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The problem of deciding whether a distance-regular graph with a given

intersection array exists is a widely studied topic in distance-regular graphs. In

1989 Brouwer, Cohen and Neumaier have compiled a list of intersection arrays that

passed known feasibility conditions, but the existence of corresponding distance-

regular graphs were unknown for many of those arrays. Since then the arrays from

the list are studied and the existence and nonexistence of distance-regular graphs

associated to many arrays from the list are proved but more than half are still

unknown.

In this thesis, we study three intersection arrays from the list, {22, 16, 5; 1,

2, 20}, {27, 20, 10; 1, 2, 18}, and {36, 28, 4; 1, 2, 24}. We prove that distance-regular

graphs with these intersection arrays do not exist. To prove these, we assume that

such graphs exist and derive some combinatorial properties of their local graphs

to get contradictions.
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Chapter 1

Introduction

The problem of deciding whether a distance-regular graph with a given

intersection array exists is a widely studied topic in distance-regular graphs. In

1989 Brouwer, Cohen and Neumaier [5] have compiled a list of intersection ar-

rays that passed known feasibility conditions, but the existence of corresponding

distance-regular graphs were unknown for many of those arrays. Since then the

arrays from the list are studied and the existence and nonexistence of distance-

regular graphs associated to many arrays from the list are proved [11, Section 17]

but more than half are still unknown.

In this chapter we intend to recall some definitions and notations used

in this thesis. Most of them follows Biggs [2], Bondy and Murty [3], and Brouwer,

Cohen and Neumaier [5].

A graph is an ordered pair Γ = (V (Γ), E(Γ)) where V (Γ) is a nonempty

set of elements called vertices and E(Γ) is a set of unordered pairs of (not necessary

distinct) vertices called edges. For any edge e = {x, y} ∈ E(Γ), we say that x and y

are adjacent and we write e = xy. The vertices x and y are called the end vertices

of an edge e. We say that the vertices x and y are incident with an edge e. A

graph Γ is said to be finite whenever both V (Γ) and E(Γ) are finite. The order of

a graph Γ is the number of vertices of Γ. An edge is called a loop whenever it has

identical end vertices. Two or more edges that join the same end vertices are call

parallel edges. A simple graph is a graph having no loops or parallel edges. All

graphs we consider are finite and simple.

A graph Γ′ is a subgraph of a graph Γ whenever V (Γ′) ⊆ V (Γ) and

E(Γ′) ⊆ E(Γ). For a nonempty subset S of V (Γ), the subgraph of Γ induced by S,

is a graph with vertex set S and edge set {xy ∈ E(Γ)|x, y ∈ S}. For a subset S
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of V (Γ), the neighborhood of S in Γ, denoted by NΓ(S), is the set of all vertices

in Γ− S that are adjacent to at least one vertex of S. A neighborhood of a vertex

x in Γ, denoted by NΓ(x), is the set {y ∈ V (Γ)|xy ∈ E(Γ)}. The degree of x in

Γ is |NΓ(x)|. For any graph Γ, we identify Γ with its vertex set V (Γ). We denote

the subgraph of Γ induced by a subset S of V (Γ) by S itself. For a vertex x in Γ,

the subgraph of Γ induced by the neighbors of x is called the local graph of Γ with

respect to x.

A walk in a graph is a finite sequence x0e1x1e2 . . . en−1xn−1enxn of ver-

tices and edges such that for 1 ≤ i ≤ n, the edge ei has end vertices xi−1 and xi.

A path is a walk with distinct vertices. A walk C = x0e1x1e2...en−1xn−1enx0 is

called a cycle whenever the edges e1, e2, . . . , en and the vertices x0, x1, . . . , xn−1 of

C are distinct and C has at least 3 edges. A cycle C has length n, denoted by Cn,

if the number of edges of C is n. We may write a cycle x0e1x1e2...en−1xn−1enx0

by x0x1 . . . xn−1. Two vertices x and y are connected whenever there exists a path

from x to y. We say that a graph Γ is connected whenever every pair of its vertices

are connected; otherwise Γ is disconnected. For vertices x and y in Γ, the distance

between x and y, denoted by d(x, y) is the length of a shortest path between x and

y in Γ. The diameter of Γ, denoted by diam(Γ), is the greatest distance between

any pair of vertices in Γ. A complete graph is a simple graph in which any two

distinct vertices are adjacent. A complete graph with n vertices is denoted by Kn.

A clique of a graph Γ is a maximal complete subgraph of Γ. A coclique of a graph

Γ is a nonempty induced subgraph of Γ with an empty set of edges.

A regular graph is a graph such that each vertex has the same degree.

For an integer k ≥ 0, a graph is k-regular whenever every vertex has degree k;

in other words, a graph has valency k. Let Γ denote a connected graph with

diameter d. For a vertex x ∈ V (Γ) and 0 ≤ i ≤ d let Γi(x) denote the set of

vertices at distance i from x. The graph Γ is called distance-regular whenever for

all 0 ≤ i ≤ d and any two vertices x and y and distance d(x, y) = i, the numbers

bi = |Γi+1(x) ∩ Γ1(y)|, ci = |Γi−1(x) ∩ Γ1(y)| and ai = |Γi(x) ∩ Γ1(y)| depend only

on i where Γ−1(x) and Γd+1(x) are unspecified. The numbers bi, ci and ai are called
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the intersection numbers of Γ. For 0 ≤ i ≤ d define ki = |Γi(x)|. In particular, Γ

is a regular graph with degree k = b0, bd = c0 = 0, c1 = 1 and ci +ai + bi = k for all

0 ≤ i ≤ d. The sequence {b0, . . . , bd−1; c1, . . . , cd} is called the intersection array of

Γ. The distribution diagram for a distance-regular graph with intersection array

{b0, . . . , bd−1; c1, . . . , cd} is shown in Figure 1.1.

Figure 1.1: Distribution diagram for a distance-regular graph with intersection

array {b0, . . . , bd−1; c1, . . . , cd}.

Example 1.1. The Heawood graph is a distance-regular graph on 14 vertices and

diameter 3 with intersection array {3, 2, 2; 1, 1, 3}. The distribution diagram is

shown in Figure 1.3. For a fixed vertex x we display the sets Γi(x) for 0 ≤ i ≤ 3

in Figure 1.4.

Figure 1.2: The Heawood graph.

Figure 1.3: Distribution diagram for the Heawood graph.

Figure 1.4: Illustration for the sets Γi(x) of the Heawood graph.
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A graph Γ is called strongly regular with parameters (|V (Γ)|, k, λ, µ)

whenever Γ is k-regular, each two adjacent vertices have λ common neighbors, and

each two nonadjacent vertices have µ common neighbors. The connected strongly

regular graphs are precisely the distance-regular graphs with diameter two and

k = b0, λ = a1 and µ = c2.

For 0 ≤ i ≤ d, let Ai denote the |V (Γ)| × |V (Γ)| matrix whose rows and

columns are indexed by the vertices of Γ and

(Ai)xy =

1 if d(x, y) = i,

0 if d(x, y) 6= i,

where x, y ∈ V (Γ). We call Ai the i-th distance matrix of Γ. In particular, we

call A = A1 the adjacency matrix of Γ. By construction the matrix Ai is real and

symmetric for 0 ≤ i ≤ d.

