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Chapter 1

Introduction

This chapter gives a brief introduction to nonlinear ill-posed inverse problem.

1.1 Inverse problems and ill-posed problems

Inverse problems are part of the most important mathematical problems that

occur virtually anywhere in part of sciences and in the other areas where mathemat-

ical method related. Inverse problems always come paired with direct problems.

However, the mathematical community has embraced what are now called direct

problems with a warmth not generally extended to inverse problems. The great

advances in science and technology have been made fessible by solving inverse prob-

lems. Those problems involve determining indirect measurement and observations,

remote sensing, finding the nature of an inaccessible region from measurements on

the boundary, and many others. Accordingly, the inverse problems are interested

in many branches of mathematics.

Example 1.1. We consider the modified Helmholtz equation [12] as follows :




∆u(x, y)− k2u(x, y) = f(x), 0 < x ≤ π, 0 < y < +∞,
u(0, y) = u(π, y) = 0 0 ≤ y < +∞,

u(x, 0) = 0, u(x, y)|y→∞ is bounded, 0 ≤ x ≤ π

u(x, 1) = g(x), 0 ≤ x ≤ π

where g(x) is given function in L2(0, π), and f(x) is an unknown source. The

constant k is the wave number. We use the additional condition u(x, 1) = g(x)

to determine the unknown source f(x). Physically, g(x) can be measured, there

will be measurement errors, and we assume the function gδ(x) ∈ L2(0, π) as the

measurable data which satisfies

∥∥g − gδ
∥∥ ≤ δ,

where a noise level δ > 0 represents a bound on the measurement error,‖·‖ is

L2(0, π) norm.
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Example 1.2. We consider the one-dimensional steady-state diffusion equation

[6]

− (a(s)us(s))s = f(s), s ∈ (0, 1),

with the Dirichlet conditions

u(0) = u0, u(1) = u1

where u0 and u1 are real number. In the inverse problem, one gives internal

measurements of the temperature u and the heat source f and tries to recover the

temperature-dependent difussion coefficient a.

Example 1.3. We consider the problem of determining the shape of an unknown

domain D from information of its density and of measurements of the Cauchy data

of the corresponding potential on the boundary of a smooth and bounded domain.

In the direct problem, for a given domain D ⊂ ΩR with a simply connected

bounded domain ΩR of R2 with a smooth boundary ∂ΩR, the solution u of the

boundary value problem satisfy

∆u = χD in ΩR r ∂D, (1.1)

u = 0 on ΩR, (1.2)

where χD is the characteristic function of the domain D. It is well-known [4] that

there exists a unique solution u ∈ C2 (ΩR r ∂D) ∩ C1
(
Ω̄R

)
for x = χD as follows

u(t, χD) =

∫

ΩR

G(t, s)x(s)ds =

∫

D

G(t, s)ds (1.3)

where the Green’s function G : ΩR × ΩR → R is

G(t, s) :=
1

2π
ln |t− s| − 1

2π
ln

( |s|
R

∣∣∣∣t−
R2

|s|2
s

∣∣∣∣
)
.

The inverse potential problem is to recover x from given y on ∂ΩR where

∂u

∂ν
= y on ∂ΩR (1.4)

and ν is the outer normal vector to the boundary ∂Ω.

From [8], we have the uniqueness theorem of the inverse source problems as

follows.
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Theorem 1.4. [8]. Suppose that either (1.1), D1 and D2 are star-shaped with

respect to their centers of gravity, or (1.2), D1 and D2 are convex in x. If u(·, χD1)=

u(·, χD2) on ΩR rD, then D1 = D2.

From (1.3), we can get

∂u

∂ν(t)
(t, χD)

∫

ΩR

∂G

∂ν(t)
(t, s)x(s)ds =

∫ 2π

0

∫ x(s)

0

P (r, t− s)rdrds, t ∈ ∂ΩR (1.5)

where P (r, t) is the Poisson kernel.

Combined (1.4) with (1.5), we can defined an operator F : L2(ΩR) → L2(ΩR),

satisfying

F (x) = y

where

[F (x)] (t) =

∫

ΩR

∂G

∂ν(t)
(t, s)x(s)ds, t ∈ ∂ΩR. (1.6)

In early 20th century , Hadamard who worked on problems in mathematics

believed that ill-posed problems do not model real-world problems. Hadamard’s

definition says that a problem is well-posed if it satisfied the following requirements,

[3] :

1. Existence : The problem must have a solution.

2. Uniqueness : There must be only one solution to the problem.

3. Stability : The solution must depend continuously on the data.

A problem which is not well-posed is called ill-posed. If the data space is

defined as set of solutions to the direct problem, existence of a solution to the

inverse problem is clear. However, a solution may fail to exist if the data are

perturbed by noise. Uniqueness of a solution is often not easy to show. However,

the additional data have to be observed or the set of admissible solutions has to

be restricted using a-priori information on the solution. Stability of a solution to

the inverse problem is a serious numerical problem if one wants to approximate a

problem whose solution does not depend continuously on the data, then one has

to expect that the numerical solution becomes unstable.

The presented work concerns with a nonlinear ill-posed operator equation

F (x) = y, (1.7)
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where the operator F : D (F ) ⊆ X → Y is nonlinear operator on domain

D (F ) ⊂ X, X and Y are Hilbert spaces with inner products 〈·, ·〉 and norms

‖ · ‖, respectively. They can always be identified from the context in which they

appear. Due to the nonlinearity of (1.7) we assume all over that (1.7) has a solution

x+ which need not be unique. We have the approximated data yδ with

∥∥yδ − y
∥∥ ≤ δ (1.8)

where δ > 0 is a noise level. In this work, we assume the ill -posed problem (1.7)

in the way of the data on the right-hand is disturbed by noise. But the solution

has changed a lot, that is, the solution of problem (1.7) does not depend on the

change of right-hand data. Accordingly, the third well-posedness condition in the

sense of Hadamard is not fulfilled.

In 1990 H.W. Engl and his researcher at Johannes Kepler University, Linz,

Austria pushed the theory of the regularization methods such as Landweber itera-

tion and Tikhonov method [3]. Then, they proved the convergence of approximated

solution which obtained from Landweber iteration as follow

xn+1 = xn + F ′(xn)∗(y − F (xn)), n = 0, 1, 2, ... (1.9)

where x0 is an initial guess. The total error consists of two parts,i.e., the ap-

proximation and the data error. While the approximation error is a monotone

increasing function the data error is a decreasing one. To get a good approxima-

tion one has, in general, to estimate the parameter which is called regularization

parameter. Hanke et al.[5] choose the regularization parameter n according to a

generalized discrepancy principle,i.e., the iteration is stopped after N = N(yδ,δ)

steps with

∥∥yδ − F (xδN)
∥∥ ≤ τδ <

∥∥yδ − F (xδn)
∥∥ , 0 ≤ n < N (1.10)

where τ is a positive number. In addition to the discrepancy principle, F satisfies

the local property in an open ball Bρ(x0) of radius ρ around x0 :

‖F (x)− F (x̃)− F ′(x)(x− x̃)‖ ≤ η ‖F (x)− F (x̃)‖ , η < 1

2
(1.11)

with x, x̃ ∈ Bρ(x0) ⊂ D (F ). Utilizing the triangle inequality yields

1

1 + η
‖F ′(x)(x− x̃)‖ ≤ ‖F (x)− F (x̃)‖ ≤ 1

1− η ‖F
′(x)(x− x̃)‖ (1.12)
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to ensure at least local convergence to a solution x+ of (1.7) in B ρ
2
(x0).

Next, Scherzer et al.[10] proposed other version of Landweber iteration

which an additional term αn(xn − ζ) appears. To highlight the importance of

an additional term the iterative method can be written into this form

xn+1 = xn + F ′(xn)∗(y − F (xn))− αn(xn − ζ). (1.13)

Convergence rate results [10] for the Landweber iteration and modified

Landweber method were proven essentially under the Hölder type source condition,

i.e.,

x+ − x0 = (F ′(x+)∗F ′(x+))νw, ν > 0, w ∈ X,

and in additional if the Fréchet derivativeof F can be factorization in the following

form

F ′(x) = RxF
′(x+), x ∈ Bρ(x0)

where {Rx : x ∈ Bρ(x0)} is a family of bounded linear operators Rx: Y → Y with

‖Rx − I‖ ≤ C
∥∥x− x+

∥∥ , x ∈ Bρ(x0)

where C is a positive constant and I: Y → Y is an identity operator.

The Hölder type source condition above is recognized as a suitable smooth-

ness condition only for moderately ill-posed problems but not in certain severely

ill-posed problem, e.g. heat conduction and potential theory, see Hohage [7], For

such problems the logarithmic source condition can be use. Böckmann et al.[1]

have already shown the convergence rate of Levenberg-Marquardt method under

the logarithmic source condition.

1.2 Outline of the Thesis

In this thesis we have two main parts. Firstly, we utilize logarithmic source

condition instead of the Hölder type one in order to demonstrate the error analysis

of the modified Landweber method. As mentioned in [1], in many important

applications Hölder type source conditions are too strong. They are not fulfilled

even if x+ − x0 is an element of a harmless function space. Thus, we will consider

function f such that continuous and strictly increasing as follows

f = fp, fp(λ) :=

{
(ln e

λ
)−p for 0 < λ ≤ 1,

0 for λ = 0,
(1.14)
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where p > 0 , and e is Euler’s number.In this work we will analyze the convergence

rate of the modified Landweber method (1.13) in a Hilbert space if the logarithmic

source condition is satisfied. Secondly, In numerical parts, we present the conver-

gence rate of the modified Landweber method for an inverse potential problem.



