find the best upper bound of M(d, y) in the case of d = 3. Note

that y ≥ 4d− 3 = 9. First we see that

2A2 ≥ b⇔ 4y(3y − 19)

(y − 1)(y − 9)
≥ y(y − 3)

y − 1

⇔ 4(3y − 19)

(y − 9)
≥ y − 3

⇔ 12y − 76 ≥ (y − 3)(y − 9)

⇔ 0 ≥ y2 − 24y + 49.

This implies that if 9 < y ≤ 12 +
√

95, then 2A2 ≥ b.

Next, we find an upper bound of M(d, y) in the algorithm in Theorem

3.1 in the case of d = 3. If 9 < y ≤ 12 +
√

95, we have that 2A2 ≥ b. This means

that

A3 =

(
a2 + 3− 2

a2

)
A2 = 2A2 =

4y(3y − 19)

(y − 1)(y − 9)
.

Since A3 + y
y−1 = 2A2 + y

y−1 ≥ b + y
y−1 = y, it follows that M(3, y) = A3 + y

y−1 =

y(13y−85)
(y−1)(y−9) . We now consider the function f(y) = y(13y−85)

(y−1)(y−9) on (9, 12 +
√

95). Since

f ′(y) = −9(5y2−26y+85)
(y−1)2(y−9)2 = −45((y− 13

5
)2+ 256

25 )
(y−1)2(y−9)2 ≤ 0 for all y ∈ (9, 12 +

√
95), f is

decreasing on (9, 12 +
√

95). We choose y0 = 12 +
√

95, and then we have that

M(3, y0) ≈ 16.25804146.

Next, we consider the case when 2A2 < b, which means y > 12 +
√

95.

We have that

A3 =

(
(a2 + 3− 2)A2 − (a2 + 3− 2− 1)b

(a2 + 1)A2 − ba2

)
A2 =

(
2A2 − b
2A2 − b

)
A2 = A2.
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Since A3 + y
y−1 = A2 + y

y−1 < 2A2 + y
y−1 < b+ y

y−1 = y, we have that M(3, y) = y.

So min{M(3, y) : y > 12 +
√

95} > 12 +
√

95.

We conclude that if we choose y = 12+
√

95, then we get the least upper

bound for the algorithm in Theorem 3.1 in the case d = 3 and it is 16.25804146.

In the case d = 3, we conclude that we choose y = 12 +
√

95, then we get the best

upper bound of M(d, y), that is 12 +
√

95.

3.3 An upper bound of M(d, y) in the case of 2A2 ≥ b and

d ≥ 4

In this section, we consider only the case of 2A2 ≥ b and d ≥ 4.

Lemma 3.3. Let Ak, ak and Ad be as in the algorithm in Theorem 3.1, for each

k = 2, 3, . . . , d− 1. If 2A2 ≥ b, then

(i) a2 = 1,

(ii) a3 = 2d−1
d

,

(iii) ak ≥ (k+1)d−2
2d

, for k ≥ 4.

Proof. Suppose that 2A2 ≥ b. By the definition in the algorithm, a2 = 1, hence

(1) follows. By Lemma 3.2 (3), we have that A2 ≤ A3 ≤ . . . ≤ Ad. Hence, we get

1 ≤ A3

A2
≤ A4

A2
≤ . . . ≤ Ad

A2
. Since 2A2 ≥ b, we obtain

A3 =

(
a2 + d− 2

a2

)
A2 = (d− 1)A2.

So

d− 1 ≤ A4

A2

≤ . . . ≤ Ad
A2

.
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We have that a3 = 1 + A3

A3+A2
= 1 + 1

1+ 1
A3
A2

= 1 + 1
1+ 1

d−1

= 2d−1
d
. Hence (2) is true.

For each k = 4, 5, . . . , d− 1, we have by Lemma 3.2 (3) that

ak = 1 +
k−1∑
j=2

Ak
Ak + Aj

= 1 +
Ak

Ak + A2

+
k−2∑
j=3

Ak
Ak + Aj

= 1 +
1

1 + 1
Ak
A2

+
k−2∑
j=3

Ak
Ak + Aj

≥ 1 +
1

1 + 1
d−1

+
k−2∑
j=3

Ak
Ak + Ak

=
2d− 1

d
+
k − 3

2

=
2(2d− 1) + (k − 3)d

2d

=
(k + 1)d− 2

2d
.