The eigenvalues of Γ are the eigenvalues of its adjacency matrix. Since

an adjacency matrix is real and symmetric, its eigenvalues are real numbers. The

multiplicity of an eigenvalue θ is the multiplicity of the root θ of the characteristic

equation det(αI−A) = 0. The spectrum of a graph is the set of numbers which are

eigenvalues together with their multiplicities. If the distinct eigenvalues of a graph

are θ0 > θ1 > · · · > θd and their multiplicities are m0,m1, . . . ,md, respectively,

then we write the spectrum of the graph as θm0
0 θm1

1 · · · θ
md
d .

An incidence geometry (P,L) consists of a set P whose elements are

called points and a set L whose elements are called lines together with an incidence

relation between points and lines, that is, a subset of P ×L. A partial linear space

is an incidence geometry such that every pair of distinct points lie on at most one

common line and every line has at least two points.

Example 1.2. The Fano plane is a partial linear space with 7 points and 7 lines

and each line has 3 points.
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Figure 1.5: The Fano plane.

There are many results concerning existence and nonexistence of

distance-regular graphs, as example:

In [9] Coolsaet and Degraer proved that there exists a unique distance-

regular graph with intersection array {6, 5, 2; 1, 1, 3} on 57 vertices. This graph is

known as the Perkel graph.

In [5, Theorem 11.2.1 (13)] a distance-regular graph with intersection ar-

ray {31, 30, 17; 1, 2, 15} on 1024 vertices was constructed from studying the Kasami

codes.

Brouwer and Pasechnik [6] proved that there exists a distance-regular

graph with intersection array {26, 24, 19; 1, 3, 8} on 729 vertices by constructing

the subgraph of a dual polar graph.

Coolsaet and Jurǐsić [10] established the nonexistence of a distance-

regular graph with intersection array {74, 54, 15; 1, 9, 60} and of distance-regular

graphs with intersection arrays {4r3 + 8r2 + 6r + 1, 2r(r + 1)(2r + 1), 2r2 + 2r +

1; 1, 2r(r+ 1), (2r+ 1)(2r2 + 2r+ 1)} whrer r is a positive integer by using equality

in the Krein conditions.

There are many results that established the nonexistence of distance-

regular graphs by studying the local graphs, as example:

Coolsaet [7] proved that a distance-regular graph with intersection array

{21, 16, 8; 1, 4, 14} does not exist by partitioning a local graph of a hypothetical

distance-regular graph and constructing a partial linear space on the partition.

In [8] Coolsaet proved the nonexistence of a distance-regular graph with

intersection array {13, 10, 7; 1, 2, 7} by showing that its local graph is a disjoint

union of triangles, hexagons and/or heptagons.
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Coolsaet and Jurǐsić [10] proved the nonexistence of a distance-regular

graph with intersection array {19, 12, 5; 1, 4, 15} by showing that its local graph is a

strongly regular graph with parameters (19, 6, 1, 2) and it is known that a strongly

regular graph with these parameters does not exist.

In [12] Gavrilyuk proved that distance-regular graphs with intersection

arrays {55, 36, 11; 1, 4, 45} and {56, 36, 9; 1, 3, 48} do not exist by considering the

coclique of local graphs.

Jurǐsić and Koolen [13] proved that there is no distance-regular graph

of diameter four with intersection array {r(2s + 2rs − r2), (r2 − 1)(2s − r +

1), rs, 1; 1, rs, (r2 − 1)(2s − r + 1), r(2s + 2rs − r2)} where r and s are odd in-

tegers by showing that its local graph is a strongly regular graph and considering

its property.

In this thesis we show the nonexistence of distance-regular graphs with

intersection arrays {22, 16, 5; 1, 2, 20}, {27, 20, 10; 1, 2, 18}, and {36, 28, 4; 1, 2, 24}.

We obtain the results by studying local graphs of hypothetical distance-regular

graphs and their combinatorial properties.



 

Chapter 2

Distance-Regular Graphs

In this chapter we provide some background and known results about

distance-regular graphs. From now on we assume that Γ is a distance-regular graph

with degree k and diameter d.

The following results are necessary conditions for the intersection arrays

of distance-regular graphs.

Lemma 2.1. (See [5, pp. 127].) For 0 ≤ i ≤ d− 1,

(i) k0 = 1,

(ii) k1 = k,

(iii) ki+1ci+1 = kibi,

(iv) |V (Γ)| = 1 + k1 + k2 + · · ·+ kd.

Proof. (i), (ii), (iv) follow from the definition of a distance-regular graph.

(iii) holds because each of ki+1ci+1 and kibi is equal to the number of edges between

Γi(x) and Γi+1(x).

Proposition 2.2. (See [5,Proposition 4.1.6].) The following conditions hold:

(i) k = b0 > b1 ≥ b2 ≥ · · · ≥ bd−1 > bd = 0,

(ii) 1 = c1 ≤ c2 ≤ · · · ≤ cd ≤ k,

(iii) if i+ j ≤ d, then ci ≤ bj,

(iv) there exists an i such that k0 ≤ k1 ≤ · · · ≤ ki and ki+1 ≥ ki+2 ≥ · · · ≥ kd,

(v) all multiplicities are integers.
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Proof. (i) For 1 ≤ i ≤ d, let x, y, z ∈ V (Γ) such that d(x, y) = i and z ∈ Γ1(x) ∩

Γi−1(y). Let w ∈ Γ1(y) ∩ Γi+1(x). Then d(w, z) = i and thus w ∈ Γ1(y) ∩ Γi(z).

Thus Γ1(y)∩Γi+1(x) ⊆ Γ1(y)∩Γi(z). So bi = |Γ1(y)∩Γi+1(x)| ≤ |Γ1(y)∩Γi(z)| =

bi−1.

(ii) For 1 ≤ i ≤ d, let x, y, z ∈ V (Γ) such that d(x, y) = i and z ∈ Γ1(x)∩ Γi−1(y).

Let w ∈ Γ1(y) ∩ Γi−2(z). Then d(w, x) = i − 1 and so w ∈ Γ1(y) ∩ Γi−1(x).

Thus Γ1(y) ∩ Γi−2(z) ⊆ Γ1(y) ∩ Γi−1(x). Therefore ci−1 = |Γ1(y) ∩ Γi−2(z)| ≤

|Γ1(y) ∩ Γi−1(x)| = ci.

(iii) Suppose that i + j ≤ d. Let x, y, z ∈ V (Γ) such that d(x, y) = i + j and

z ∈ Γi(x) ∩ Γj(y). Let w ∈ Γ1(z) ∩ Γi−1(x). Then d(w, y) = j + 1 and hence

w ∈ Γ1(z) ∩ Γj+1(y). So Γ1(z) ∩ Γi−1(x) ⊆ Γ1(z) ∩ Γj+1(y). Therefore ci =

|Γ1(z) ∩ Γi−1(x)| ≤ |Γ1(z) ∩ Γj+1(y)| = bj.

(iv) By (i),(ii) and Lemma 2.1 (iii), we have kj/kj+1 = cj+1/bj ≤ cj+2/bj+1 =

kj+1/kj+2. Then there exists a i such that k0 ≤ k1 ≤ · · · ≤ ki and ki+1 ≥ ki+2 ≥

· · · ≥ kd

(v) It follows from the definition of multiplicity.