 

Chapter 2

Logarithmic convergence rate of the modified Landweber

method

As introduced in Chapter 1, we begin this chapter with the modified Landweber

presented by [10]

xδn+1 = xδn + F ′(xδn)∗(yδ − F (xδn))− αn(xδn − ζ) (2.1)

where we set ζ = x0. If the iterative method is applied to exact data y, then

we write xn instead of xδn. Moreover, we prove a convergence rates under the

logarithmic condition (1.14) with p = 1 and the usual sourcewise representation as

x+ − x0 = f
(
F ′(x+)∗F ′(x+)

)
w, w ∈ X (2.2)

where ‖w‖ is sufficiently small and x+ is the exact solution of F (x+) = y such

that x+ ∈ D (F ). In this section, we consider a convergence rate for the modified

Landweber iteration where {αn} in (2.1) is defined as follow

αn =
1

2
n−1/2, n ∈ N and α0 =

1

2
.

Before we state convergence rate for the modified Landweber iteration, we give

some auxiliary results concerning the coefficients αn

Lemma 2.1. Let l,n ∈ N0, l < n. If {αs} satisfies 0 < αs ≤ 1, [10] then

1−
n∏

s=l

(1− αs) =
n∑

j=l

αj

n∏

s=j+1

(1− αs) ≤ 1.

If moreover

∞∑

n=0

αn <∞

then
∏∞

n=0 (1− αn) is convergent and thus

∞∏

n=l

(1− αn)→ 1 as l→∞.

.
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We define the following notations :

K := F ′(x+),

en := x+ − xδn.

Lemma 2.2. Let K be a linear operator with ‖K‖ ≤ 1. For n ∈ N with n > 1,

e0 := f(λ)w with f from (1.14) and p = 1, there exists a positive constant C, Ĉ, C

such that the inequalities

‖An(I −K∗K)ne0‖ ≤ C ‖w‖ (ln(n+ e))−1 (2.3)

and

‖AnK(I −K∗K)ne0‖ ≤ Ĉ ‖w‖ (n+ 1)−1/2(ln(n+ e))−1 (2.4)

are true where An =
∏n−1

i=0 (1− αi), αi = 1
2
i−1/2 and α0 = 1

2
.

Proof By the spectral theory and (1.14), we have

‖An(I −K∗K)ne0‖ =

∥∥∥∥∥
n−1∏

i=0

(1− αi)(I −K∗K)ne0

∥∥∥∥∥

≤
n−1∏

i=0

(1− αi) ‖(I −K∗K)nf(K∗K)‖ ‖w‖

≤ sup
λ∈(0,‖K‖2]

{
∣∣(1− λ)n(ln e− lnλ)−1

∣∣ } ‖w‖

≤ sup
λ∈(0,1]

|h1 (λ)| ‖w‖ ,

where h1(λ) = (1− λ)n(1− lnλ)−1.

First, we are looking for critical point on (0,1). Observe that

h′1(λ) = (1− λ)n(1− lnλ)−1

[
1

λ(1− lnλ)
− n

1− λ

]
.

We define

h2(λ) =
1

λ(1− lnλ)
− n

1− λ.

This means that a critical point of h1(λ) fulfills h2(λ) = 0.

For sufficiently large s > 1, there exists an n0(s) such that

h2(
1

n
) =

(1 + lnn)− (1− 1
n
)

1
n
(1 + lnn)( 1

n
− 1)

< 0,
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see Figure 1(a) and

h2(
1

ns
) =

(1− 1
ns

)− n
ns

(1 + s lnn)
1
ns

(1 + s lnn)(1− 1
ns

)
> 0

for all n ≥ n0(s), see Figure 1(b).

(a) (b)

Figure 1 (a) shows the graph of h2( 1
n) < 0 and (b) shows the graph of h2( 1

ns ) > 0.

Thus, at least one critical point of h1 has to lie in (n−s, n−1) with n ≥ {n0(s), 2}.
Since h′1( 1

ns
) > 0 and h′1( 1

n
) < 0 , this must be a local maximum point. Then

substituting λ = e−x, x ∈ (0,∞) into h1, we have

h1(e−x) = (1− e−x)n(1− ln e−x)−1 := h3(x).

One has to determine that h3 has at most two critical points on (0,∞). Therefore,

we look for the roots of

h′3(x)

h3(x)
=

ne−x

1− e−x −
1

1 + x
= 0

and get

ex = nx+ n+ 1.

Thus at least one intersection point between the exponential curve y = ex and the

straight line y = nx + n + 1 could occur. Furthermore, one concludes that if a
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second critical point exists, it only be a saddle point.

For 1 ≤ r ≤ s we have n−r ∈ (n−s, n−1) and

h1(n−r) = (1− n−r)n(1 + r lnn)−1 ≤ r(lnn)−1

≤ s(
ln(n+ e)

lnn
)(ln(n+ e))−1

≤ C(ln(n+ e))−1

where C is constant and ( ln(n+e)
lnn

) bounded independently of n.

So, h1 also attains its maxmimum in (0, 1]. Thus

h1(λ) ≤ C(ln(n+ e))−1

for any λ ∈ (0, 1]. Note that above information imply

‖An(I −K∗K)ne0‖ ≤ C ‖w‖ (ln(n+ e))−1.

Similarly, in order to prove (2.4), we can proceed analogously. We have

‖AnK(I −K∗K)ne0‖ =

∥∥∥∥∥K
n−1∏

i=0

(1− αi)(I −K∗K)ne0

∥∥∥∥∥

≤
n−1∏

i=0

(1− αi) ‖K(I −K∗K)nf(K∗K)‖ ‖w‖

≤ sup
λ∈(0,‖K‖2]

{
∣∣λ1/2(1− λ)n(ln e− lnλ)−1

∣∣ } ‖w‖

≤ sup
λ∈(0,1]

|v1 (λ)| ‖w‖ ,

where v1(λ) = λ1/2(1− λ)n(1− lnλ)−1.

Here, we estimate the square, i.e., we introduce the function

v2(λ) = (v1(λ))2 = λ(1− λ)2n(1− lnλ)−2

with v2(0) = limλ→0+ v2(λ) = 0 , see the figure 2 and v2(1) = 0. There exists the

derivative

v2
′(λ) = (1− lnλ)−2(1− λ)2n

[
2

1− lnλ
− 2nλ

1− λ + 1

]
.

Again using an auxilliarly function

v3(λ) =
2

1− lnλ
− 2nλ

1− λ + 1.
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Figure 2 The plot shows the graph of v2(λ) for 1 ≤ n ≤ 4.

This means that a critical point of v1(λ) fulfills v3(λ) = 0. For sufficiently large

s > 1, there exists an n0(s) such that

v3(
1

n
) =

2

1 + lnn
− 2n

n− 1
+ 1 < 0,

see Figure 3(a) and

v3(
1

ns
) =

2

1 + s lnn
− 2n

ns − 1
+ 1 > 0

for all n ≥ n0(s) , see Figure 3(b).
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(a) (b)

Figure 3 The plot (a) shows the graph of v3( 1
n) < 0 and (b) shows the graph of

v3( 1
ns ) > 0.

Thus, at least one critical point of v1 has to lie in (n−s, n−1) with n ≥ {n0(s), 2}.
Since v2

′ ( 1
ns

)
> 0 and v2

′ ( 1
n

)
< 0, this must be a local maximum point. Then

substituting λ = e−x, x ∈ (0,∞) into v2, we have

v2(e−x) = e−x(1− e−x)2n(1− ln e−x)−2 := v4(x).

One has to determine that v4(x) has at most two critical points on (0,∞). There-

fore, we are looking for the roots of

v4
′(x)

v4(x)
= 2ne−x(1− e−x)−1 − 2(1 + x)−1 − 1 = 0

and get

(x+ 3)ex = (2n+ 1)x+ (2n+ 3).

Thus, at least one intersection between the exponential curve y = (x + 3)ex and

the straight line y = (2n+ 1)x+ (2n+ 3) could occur. Futhermore, one concludes

that if a second critical point exists, it can only be a saddle point.
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For 1 ≤ r ≤ s we have n−r ∈ (n−s, n−1) and

v2(n−r) =

(
1

nr

)(
1− 1

nr

)2n (
1 + r lnn−r

)−2

≤ rn−1(lnn)−2

≤ rn−1

(
ln(n+ e)

lnn

)−2

(ln(n+ e))−2

≤ Ĉ(n)−1(ln(n+ e))−2.

Since ( ln(n+e)
lnn

) is bounded independently of n, so

v1(λ) ≤ Ĉ(n)−1/2(ln(n+ e))−1

≤ Ĉ(n+ 1)−1/2(ln(n+ e))−1

where Ĉ is constant. Thus, we get

‖AnK(I −K∗K)ne0‖ ≤ Ĉ ‖w‖ (n+ 1)−1/2(ln(n+ e))−1.

This completes the proof of our Lemma 2.2.

�

Proposition 2.3. Let the linear operator K be bounded such that ‖K‖ ≤ 1 and

for i = 1, 2, ..., n, αi = 1
2
i−1/2 and α0 = 1

2
be given. The following estimates hold

with positive constant C, Ĉ, C, C̃, E :
∥∥∥∥∥
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ C(ln(n+ e))−1 ‖w‖E (2.5)

∥∥∥∥∥K
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ C̃(n+ 1)−1/2(ln(n+ e))−1 ‖w‖E.