This proves (3).

Lemma 3.4. Let Ak, ak and Ad be as in the algorithm in Theorem 3.1, for all

k = 2, 3, . . . , d− 1. If 2A2 ≥ b, then Ad > b.

Proof. Suppose that 2A2 ≥ b. By Lemma 3.2 (3), we have that A2 ≤ A3 ≤ . . . ≤

Ad. So, b ≤ 2A2 ≤ 2A3 ≤ . . . ≤ 2Ad−1. For each k = 3, 4, 5, . . . , d, we have

Ak =

(
ak−1 + d− (k − 1)

ak−1

)
Ak−1.

Let Bk = ak+d−k
ak

, for each k = 2, 3, 4, . . . , d− 1. Then

Ad = Bd−1Bd−2 . . . B4B3B2A2. (3.1)

For each k = 2, 3, 4, . . . , d− 1, by Lemma 3.2 (5), we get

Bk =
ak + d− k

ak
= 1 +

d− k
ak
≥ 1 +

d− k
k

=
d

k
.
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Thus, the equation (3.1) and d ≥ 4,

Ad = Bd−1Bd−2 . . . B4B3B2A2 ≥
(

d

d− 1

)(
d

d− 2

)
. . .

(
d

4

)(
d

3

)(
d

2

)
A2

≥
(
d− 1

d− 1

)(
d− 2

d− 2

)
. . .

(
4

4

)(
d

3

)(
d

2

)
A2 =

d2

6
A2

≥ 42

6
A2 ≥ 2A2 > b.

The proof is now complete.

By Lemma 3.4, we have that if 2A2 ≥ b, then Ad + y(d−1)
y−1 ≥ y. This

means that M(d, y) = Ad + y(d−1)
y−1 .

Lemma 3.5. Let Ak, ak and Ad be as in the algorithm in Theorem 3.1, for each

k = 2, 3, . . . , d− 1. If 2A2 ≥ b, then

Ad ≤ A2(d− 1)
d−1∏
k=3

(
2d2 − (k − 1)d− 2

(k + 1)d− 2

)
.

Proof. Suppose that 2A2 ≥ b. We let Bk = ak+d−k
ak

, for each k = 2, 3, 4, . . . , d− 1.

By Lemma 3.3, we get B2 = a2+d−2
a2

= d− 1 and

Bk =
ak + d− k

ak
= 1 +

d− k
ak

≤ 1 +
d− k

(k+1)d−2
2d

=
(k + 1)d− 2 + 2d(d− k)

(k + 1)d− 2
=

2d2 − (k − 1)d− 2

(k + 1)d− 2

for each d = 3, 4, . . . , d− 1. From the equation (3.1), we have that

Ad = Bd−1Bd−2 . . . B4B3B2A2

= A2

(
B2

d−1∏
k=3

Bk

)

≤ A2(d− 1)
d−1∏
k=3

(
2d2 − (k − 1)d− 2

(k + 1)d− 2

)
.

The proof is now complete.
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Theorem 3.6. Let Ak, ak and Ad be as in the algorithm in Theorem 3.1, for each

k = 2, 3, . . . , d− 1. Then there exists y > 4d− 3 such that

M(d, y) ≤ 2C(d− 1)(4d2 − 7d+ 3)(4d3 − 13d2 + 13d− 2)

(4d2 − 7d+ 2)(4d2 − 11d+ 6)
,

where C = (d− 1)
∏d−1

k=3

(
2d2−(k−1)d−2

(k+1)d−2

)
.

Proof. We can see that 2A2 ≥ b if and only if

2y(d− 1)[(2d− 3)y − (4d2 − 6d+ 1)]

(y − 1)(y − 4d+ 3)
≥ y(y − d)

y − 1

2(d− 1)[(2d− 3)y − (4d2 − 6d+ 1)]

(y − 4d+ 3)
≥ (y − d)

2(d− 1)(2d− 3)y − 2(d− 1)(4d2 − 6d+ 1) ≥ (y − d)(y − 4d+ 3)

y2 − (4d2 − 5d+ 3)y + (8d3 − 16d2 + 11d− 2) ≤ 0.

