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Merging the first and third classes in a connected graph is the operation

of adding edges between all vertices at distance 3 in the original graph while keeping

the original edges. Merging the first m classes in a connected graph is joining all the

pairs of vertices with distance at most m in the graph with edges. In this thesis, we

determine when merging the first and third classes in a bipartite distance-regular graph

produces a distance-regular graph. We also determine when merging the first m classes

in a bipartite distance-regular graph produces a distance-regular graph.
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Chapter 1

Introduction

In graph theory, there are many ways to construct some new graphs from given

graphs. For example, deleting vertices or edges from a graph produces a smaller graph.

There are also methods for constructing a new larger graph from given graphs such as

the union of graphs and the Cartesian product of graphs. The union of graphs is the

graph obtained by taking the union of the vertex sets and the union of the edge sets of

those graphs. Sometimes we call the union of graphs “the merging of graphs”. If those

graphs have a common vertex set, the merging of graphs is joining the pair of vertices

with edges from those given graphs. In this thesis, we focus on merging some classes

in distance-regular graphs.

Sometimes, merging some classes in a distance-regular graph yields again a

distance-regular graph. Merging can be used to construct some new distance-regular

graphs [1, Section 11.4 F]. For example, Clebsch graph is defined as the graph ob-

tained from merging the first and fourth classes in the Hamming graph H(4, 2). More

generally, merging classes of association schemes were studied by Kageyama [2], [3],

[4], [5] and Kageyama et al. [6]. In [1, Proposition 4.2.18], Brouwer et al. char-

acterized when merging the first and second classes in a distance-regular graph pro-

duces a distance-regular graph. Merging can be used to characterize certain families

of distance-regular graphs. Brouwer [7] used merging to characterize certain antipodal

distance-regular graphs of diameter 3 with generalized quadrangles containing a spread.

Jurišić [8] determined when merging the first and last classes in an antipodal distance-

regular graph produces a distance-regular graph. He gave a characterization of a class of

antipodal distance-regular graphs with a class of regular near polygons containing a cer-

tain spread. This generalizes Brouwer’s characterization of a class of distance-regular

graphs of diameter 3 with generalized quadrangles containing a spread.

In this thesis, we determine when merging the first and third classes in a bipartite
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distance-regular graph produces a distance-regular graph. We also determine when

merging the first m classes in a bipartite distance-regular graph produces a distance-

regular graph.



 

Chapter 2

Preliminaries

This chapter contains basic definitions and notations used in this thesis. In gen-

eral, we follow [1] and [9].

All graphs considered here are finite undirected simple graphs. For a graph Γ,

we denote its vertex set by V (Γ) and denote its edge set by E(Γ). A graph is called

r-regular if all its vertices have degree r. A complete graph is a graph in which every

pair of vertices are adjacent. A complete graph on n vertices is denoted by Kn. A

cycle Cn is a graph on n vertices containing a single cycle through all vertices. A

graph Γ is bipartite if V (Γ) can be partitioned into two non-empty parts V1 and V2 (i.e.,

V1 ∪ V2 = V (Γ) and V1 ∩ V2 = ∅) in such a way that each edge of Γ has one end in

V1 and the other in V2. The partition V (Γ) = V1 ∪ V2 is called a bipartition of Γ. A

complete bipartite graph is a bipartite graph with a bipartition V1 ∪ V2 in which every

vertex in V1 is joined to every vertex in V2; it is denoted by Km,n where |V1| = m and

|V2| = n. The line graph of graph Γ is the graph whose vertex set is the edge set of Γ

and two of these vertices are adjacent if and only if the corresponding edges in Γ have a

common vertex. A matching in Γ is a set of pairwise non-adjacent edges; that is, no two

edges share a common vertex. A perfect matching of a graph is a matching in which

every vertex of the graph is incident to exactly one edge of the matching. The distance

dΓ(u, v) of two vertices u and v in a connected graph Γ is the length of a shortest path

between u and v in Γ. The diameter of a connected graph Γ, denoted by diam(Γ), is the

maximum distance of any two vertices of Γ.

For a vertex x in a graph Γ with diameter d and for i (0 ≤ i ≤ d), define Γi(x) to

be the set of vertices at distance i from x. For convenience, set Γ−1(x) = Γd+1(x) = ∅.

For any connected graph Γ with diameter d, we denote by Γi (0 ≤ i ≤ d) the graph

whose vertices are those of Γ and two vertices are adjacent if they have distance i in Γ.

We call Γi the i th class of Γ. In particular, Γ1 = Γ. For any connected graph Γ with
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diameter d ≥ 3, we let Γ1,3 := Γ1 ∪ Γ3 denote the graph whose vertices are those of

Γ and two vertices x and y are adjacent if dΓ(x, y) = 1 or 3; in other words Γ1,3 is the

graph obtained by merging the first and third classes of Γ.