The following results give formulas of eigenvalues and their multiplicities

of a distance-regular graph.

Lemma 2.3. (See [5, pp. 127].) For 0 ≤ i ≤ d,

AAi = ci+1Ai+1 + aiAi + bi−1Ai−1

where A is the adjacency matrix of Γ, A−1 = Ad+1 = 0 and b−1 and cd+1 are

unspecified.

Proof. For x, y ∈ V (Γ), we have

(AAi)xy =
∑

z∈V (Γ)

Axz(Ai)zy

=
∑

z∈Γ1(x)∩Γi(y)

1

= |Γ1(x) ∩ Γi(y)|
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=



bi−1 if d(x, y) = i− 1,

ai if d(x, y) = i,

ci+1 if d(x, y) = i+ 1,

0 otherwise

= (ci+1Ai+1 + aiAi + bi−1Ai−1)xy.

The result follows.

Let λ denote an indeterminate. Define polynomials {vi}d+1
i=0 by v0(λ) = 1,

v1(λ) = λ, and for 1 ≤ i ≤ d, λvi(λ) = ci+1vi+1(λ) + aivi(λ) + bi−1vi−1(λ) where

v−1(θ) = vd+1(θ) = 0, and b−1 and cd+1 are unspecified.

Lemma 2.4. (See [5, pp. 127, 128] and [14,Lemma 3.8].) The following condi-

tions hold:

(i) deg vi = i (0 ≤ i ≤ d+ 1),

(ii) the coefficient of λi in vi is (c1c2 · · · ci)−1 (0 ≤ i ≤ d+ 1),

(iii) vi(A) = Ai (0 ≤ i ≤ d),

(iv) vd+1(A) = 0,

(v) the distinct eigenvalues of Γ are precisely the zeros of vd+1.

Define a (d+ 1)× (d+ 1) matrix B as follows:

B =



a0 b0 0

c1 a1 b1

c2 a2
. . .

. . . . . . bd−1

0 cd ad


.

Observe that v(λ)B = λv(λ) where v(λ) = (v0(λ), v1(λ), ..., vd(λ)). So v(λ) is an

eigenvector of B corresponding to eigenvalue λ. The minimum polynomial of B
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has degree d + 1 and satisfies advd(λ) + bd−1vd−1(λ) = λvd(λ) that is λvd(λ) −

advd(λ) − bd−1vd−1(λ) = 0. By Lemma 2.3 and Lemma 2.4, the adjacency matrix

A has the same minimal polynomial as B. Moreover the minimal polynomial of B

is the characteristic polynomial of B.

Proposition 2.5. (See [2,Proposition 21.2].) Γ has d+ 1 distinct eigenvalues k =

θ0 > θ1 > · · · > θd which are the eigenvalues of the matrix B.

Theorem 2.6. (Biggs’ formula) (See [2,Theorem 21.4].) Let θ denote an eigen-

value of Γ. Then the multiplicity m(θ) of θ satisfies

m(θ) =
|V (Γ)|

d∑
i=0

(vi(θ))
2

ki

.

The following proposition gives an upper bound of the size of a clique

of a distance-regular graph in terms of its smallest and largest eigenvalues.

Proposition 2.7. (See [5,Proposition 4.4.6].) Let Γ denote a distance-regular

graph of diameter d ≥ 2 with eigenvalues k = θ0 > θ1 > · · · > θd. Then the

size of a clique K in Γ is bounded by

|K| ≤ 1− k/θd.



 

Chapter 3

The nonexistence of a distance-regular graph with

intersection array {27, 20, 10; 1, 2, 18}

In this chapter we investigate a distance-regular graph with intersection

array {27, 20, 10; 1, 2, 18}. If a distance-regular graph with such array exists, then

by Lemma 2.1, the number of vertices is 448 and the valency is 27. By Proposition

2.5 and Theorem 2.6, the spectrum of the graph is 271996(−1)216(−5)135 and the

distribution diagram is shown in Figure 3.1.

Figure 3.1: Distribution diagram for a distance-regular graph with intersection

array {27,20,10;1,2,18}.

In addition, the distance-three graph is a strongly regular graph with

parameters (243, 150, 50, 50) which corresponds to a partial geometry pg(15, 9, 5);

according to Brouwer [4], it is unknown whether such a strongly regular graph and

a partial geometry exist.

In this chapter we prove the nonexistence of a distance-regular graph

with intersection array {27, 20, 10; 1, 2, 18}. In particular we assume that such a

graph exists and derive some combinatorial properties of its local graph to display

the contradiction.

The following results are combinatorial properties of a distance-regular

graph.

Lemma 3.1. Let Γ denote a distance-regular graph and fix a vertex ∞ of Γ. Then

each vertex in Γ1(∞) is on at least d1
2
(a2

1 + 1− |Γ1(∞)|)e triangles.



 12

Proof. Let u denote a vertex of Γ1(∞). Let u1, u2, ..., ua1 denote the distinct neigh-

bors of u in Γ1(∞). Let N denote the number of triangles of Γ1(∞) that contain u.

Observe that N is also the number of edges uiuj where 1 ≤ i < j ≤ a1. Thus the

number of vertices of Γ1(∞) with distance at most 2 from u is 1+a1+(a1−1)a1−2N .

Therefore a vertex u is on at least d1
2
(a2

1 + 1− |Γ1(∞)|)e triangles in Γ1(∞).

Lemma 3.2. Let Γ denote a distance-regular graph with c2 = 2. Fix a vertex ∞ of

Γ. Let ∆ = Γ1(∞) denote the subgraph of Γ induced by all vertices of Γ adjacent

to ∞. If ∆ contains a cycle C of length 4, then the subgraph induced by C is a

complete graph K4.

Proof. Suppose that ∆ contains a cycle C of length 4. Suppose there exist vertices

u and v of C that are not adjacent in ∆. Then the distance between u and v is 2

and there exist two distinct paths from u to v of length 2 in C and a path u∞v in

Γ which contradicts the fact that c2 = 2. Thus any two distinct vertices of C are

adjacent. Therefore the subgraph induced by C is a complete graph K4.

From now on we assume that Γ is a distance-regular graph with inter-

section array {27, 20, 10; 1, 2, 18}. Then Γ has eigenvalues 27, 9,−1 and −5. Fix a

vertex ∞ of Γ. Let ∆ = Γ1(∞) denote the subgraph of Γ induced by all vertices

of Γ adjacent to ∞. Then ∆ is a 6-regular graph on 27 vertices. The following

results give some properties of the local graph ∆. By Lemma 3.2 we have that two

nonadjacent vertices in ∆ have at most one common neighbor in ∆.

Corollary 3.3. ∆ does not contain a complete subgraph Ki for all i ≥ 6.

Proof. By Proposition 2.7, the size of a clique in Γ is at most 6. Thus the size of

a clique in ∆ is at most 5.

Lemma 3.4. Each vertex in ∆ is on at least six subgraphs K3’s of ∆.

Proof. Let u denote a vertex of ∆ and u1, u2, u3, u4, u5, u6 denote the distinct neigh-

bors of u in ∆. From Lemma 3.1 the number of edges uiuj for 1 ≤ i < j ≤ 6 is

at least 5. By the pigeonhole principle, there exists one vertex of {ui|1 ≤ i ≤ 6}
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which is incident with at least 2 edges of the N edges uiuj so we may assume

that u1 is adjacent to u2 and u3. By Lemma 3.2 applied to the cycle uu2u1u3, the

vertices u2 and u3 are adjacent. Thus u is on at least six subgraphs K3’s of ∆.