So if 4d − 3 < y ≤ y+, when y+ =
(4d2−5d+3)+

√
(4d2−5d+3)2−4(8d3−16d2+11d−2)

2
, then

2A2 ≥ b. Note that

(4d2 − 5d+ 3)2 − 4(8d3 − 16d2 + 11d− 2)

= 16d4 − 72d3 + 113d2 − 74d+ 16

= (4d2 − 9d+ 3)2 + 8d2 − 20d+ 8

= (4d2 − 9d+ 3)2 + 4d(2d− 5) + 8

≥ (4d2 − 9d+ 3)2 + 4(4)(2(4)− 5) + 8

≥ (4d2 − 9d+ 3)2.

Choose y0 =
(4d2−5d+3)+

√
(4d2−9d+3)2

2
= 4d2 − 7d+ 3. It is clear that

4d− 3 < 4d(d− 7

4
)− 3 < 4d2 − 7d− 3 < 4d2 − 7d+ 3,
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and that

4d2 − 7d− 3 =
(4d2 − 5d+ 3) +

√
(4d2 − 9d+ 3)2

2
< y+.

Hence 4d− 3 < y0 < y+. By choosing y = y0, we get 2A2 ≥ b.

By Lemma 3.5 and the result of the Lemma 3.4, we have

M(d, y) = Ad +
y(d− 1)

y − 1

≤ CA2 +
y(d− 1)

y − 1

=
Cy(d− 1)[(2d− 3)y − (4d2 − 6d+ 1)]

(y − 1)(y − 4d+ 3)
+
y(d− 1)

y − 1

=
(d− 1)y

(y − 1)(y − 4d+ 3)

[
(2Cd− 3C + 1)y + (−4Cd2 + 6Cd− C − 4d+ 3)

]
≤ (d− 1)y

(y − 1)(y − 4d+ 3)

[
(2Cd− 3C + C)y + (−4Cd2 + 6Cd− C + 3C)

]
=

(d− 1)y

(y − 1)(y − 4d+ 3)

[
(2Cd− 2C)y + (−4Cd2 + 6Cd+ 2C)

]
=

2C(d− 1)y

(y − 1)(y − 4d+ 3)

[
(d− 1)y + (−2d2 + 3d+ 1)

]
≤ 2C(d− 1)(4d2 − 7d+ 3)

(4d2 − 7d+ 2)(4d2 − 11d+ 6)

[
(d− 1)(4d2 − 7d+ 3) + (−2d2 + 3d+ 1)

]
=

2C(d− 1)(4d2 − 7d+ 3)

(4d2 − 7d+ 2)(4d2 − 11d+ 6)
(4d3 − 13d2 + 13d− 2).

The proof is now complete.

In the proof of Theorem 3.6, we conclude that if we choose y = 4d2 −

7d + 3, then M(d, y) is less than 2C(d−1)(4d2−7d+3)
(4d2−7d+2)(4d2−11d+6)

(4d3 − 13d2 + 13d − 2) when

C = (d− 1)
∏d−1

k=3

(
2d2−(k−1)d−2

(k+1)d−2

)
.



 

Chapter 4

The Main Result

In Chapter 3, we found some upper bounds of M(d, y) with some restric-

tion. We never consider the case where 2A2 < b in Chapter 3 because there were

several cases that have to be considered. To avoid unpleasant and tedious work,

we have to take a new look into the algorithm, and find a new way for deriving an

upper bound of |z0 − α|.

4.1 Preliminary Results

Lemma 4.1. [4] Let P be a polynomial. Let β be a complex number and r > 0.

Suppose that Re( (z−β)P
′(z)

P (z)
) ≥ 1

2
whenever |z − β| = r and P (z) 6= 0. Let U be an

immediate basin of a root α of P . If U ∩ B̄(β, r) 6= ∅, then α ∈ B(β, r).

Remark 4.2. From Lemma 4.1, if β is a root of P and Re( (z−β)P
′(z)

P (z)
) ≥ 1

2
for all

|z − β| ≥ r, then the closed ball B̄(β, r) is contained in the immediate basin of β.