Example 2.1. Figure 2.1 shows the graphs Γ1, Γ3 and Γ1,3 of the graph Γ = C6.

Figure 2.1: The graphs Γ1, Γ3 and Γ1,3 where Γ = C6

Example 2.2. Figure 2.2 shows the graphs Γ1, Γ3 and Γ1,3 of the graph Γ = C12.

Figure 2.2: The graphs Γ1, Γ3 and Γ1,3 where Γ = C12

For any connected graph Γ of diameter d ≥ 2 and for integer m ≤ d, we let

Γ1,2,...,m := Γ1 ∪ Γ2 ∪ ... ∪ Γm denote the graph whose vertices are those of Γ and two

vertices x and y are adjacent if dΓ(x, y) ∈ {1, 2, ...,m}; in other words Γ1,2,...,m is the

graph obtained by merging the first m classes of Γ.

Example 2.3. Figure 2.3 shows the graphs Γ1, Γ2 and Γ1,2 of the graph Γ = C6.
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Figure 2.3: The graphs Γ1, Γ2 and Γ1,2 where Γ = C6

Figure 2.4: The graphs Γ1, Γ2 and Γ1,2 where Γ = C8

Example 2.4. Figure 2.4 shows the graphs Γ1, Γ2 and Γ1,2 of the graph Γ = C8.

Example 2.5. Figure 2.5 shows the graphs Γ1, Γ3 and Γ1,2,3 of the graph Γ = C8.

Figure 2.5: The graphs Γ1, Γ3 and Γ1,2,3 where Γ = C8

Example 2.6. Figure 2.6 shows the graphs Γ1, Γ2, Γ3 and Γ1,2,3 of the graph Γ = C10.

For vertices x and y of Γ at distance i (0 ≤ i ≤ d), we define ci(x, y) =
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Figure 2.6: The graphs Γ1, Γ2, Γ3 and Γ1,2,3 where Γ = C10

|Γi−1(x) ∩ Γ1(y)|, ai(x, y) = |Γi(x) ∩ Γ1(y)| and bi(x, y) = |Γi+1(x) ∩ Γ1(y)| (see

Figure 2.7).

Figure 2.7: The illustrations for the ci(x, y), ai(x, y) and bi(x, y)

Definition 2.7. A multipartite graph is a graph whose vertex set can be partitioned into

at least two parts so that no edge has both ends in any one part. If the number of the

parts is n, then the graph is called an n-partite graph. A complete multipartite graph is

a multipartite graph in which each vertex is joined to every vertex that is not in the same
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part. If the partition contains n parts whose sizes are k1, k2, . . . , kn, then the complete

multipartite graph is denoted by Kk1,k2,...,kn where ki ≥ 2 for some 1 ≤ i ≤ n. We

denote the complete n-partite graph in which each part in the partition has size r by

Kn×r. In particular, the complete n-partite graph Kn×2 is also known as the n-cocktail

party graph, the hyperoctahedral graph or Roberts graph.

Note that a complete n-partite graph Kn×r has nr vertices and diameter 2.

Example 2.8. Figure 2.8 shows the graph K4×2 or the 4-cocktail party graph.

Figure 2.8: The complete multipartite graph K4×2 or the 4-cocktail party graph

Definition 2.9. For positive integers m and n, the (m× n)-grid is the line graph of the

complete bipartite graph Km,n (sometimes known as a rook graph or a lattice graph).

Note that the complement of a (2 ×m)-grid where m ≥ 3 (sometimes known

as a crown graph) has 2m vertices and diameter 3 and it can be viewed as a complete

bipartite graph Km,m from which the edges of a perfect matching have been removed.

Example 2.10. Figure 2.9 shows the graph K2,3, the (2× 3)-grid, and the complement

of a (2× 3)-grid.

Definition 2.11. For integers d > 1 and q > 1, the Hamming graphH(d, q) is the graph

whose vertex set consists of the words of length d from an alphabet of size q, where two

vertices are adjacent if they differ in precisely one position.
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Figure 2.9: The graph K2,3, the (2× 3)-grid, and the complement of a (2× 3)-grid

Note that a Hamming graph H(d, q) has qd vertices and diameter d.

The Hamming graph H(d, 2) is also called a (hyper)cube or d-cube and it is a

bipartite graph.

Example 2.12. Figure 2.10 shows the Hamming graph H(3, 2).

Figure 2.10: The Hamming graph H(3, 2)

Definition 2.13. For an integer d > 1, let Yd denote the graph with vertex set V (H(d, 2)),

and two vertices are adjacent in Yd if they are at distance 2 in H(d, 2).