(2.6)

Proof Firstly, we start with using the spectral theory that may proceed in the

same way as in Lemma 2.2 where n is substituted by j to show (2.5) as follow
∥∥∥(I −K∗K)j e0

∥∥∥ =
∥∥∥(I −K∗K)j f(K∗K)w

∥∥∥

≤ sup
λ∈(0,‖K‖2]

{∣∣∣∣(1− λ)j
(

ln
( e
λ

))−1
∣∣∣∣
}
‖w‖

≤ sup
λ∈(0,‖K‖2]

|h1 (λ)| ‖w‖

≤ C (ln (j + e))−1 ‖w‖ . (2.7)
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Then, using (2.7), we obtain

∥∥∥∥∥
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥

≤
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i)
∥∥(I −K∗K)je0

∥∥

≤ C
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i) (ln(j + e))−1 ‖w‖ . (2.8)

Rewritting (2.8), we have

C
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i) (ln(j + e))−1 ‖w‖

≤ C ‖w‖
n−2∑

j=0

αn−j−1

j∏

i=1

(1− αn−i) (ln(j + e))−1

+ α0

n−1∏

i=1

(1− αn−i) (ln(n− 1 + e))−1 ‖w‖ . (2.9)

Substituting αi = 1
2
i−1/2 into (2.9), we have

C ‖w‖
n−2∑

j=0

αn−j−1

j∏

i=1

(1− αn−i) (ln(j + e))−1

+ α0

n−1∏

i=1

(1− αn−i) (ln(n− 1 + e))−1 ‖w‖

= C ‖w‖
n−2∑

j=0

1

2
(n− j − 1)−1/2

j∏

i=1

(
1− 1

2
(n− i)−1/2

)
(ln(j + e))−1

+
1

2

n−1∏

i=1

(
1− 1

2
(n− i)−1/2

)
(ln(n− 1 + e))−1 ‖w‖ . (2.10)
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Figure 4 The plot shows that n− j ≤ 4(n− j)− 4 for 0 ≤ j < n− 1 .

From figure 4, we know that n− j ≤ 4(n− j)− 4 and

(n− j)1/2 ≤ 2((n− j)− 1)1/2

or

1

2
(n− j − 1)−1/2 ≤ (n− j)−1/2.

Using the fact that 1− 1
2
(n− i)−1/2 ≤ 1 for i = 1, ..., j, we have

j∏

i=1

(
1− 1

2
(n− i)−1/2

)

≤
(

1− 1

2
(n− 1)−1/2

)(
1− 1

2
(n− 2)−1/2

)
...

(
1− 1

2
(n− j)−1/2

)

≤ 1

≤ (j + 1)−1/2 for j ≤ n.
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Then, rewritting (2.10) by applying above information, we have

C ‖w‖
n−2∑

j=0

1

2
(n− j − 1)−1/2

j∏

i=1

(
1− 1

2
(n− i)−1/2

)
(ln(j + e))−1

+
1

2

n−1∏

i=1

(
1− 1

2
(n− i)−1/2

)
(ln(n− 1 + e))−1 ‖w‖

≤ C ‖w‖
n−2∑

j=0

(n− j)−1/2 (j + 1)−1/2 (ln(j + e))−1

+
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ C ‖w‖
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2

(ln(j + e))−1

(
1

n+ 1

)

+
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖ . (2.11)

Figure 5 Graph of (ln(j + e))−1 and c0 (ln(n+ e))−1
(

1− ln
(
n−j
n+1

))
against j with

c0 = 5.

From Figure 5, there is a positive number c0 such

(ln(j + e))−1 < c0 (ln(n+ e))−1

(
1− ln

(
n− j
n+ 1

))
.
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So (2.11) becomes

C ‖w‖
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2

(ln(j + e))−1

(
1

n+ 1

)

+
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ c0C (ln(n+ e))−1 ‖w‖
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2(
1− ln

(
n− j
n+ 1

))(
1

n+ 1

)

+
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖ . (2.12)

The first summation of (2.12) is bounded by the integral

n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2(
1− ln

(
n− j
n+ 1

))(
1

n+ 1

)

≤
∫ 1−s

s

x−1/2(1− x)−1/2(1− ln(1− x))dx

≤ E

where E is positive constant and s := 1
2(n+1)

. So (2.12) becomes

C ‖w‖
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2

(ln(j + e))−1

(
1

n+ 1

)

+
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ C̆(ln(n+ e))−1 ‖w‖E +
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖ (2.13)

with C̆ = c0C. From (2.13) there is c1 ∈ R+ such that 1
2

(j + 1)−1/2 (ln(n− 1 + e))−1 ≤
c1(ln(n+ e))−1E then

C̆(ln(n+ e))−1 ‖w‖E +
1

2
(j + 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ (ln(n+ e))−1 ‖w‖
[
C̆ + c1

]
E

≤ C(ln(n+ e))−1 ‖w‖E (2.14)

with C = C̆ + c1. Thus

∥∥∥∥∥
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ C(ln(n+ e))−1 ‖w‖E.
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Next, we will show the equation (2.6) in the same way of (2.5). We have

∥∥K(I −K∗K)je0

∥∥ =
∥∥∥K (I −K∗K)j f(K∗K)w

∥∥∥

≤ sup
λ∈(0,‖K‖2]

{∣∣∣∣λ1/2 (1− λ)j
(

ln
( e
λ

)−1
)∣∣∣∣
}
‖w‖

≤ Ĉ(j + 1)−1/2 (ln (j + e))−1 ‖w‖ . (2.15)

Using (2.15), we obtain

∥∥∥∥∥K
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥

≤
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i)
∥∥K(I −K∗K)je0

∥∥

≤ Ĉ
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i)(j + 1)−1/2 (ln(j + e))−1 ‖w‖ . (2.16)

From the previous estimates we have
∏j

i=1(1−αn−i) ≤ 1 ≤ (n+ 1)−1/2 , αn−j−1 ≤
(n− j)−1/2 with αi = 1

2
i−1/2 for i = 1, ..., j , α0 = 1

2
and

(ln(j + e))−1 < c0 (ln(n+ e))−1 (1− ln
(
n−j
n+1

))
. Then, we simplify the equation



 19

(2.16) as

Ĉ
n−1∑

j=0

αn−j−1

j∏

i=1

(1− αn−i)(j + 1)−1/2 (ln(j + e))−1 ‖w‖

≤ Ĉ

n−2∑

j=0

αn−j−1

j∏

i=1

(1− αn−i)(j + 1)−1/2 (ln(j + e))−1 ‖w‖

+ α0

j∏

i=1

(1− αn−i)n−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ Ĉ(n+ 1)−1/2 ‖w‖
n−2∑

j=0

(n− j)−1/2 (j + 1)−1/2 (ln(j + e))−1

+
1

2
n−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ Ĉ(n+ 1)−1/2 ‖w‖
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2

(ln(j + e))−1

(
1

n+ 1

)

+
1

2
n−1/2(n+ 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ c0Ĉ(n+ 1)−1/2 (ln(n+ e))−1 ‖w‖

×
[
n−2∑

j=0

(
n− j
n+ 1

)−1/2(
j + 1

n+ 1

)−1/2(
1− ln

(
n− j
n+ 1

))(
1

n+ 1

)]

+
1

2
n−1/2(n+ 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

= C̈(n+ 1)−1/2 (ln(n+ e))−1 ‖w‖E +
1

2
n−1/2(n+ 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

(2.17)

with C̈ = c0Ĉ. From (2.17) there is c2 ∈ R+ such that 1
2
n−1/2 (ln(n− 1 + e))−1 ≤

c2 (ln(n+ e))−1E then

C̈(n+ 1)−1/2 (ln(n+ e))−1 ‖w‖E +
1

2
n−1/2(n+ 1)−1/2 (ln(n− 1 + e))−1 ‖w‖

≤ (n+ 1)−1/2 (ln(n+ e))−1 ‖w‖
[
C̈ + c2

]
E

≤ C̃(n+ 1)−1/2 (ln(n+ e))−1 ‖w‖E

with C̃ = C̈ + c2.Thus
∥∥∥∥∥K

n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ C̃(n+ 1)−1/2(ln(n+ e))−1 ‖w‖E.

This ends the proof of the Proposition 2.3. �
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Assumption 2.4. There exist positive constants cL, cR, cr and linear bounded

operator Rx : Y → Y such that for x ∈ Bρ(x0) the following condition hold

F ′(x) = RxF
′(x+) (2.18)

‖Rx − I‖ ≤ cL
∥∥x− x+

∥∥ (2.19)

|‖Rx‖ − ‖I‖| ≥ cR (2.20)

‖Rx‖ ≤ cr (2.21)

where x+ is exact solution of (1.7).

Lemma 2.5. Let Assumption2.4 be assumed. Then we have

∥∥∥(1− αn)I −R∗xδn
∥∥∥ ≤ 1

2
KR ‖en‖ (2.22)

for some constant KR > 0.