Lemma 4.3. Let P be a polynomial of degree d, and let z0 be a point in the

immediate basin of a root of P . Let α1, . . . , αd be all roots of P such that α1 is the

nearest root to z0, and |α1 − αk| ≤ |α1 − αk+1| for all k = 2, 3, . . . , d − 1. If z0 is
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not in the immediate basin of αj for all j = 1, 2, . . . , k where 2 ≤ k ≤ d
2
, then

|α1 − αk+1| <
2d2 − k2 + 3k − 2d− 2

(k − 1)(2d− k + 2)
Ak, (4.1)

where Ak is an upper bound of |α1 − αk|

Proof. For j = 2, 3, . . . , d, let |α1 − αj| = rj. We prove by induction on k. First

we show that it is true when k = 2. If r3 = r2, then the inequality (4.1) holds for

k = 2. So suppose that r3 > r2. Let A2 ∈ (r2, r3). For z ∈ C with |z − α1| = A2,

we have

Re

(
(z − α1)

P ′(z)

P (z)

)
≥ 1 +

d∑
k=2

Re

(
z − α1

z − αk

)

≥ 1 +
A2

A2 + r2
+
A2(d− 2)

A2 − r3
≥ 1 +

1

2
+
A2(d− 2)

A2 − r3
.

Note that if r3 ≥ (d − 1)A2, then 1 + 1
2

+ A2(d−2)
A2−r3 ≥

1
2
, and hence by Lemma 4.1,

z0 is in the immediate basin of either α1 or α2, which is not the case. Therefore

r3 < (d− 1)A2, and the inequality (4.1) holds for k = 2.

Next assume that for some 3 ≤ n ≤ d
2

the statement holds for all

k ≤ n− 1. Here we let

Ak+1 =
2d2 − k2 + 3k − 2d− 2

(k − 1)(2d− k + 2)
Ak

for each k = 2, . . . , n − 1. Notice that A2 < A3 < . . . < An. It can be shown

directly that Ak

Ak+Ak+1
< k−1

d
when k ≥ 2. So

An
An + Ak

>
Ak+1

Ak + Ak+1

= 1− Ak
Ak + Ak+1

> 1− k − 1

d
.

We may also assume that rn+1 > An, otherwise the inequality (4.1) is clearly true
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for k = n. For z ∈ C with |z − α1| = An, we have

Re

(
(z − α1)

P ′(z)

P (z)

)
≥ 1 +

d∑
k=2

Re

(
z − α1

z − αk

)

≥ 1 +
n∑
k=2

An
An + rk

+
An(d− n)

An − rn+1

≥ 1 +
n−1∑
k=2

An
An + Ak

+
1

2
+
An(d− n)

An − rn+1

> 1 +
n−2∑
k=1

(
1− k

d

)
+

1

2
+
An(d− n)

An − rn+1

=
(n− 1)(2d− n+ 2)

2d
+

1

2
+
An(d− n)

An − rn+1

.

If rn+1 ≥ 2d2−n2+3n−2d−2
(n−1)(2d−n+2)

An, then (n−1)(2d−n+2)
2d

+ 1
2

+ An(d−n)
An−rn+1

≥ 1
2
, and hence by

Lemma 4.1, z0 is in the immediate basin of αj for some 1 ≤ j ≤ n. Therefore if z0

is not in any immediate basin of αj for all j ∈ {1, . . . , n}, then the inequality (4.1)

holds for k = n, as desired. The proof is now complete.

Lemma 4.4. Let P be a polynomial of degree d, and let z0 be a point in the

immediate basin of a root of P . Let α1, . . . , αd be all roots of P such that α1 is the

nearest root to z0, and that |α1 − αk| ≤ |α1 − αk+1| for all k = 2, 3, . . . , d − 1. If

z0 is not in the immediate basin of αj for all j = 1, 2, . . . , k where d
2
< k ≤ d− 1,

then

|α1 − αk+1| <
9d2 − 4kd− 2d− 3

d2 + 4kd− 2d− 3
Ak, (4.2)

where Ak is an upper bound of |α1 − αk|

Proof. For j = 2, 3, . . . , d, let |α1 − αj| = rj. From Theorem 4.3, we let

Aj+1 =
2d2 − j2 + 3j − 2d− 2

(j − 1)(2d− j + 2)
Aj
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for each 2 ≤ j ≤ d
2
. For 2 ≤ j ≤ d

2
, if Ak ≥ Aj, we obtain

Ak
Ak + Aj

≥ Aj+1

Aj + Aj+1

= 1− Aj
Aj + Aj+1

> 1− j − 1

d
.

We may also assume that rk+1 > Ak, otherwise the inequality (4.2) clearly holds.