By Lemma 3.2, Corollary 3.3 and Lemma 3.4, there are 3 possibilities

for the subgraph of ∆ induced by a vertex w and its neighbors as shown in Figure

3.2.

Figure 3.2: The 3 possibilities for the subgraph of ∆ induced by a vertex w and

its neighbors.

Lemma 3.5. ∆ contains a complete subgraph K5.

Proof. Suppose that there is no a complete subgraph K5 in ∆. Then we have the

first possibility of Figure 3.2, that is, each vertex is on two subgraphs K4’s of ∆.

Thus the total number of subgraphs K4’s in ∆ is 27× 2/4, a contradiction.

Observe that we always have the second or the third possibility of Figure

3.2. The number of subgraphs K5’s in ∆ is 27/5, but that is not an integer, a

contradiction. Therefore such graph Γ does not exist and we have the following

theorem.

Theorem 3.6. A distance-regular graph with intersection array {27, 20, 10; 1, 2,

18} does not exist.



 

Chapter 4

The nonexistence of a distance-regular graph with

intersection array {36, 28, 4; 1, 2, 24}

In this chapter we consider the intersection array {36, 28, 4; 1, 2, 24} [5,

pp. 428]. If a distance-regular graph with such array exists, then by Lemma 2.1,

the number of vertices is 625 = 54 and the valency is 36. By Proposition 2.5 and

Theorem 2.6, the spectrum of the graph is 36111846120(−4)420 and the distribution

diagram is shown in Figure 4.1.

Figure 4.1: Distribution diagram for a distance-regular graph with intersection

array {36,28,4;1,2,24}.

In addition, the distance-two graph is a strongly regular graph with pa-

rameters (625, 504, 403, 420) which corresponds to an orthogonal array OA(25, 21);

according to Brouwer [4], such a strongly regular graph exists.

In this chapter we apply the result in Chapter 3 to prove the nonex-

istence of a distance-regular graph with intersection array {36, 28, 4; 1, 2, 24}. In

particular we assume that such a graph exists and show that its local graph is a

disjoint union of complete graphs K8’s to get a contradiction.

From now on we assume that Γ is a distance-regular graph with inter-

section array {36,28,4;1,2,24}. Then Γ has eigenvalues 36, 11, 6 and −4. Fix a

vertex ∞ of Γ. Let ∆ = Γ1(∞) denote the subgraph of Γ induced by all vertices

of Γ adjacent to ∞. Then ∆ is a 7-regular graph on 36 vertices.

Corollary 4.1. Each vertex in ∆ is on at least seven complete subgraphs K3’s of

∆.
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Proof. The result follows from Lemma 3.1.

By Lemma 3.2 and Corollary 4.1, there are 6 possibilities for the sub-

graph of ∆ induced by a vertex u and its neighbors as shown in Figure 4.2.

Figure 4.2: The 6 possibilities for the subgraph of ∆ induced by a vertex u and its

neighbors.

Observe that each vertex of ∆ is on a complete subgraph K5. The

following three lemmas show that a vertex of ∆ and its neighbors induce a complete

subgraph K8.

Lemma 4.2. Each vertex of ∆ is on a complete subgraph K6.

Proof. Let u denote a vertex of ∆. Let K denote a complete subgraph K5 that

contains u. Let K = {u, v, w, x, y}. For t ∈ K, let N∆−K(t) = {t1, t2, t3}. We first

show that there exist two distinct vertices in K which have a common neighbor

in ∆ − K. Suppose not. Then ui, vi, wi, xi and yi are distinct for all 1 ≤ i ≤ 3.

Let ui1, ui2, ui3 and ui4 denote neighbors of ui such that ui, ui1, ui2, ui3 and ui4

induce a complete subgraph K5 for 1 ≤ i ≤ 3. Then uj /∈ {ui1, ui2, ui3, ui4} for

i 6= j by Lemma 3.2. The vertices uij and ulm are distinct for all 1 ≤ i < l ≤ 3
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and 1 ≤ j,m ≤ 4 by Lemma 3.2. Since ∆ has 36 vertices, we let ∆ − (K ∪

{ui, vi, wi, xi, yi, uij|1 ≤ i ≤ 3, 1 ≤ j ≤ 4}) = {s1, s2, s3, s4}. By Lemma 3.2, the

vertex v1 is adjacent to at most one vertex in {uij|1 ≤ j ≤ 4} for each 1 ≤ i ≤ 3 and

v1 is not adjacent to uj, wj, xj and yj for all 1 ≤ j ≤ 3. Without loss of generality,

we may assume that v1 is adjacent to s1. By Lemma 3.2, the vertices v2 and v3 are

not adjacent to s1. By similar arguments, we may assume that v2 is adjacent to

s2, and v3 is adjacent to s3. Then v1 is not adjacent to s2 or s3 by Lemma 3.2. By

Corollary 4.1 applied to v, we may assume that v1 and v2 are adjacent. Since v1

has degree 7 and v1 is not adjacent to s2 or s3, we may assume that v1 is adjacent

to u11 and u21. By Corollary 4.1 applied to v1, the subgraph induced by a vertex

v1 and its neighbors except v and v2 contains a complete subgraph K5 and we may

assume that u11 is on such a subgraph. It follows that u11 has degree at least 8, a

contradiction. Thus there exist two distinct vertices in K which have a common

neighbor in ∆−K. Without loss of generality, we may assume that u and v have

a common neighbor in ∆−K, say z. Then z is adjacent to w, x and y by Lemma

3.2. The subgraph induced by u, v, w, x, y and z is a complete graph K6.

Lemma 4.3. Each vertex of ∆ is on a complete subgraph K7.

Proof. Let u denote a vertex of ∆. Let F denote a complete subgraph K6 that

contains u. Let F = {u, v, w, x, y, z}. For t ∈ F , let N∆−F (t) = {t1, t2}. We first

show that there exist two distinct vertices in F which have a common neighbor in

∆−F . Suppose not. Then ui, vi, wi, xi, yi and zi are distinct for all 1 ≤ i ≤ 2. By

Lemma 3.2, the vertex ui is not adjacent to vj, wj, xj, yj and zj for all 1 ≤ i, j ≤ 2.

Let ui1, ui2, ui3, ui4 and ui5 denote neighbors of ui such that ui, ui1, ui2, ui3, ui4 and

ui5 induce a complete subgraph K6 for 1 ≤ i ≤ 2. Then uj /∈ {ui1, ui2, ui3, ui4, ui5}

for i 6= j by Lemma 3.2. The vertices uij and ulm are distinct for all 1 ≤ i < l ≤ 2

and 1 ≤ j,m ≤ 5 by Lemma 3.2. Since ∆ has 36 vertices, we let ∆ − (F ∪

{ui, vi, wi, xi, yi, zi, uij|1 ≤ i ≤ 2, 1 ≤ j ≤ 5}) = {s1, s2, ..., s8}. Consider a vertex

v1. By Lemma 3.2, the vertex v1 is adjacent to at most one vertex in {uij|1 ≤ j ≤ 5}

for each 1 ≤ i ≤ 2 and the vertex v1 is not adjacent to uj, wj, xj, yj and zj for all
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1 ≤ j ≤ 2. Without loss of generality, we may assume that v1 is adjacent to si for

all 1 ≤ i ≤ 3. By Lemma 3.2, the vertex v2 is not adjacent to si for all 1 ≤ i ≤ 3.