Proof We note that reverse triangle inequality and (2.20) guarantee the estimates

1 ≤ ‖Rx − I‖
|‖Rx‖ − ‖I‖|

≤ c−1
R ‖Rx − I‖ (2.23)

and

‖I +R∗x‖ ≤
1

|‖Rx‖ − ‖I‖|
× ‖I −R∗x‖ ‖I +R∗x‖ ≤ c−1

R ‖I −R∗x‖ ‖I +R∗x‖ . (2.24)

Using the estimates (2.19), (2.21), (2.23), (2.24) and the triangle inequality, we

now have

∥∥∥(1− αn)I −R∗xδn
∥∥∥ =

∥∥∥∥
1

2

[
(1− (1 + αn))(I +R∗xδn)

]
+

1

2

[
(1 + (1− αn))(I −R∗xδn)

]∥∥∥∥

≤ 1

2

∥∥∥(1− (1 + αn))(I +R∗xδn)
∥∥∥+

1

2

∥∥∥(1 + (1− αn))(I −R∗xδn)
∥∥∥

=
1

2

[
αnc

−1
R

∥∥∥I +R∗xδn

∥∥∥+ |2− αn|
] ∥∥∥(I −R∗xδn)

∥∥∥

≤ 1

2

[
αnc

−1
R

(
‖I‖+

∥∥∥R∗xδn
∥∥∥
)

+ |2− αn|
] ∥∥∥(I −R∗xδn)

∥∥∥

=
1

2

[
1

2
n−1/2c−1

R (‖I‖+ cr) +

∣∣∣∣2−
1

2
n−1/2

∣∣∣∣
]
cL
∥∥x+ − xδn

∥∥

≤ 1

2

[
c−1
R (‖I‖+ cr) + 2

]
cL
∥∥x+ − xδn

∥∥

≤ 1

2
KR ‖en‖

with the positive constant KR = 1
2

[
c−1
R (‖I‖+ cr) + 2

]
cL. �
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Proposition 2.6. Let the condition (2.18) and (2.19) in Assumption2.4 be hold.

Then

∥∥F (xδn)− F (x+)− F ′(x+)(xδn − x+)
∥∥ ≤ 1

2
cL ‖en‖ ‖Ken‖ (2.25)

for x ∈ Bρ(x0).

Proof Define wt = x+ + t(xδn − x+) as 0 ≤ t ≤ 1. So
∫ 1

0

F ′(wt)dt = F (xδn)− F (x+). (2.26)

Using the mean- value theorem with (2.18) and (2.19), we obtain

∥∥F (xδn)− F (x+)− F ′(x+)(xδn − x+)
∥∥ ≤

∥∥∥∥
∫ 1

0

[
F ′(x+ + t(xδn − x+))− F ′(x+)(xδn − x+)

]
dt

∥∥∥∥

=

∥∥∥∥
∫ 1

0

[
RwtF

′(x+)− F ′(x+)(xδn − x+)
]
dt

∥∥∥∥

=

∥∥∥∥
∫ 1

0

[
(Rwt − I)F ′(x+)(xδn − x+)

]
dt

∥∥∥∥

≤
∫ 1

0

‖Rwt − I‖
∥∥F ′(x+)(xδn − x+)

∥∥ dt

≤
∫ 1

0

cL
∥∥x+ + t(xδn − x+)− x+

∥∥∥∥F ′(x+)(xδn − x+)
∥∥ dt

= cL

∫ 1

0

∥∥t(xδn − x+)
∥∥ dt

∥∥F ′(x+)(xδn − x+)
∥∥

=
1

2
cL
∥∥xδn − x+

∥∥∥∥F ′(x+)(xδn − x+)
∥∥

=
1

2
cL ‖en‖ ‖Ken‖ . (2.27)

�

Now we present the main theorem of this thesis.

Theorem 2.7. Assume that problem (1.7) has a solution x+ in B ρ
2
(x0), yδ fulfills

(1.8), F satisfies (2.18) and (2.19). Assume that the Fréchet derivative of F is

scaling such that ‖F ′(x)‖ ≤ 1 for x ∈ B ρ
2
(x0). Additionally assume that the

source condition (1.14) and (2.2) is fulfilled with p = 1 and

τ >
2− η
1− η . (2.28)

If ‖w‖ is sufficiently small, then there exists a constant K̂2 depending only on

p = 1 and ‖w‖ with

∥∥x+ − xδn
∥∥ ≤ K̂2(lnn)−1 (2.29)
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and

∥∥yδ − F (xδn)
∥∥ ≤ 4K̂2(n+ 1)−1/2(lnn)−1 (2.30)

for 2 < n < N where N denotes in termination index of the discrepancy (1.10).

Proof We give the abbreviation en := x+ − xδn for the error of the nth iteration

xδn of (2.1). We can rewrite the equation (2.1) into this form

x+ − xδn+1 = (1− αn)(x+ − xδn) + F ′(xδn)∗(F (xδn)− yδ)− αn(x0 − x+).

Since en := x+ − xδn and K := F ′(x+), we present en as

en+1 = (1− αn)en + F ′(xδn)∗(F (xδn)− yδ)− αn(x0 − x+)

= (1− αn)(I −K∗K)en + (1− αn)K∗Ken + F ′(xδn)∗(F (xδn)− yδ)− αn(x0 − x+)

= (1− αn)(I −K∗K)en + (1− αn)K∗
[
F (xδn)− F (x+)−K(xδn − x+)

]

+
[
K∗ − F ′(xδn)∗

] (
yδ − F (xδn)

)
− αnK∗(yδ − F (xδn)) + (1− αn)K∗(y − yδ)

− αn(x0 − x+)

= (1− αn)(I −K∗K)en + (1− αn)K∗
[
F (xδn)− F (x+)−K(xδn − x+)

]

+
[
K∗ −K∗R∗xδn

] (
yδ − F (xδn)

)
− αnK∗(yδ − F (xδn)) + (1− αn)K∗(y − yδ)

− αn(x0 − x+)

= (1− αn)(I −K∗K)en + (1− αn)K∗
[
F (xδn)− F (x+)−K(xδn − x+)

]

+
[
(1− αn)I −R∗xδn

]
K∗
(
yδ − F (xδn)

)
+ (1− αn)K∗(y − yδ)

− αn(x0 − x+). (2.31)

Rewritting the equation (2.31), we have

en+1 = (1− αn)(I −K∗K)en + (1− αn)K∗(y − yδ)− αn(x0 − x+) +K∗zn

(2.32)

where

zn = [(1− αn)(F (xδn)− F (x+)−K(xδn − x+))] + [(1− αn)I −R∗xδn ](yδ − F (xδn)).
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By recurrence and (2.32), we obtain the closed expression for the error

en =

[
An(I −K∗K)n +

n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)
]
e0

+

[
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)
]
K∗(y − yδ)

+
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1 (2.33)

where An =
∏n−1

i=1 (1− αi). Moreover, it holds

Ken =

[
KAn(I −K∗K)n +K

n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)
]
e0

+K

[
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)
]
K∗(y − yδ)

+K
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1. (2.34)

Next for 0 ≤ n < N , using the discrepancy principle, triangle inequality , (1.12)

and (2.28), we get

∥∥yδ − F (xδn)
∥∥ = 2

∥∥yδ − F (xδn)
∥∥−

∥∥yδ − F (xδn)
∥∥

≤ 2
∥∥yδ − F (xδn)

∥∥− τδ
≤ 2

(∥∥yδ − F (xδn)
∥∥− δ

)

≤ 2
(∥∥yδ − F (xδn)

∥∥−
∥∥yδ − y

∥∥)

≤ 2
∥∥y − F (xδn)

∥∥

≤ 2

1− η ‖Ken‖ . (2.35)

Using the Proposition 2.3, Proposition 2.6 and (2.35), we obtain

‖zn‖ ≤ (1− αn)
∥∥F (xδn)− F (x+)−K(xδn − x+)

∥∥+
∥∥∥(1− αn)I −R∗xδn

∥∥∥
∥∥yδ − F (xδn)

∥∥

≤ 1

2
(1− αn) ‖en‖ ‖Ken‖ cL +

1

2
KR ‖en‖ (

2

1− η ) ‖Ken‖

≤ K1 ‖Ken‖ ‖en‖ (2.36)

where K1 = cL
2

+ KR
1−η and we use the fact that 1− αn ≤ 1.

It hold that ‖en‖ is decreasing independently of the source condition for 0 ≤ n < N ,
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see Proposition 2.2 in [10].

Next, we show by induction that

‖en‖ ≤ K̂2(ln(n+ e))−1 (2.37)

and

‖Ken‖ ≤ K̂2(n+ 1)−1/2(ln(n+ e))−1 (2.38)

hold for all 0 ≤ n < N with K̂2 being a positive constant which does not dependent

on n. For l = 0, we obtain

‖e0‖ = ‖f(K∗K)w‖
≤ sup

λ∈(0,1]

(ln e− lnλ)−1 ‖w‖

≤ ‖w‖
≤ K̂2

and

‖Ke0‖ = ‖Kf(K∗K)w‖
≤ sup

λ∈(0,1]

λ−1/2(ln e− lnλ)−1 ‖w‖

≤ ‖w‖
≤ K̂2.