For z ∈ C with |z − α1| = Ak, we have

Re

(
(z − α1)

P ′(z)

P (z)

)
≥ 1 +

d∑
j=2

Re

(
z − α1

z − αj

)

≥ 1 +
k∑
j=2

Ak
Ak + rj

+
Ak(d− k)

Ak − rk+1

≥ 1 +

bd/2c∑
j=2

Ak
Ak + Aj

+
1

2
(k − bd/2c) +

Ak(d− k)

Ak − rk+1

> 1 +

bd/2c−1∑
j=1

(
1− j

d

)
+

1

2
(k − bd/2c) +

Ak(d− k)

Ak − rk+1

=
N(d−N + 1) + kd

2d
+
Ak(d− k)

Ak − rk+1

,

where N = bd/2c, the greatest integer that is less than or equal to d/2. If rk+1 ≥(
2d(d−k)

N(d−N+1)+dk−d + 1
)
Ak, then Re

(
(z − α1)

P ′(z)
P (z)

)
> 1

2
, and hence by Lemma 4.1,

z0 is in the immediate basin of αj for some 1 ≤ j ≤ k. Therefore if z0 is not in any

immediate basin of αj for all j ∈ {1, . . . , k}, then we must have

rk+1 <

(
2d(d− k)

N(d−N + 1) + dk − d
+ 1

)
Ak.

Since N ≥ d−1
2

and N(d−N + 1) increases as N increases on the interval [1, (d+

1)/2], we obtain, by substituting N by (d− 1)/2,

rn+1 <

(
2d(d− k)

N(d−N + 1) + dk − d
+ 1

)
Ak <

9d2 − 4kd− 2d− 3

d2 + 4kd− 2d− 3
Ak

as needed. The proof is now complete.
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Lemma 4.5. Let P be a polynomial of degree d, and let z ∈ C such that |Np(z)−

z| = ε > 0. If there at least d − 2 roots of P are outside the open ball B(z0, yε),

where y > d− 2, then there is a root α of P such that

|z − α| ≤ 2yε

y − d+ 2
.

Proof. Let α1, α2, . . . , αd be all roots of P . Suppose that |z − αk| ≥ yε for k ≥ 3

and that |z − αj| > 2yε
y−d+2

for j = 1, 2, then

|Np(z)− z| =
∣∣∣∣P ′(z)

P (z)

∣∣∣∣−1 ≥
(

d∑
j=1

1

|z − αj|

)−1

>

(
2(y − d+ 2)

2yε
+
d− 2

yε

)−1
= ε,

a contradiction. Thus the lemma holds.

From the above lemma, if we choose y = d, the following corollary

follows.

Corollary 4.6. Let P be a polynomial of degree d, and let z ∈ C. There exists a

root α of P such that |z − α| ≤ d|Np(z)− z|.

Indeed, this lemma is a well-known result about Newton’s map of a

polynomial (see [3]).

Lemma 4.7. Let d ≥ 4 The function

β(c) =
2d+ 3c− 3−

√
4d2 + 4d(c− 3) + 9c2 − 14c+ 9

2(2d− 1)
(4.3)

is increasing on c > 1.
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Proof. Since

β′(c) =
1

2(2d− 1)

(
3− 2d+ 9c− 7√

9c2 + 4cd+ 4d2 − 14c− 12d+ 9

)
and

(
9c2 + 4cd+ 4d2 − 14c− 12d+ 9

)
−
(

2d+ 9c− 7

3

)2

=
16

9
(2d− 1)(d− 2) > 0,

we have that

3− 2d+ 9c− 7√
9c2 + 4cd+ 4d2 − 14c− 12d+ 9

> 0.

So β′(c) > 0 for all c > 1. We conclude that β is increasing on c > 1.

Lemma 4.8. Let y > d− 2 and d ≥ 4. The function

T (c) =
2cy

(y − d+ 2)β(c)
(4.4)

is increasing on c > 1.

Proof. Since

T ′(c) =
4y(2d− 1) ((2d− 3)M − (4d2 + 2dc− 7c− 12d+ 9))

(y − d+ 2)M (2d− 3c− 3−M)2
,

where M =
√

9c2 + 4cd+ 4d2 − 14c− 12d+ 9, and

(2d− 3)2M2 − (4d2 + 2dc− 7c− 12d+ 9)2 = 16c2(2d− 1)(d− 2) > 0,

we have that (2d − 3)M − (4d2 + 2dc − 7c − 12d + 9) > 0. So T ′(c) > 0 for all

c > 1. We conclude that β is increasing on c > 1.