By similar arguments, we may assume that v2 is adjacent to si for all 4 ≤ i ≤ 6.

Consider a vertex w1. By Lemma 3.2, the vertex w1 is adjacent to at most one

vertex in {uij|1 ≤ j ≤ 5} for each 1 ≤ i ≤ 2, at most one vertex in {s1, s2, s3},

at most one vertex in {s4, s5, s6} and w1 is not adjacent to uj, vj, xj, yj and zj

for all 1 ≤ j ≤ 2. We may assume that w1 is adjacent to s7. By Lemma 3.2,

the vertex w2 is not adjacent to s7. By similar arguments, we assume that w2 is

adjacent to s8. Consider the vertices x1, x2, y1, y2, z1 and z2. By similar arguments,

we may assume that x1, y1 and z1 are adjacent to s7 and x2, y2 and z2 are adjacent

to s8. Then s7 is on at most six complete subgraphs K3’s of ∆ which contradicts

Corollary 4.1. Thus there exist two distinct vertices in F which have a common

neighbor in ∆− F . Without loss of generality, we may assume that u and v have

a common neighbor in ∆−F , say t. Then t is adjacent to w, x, y and z by Lemma

3.2. The subgraph induced by t, u, v, w, x, y and z is a complete graph K7.

Lemma 4.4. Each vertex of ∆ is on a complete subgraph K8.

Proof. Let u denote a vertex of ∆. Let G denote a complete subgraph K7 that

contains u. Let G = {t, u, v, w, x, y, z}. For s ∈ G, let N∆−G(s) = {s1}. We first

show that there exist two distinct vertices in G which have a common neighbor in

∆−G. Suppose not. Then t1, u1, v1, w1, x1, y1 and z1 are distinct. By Lemma 3.2,

the vertex t1 is not adjacent to u1, v1, w1, x1, y1 and z1. Let N∆−G(t1) = {t1i|1 ≤

i ≤ 6}. By Corollary 4.1, Lemma 4.2 and Lemma 4.3 applied to t1, the vertices

t1i and t1j are adjacent for all 1 ≤ i < j ≤ 6. By Lemma 3.2, the vertex u1 is

adjacent to at most one vertex in {t1i|1 ≤ i ≤ 6}. By Corollary 4.1, Lemma 4.2

and Lemma 4.3 applied to u1, there exist six vertices u11, u12, u13, u14, u15 and u16

of ∆ − (G ∪ {t1, u1, v1, w1, x1, y1, z1, t1i|1 ≤ i ≤ 6}) such that u1i is adjacent u1

and u1j for all 1 ≤ i < j ≤ 6. By similar arguments, any pair of vertices among

t1, u1, v1, w1, x1, y1 and z1 are not adjacent and do not have common neighbors.

Therefore, |∆| ≥ 7 + 7 + 7× 6 = 56 vertices, a contradiction. Thus there exist two



 18

distinct vertices in G which have a common neighbor in ∆ − G. Without loss of

generality, we may assume that u and v have a common neighbor in ∆−G, say s.

Then s is adjacent to t, w, x, y and z by Lemma 3.2. Observe that the subgraph

induced by s, t, u, v, w, x, y and z is a complete graph K8.

By Lemma 4.4 and since ∆ is 7-regular, each component of ∆ is a

complete graph K8. Since |∆| = 36 and 8 - 36, such graph Γ does not exist and

we have the following theorem.

Theorem 4.5. A distance-regular graph with intersection array {36, 28, 4; 1, 2, 24}

does not exist.



 

Chapter 5

The nonexistence of a distance-regular graph with

intersection array {22, 16, 5; 1, 2, 20}

In this chapter we prove that a distance-regular graph with intersection

array {22, 16, 5; 1, 2, 20} does not exist. Our construction is inspired by [7] where

the author cleverly partitioned a local graph of a hypothetical distance-regular

graph with intersection array {21, 16, 8; 1, 4, 14} and constructed a partial linear

space on the partition. If a distance-regular graph with such array exists, then by

Lemma 2.1, the number of vertices is 243 = 35, which is relatively small, and the

valency is 22. By Proposition 2.5 and Theorem 2.6, the spectrum of the graph is

221766(−2)132(−5)44 and the distribution diagram is shown in Figure 5.1.

Figure 5.1: Distribution diagram for a distance-regular graph with intersection

array {22,16,5;1,2,20}.

In addition, the distance-two graph is strongly regular with parame-

ters (243, 176, 130, 120); according to Brouwer [4], it is unknown whether such a

strongly regular graph exists. Incidentally, there is a very interesting strongly reg-

ular graph on 243 vertices, valency 22, and µ = 2: the Berlekamp-Van Lint-Seidel

graph that corresponds to the ternary Golay code [1].

We apply the result in Chapter 3 to show that a distance-regular graph

with intersection array {22, 16, 5; 1, 2, 20} does not exist. From now on we as-

sume that Γ is a distance-regular graph with intersection array {22, 16, 5; 1, 2, 20}.

Eigenvalues of Γ are 22, 7,−2 and −5. Fix a vertex ∞ of Γ. Let ∆ = Γ1(∞)

denote the subgraph of Γ induced by all vertices of Γ adjacent to ∞. Then ∆ is
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a 5-regular graph on 22 vertices. The following results give some combinatorial

properties of the local graph ∆ of Γ.

Corollary 5.1. ∆ does not contain a complete subgraph Ki for all i ≥ 5.

Proof. By Proposition 2.7, the size of a clique in Γ is at most 5. Thus the size of

a clique in ∆ is at most 4.

Lemma 5.2. Each vertex in ∆ is on at least two subgraphs K3’s of ∆.

Proof. Observe that a1 = 5. By Lemma 3.1, the result follows.

By Lemma 3.2, Corollary 5.1 and Lemma 5.2, there are 3 possibilities

for the subgraph of ∆ induced by a vertex u and its neighbors as shown in Figure

5.2.

Figure 5.2: The 3 possibilities for the subgraph of ∆ induced by a vertex u and its

neighbors.

Lemma 5.3. ∆ contains a complete subgraph K4.

Proof. Suppose not. Then the subgraph of ∆ induced by a vertex in ∆ and its

neighbors must be isomorphic to the graph on the right in Figure 5.2. Thus each

vertex in ∆ is on exactly two K3’s so |{(u,K3)|K3 ⊆ ∆, u ∈ K3}| = 22 × 2 = 44.

Since the number of vertices of K3 is three, 3|44, a contradiction. Thus ∆ contains

a complete subgraph K4.

Now we partition the vertex set of the local graph ∆. For the rest of

this chapter, fix a complete subgraph K on four vertices of ∆. Let S = ∆1(K) =

{y ∈ ∆−K|y is adjacent to some vertices in K} be the neighborhood of K in ∆

and define R = ∆−K − S.
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Lemma 5.4. K has size 4, S has size 8, and R has size 10.