For l = 1 we have

‖e1‖ =
∥∥(1− α0)(I −K∗K)e0 + (1− α0)K∗(y − yδ) + α0(x0 − x+) +K∗z0

∥∥

≤ 1

2
‖(I −K∗K)e0‖+

1

2

∥∥K∗(y − yδ)
∥∥+

1

2
‖e0‖+ ‖K∗z0‖

≤ 1

2
‖w‖+

1

2
δ +

1

2
‖w‖+K1 ‖w‖2

≤ ‖w‖+
1

2
δ +K1 ‖w‖2

≤ ‖w‖+
1

2

(
1

(1− η)(τ − 1)

)
‖w‖+K1 ‖w‖2

≤
[
1 +

1

2(1− η)(τ − 1)

]
‖w‖+K1 ‖w‖2
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where we choose the sufficiently small ‖w‖ that
(

2 + 1
(1−η)(τ−1)

)
‖w‖+2K1 ‖w‖2 ≤

K̂2. So ‖e1‖ becomes

‖e1‖ ≤
1

2

[(
2 +

1

(1− η)(τ − 1)

)
‖w‖+ 2K1 ‖w‖2

]

≤ 1

2
K̂2

≤ K̂2(ln(1 + e))−1.

Similarly, for ‖Ke1‖, we have

‖Ke1‖ ≤
1

2
‖K(I −K∗K)e0‖+

1

2

∥∥KK∗(y − yδ)
∥∥+

1

2
‖Ke0‖+ ‖KK∗z0‖

≤ 1

2
‖w‖+ ‖w‖+K1 ‖w‖2 +

1

2
δ +

1

2
K̂2

=
3

2
‖w‖+K1 ‖w‖2 +

1

2
δ +

1

2
K̂2

≤ 3

2
‖w‖+K1 ‖w‖2 +

1

2(1− η)(τ − 1)
‖w‖+

1

2
K̂2

=

(
3

2
+K1 ‖w‖+

1

2(1− η)(τ − 1)

)
‖w‖+

1

2
K̂2

where we choose the sufficiently small ‖w‖ that
(

3
2

+K1 ‖w‖+ 1
2(1−η)(τ−1)

)
‖w‖ ≤

0.01K̂2. So ‖Ke1‖ becomes

‖Ke1‖ ≤ 0.51K̂2

≤ K̂2(1 + 1)−1/2(ln(n+ e))−1/2.

Thus, equations (2.37) and (2.38) are fulfilled since ‖el‖ and ‖Kel‖ are finite.

Assuming that (2.37) and (2.38) are true for all k with 0 ≤ k < n < N , we have

to show that (2.37) and (2.38) are true for all k = n.

Using Lemma 2.2 for n > 1 and Proposition 2.3, we rewrite (2.33) as follow

‖en‖ ≤ ‖An(I −K∗K)ne0‖+

∥∥∥∥∥
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)]e0

∥∥∥∥∥

+

∥∥∥∥∥
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)
∥∥∥∥∥

+

∥∥∥∥∥
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1

∥∥∥∥∥ .
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By assumption ‖K‖ ≤ 1, see e.g. [9] or [11] cited in [5], we have

∥∥∥∥∥
n−1∑

k=0

(I −K∗K)kK∗

∥∥∥∥∥ ≤
√
n,

and

∥∥(I −K∗K)jK∗
∥∥ ≤ (j + 1)−1/2.

With these bounds and ‖en‖, we obtain

‖en‖ ≤ C(ln(n+ e))−1 ‖w‖+ C(ln(n+ e))−1 ‖w‖E +
√
nδ

+
n−1∑

j=0

(j + 1)−1/2 ‖zn−j−1‖ (2.39)

where we use
∥∥∥∥∥

n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)
∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

j=1

(I −K∗K)j−1K∗

∥∥∥∥∥
∥∥y − yδ

∥∥

≤
∥∥∥∥∥
n−1∑

k=0

(I −K∗K)kK∗

∥∥∥∥∥
∥∥y − yδ

∥∥

≤ √nδ

and
∥∥∥∥∥
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1

∥∥∥∥∥ ≤
n−1∑

j=0

∥∥(I −K∗K)jK∗
∥∥ ‖zn−j−1‖

≤
n−1∑

j=0

(j + 1)−1/2‖ ‖zn−j−1‖ .

Then, using (2.36) to estimate the last term of (2.39), we obtain

n−1∑

j=0

(j + 1)−1/2 ‖zn−j−1‖ ≤ K1

n−1∑

j=0

(j + 1)−1/2 ‖Ken−j−1‖ ‖en−j−1‖ (2.40)
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and we apply the assumption of the induction (2.37) and (2.38) into (2.40) we have

n−1∑

j=0

(j + 1)−1/2 ‖zn−j−1‖

≤ K1

n−1∑

j=0

(j + 1)−1/2 ‖Ken−j−1‖ ‖en−j−1‖

≤ K1K̂
2
2

n−1∑

j=0

(j + 1)−1/2(n− j)−1/2(ln(n− j − 1 + e))−2

= K1K̂
2
2

n−1∑

j=0

(
j + 1

n+ 1

)−1/2(
n− j
n+ 1

)−1/2

(ln(n− j − 1 + e))−2

(
1

n+ 1

)
. (2.41)

Rewritting (2.41), we have

n−1∑

j=0

(j + 1)−1/2 ‖zn−j−1‖

= K1K̂
2
2

n−1∑

j=0

(
j + 1

n+ 1

)−1/2(
n− j
n+ 1

)−1/2(
1

n+ 1

)
(ln(n− j − 1 + e))−2 ×

[
ln(n+ e)

ln(n+ e)

]−2

= K1K̂
2
2(ln(n+ e))−2

n−1∑

j=0

(
j + 1

n+ 1

)−1/2(
n− j
n+ 1

)−1/2(
1

n+ 1

)[
ln(n+ e)

ln(n− j − 1 + e)

]2

≤ K1K̂
2
2(ln(n+ e))−1

n−1∑

j=0

(
j + 1

n+ 1

)−1/2(
n− j
n+ 1

)−1/2(
1

n+ 1

)[
ln(n+ e)

ln(n− j − 1 + e)

]2

.

We know from Figure 6 that ln(n+e)
ln(n−j−1+e)

< 1− ln(n−j
n+1

) .

The above equation can be estimated as follow

n−1∑

j=0

(j + 1)−1/2 ‖zn−j−1‖

≤ K1K̂
2
2(ln(n+ e))−1

n−1∑

j=0

(
j + 1

n+ 1

)−1/2(
n− j
n+ 1

)−1/2(
1

n+ 1

)[
1− ln(

n− j
n+ 1

)

]2

.

(2.42)

The last summation is bounded since with s := 1
2(n+1)

the integral

∫ 1−s

s

x−1/2(1− x)−1/2(1− ln(1− x))2dx
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Figure 6 The plot shows the graph of ln(n+e)
ln(n−j−1+e) < 1− ln(n−jn+1) where n = 100 .

is bounded from above by a positive constant G independently of n. Substituting

the above estimation into (2.39) yields

‖en‖ ≤ C(ln(n+ e))−1 ‖w‖+ C(ln(n+ e))−1 ‖w‖E +
√
nδ +K1K̂

2
2(ln(n+ e))−1G

≤
[
(C + CE) ‖w‖+K1K̂

2
2G
]

(ln(n+ e))−1 +
√
nδ

≤
[
(C + CE) ‖w‖+K3K̂

2
2

]
(ln(n+ e))−1 +

√
nδ

with K3 := K1G.

Similarly, (2.34) can be rewritten as

‖Ken‖ ≤ ‖KAn(I −K∗K)ne0‖+

∥∥∥∥∥K
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

∥∥∥∥∥

+

∥∥∥∥∥K
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)
∥∥∥∥∥

+

∥∥∥∥∥K
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1

∥∥∥∥∥ .

By assumption ‖K‖ ≤ 1, see e.g. [9] or [11] cited in [5], we have

∥∥(I −K∗K)jKK∗
∥∥ ≤ (j + 1)−1
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and
∥∥∥∥∥K

n−1∑

k=0

(I −K∗K)kK∗

∥∥∥∥∥ ≤
∥∥I − (I −KK∗)k

∥∥ ≤ 1.

With these bounds and ‖Ken‖, we obtain

‖Ken‖ ≤ Ĉ(n+ 1)−1/2(ln(n+ e))−1 ‖w‖+ C̃(n+ 1)−1/2(ln(n+ e))−1 ‖w‖E

+ δ +
n−1∑

j=0

(j + 1)−1 ‖zn−j−1‖ (2.43)

where we use
∥∥∥∥∥K

n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)
∥∥∥∥∥ ≤

∥∥∥∥∥K
n∑

j=1

(I −K∗K)j−1K∗

∥∥∥∥∥ ‖y − y
∗‖

=

∥∥∥∥∥K
n−1∑

k=0

(I −K∗K)kK∗

∥∥∥∥∥ ‖ ‖y − y
∗‖

≤
∥∥I − (I −KK∗)k

∥∥ δ
≤ δ

and
∥∥∥∥∥K

n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1

∥∥∥∥∥ ≤
n−1∑

j=0

∥∥(I −K∗K)jKK∗
∥∥ ‖zn−j−1‖

≤
n−1∑

j=0

(j + 1)−1 ‖zn−j−1‖ .