Theorem 4.9. Let P be a polynomial of degree d, and let z0 be a point in the

immediate basin of a root α of P . Suppose that |N(z0)− z0| = ε. If z0 6= α, then

either |z0 − α| < 24+4
√
17

5+
√
17
dε, or there are at least three roots of P lying inside the

open ball B(z0, (6 +
√

17)dε).
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Proof. Let α1, . . . , αd be all roots of P such that α1 is the nearest root to z0, and

that |α1 − αk| ≤ |α1 − αk+1| for all k = 2, 3, . . . , d − 1. Let y = (6 +
√

17)d.

If |z0 − αk| < yε for k ∈ {1, 2, 3}, then the theorem is true. So suppose that

|z0 − αk| ≥ yε for all k = 3, . . . , d. By Lemma 4.5, we have |z0 − α1| < y0ε, where

y0 =
2y

y − d+ 2
=

(12 + 2
√

17)d

(5 +
√

17)d+ 2
<

12 + 2
√

17

5 +
√

17
.

Then for k ≥ 3

|α1 − αk| ≥ |z0 − αk| − |z0 − α1| > (y − y0) ε = bε, (4.5)

where b = (6+
√
17)(5+

√
17)d2

(5+
√
17)d+2

. For k = 2, 3, . . . , d, let |α1 − αk| = rk. Note that

rk > bε for all k ≥ 3. Let r3 = cr2 for some c greater than or equal to 1, and let r

be a positive number less than r2. For z ∈ C with |z − α1| = r, we have

Re

(
(z − α1)

P ′(z)

P (z)

)
≥ 1 +

d∑
k=2

Re

(
z − α1

z − αk

)

≥ 1 +
r

r − r2
+
r(d− 2)

r − r3

≥ 1 +
r

r − r2
+
r(d− 2)

r − cr2

Note that if r ≤ βr2 then 1 + r
r−r2 + r(d−2)

r−cr2 ≥
1
2
, where

β =
2d+ 3c− 3−

√
4d2 + 4d(c− 3) + 9c2 − 14c+ 9

2(2d− 1)
.

As a consequence of Lemma 4.1, if |z0 − α1| ≤ βr2, then z0 is in the immediate

basin of α1 and the theorem holds because from above

|z0 − α1| < y0ε <
12 + 2

√
17

5 +
√

17
ε.



 34

Next assume that z0 is not in the immediate basin of α1. So we must

have

βr2 < |z0 − α1| < y0ε,

which implies r2 < y0β
−1ε. Let A2 = y0β

−1. By Lemma 4.7, β is an increasing

function with respect to c. Hence A2 is a decreasing function with respect to c.

Since β−1 = 2d − 1 when c = 1, it follows that A2 ≤ (2d − 1)y0ε. If z0 is in the

immediate basin of α2, then α = α2 and

|z0 − α2| < |z0 − α1|+ |α1 − α2| < y0ε+ A2ε ≤ 2dy0ε.

Hence the theorem is true for this case.

Finally suppose that z0 is neither in the immediate basin of α1 nor in

the immediate basin of α2. Since r3 > bε > 2dy0ε, it follows that r3 > A2ε. Let

δ be a sufficiently small positive number such that r3 > (1 + δ)r2. For z ∈ C

satisfying |z − α1| = (1 + δ)r2, we have

Re

(
(z − α1)

P ′(z)

P (z)

)
≥ 1 +

1

2
+

(1 + δ)r2(d− 2)

(1 + δ)r2 − r3
.

If r3 ≥ (d−1)(1+δ)r2, then 1+ (1+δ)r2(d−2)
(1+δ)r2−r3 ≥ 0 and hence Re

(
(z − α1)

P ′(z)
P (z)

)
≥ 1

2
.

Then by Lemma 4.1 z0 is in the immediate basin of either α1 or α2, which is not

the case. Hence r3 < (d − 1)(1 + δ)r2. Since δ is arbitrary small, it follows that

r3 ≤ (d − 1)r2. Since r3 = cr2, c must be less than or equal to d − 1. By Lemma

4.8, we have that cA2 is an increasing function with respect to c. By substituting

c by d− 1 into A2, we derive that

r3 = cr2 < cA2ε ≤
2y0(d− 1)(2d− 1)ε

5d− 6−
√

17d2 − 28d+ 32
.
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It can be easily shown that 2y0(d−1)(2d−1)
5d−6−

√
17d2−28d+32

< b. This gives a contradiction to

the assumption that r3 > bε.