Proof. Clearly, |K| = 4. Let u1, u2, u3 and u4 denote the vertices in K. Since ∆

is 5-regular, for each 1 ≤ i ≤ 4 there exist two vertices in S which are adjacent

to ui. If ui and uj have a common neighbor s in S for some 1 ≤ i < j ≤ 4,

then by Lemma 3.2, the vertex s is adjacent to ul for all 1 ≤ l ≤ 4 and hence

{s, u1, u2, u3, u4} induces a K5 in ∆ which contradicts Corollary 5.1. Thus ui and

uj have no common neighbors in S for all 1 ≤ i < j ≤ 4. Therefore |S| = 8, and

hence |R| = |∆| − |K| − |S| = 22− 4− 8 = 10.

Let u1, u2, u3 and u4 denote the vertices of K. For 1 ≤ i ≤ 4 let s2i−1

and s2i denote the vertices of S which are adjacent to ui.

Lemma 5.5. The only possible edges in S are s2i−1s2i for 1 ≤ i ≤ 4. Moreover,

the vertices s2i−1 and s2i have no common neighbors in R.

Proof. The result follows from Lemma 3.2.

To further investigate the structure of R we define an incidence geometry

G = (R, S) where elements of R are regarded as points and elements of S are

regarded as lines, and a point r ∈ R is on a line s ∈ S if and only if the vertices r

and s are adjacent in Γ.

Lemma 5.6. G is a partial linear space. Moreover each line in G is incident with

at least 3 points.

Proof. Suppose two distinct points r and r′ of R are incident with two distinct

lines s and s′. Then the vertices s, r, s′ and r′ form a cycle in ∆. By Lemma 3.2,

the vertices s and s′ are adjacent. Thus by Lemma 5.5 the vertices s and s′ are

adjacent to a common vertex u in K. Now u, s, r and s′ form a cycle in ∆. By

Lemma 3.2, the vertices u and r are adjacent, a contradiction. Thus every pair of

distinct points lie on at most one common line.

By Lemma 5.5 and since ∆ is 5-regular, it follows that each vertex of

S is adjacent to at least 3 vertices of R, that is, each line in S is incident with at

least 3 points in R. Therefore G is a partial linear space.
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Lemma 5.7. One of the following two conditions holds:

1). The number of edges in S is 3. The number of edges in R is 12. The number

of edges between S and R is 26.

2). The number of edges in S is 4. The number of edges in R is 13. The number

of edges between S and R is 24.

Proof. First we will show that the subgraph induced by S contains at least 3 edges.

Without loss of generality, we may assume that s7 and s8 are not adja-

cent. Then s7 and s8 are lines of size 4 in G. By Lemma 5.5, the lines s7 and s8

have no common points.

Suppose that s1 is a line of size 4 in G. Then s1 and s2 are not adjacent

and hence s2 is also a line of size 4 in G. By Lemma 5.5, the lines s1 and s2 have

no common points. Since every pair of distinct points lie on at most one common

line and |R| = 10, the line s1 is incident with one point of s7, one point of s8 and

other two points not on s7 or s8. Similarly, the line s2 is incident with one point

of s7, one point of s8 and two points not on s1, s7 or s8. Thus G has more than 10

points, a contradiction. Therefore s1 is a line of size 3 in G. Similarly, si is a line

of size 3 in G for all 2 ≤ i ≤ 6.

Thus s2i−1 is adjacent to s2i for all 1 ≤ i ≤ 3 and hence the subgraph

induced by S contains at least 3 edges.

If S contains exactly 4 edges, then the number of edges between S and

R is 3×8 = 24 and the number of edges in R is (5×10−24)/2 = 13. If S contains

exactly 3 edges, then the number of edges between S and R is (3×6)+(4×2) = 26

and the number of edges in R is (5× 10− 26)/2 = 12.

Lemma 5.8. Each vertex in R has degree at least 2 in R. Moreover there are at

least 4 vertices in R with degree 2 in R.

Proof. If a vertex r in R is adjacent to 5 vertices in S, then r is adjacent to s2i−1

and s2i for some 1 ≤ i ≤ 4. The vertices r, s2i−1, ui and s2i form a cycle in ∆. By

Lemma 3.2, the vertices ui and r are adjacent, a contradiction. Thus each vertex

in R is adjacent to at most 4 vertices in S.
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Suppose that there exists a vertex r1 in R such that the number of edges

from r1 to S is 4. By Lemma 3.2, we may assume that r1 is adjacent to s1, s3, s5

and s7. By Lemma 5.2 applied to r1, there exist i, j ∈ {1, 3, 5, 7}, i 6= j, such that

si and sj are adjacent which contradicts Lemma 5.5. Thus there are no vertices

in R which are adjacent to 4 vertices in S. That is each vertex in R has degree at

least 2 in R.

If there are at most 3 vertices in R with degree 2 in R, then the number

of edges between R and S is less than or equal to (3 × 3) + (7 × 2) = 23 which

contradicts Lemma 5.7. Thus there are at least 4 vertices in R with degree 2 in

R.

By Lemma 5.7 and Lemma 5.8, there are 8 possibilities for the degree

sequence of R as shown in Table 5.3.

The number of vertices in

the induced subgraph R with degree i |E(R)|

i = 2 i = 3 i = 4 i = 5

4 6 0 0 13

5 4 1 0 13

6 3 0 1 13

6 2 2 0 13

6 4 0 0 12

7 2 1 0 12

8 0 2 0 12

8 1 0 1 12

Figure 5.3: The 8 possibilities for the degree sequence of R.

By Lemma 5.7, either |E(R)| = 12 or |E(R)| = 13. We now rule out

both possibilities. We start with the latter.

Lemma 5.9. |E(R)| 6= 13.
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Proof. Suppose that |E(R)| = 13. By Lemma 5.7, the subgraph induced by S

contains 4 edges and the number of edges between S and R is 24. Thus each

vertex in S is adjacent to 3 vertices in R. By Lemma 3.2 and Lemma 5.2, there

are 8 distinct edges e1, e2, . . . , e8 in R such that si is adjacent to both ends of ei

for 1 ≤ i ≤ 8. Let T = {e1, e2, . . . , e8}.

Suppose that there exists a vertex r ∈ R which has degree 5 in R.

Let r1, r2, r3, r4 and r5 denote the distinct neighbors of r in R. Then for each

i ∈ {1, 2, 3, 4, 5}, rri /∈ T . Since R has 13 edges, E(R)−{rr1, rr2, rr3, rr4, rr5} = T .

By Lemma 5.2 applied to r, we may assume that r1 and r2 are adjacent. Thus

ei = r1r2 for some 1 ≤ i ≤ 8. So the vertices si, r1, r and r2 form a cycle in ∆ and

hence r is adjacent to si, a contradiction. Therefore each vertex in R has degree

at most 4 in R. By Lemma 5.8, each vertex in R is adjacent to 1, 2 or 3 vertices

in S.

Now suppose that r is a vertex in R with degree 3 in R. Let NR(r) =

{r1, r2, r3}. Without loss of generality, we may assume that NS(r) = {s1, s3}.

Case 1 : si and rj are not adjacent for all i ∈ {1, 3} and j ∈ {1, 2, 3}.