 30

We may estimate the last term of (2.43)

n−1∑

j=0

(j + 1)−1 ‖zn−j−1‖

≤ K1

n−1∑

j=0

(j + 1)−1 ‖Ken−j−1‖ ‖en−j−1‖

= K1K̂
2
2

n−1∑

j=0

(j + 1)−1(n− j)−1/2(ln(n− j − 1 + e))−2

= K1K̂
2
2

n−1∑

j=0

(j + 1)−1(n− j)−1/2(ln(n− j − 1 + e))−2

(
n+ 1

n+ 1

)3/2

= K1K̂
2
2

n−1∑

j=0

(
j + 1

n+ 1

)−1(
n− j
n+ 1

)−1/2

(ln(n− j − 1 + e))−2

(
1

n+ 1

)

× (n+ 1)−1/2

(
ln(n+ e)

ln(n+ e)

)2

= K1K̂
2
2(n+ 1)−1/2(ln(n+ e))−1

n−1∑

j=0

(
j + 1

n+ 1

)−1(
n− j
n+ 1

)−1/2

×
(

ln(n+ e)

ln(n− j − 1 + e)

)2(
1

n+ 1

)
(ln(n+ e))−1

≤ K1K̂
2
2(n+ 1)−1/2(ln(n+ e))−1)

×
[
n−1∑

j=0

(
j + 1

n+ 1

)−1(
n− j
n+ 1

)−1/2(
ln(n+ e)

ln(n− j − 1 + e)

)2(
1

n+ 1

)]

≤ K1K̂
2
2(n+ 1)−1/2(ln(n+ e))−1)

×
[
n−1∑

j=0

(
j + 1

n+ 1

)−1(
n− j
n+ 1

)−1/2(
1− ln

(
n− j

(n+ 1)

))2(
1

n+ 1

)]
.

Turning to consider the term in brackets [·] above. It can be estimated by

∫ 1−s

s

x−1(1− x)−1/2(1− ln(1− x))2dx ≤ H (2.44)

with a positive constant H independently of n. Substituting above information

into (2.43) yields

‖Ken‖ ≤
[(
Ĉ + C̃E

)
‖w‖+K1K̂

2
2H
]

(n+ 1)−1/2(ln(n+ e))−1 + δ.

With K4= K1H , K5:=max
{
C + CE, Ĉ + C̃E

}
, K6:= max {K3, K4}, then we
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get

‖en‖ ≤
[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1 +

√
nδ (2.45)

and

‖Ken‖ ≤
[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1 + δ. (2.46)

Because of (1.10) and (1.12) we have

τδ ≤
∥∥yδ − F (xδn)

∥∥

≤
∥∥yδ − y

∥∥+
∥∥y − F (xδn)

∥∥

≤ δ +
1

1− η ‖Ken‖

and moreover,

(1− η)(τ − 1)δ ≤ ‖Ken‖

≤
[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1 + δ. (2.47)

Due to (2.28) , Θ = (1− η)(τ − 1)− 1 > 0. We can rewrite(2.47) as follow

δ ≤ 1

Θ

[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1. (2.48)

Furthermore, it follows

‖en‖ ≤
[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1 +

√
nδ

≤
[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1 +

√
n

Θ

(
K5 ‖w‖+K6K̂

2
2

)
(n+ 1)−1/2(ln(n+ e))−1

≤
[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1

+ (n+ 1)1/2

[
1

Θ

(
K5 ‖w‖+K6K̂

2
2

)
(n+ 1)−1/2(ln(n+ e))−1

]

≤
(

1 +
1

Θ

)[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1

= K7

[
K5 ‖w‖+K6K̂

2
2

]
(ln(n+ e))−1

with K7 = 1 + 1
Θ

.
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In similar manner, we obtain

‖Ken‖ ≤
[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1 + δ

≤
[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1

+
1

Θ

[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1

≤
(

1 +
1

Θ

)[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1

= K7

[
K5 ‖w‖+K6K̂

2
2

]
(n+ 1)−1/2(ln(n+ e))−1.

Finally, we select ‖w‖ such that K7

[
K5 ‖w‖+K6K̂

2
2

]
≤ K̂2. This is always possi-

ble for sufficiently small ‖w‖ and because e0 fulfills the source condition. Therefore,

the induction is finished. Thus assertion (2.29) yield due to

‖en‖ ≤ K̂2

(
lnn

ln(n+ e)

)
(lnn)−1 ≤ K̂2(lnn)−1

and similarly, by using (2.35), we have
∥∥yδ − F (xδn)

∥∥ ≤ 2

1− η K̂2(n+ 1)−1/2(ln(n+ e))−1

≤ 4K̂2(n+ 1)−1/2

(
lnn

ln(n+ e)

)
(lnn)−1

≤ 4K̂2(n+ 1)−1/2(lnn)−1.

Thus, the assertion (2.30) holds. �

Theorem 2.8. Under the assumptions of the Theorem 2.7, we have

N1/2(lnN) ≤ C1

δ

and
∥∥x+ − xδN

∥∥ ≤ C2(− ln δ)−1

with some constant C1, C2 > 0.

Proof We use the same notation as in the proof of theorem 2.7. We recall that

en =An(I −K∗K)ne0 +
n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)e0

+
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)

+
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1
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and e0 = x+ − x0 = f(K∗K)w be selected from source condition (1.14). So

en =

[
An(I −K∗K)n +

n−1∑

j=0

αn−j−1(I −K∗K)j
j∏

i=1

(1− αn−i)
]
f(K∗K)w

+
n∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αn−i)K∗(y − yδ)

+
n−1∑

j=0

n−1∏

i=n−j

(1− αi)(I −K∗K)jK∗zn−j−1.

Then,

eN = f(K∗K)wN +

[
N∑

j=1

(I −K∗K)j−1

j∏

i=1

(1− αN−i)K∗
]

(y − yδ) (2.49)

where

wN =

[
AN(I −K∗K)N +

N−1∑

j=0

αN−j−1(I −K∗K)j
j∏

i=1

(1− αN−i)
]
w

+
N−1∑

j=0

N−1∏

i=N−j

(1− αi)(I −K∗K)j f̃(K∗K)z̃N−j−1

with ‖z̃N−j−1‖ = ‖zN−j−1‖ , j = 0, 1, 2, ..., N − 1

and f̃(K∗K) :=
∫ 1

0
λ1/2(ln e

λ
)dEλ =

∫ 1

0
λ1/2(1− lnλ)dEλ. From lemma 4.1, lemma

4.3, see [2], and (2.37)− (2.38) we obtain

‖wN‖ ≤
∥∥AN (I −K∗K)Nw

∥∥+
N−1∑

j=0

αN−j−1

j∏

i=1

(1− αN−i)
∥∥(I −K∗K)jw

∥∥

+
N−1∑

j=0

N−1∏

i=N−j
(1− αi)

∥∥∥(I −K∗K)j f̃(K∗K)
∥∥∥ ‖z̃N−j−1‖

≤ ‖w‖+

N−1∑

j=0

(N − j)−1/2 ‖w‖+ C

N−1∑

j=0

(j + 1)−1/2(ln(j + 1)) ‖z̃N−j−1‖

≤ (N + 1) ‖w‖+ C

N−1∑

j=0

(j + 1)−1/2(ln(j + 1))K1 ‖KeN−j−1‖ ‖eN−j−1‖

≤ (N + 1) ‖w‖+ C
N−1∑

j=0

(j + 1)−1/2(ln(j + 1))K1K̂
2
2 (N − j)−1/2(ln(N − j − 1 + e))−2

≤ (N + 1) ‖w‖+D (2.50)
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where D is a constant depending on w.

From (2.49), we conclude that

‖eN‖ ≤ ‖f(K∗K)wN‖+

∥∥∥∥∥
N∑

j=1

(I −K∗K)j−1K∗

∥∥∥∥∥
∥∥y − yδ

∥∥

≤ ‖f(K∗K)wN‖+

∥∥∥∥∥
N−1∑

k=0

(I −K∗K)kK∗

∥∥∥∥∥ δ

≤ ‖f(K∗K)wN‖+
√
Nδ.

From lemma 4.2, see [2], and (2.49), we have

‖f(K∗K)wN‖ ≤ ‖f(K∗K)‖ ‖wN‖
≤ c̃(− ln(δ))−1 [(N + 1) ‖w‖+D]

≤ C2(− ln(δ))−1

where C2 = c̃ [(N + 1) ‖w‖+D].

Thus, ‖eN‖ ≤ C2(− ln(δ))−1 +
√
Nδ. We apply (2.48), then

(N + 1)1/2(ln(n+ e)) ≤ 1

δ

[
K5 ‖w‖+K6K̂

2
2

]
=
C

δ

or

(N + 1)(ln(n+ e))2 ≤ C2

δ2

for some positive C. For the fact that

N(lnN)2 ≤ (N + 1)(ln(n+ e))2 ≤ C2

δ2
, (2.51)

we have

N(lnN)2 ≤ C2

δ2
.

We use lemma 4.4 [2] with above information, we get

N =
c̃(− ln(δ))−2

δ2
.

So‖eN‖ becomes

‖eN‖ ≤ C2(− ln(δ))−1 +

√
c̃(− ln(δ))−1

δ
= C3(− ln(δ))−1
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for some positive constant C3.

From (2.51) we have

N1/2(lnN) ≤ C1

δ
.