Note that Yd is not connected, but it contains two isomorphic components on

2d−1 vertices, each of which is called a halved d-cube.

Note that a halved d-cube has 2d−1 vertices and diameter
⌊
d
2

⌋
.
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Example 2.14. Figure 2.11 shows Y3 and a halved 3-cube.

Figure 2.11: The graph Y3 and a halved 3-cube

Definition 2.15. For integers n > 1 and k > 1, the Johnson graph J(n, k) is the graph

whose vertex set consists of the k-subsets of {1, ..., n}, where two vertices are adjacent

if their intersection has cardinality k − 1.

Note that a Johnson graph J(n, k) has
(
n
k

)
vertices and diameter min(k, n− k).

Example 2.16. Figure 2.12 shows the Johnson graph J(4, 2).

Figure 2.12: The Johnson graph J(4, 2)
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Definition 2.17. Let X be the set of cardinality 2m+ 1 where m ≥ 3.

The doubled Odd graph on X is the graph Γ whose vertices are the m-subsets

and (m + 1)-subsets of X , and distinct vertices A,B ∈ Γ are adjacent if A ⊂ B or

B ⊂ A.

Note that a doubled Odd graph on 2m+ 1 points is a bipartite graph with diam-

eter 2m+ 1 and has
(

2m+1
m

)
+
(

2m+1
m+1

)
vertices.

Example 2.18. Figure 2.13 shows a doubled Odd graph with X = {1, 2, 3}.

Figure 2.13: The doubled Odd graph on X = {1, 2, 3}



 

Chapter 3

Distance-regular graphs

In this chapter, we review some basic concepts and relevant results about distance-

regular graphs. In general, we follow [1], [10] and [11].

A connected graph Γ of diameter d is said to be distance-regular whenever for

any two vertices x and y in Γ at distance i, the numbers

ci := |Γi−1(x) ∩ Γ1(y)|, ai := |Γi(x) ∩ Γ1(y)| and bi := |Γi+1(x) ∩ Γ1(y)|

depend only on the distance dΓ(x, y) = i rather than on individual vertices. When this

is the case we call numbers ci, ai and bi the intersection numbers of Γ. Observe that

a0 = 0, c1 = 1 and c0 = bd = 0. We denote ki = |Γi(x)| (0 ≤ i ≤ d). In particular,

k0 = 1 and ki+1 = biki/ci+1 (0 ≤ i ≤ d− 1). By [1, p.127],

ki =
b0b1 · · · bi−1

c1c2 · · · ci
(1 ≤ i ≤ d). (3.1)

Figure 3.1: The illustrations for the ci, ai and bi

Observe that Γ is regular of degree k = k1 = b0 and has k0 + k1 + k2 + . . .+ kd

vertices. Moreover, ci+ai+bi = k (0 ≤ i ≤ d). We call {b0, b1, . . . , bd−1; c1, c2, . . . , cd}

the intersection array of Γ.
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More generally, let x and y be two vertices at distance h in a distance-regular

graph Γ with diameter d. Then the numbers

phij := |Γi(x) ∩ Γj(y)| = |{z ∈ V (Γ) | dΓ(x, z) = i and dΓ(y, z) = j}|

exist (i.e., they only depend on h, i and j) for integers 0 ≤ h, i, j ≤ d. Note that

phij = phji (0 ≤ h, i, j ≤ d). Observe that ci = pi1,i−1 (1 ≤ i ≤ d), ai = pi1,i (0 ≤ i ≤ d),

bi = pi1,i+1 (0 ≤ i ≤ d− 1), and ki = p0
ii (0 ≤ i ≤ d).

Lemma 3.1. [1, p.127, Lemma 4.1.7] Let Γ be a distance-regular graph with diameter

d. Then for all integers 0 ≤ h, i, j ≤ d the followings hold.

(i) phij = 0 if one of h, i, j is greater than the sum of the other two.

(ii) phij 6= 0 if one of h, i, j is equal to the sum of the other two.

Assume that Γ is a bipartite distance-regular graph with diameter d and has

bipartition V1∪V2. Let x be a vertex in V1. Since any path in Γ has its vertices alternating

between V1 and V2, we have V1 =
⋃

i is even
Γi(x) and V2 =

⋃
i is odd

Γi(x). Thus for any i

(1 ≤ i ≤ d), the set Γi(x) is contained in a bipartition V1 or V2. So no two vertices in

Γi(x) are adjacent, which means ai = 0 for all i (0 ≤ i ≤ d). Hence bi + ci = k for all

i (0 ≤ i ≤ d). In particular k = b0 = cd. Since bipartite graphs contain no odd cycles,

we have the following lemma.

Lemma 3.2. A distance-regular graph is bipartite if and only if phij = 0 for all h+ i+ j

is odd.