Then rj and rk are adjacent for all 1 ≤ j < k ≤ 3 by Lemma 5.2 applied

to r. By Lemma 3.2, the edges rr1, rr2, rr3, r1r2, r1r3, r2r3 /∈ T . Since R contains

13 edges, 8 = |T | ≤ |E(R) − {rr1, rr2, rr3, r1r2, r1r3, r2r3}| = 7, a contradiction.

Thus Case 1 cannot occur.

Case 2 : s1 is adjacent to exactly one vertex in {r1, r2, r3}.

Without loss of generality, we may assume that s1 is adjacent to r3.

Then s1 is not adjacent to r1 and r2. Since s1 is adjacent to 3 vertices in R, there

exists a vertex r4 ∈ R−{r, r1, r2, r3} such that r4 is adjacent to s1. By Lemma 3.2,

the vertex s2 is not adjacent to ri for 1 ≤ i ≤ 4. Since s2 is adjacent to 3 vertices

in R, there exist r5, r6, r7 ∈ R−{r, r1, r2, r3, r4} such that r5, r6, r7 are adjacent to

s2. Since R has 10 vertices, there exist r8, r9 ∈ R − {r, ri|1 ≤ i ≤ 7}. By Lemma

3.2, the vertex r4 is not adjacent to ri for 1 ≤ i ≤ 7. By Lemma 5.8, the vertex

r4 is adjacent to r8 and r9. By Lemma 3.2, the vertex r3 is not adjacent to ri for

1 ≤ i ≤ 9. Thus r3 has degree 1 in R, a contradiction to Lemma 5.8. Hence Case
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2 cannot occur.

Case 3 : s1 is adjacent to exactly two vertices in {r1, r2, r3}.

Without loss of generality, we may assume that s1 is adjacent to r2 and

r3. Then s1 is not adjacent to r1. By Lemma 3.2, r2 is adjacent to r3, and s3 is

not adjacent to r2 and r3. By Case 2 applied to r and s3, the vertex s3 is not

adjacent to r1. By Lemma 3.2,the vertex r1 is not adjacent to s2 and s4. So r1

has at most two neighbors in S by Lemma 5.5 that is r1 has degree at least 3 in

R. By Lemma 3.2, the vertex r1 is not adjacent to r2 and r3. Then there exist

r4, r5 ∈ R − {r, r1, r2, r3} such that r4, r5 are adjacent to r1. Since each vertex in

R is adjacent to at least one vertex in S, we may assume that r1 is adjacent to s5.

By Lemma 3.2, the vertex s3 is not adjacent to r4 and r5. Since s3 is adjacent to 3

vertices in R, there exist r6, r7 ∈ R−{r, r1, r2, r3, r4, r5} such that r6, r7 is adjacent

to s3. By Lemma 5.2 applied to s3, the vertex r6 is adjacent to r7. By Lemma 3.2,

s4 is not adjacent to r, r1, r2, r3, r6, r7, and s4 is adjacent to at most one vertex in

{r4, r5}. Since s4 is adjacent to 3 vertices in R and |R| = 10, we may assume that

s4 is adjacent to r4, r8 and r9 where {r8, r9} = R− {r, r1, r2, . . . , r7}. Then r1 and

r8 are not adjacent; otherwise r1, r8, s4 and r4 form a cycle in ∆ and hence r1 is

adjacent to s4, a contradiction. Similarly, the vertices r1 and r9 are not adjacent.

By Lemma 3.2, the vertex r1 is not adjacent to r6 and r7. Thus r1 has degree 3

in R. By Lemma 3.2, we may assume that r1 is adjacent to s7. By Case 1 and

Case 2 appiled to r1 and s5, we may assume that s5 is adjacent to r4 and r5. Then

r4 and r5 are adjacent by Lemma 3.2. Since s2 is adjacent to 3 vertices in R and

by Lemma 3.2, the vertex s2 is adjacent to one vertex in {r4, r5}, one vertex in

{r6, r7} and one vertex in {r8, r9}. Without loss of generality, we may assume that

s2 is adjacent to r6 and r8. Then s2 and r4 are not adjacent; otherwise s2, r4, s4

and r8 form a cycle in ∆ and hence s2 is adjacent to s4, a contradiction. Thus s2

is adjacent to r5. The vertices s7 and r4 are not adjacent; otherwise the vertices

s7, r4, s5 and r1 form a cycle in ∆ and hence s5 is adjacent to s7, a contradiction.

By Lemma 3.2, the vertex r4 is not adjacent to s6 and s8. Thus r4 has degree 3 in

R. The vertex r4 is not adjacent to r2 and r3; otherwise the vertices r4, ri, r and
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r1 form a cycle in ∆ where i ∈ {2, 3} and hence r4 is adjcent to r, a contradiction.

The vertices r4 and r6 are not adjcent; otherwise the vertices r4, r6, s3 and s4 form

a cycle in ∆ and hence r4 is adjcent to s3, a contradiction. Similarly, the vertex

r4 is not adjacent to r7. Hence r4 is adjacent to either r8 or r9. The vertices r4

and r8 are not adjacent; otherwise r4, r8, s2 and r5 form a cycle in ∆ and hence

r4 is adjacent to s2, a contradiction. It follows that r4 is adjacent to r9. By Case

2 appiled to r4 and s4, the vertex s4 is adjacent to r5. Hence s4 has degree more

than 5 in ∆, a contradiction. Therefore Case 3 cannot occur.

By Case 1, Case 2 and Case 3, |E(R)| 6= 13.

Lemma 5.10. |E(R)| 6= 12.

Proof. Suppose that |E(R)| = 12. Then the subgraph induced by S contains 3

edges. Without loss of generality, we may assume that s2i−1 and s2i are adjacent

for i ∈ {1, 2, 3} but s7 and s8 are not adjacent. By Lemma 5.7, the number of

edges between S and R is 26. By Lemma 3.2 and Lemma 5.2, there are 10 distinct

edges e1, e2, . . . , e10 in R such that si is adjacent to both ends of ei for 1 ≤ i ≤ 6,

s7 is adjacent to both ends of e7 and e8 and s8 is adjacent to both ends of e9 and

e10. Let T = {e1, e2, . . . , e10}. By similar arguments as in Lemma 5.9, each vertex

in R has degree at most 4 in R.

Suppose that there exists a vertex r in R which has degree 4 in R.

Let r1, r2, r3 and r4 denote distinct neighbors of r in R. Since |E(R) − T | = 2,

we may assume that rr1, rr2 ∈ T and r is adjacent to s7. By Lemma 3.2, the

vertex r1 is adjacent to r2. By construction, r1r2 /∈ T . Since rr1 and rr2 are

two edges with both ends adjacent to s7, it follows that rr3, rr4 /∈ T . Hence

13 = |T ∪ {r1r2, rr3, rr4}| ≤ |E(R)| = 12, a contradiction. Thus there are no

vertices in R which has degree 4 in R.

By Table 5.3, there exist 6 vertices in R with degree 2 in R, and 4

vertices in R with degree 3 in R. By Lemma 5.6, each line in G is incident with at

least 3 points. Since s7 and s8 are not adjacent, s7 and s8 are lines of size 4 in G.