�



 

Chapter 3

Numerical Examples

In this section, we focus on the example 1.3 such an inverse potential problem

that has already proven the numerical implementation demonstration of the con-

vergence rate under the logarithmic with the modified Landweber in the properly

condition. Firstly, we provide formulars of the operator F (x) and F ′(x) by using

(1.5) and (1.6). If the poisson kernel given by

P (r, t− s) =
1

2πR
+

1

πR

∞∑

i=1

( r
R

)i
(cos(is) cos(it) + sin(is) sin(it)) ,

the nonlinear operator is expressed as

[F (x)] (t) =
1

4πR

∫ 2π

0

x2(s)ds +
∞∑

i=1

1

πRi+1(i+ 2)

∫ 2π

0

xi+2(s) cos(is)ds cos(it)

+
∞∑

i=1

1

πRi+1(i+ 2)

∫ 2π

0

xi+2(s) sin(is)ds sin(it) (3.1)

where F : L2[0, 2π]→ L2[0, 2π]. Moreover, the Fréchet derivative of the operator

F is

[F ′(x)h] (t) =
1

2πR

∫ 2π

0

x(s)h(s)ds

+
∞∑

i=1

1

πRi+1

(∫ 2π

0

xi+1(s)h(s) cos(is)ds cos(it)

+

∫ 2π

0

xi+1(s)h(s) sin(is)ds sin(it)

)
(3.2)

see [1], for more detail. Recall the equation (2.1)

xδn+1 = xδn + F ′(xδn)∗(yδ − F (xδn))− αn(xδn − ζ) (3.3)

we set ζ = δx∗(s). Since X = L2[0, 2π] and Y = L2[0, 2π] we discretized [0, 2π]

to m interval with the grid points 0 = t0, t1, ..., tm = 2π and 0 = s0, s1, ..., sm =

2π. The sets
{
ϕ

(m)
1 ...ϕ

(m)
m

}
and

{
ψ

(m)
1 ...ψ

(m)
m

}
are the orthogonal bases in the

space L2 [0, 2π]. The orthogonal base are dened with respect to the step length
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h(m) := 2π/m,m ∈ N by the piecewise continuous function with ϕ
(m)
j (s) = 1 for

s ∈ [sj−1, sj] , ψ
(m)
j (t) = 1 for t ∈ [tj−1, tj] and ϕ

(m)
j (s) = 0, ψ

(m)
j (t) = 0 otherwise.

Note that Xm = span
{
ϕ

(m)
j

}
j=1,...,m

and Ym = span
{
ψ

(m)
j

}
j=1,...,m

.Therefore

xδn(s) =
m∑

j=1

u
(m)
j ϕ

(m)
j (s)

xδn+1(s) =
m∑

j=1

v
(m)
j ϕ

(m)
j (s)

ζ =
m∑

j=1

z
(m)
j ϕ

(m)
j (s) = δx∗(s)

for some vectors U (m) = (u
(m)
1 ... u

(m)
m )T , V (m) = (v

(m)
1 ... v

(m)
m )T and Z(m) = (z

(m)
1 ... z

(m)
m )T .

Applying the above information to (3.3) we have

m∑

j=1

v
(m)
j ϕ

(m)
j (s) =

m∑

j=1

u
(m)
j ϕ

(m)
j (s) + F ′(xδn(s))∗[yδ − F (xδn(s))]

− αn(
m∑

j=1

u
(m)
j ϕ

(m)
j (s)− δx∗(s)). (3.4)

For j = 1 we will consider the inner product of (3.4) and ϕ
(m)
1 . We know that

an orthogonal bases is defined by the piecewise continuous function such that

ϕ
(m)
j (s) = 1 for s ∈ [sj−1, sj] and ϕ

(m)
j (s) = 0 otherwise. So for j = 1 we have

〈
m∑

j=1

v
(m)
j ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉
=

〈
m∑

j=1

u
(m)
j ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉

+
〈
F ′(xδn(s))∗[yδ(t)− F (xδn(s))], ϕ

(m)
1 (s)

〉

− αn
〈

m∑

j=1

u
(m)
j ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉
+ αn

〈
δx∗(s), ϕ

(m)
1 (s)

〉

(3.5)

and
m∑

j=1

v
(m)
j

〈
ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉
=

m∑

j=1

u
(m)
j

〈
ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉

+
〈
F ′(xδn(s))∗[yδ(t)− F (xδn(s))], ϕ

(m)
1 (s)

〉

− αn
m∑

j=1

u
(m)
j

〈
ϕ

(m)
j (s), ϕ

(m)
1 (s)

〉
+ αn

〈
δx∗(s), ϕ

(m)
1 (s)

〉
.

(3.6)



 38

Since ϕ
(m)
j (s) = 0 for j 6= 1 and (3.6) we have

v
(m)
1

〈
ϕ

(m)
1 (s), ϕ

(m)
1 (s)

〉
= u

(m)
1

〈
ϕ

(m)
1 (s), ϕ

(m)
1 (s)

〉
+
〈
F ′(xδn(s))∗[yδ(t)− F (xδn(s))], ϕ

(m)
1 (s)

〉

− αnu(m)
1

〈
ϕ

(m)
1 (s), ϕ

(m)
1 (s)

〉
+ αn

〈
δx∗(s), ϕ

(m)
1 (s)

〉
.

(3.7)

Next, considering
〈
ϕ

(m)
1 (s), ϕ

(m)
1 (s)

〉
we get

〈
ϕ

(m)
1 (s), ϕ

(m)
1 (s)

〉
L2[0,2π]

=

∫ 2π

0

∣∣∣ϕ(m)
1 (s)

∣∣∣
2

ds

=

∫ s1

0

(ϕ
(m)
1 (s))2ds+

∫ s2

s1

(ϕ
(m)
1 (s))2ds+ ...+

∫ sm

sm−1

(ϕ
(m)
1 (s))2ds

= (s1 − 0) + 0 + ...+ 0

= h(m).

Using above estimation, then (3.7) becomes

v
(m)
1 h(m) = u

(m)
1 h(m) +

〈
F ′(xδn(s))∗

(
yδ(t)− [F (xδn(s))](t)

)
, ϕ

(m)
1 (s)

〉

− αnu(m)
1 h(m) + αn

〈
δx∗(s), ϕ

(m)
1 (s)

〉
. (3.8)

Dividing (3.8) by h(m) we have

v
(m)
1 = u

(m)
1 +

1

h(m)

〈
F ′(xδn(s))∗

(
yδ(t)− [F (xδn(s))](t)

)
, ϕ

(m)
1 (s)

〉

− αnu(m)
1 +

αn
h(m)

〈
δx∗(s), ϕ

(m)
1 (s)

〉
. (3.9)
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Furthermore, we estimate the second term of the right - hand side of above equation

as follow

〈
F ′(xδn(s))∗(yδ(t)−

[
F (xδn(s))

]
(t)), ϕ

(m)
1 (s)

〉

=
〈
yδ(t)−

[
F (xδn(s))

]
(t), F ′(xδn(s))ϕ

(m)
1 (s)

〉

=

∫ 2π

0

[
yδ(t)−

[
F (xδn(s))

]
(t)
] [
F ′(xδn(s))ϕ

(m)
1 (s)

]
dt

=

∫ 2π

0

[
yδ(t)−

[
F (xδn(s))

]
(t)
] [ 1

2πR

∫ 2π

0

xδn(s)ϕ
(m)
1 (s)ds

+
∞∑

j=1

1

πRi+1

(∫ 2π

0

xδ(i+1)
n (s)ϕ

(m)
1 (s) cos(is)ds cos(it)

+

∫ 2π

0

xδ(i+1)
n (s)ϕ

(m)
1 (s) sin(is)ds sin(it)

)]
dt

=

∫ 2π

0

[
yδ(t)−

[
F (xδn(s))(t)

]] [ 1

2π

∫ s1

0

xδn(s)ds

+
∞∑

j=1

1

π

(∫ s1

0

xδ(i+1)
n (s) cos(is)ds cos(it)

+

∫ s1

0

xδ(i+1)
n (s) sin(is)ds sin(it)

)]
dt

where we use R = 1 and (3.2). Using a technique for approximating the integral

with the trapezoidal rule and h(m) = 2π
m

, we obtain

∫ s1

0

xδn(s)ds =
h(m)

2

[
xδn(0) + xδn(s1)

]
,

∫ s1

0

xδ(i+1)
n (s) cos(is)ds cos(it) =

h(m)

2

[
xδ(i+1)
n (0) cos(0) + xδ(i+1)

n (s1) cos(is1)
]

cos(it),

and
∫ s1

0

xδ(i+1)
n (s) sin(is)ds sin(it) =

h(m)

2

[
xδ(i+1)
n (0) sin(0) + xδ(i+1)

n (s1) sin(is1)
]

sin(it).

So,

∫ 2π

0

[
yδ(t)−

[
F (xδn(s))(t)

]]

×
[

1

2π

(
h(m)

2
(xδn(0) + xδn(s1))

)
+
∞∑

j=1

1

π

(
h(m)

2

(
xδ(i+1)
n (0) cos(0) + xδ(i+1)

n (s1) cos(is1)
)

cos(it)

+
h(m)

2

(
xδ(i+1)
n (0) sin(0) + xδ(i+1)

n (s1) sin(is1)
)

sin(it)

)]
dt
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Let

Ai1 = xδ(i+1)
n (0) cos(0) + xδ(i+1)

n (s1) cos(is1)

Bi1 = xδ(i+1)
n (0) sin(0) + xδ(i+1)

n (s1) sin(is1).

Then,

q1 : =

∫ 2π

0

[
yδ(t)−

[
F (xδn(s))(t)

]]

×
[

1

2π

(
h(m)

2
(xδn(0) + xδn(s1))

)
+
∞∑

j=1

(
h(m)

2π
Ai1 cos(it) +

h(m)

2π
Bi1 sin(it)

)]
dt.