Therefore if |z0 − αk| ≥ yε for all k = 3, . . . , d, then z0 must be in the

immediate basin of either α1 or α2, and in either case we get |z0 − α| < 2dy0ε =

24+4
√
17

5+
√
17
dεas desired. The proof is now complete.

The following corollary is a consequence of Corollary 4.6 and Theo-

rem 4.9.

Corollary 4.10. Let P be a polynomial of degree d ≥ 3, and let z0 be a point in

the immediate basin of a root of P . Let α1, . . . , αd be all roots of P such that α1 is

the nearest root to z0, and that |α1 − αk| ≤ |α1 − αk+1| for all k = 2, 3, . . . , d− 1.

If |N(z0) − z0| = ε > 0 and z0 is not in the immediate basin of αj for j = 1, 2,

then |α1 − α3| < (7 +
√

17)dε.

Proof. From Corollary 4.6, we have |z0 − α1| < dε. Combining with Theorem 4.9,

we obtain

|α1 − α3| ≤ |z0 − α1|+ |z0 − α3| <
(

1 + (6 +
√

17)
)
dε = (7 +

√
17)dε.

we are done.

4.2 Main Theorem

Now we are ready to prove our main theorem.

Main Theorem. Let P be a polynomial of degree d ≥ 4, and let z0 be a point in the

immediate basin of a root α of P . If |N(z0)−z0| = ε > 0, then |z0−α| < (Md+1)dε,
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where

Md = (7 +
√

17)

bd/2c∏
k=3

2d2 − k2 + 3k − 2d− 2

(k − 1)(2d− k + 2)

d−1∏
n=bd/2c+1

9d2 − 4kd− 2d− 3

d2 + 4kd− 2d− 3
.

Proof. Let α1, . . . , αd be all roots of P such that α1 is the nearest root to z0,

and that |α1 − αk| ≤ |α1 − αk+1| for all k = 2, 3, . . . , d − 1. If α ∈ {α1, α2, α3},

then by Theorem 4.9 the result follows. Next suppose that α /∈ {α1, α2, α3}. Let

A3 = (7 +
√

17)dε. Then, by Corollary 4.10, A3 is an upper bound of |α1 − α3|.

For k ≥ 3, define Ak+1 inductively by

Ak+1 =


2d2−k2+3k−2d−2
(k−1)(2d−k+2)

Ak if k ≤ bd/2c,

9d2−4kd−2d−3
d2+4kd−2d−3 Ak if bd/2c < k ≤ d− 1.

Notice that A3 < A4 < . . . < Ad = Mddε. If α 6= αj for j = 1, 2, . . . , k, then by

Theorem 4.3 and Theorem 4.4 we have that Ak+1 is an upper bound of |α1−αk+1|.

Hence in any case we must have |α−α1| < Ad. Since by Corollary 4.6 |α1−z0| ≤ dε,

we obtain that

|z0 − α| ≤ |α1 − z0|+ |α− α1| < Mddε+ dε,

as desired. The proof is now complete.

From Main Theorem, we conclude that if a point z is in the immediate

basin of a root α, then the distance between z and α is less than (Md+1)dε, where

Md = (7 +
√

17)

bd/2c∏
k=3

2d2 − k2 + 3k − 2d− 2

(k − 1)(2d− k + 2)

d−1∏
n=bd/2c+1

9d2 − 4kd− 2d− 3

d2 + 4kd− 2d− 3
,

and ε = |N(z)− z|.



 

Chapter 5

Conclusions

In this chapter, we will present some computational results of the upper

bounds for the distant between a point z and a root α that were derived in Chapter

3, namely M(d, y), and in Chapter 4, namely Md. Here M(d, y) is computed, when

y is selected, as appeared in Chapter 3, to be 4d2 − 7d + 3. The value fd is the

upper bound given by D. Schleicher, that is fd = d2(d−1)
2(2d−1)

(
2d
d

)
. We can see from the

following tables that the bound M(d, y) is better than fd at least d times when

d ≥ 11. Furthermore, the bound Md is better than fd at least 20.4dd times if d ≥ 10.
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Table 1 : The values of M(d, y), Md and fd.