By Lemma 5.5, the lines s7 and s8 have no common points. Let the point set of G
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be {ri|1 ≤ i ≤ 10} such that r3, r4, r5, r6 lie on s7 and r7, r8, r9, r10 lie on s8. Note

that any line other than s7 and s8 must be incidence with either r1 or r2. If r1 lies

on exactly 2 lines, then G has at most 7 lines, a contradiction. Since every vertex

in R is adjacent to 2 or 3 vertices in S, r1 lies on 3 lines in G. Similarly, r2 lies

on 3 lines in G. The points r1 and r2 are not on the same line; otherwise G has

at most 7 lines, a contradiction. If there exist at least 3 points in s7 each of which

lies on exactly two lines, then G has at most 7 lines, a contradiction. So there are

2 points on the line s7 which lie on exactly two lines. Similarly, there are 2 points

on the line s8 which lie on exactly two lines. Without loss of generality, we may

assume that each of r5, r6, r9 and r10 lies on exactly 2 lines and each of r3, r4, r7 and

r8 lies on exactly 3 lines. Then there are 3 possibilities for the incidence geometry

G on 10 points and 8 lines satisfying these properties as shown in Figure 5.4.

(a) (b)

(c)

Figure 5.4: The 3 possibilities for the incidence geometry G.



 28

In each figure a pair of solid lines represents s7 and s8, and each pair of

nonsolid lines of same style represents s2i−1 and s2i for 1 ≤ i ≤ 3. If a point r is on

a line s2i−1 and a point r′ is on a line s2i, then the vertex r is not adjacent to r′;

otherwise r, r′, s2i and s2i−1 form a cycle in ∆, and by Lemma 3.2, the point r is

on both s2i−1 and s2i, a contradiction. For convenience we call this the parallelity

of lines.

In Figure 5.4a, by the parallelity of lines, the vertex r3 is not adjacent

to r4, r6, and the vertex r5 is not adjacent to r4. Suppose that the vertices r5 and

r6 are adjacent. The vertices r3 and r5 are not adjacent; otherwise the vertices

r3, r5, r6 and s7 form a cycle in ∆, and by Lemma 3.2, the vertices r3 and r6 are

adjacent, a contradiction. The vertices r4 and r6 are not adjacent; otherwise the

vertices r4, r6, r5 and s7 form a cycle in ∆, and by Lemma 3.2, the vertices r4 and

r5 are adjacent, a contradiction. Thus the vertex s7 is on exactly one subgraph K3

of ∆ which contradicts Lemma 5.2. Hence the vertices r5 and r6 are not adjacent.

The vertex r6 is not adjacent to ri for i ∈ {1, 2}; otherwise the vetices r6, ri, sj and

r4 form a cycle in ∆ where sj is the line containing both ri and r4, and by Lemma

3.2, the point r6 is on sj, a contradiction. Since r6 has degree 3 in R, the vertex

r6 is adjacent to 2 vertices u, v in {r7, r8, r9, r10}. Thus the vertices r6, u, s8 and v

form a cycle in ∆, and by Lemma 3.2, the point r6 is on s8, a contradiction.

In Figure 5.4b, by the parallelity of lines, the vertex r3 is not adjacent

to r4, and the vertex r5 is not adjacent to r6. Since r2 has degree 2 in R, the vertex

r2 is adjacent to r6 and r9 by the parallelity of lines. The vertices r4 and r6 are

not adjacent; otherwise the vertices r4, r6, r2 and sj forms a cycle in ∆ where sj

is the line containing both r2 and r4, and by Lemma 3.2, the point r6 is on sj,

a contradiction. Suppose that the vertices r3 and r5 are adjacent. The vertices

r3 and r6 are not adjacent; otherwise the vertices r3, r6, s7 and r5 form a cycle in

∆, and by Lemma 3.2, the vertices r5 and r6 are adjacent, a contradiction. The

vertices r4 and r5 are not adjacent; otherwise the vertices r4, r5, r3 and s7 form a

cycle in ∆, and by Lemma 3.2, the vertices r3 and r4 are adjacent, a contradiction.

Hence the vertex s7 is on exactly one subgraph K3 of ∆ which contradicts Lemma
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5.2. Thus the vertices r3 and r5 are not adjacent. The vertex r5 is not adjacent

to ri for i ∈ {1, 2}; otherwise the vertices r5, ri, sj and r4 form a cycle in ∆ where

sj is the line containing both ri and r4, and by Lemma 3.2, the point r5 is on sj,

a contradiction. Since r5 has degree 3 in R, the vertex r5 is adjacent to 2 vertices

u, v in {r7, r8, r9, r10}. Thus the vertices r5, u, s8 and v form a cycle in ∆, and by

Lemma 3.2, the point r5 is on s8, a contradiction.

In Figure 5.4c, by the parallelity of lines, the vertex r7 is not adjacent

to r8, r10, and the vertex r9 is not adjacent to r8. Suppose that the vertices r9 and

r10 are adjacent. The vertices r7 and r9 are not adjacent; otherwise the vertices

r7, r9, r10 and s8 form a cycle in ∆, and by Lemma 3.2, the vertices r7 and r10 are

adjacent, a contradiction. The vertices r8 and r10 are not adjacent; otherwise the

vertices r8, r10, r9 and s8 form a cycle in ∆, and by Lemma 3.2, the vertices r8 and

r9 are adjacent, a contradiction. Thus the vertex s8 is on exactly one subgraph K3

of ∆ which contradicts Lemma 5.2. Hence the vertices r9 and r10 are not adjacent.

The vertex r10 is not adjacent to ri for i ∈ {1, 2}; otherwise the vertices r10, ri, sj

and r8 form a cycle in ∆ where sj is the line containing both ri and r8, and by

Lemma 3.2, the point r10 is on sj, a contradiction. Since r10 has degree 3 in R, the

vertex r6 is adjacent to 2 vertices u, v in {r3, r4, r5, r6}. Thus the vertices r10, u, s7

and v form a cycle in ∆, and by Lemma 3.2, the point r10 is on s7, a contradiction.

Hence |E(R)| 6= 12.

By Lemma 5.7, Lemma 5.9 and Lemma 5.10, we have our main result.

Theorem 5.11. A distance-regular graph with intersection array {22, 16, 5; 1, 2,

20} does not exist.



 

Chapter 6

Conclusions

In this thesis, we study three intersection arrays from the list,

{22, 16, 5; 1, 2, 20}, {27, 20, 10; 1, 2, 18}, and {36, 28, 4; 1, 2, 24}. These intersec-

tion arrays have c2 = 2, which means that every two nonadjacent vertices have

either 0 or 2 common neighbors. We give some combinatorial properties of the

local graphs of distance-regular graphs. For a fixed vertex x in a distance-regular

graph, we give an upper bound of the number of triangles corresponding to x in

term of the intersection numbers a1 and b0 = k. We show that any two nonad-

jacent vertices in a local graph have at most one common neighbors. We prove

that distance-regular graphs with given intersection arrays from the list do not

exist by assuming such graphs exist. For the intersection array {27, 20, 10; 1, 2, 18}

we derive some combinatorial properties of its local graph to display a contradic-

tion. For the intersection array {36, 28, 4; 1, 2, 24} we show that its local graph

is a disjoint union of completes K8’s to get a contradiction. For the intersection

array {22, 16, 5; 1, 2, 20} we construct a partial linear space from its local graph to

display the contradiction.

Potentially it might be possible to adapt our results to check feasibil-

ity of some other intersection arrays with c2 = 2. However, more combinatorial

properties of individual array need to be investigated.
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