(3.10)

We use the right endpoint appoximation for above integral term as follow

q1 = h(m)

m∑

k=1

[
yδ(tk)−

[
F (xδn(s))(tk)

]]

×
[

1

2π

(
h(m)

2
(xδn(0) + xδn(s1))

)
+
∞∑

j=1

(
h(m)

2π
Ai1 cos(itk) +

h

2π
Bi1 sin(itk)

)]
.

(3.11)

Applying (3.1) into term
[
F (xδn(s))(tk)

]
in (3.10) we have

[
F (xδn(s))(tk)

]
=

1

4π

∫ 2π

0

(xδn(s))2ds+
∞∑

i=1

1

π(i+ 2)

∫ 2π

0

xδ(i+2)
n (s) cos(is)ds cos(itk)

+
∞∑

i=1

1

π(i+ 2)

∫ 2π

0

xδ(i+2)
n (s) sin(is)ds sin(itk).

We use the right endpoint appoximation for above integral term as follow

[
F (xδn(s))(tk)

]
=
h(m)

4π

n∑

l=1

(xδn(sl))
2 +

∞∑

i=1

1

π(i+ 2)

[
h(m)

m∑

l=1

xδ(i+2)
n (sl) cos(isl) cos(itk)

]

+
∞∑

i=1

1

π(i+ 2)

[
h(m)

m∑

l=1

xδ(i+2)
m (sl) sin(isl) sin(itk)

]
.

Define

C =
h(m)

4π

m∑

l=1

(xδn(sl))
2

Dki =
h(m)

π(i+ 2)

m∑

l=1

xδ(i+2)
n (sl) cos(isl) cos(itk)

Eki =
h(m)

π(i+ 2)

m∑

l=1

xδ(i+2)
n (sl) sin(isl) sin(itk).
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Using the fact that xδn(s) =
∑m

j=1 u
(m
j ϕ

(m)
j (s) for C,Dki and Eki we can rewrite

C,Dki and Eki as follow

C =
h(m)

4π

m∑

l=1

(
xδn(sk)

)2
=

h

4π

m∑

l=1

(
u

(m)
l

)2

,

Dki =
h(m)

π(i+ 2)

m∑

l=1

(
u

(m)
l

)i+2

cos(isl) cos(itk)

and

Eki =
h(m)

π(i+ 2)

m∑

l=1

(
u

(m)
l

)i+2

sin(isl) sin(itk).

So,

[
F (xδn(s))(tk)

]
= C +

∞∑

i=1

(Dki + Eki) . (3.12)

Substituting(3.12) into (3.10), we get

q1 = h(m)

m∑

k=1

[
yδk(tk)− C −

∞∑

i=1

(Dki + Eki)

][
h(m)

4π
(xδn(0) + xδn(s1))

+
∞∑

j=1

(
h(m)

2π
Ai1 cos(itk) +

h(m)

2π
Bi1 sin(itk)

)]
. (3.13)

In the same manner of (3.13), we can define

qr = h(m)

m∑

k=1

[
yδk(tk)− C −

∞∑

i=1

(Dki + Eki)

][
h(m)

4π
(xδn(sr−1) + xδn(sr))

+
∞∑

j=1

(
h(m)

2π
Air cos(itk) +

h(m)

2π
Bir sin(itk)

)]
,

for r = 1, ...,m where

Air = xδ(i+1)
n (sr−1) cos(isr−1) + xδ(i+1)

n (sr) cos(isr)

=
(
u

(m)
r−1

)i+1

cos(isr−1) +
(
u(m)
r

)i+1
cos(isr)

and

Bir = xδ(i+1)
n (sr−1) sin(isr−1) + xδ(i+1)

n (sr) sin(isr)

=
(
u

(m)
r−1

)i+1

sin(isr−1) +
(
u(m)
r

)i+1
sin(isr).
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Here we use xδn(s) =
∑m

j=1 u
(m)
j ϕ

(m)
j (s).

Next, we consider
〈
δx∗(s), ϕ

(m)
1 (s)

〉
, where x∗(s) = 5+sin(3s)

6
, then

〈
δx∗(s), ϕ

(m)
1 (s)

〉
=

〈
δ(

5 + sin(3s)

6
), ϕ

(m)
1 (s)

〉

= δ

∫ 2π

0

5 + sin(3s)

6
ϕ

(m)
1 (s)ds

= δ

∫ s1

s0

5 + sin(3s)

6
ds

=
δ

6

∫ s1

s0

5 + sin(3s)ds

=
δ

6

[
5s− 1

3
cos(3s)

]s1

s0

=
δ

6

[
5(s1 − s0)− (

1

3
cos(3s1)− 1

3
cos(3s0))

]

=
δ

18

[
15h(m) − (cos(3s1)− cos(3s0))

]
.

It becomes

z
(m)
1 =

δ

18

[
15h(m) + cos(3s0)− cos(3s1)

]
.

We define

z(m)
r =

δ

18

[
15h(m) + cos(3sr−1)− cos(3sr)

]
.

From (3.9), for r = 1, ...,m, we have

v(m)
r = u(m)

r +
1

h(m)
qr − αnu(m)

r +
αn
h(m)

z(m)
r . (3.14)
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Figure 7 The polar plot shows the exact data (solid line) and the approximated

data (dashed line).

The plot demonstrate the numerical example for recovering x+ = 5+sin(3s)
6

. We

obtain data y by solving the direct problem for a test curve. For example, we

evaluate (3.1) for the test curve. The values for the Nauman boundary conditions

are provided by F (x) and F ′(x). The result are demonstrated in Figure 7. The

program was written in MATLAB. Moreover, the number of iteration is 3 (n=3)

and the number of the grid points M is 200. We set the initial value x0= 0.4 +
sin(3s)

6
and δ = 10−6 to be a noisy level. From the error estimation we have∥∥x+ − xδN
∥∥ ≤ 3.6258. Unfortuately we cannot show the iterates that are stopped

by the discrepancy principle (1.10) such that will give the better solution.



 

Chapter 4

Conclusions

We solve the nonlinear ill-posed problems F (x) = y where the noisy data

yδ ∈ Y with ‖yδ − y‖ ≤ δ are provided. We use the modified Landweber method

which proposed by Scherzer in 1998. We also include the additional term αn =
1
2
n−1/2 into the Landweber method. The convergence rate is provided under the

specific source condition. In general, the source condition is the Hölder type.

However, for severely ill-posed problems Hölder type source condition cannot be

applied. Therefore in this thesis, we consider the logarithmic source condition for

the modified Landeweber method. We found that

‖x+ − xδN‖ ≤ C2(− ln δ)−1,

if N is chosen according to the discrepancy principle.

Finally, we have employed the modified Landweber method to an inverse

potential problem which is to recover the characteristic function of the domain D

from information of its density and of measurements of the Cauchy data of the

corresponding potential on the boundary of a smooth and bounded domain. We

find the shape of an unknown domain D from given data y := ∂u
∂ν

. We demonstrate

the numerical example for recovering x+ = 5+sin(3s)
6

. We simulate data y by solving

the direct problem for a test curve, i.e. we evaluate (3.1) for the test curve x+.

The values for the Nauman boundary conditions are provided by F (x) and F ′(x).

The result are demonstrated in Figure 7. The computer programing is written

in MATLAB. Moreover, we try to illustrate a plot of the error
∥∥x+ − xδN

∥∥ ≤
C2(− ln δ)−1 . Unfortunately, we cannot show the iterates that are stopped by the

discrepancy principle (1.10) such that the better solution can be given.
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Appendix A

Lemma 4.1. [2]

Let p > 0 and k ∈ N0. The real-valued function f̂(λ) = (1−λ)k(ln exp(1)
λ

)−p defined

on [0, 1], satisfies

f̂(λ) ≤ C(ln k)−p

with C independent of k.

Moreover, for each p ∈ R the real-valued function

ĝ(λ) = (1− λ)kλ1/2

(
ln

exp(1)

λ

)−p

defined on [0, 1], satisfies

ĝ(λ) ≤ Ck−1/2(ln k)−p

with C independent of k.

Lemma 4.2. [2]

Let p ≥ 1, C > 0, and δ > 0 sufficiently small such that 1 ≥ (− ln(δC))−2p ≥ δ. Let

∫ 1

0
exp(−((1− ln(λ))−2p)−1/(2p))(1− ln(λ))−2p ‖dEλw‖2 = Cδ2.

Then

∫ 1

0
(1− ln(λ))−2p ‖dEλw‖2 ≤ C(− ln δ)−2p

with a generic constant C.
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Lemma 4.3. [2]

Let p ≥ 1, k ∈ N, k ≥ 2. Then there exists a constant D, which is independent of

k, such that

k−1∑

j=0

(
j + 1

k + 1

)−1/2(
k − j
k + 1

)−1/2
1

k + 1

(
ln(k + 2)

ln(k − j + 1)

2p
)
≤ D

(4.1)

(ln(k + 2))−p
∑

j = 0k − 1

(
j + 1

k + 1

)−1(
k − j
k + 1

)−1/2
1

k + 1

(
ln(k + 2)

ln(k − j + 1)

)2p

≤ D.

Moreover, there exists a constant D (independent of k) such that

k−1∑

j=0

(j + 1)−1/2(ln(j + 1))p(k − j + 1)−1/2(ln(k − j + 1))−2p ≤ D. (4.2)

Lemma 4.4. [2]

Let k̂ be a solution of

k(ln k)2p =
C

δ2
. (4.3)

Then k̂ satisfies

k̂ = O

(
(− ln δ)−2p

δ2

)
.
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