d fd M(d, y) Md

10 4.3758× 106 4.6759× 105 2.3145× 104

20 1.3431× 1013 4.0121× 1011 8.6733× 108

30 2.6159× 1019 3.5606× 1017 4.0491× 1013

40 4.2459× 1025 3.2766× 1023 2.0426× 1018

50 6.2420× 1031 3.0908× 1029 1.0721× 1023

100 2.2523× 1062 2.7817× 1059 5.4533× 1046

150 5.2563× 1092 2.8727× 1089 3.2504× 1070

200 1.0269× 10123 3.1467× 10119 2.0624× 1094

250 1.8205× 10153 3.5612× 10149 1.3535× 10118

300 3.0349× 10183 4.1149× 10179 9.0728× 10141

400 7.5122× 10243 5.7137× 10239 4.2411× 10189

500 1.6876× 10304 8.1990× 10299 2.0490× 10237

600 3.5656× 10364 1.2013× 10360 1.0107× 10285

700 7.2213× 10424 1.7855× 10420 5.0575× 10332

800 1.4179× 10485 2.6819× 10480 2.5571× 10380

900 2.7190× 10545 4.0606× 10540 1.3033× 10428

1000 5.1178× 10605 6.1871× 10600 6.6845× 10475
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Table 2 : This table shows that M(d, y) is better than fd at least d times when d ≥ 11.

d fd M(d, y) fd
dM(d,y)

10 4.3758× 106 4.6759× 105 0.9358

11 2.0323× 107 1.8360× 106 1.0063

12 9.3117× 107 7.1997× 106 1.0778

20 1.3431× 1013 4.0121× 1011 1.6738

30 2.6159× 1019 3.5606× 1017 2.4489

40 4.2459× 1025 3.2766× 1023 3.2396

50 6.2420× 1031 3.0908× 1029 4.0390

100 2.2523× 1062 2.7817× 1059 8.0970

150 5.2563× 1092 2.8727× 1089 12.1981

200 1.0269× 10123 3.1467× 10119 16.3178

250 1.8205× 10153 3.5612× 10149 20.4477

300 3.0349× 10183 4.1149× 10179 24.5843

400 7.5122× 10243 5.7137× 10239 32.8699

500 1.6876× 10304 8.1990× 10299 41.1660

600 3.5656× 10364 1.2013× 10360 49.4690

700 7.2213× 10424 1.7855× 10420 57.7766

800 1.4179× 10485 2.6819× 10480 66.0876

900 2.7190× 10545 4.0606× 10540 74.4013

1000 5.1178× 10605 6.1871× 10600 82.7170
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Table 3 : This table shows that Md is better than fd at least 20.4dd times when d ≥ 10.

d fd Md
fd

20.4ddMd

10 4.3758× 106 2.3145× 104 1.1816× 100

20 1.3431× 1013 8.6733× 108 3.0246× 100

30 2.6159× 1019 4.0491× 1013 5.2574× 100

40 4.2459× 1025 2.0426× 1018 7.9294× 100

50 6.2420× 1031 1.0721× 1023 1.1105× 101

100 2.2523× 1062 5.4533× 1046 3.7564× 101

150 5.2563× 1092 3.2504× 1070 9.3510× 101

200 1.0269× 10123 2.0624× 1094 2.0594× 102

250 1.8205× 10153 1.3535× 10118 4.2440× 102

300 3.0349× 10183 9.0728× 10141 8.3883× 102

400 7.5122× 10243 4.2411× 10189 3.0299× 103

500 1.6876× 10304 2.0490× 10237 1.0251× 104

600 3.5656× 10364 1.0107× 10285 3.3277× 104

700 7.2213× 10424 5.0575× 10332 1.0500× 105

800 1.4179× 10485 2.5571× 10380 3.2449× 105

900 2.7190× 10545 1.3033× 10428 9.8701× 105

1000 5.1178× 10605 6.6845× 10475 2.9650× 106
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Abstract

Newton’s method is one of the most popular root-finding al-

gorithms for meromorphic functions. In 2002, Dierk Schleicher estab-

lished an explicit upper bound for the number of iterations of Newton’s

method for complex polynomials with a prescribed precision. In his

work, Schleicher needed an upper bound, namely fd, for the distance

between a starting point z0 to the root α, where z0 is in the immediate

basin of α and d is the degree of the polynomial. In 2011, Somjate

Chaiya gave an algorithm to improve the value of fd. In this research,

we establish a new explicit bound for fd.
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