Example 3.3. The following graphs are distance-regular.

(i) For n ≥ 2, a complete graph Kn is a distance-regular graph with diameter 1 and

has intersection array {n− 1; 1}.

(ii) For n > 1 and r > 1, a complete n-partite graph Kn×r is a distance-regular graph

with diameter 2 and has intersection array {r(n− 1), r − 1; 1, r(n− 1)}.

(iii) For n ≥ 3, a cycle Cn is a distance-regular graph with diameter d =
⌊
n
2

⌋
and

has intersection array {2, 1, 1, . . . , 1; 1, 1, 1, . . . , cd} where cd = 1 if n is odd and

cd = 2 if n is even. Moreover, if n is even, Cn is bipartite.
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(iv) A complement of a (2 ×m)-grid where m ≥ 3 is a distance-regular graph with

diameter 3 and has intersection array {m− 1,m− 2, 1; 1,m− 2,m− 1} (See [1,

p.432]).

(v) A Hamming graph H(d, q) is a distance-regular graph with diameter d and has

intersection array {d(q−1), (d−1)(q−1), (d−2)(q−1), . . . , q−1; 1, 2, 3, . . . , d}

(See [1, Theorem 9.2.1]).

(vi) For d ≥ 3, a halved d-cube is a distance-regular graph with diameter
⌊
d
2

⌋
and its

intersection array is given by

bi =
1

2
(d− 2i)(d− 2i− 1), ci = i(2i− 1) for 0 ≤ i ≤

⌊
d

2

⌋
(See [1, p.264]).

(vii) A Johnson graph J(n, k) is a distance-regular graph with diameter d = min(k, n−

k) and its intersection array is given by

bi = (k − i)(n− k − i), ci = i2 for 0 ≤ i ≤ d

(See [1, Theorem 9.1.2]).

(viii) A doubled Odd graph on 2m+ 1 points is a distance-regular graph with diameter

2m+ 1 and has intersection array {m+ 1,m,m, . . . , 1, 1; 1, 1, . . . ,m,m,m+ 1}

(See [1, Theorem 9.1.8]).

Example 3.4. Referring to the Example 2.1, the graph Γ1,3 of the graph Γ = C6 is

isomorphic to the graph in Figure 3.2 and it is a distance-regular graph with intersection

array {3, 2; 1, 3}.

Example 3.5. Referring to the Example 2.4, the graph Γ1,3 of the graph Γ = C12 is

isomorphic to the graph in Figure 3.3 and it is not a distance-regular graph because

b2(u1, u3) = 1 6= 2 = b2(u1, u5).

Example 3.6. Referring to the Example 2.3, the graph Γ1,2 of the graph Γ = C6 is

isomorphic to the graph in Figure 3.4 and it is a distance-regular graph with intersection

array {4, 1; 1, 4}.
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Figure 3.2: The graph Γ1,3 of the graph Γ = C6

Figure 3.3: The graph Γ1,3 of the graph Γ = C12

Figure 3.4: The graph Γ1,2 of the graph Γ = C6

Example 3.7. Referring to the Example 2.4, the graph Γ1,2 of the graph Γ = C8 is

isomorphic to the graph in Figure 3.5 and it is not a distance-regular graph because

b1(u1, u2) = 1 6= 2 = b1(u1, u3).
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Figure 3.5: The graph Γ1,2 of the graph Γ = C8

Example 3.8. Referring to the Example 2.5, the graph Γ1,2,3 of the graph Γ = C8 is

isomorphic to the graph in Figure 3.6 and it is a distance-regular graph with intersection

array {6, 1; 1, 6}.

Figure 3.6: The graph Γ1,2,3 of the graph Γ = C8

Example 3.9. Referring to the Example 2.6, the graph Γ1,2,3 of the graph Γ = C10

is isomorphic to the graph in Figure 3.7 and it is not a distance-regular graph because

b1(u1, u2) = 1 6= 3 = b1(u1, u4).

A k-regular graph with v vertices is strongly regular if there exist positive in-

tegers λ and µ such that every two adjacent vertices have λ common neighbors, and

every two non-adjacent vertices have µ common neighbors. A graph of this kind is

sometimes said to be a strongly regular graph with parameters (v, k, λ, µ). Connected

strongly regular graphs are precisely distance-regular graphs with diameter 2. In terms
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Figure 3.7: The graph Γ1,2,3 of the graph Γ = C10

of the parameters (v, k, λ, µ), the intersection array is given by {k, k − 1− λ; 1, µ}.

Observe that the complete multipartite graph Kn×r is a strongly regular graph

with parameters (v, k, λ, µ) =
(
nr, (n−1)r, (n−2)r, (n−1)r

)
. Moreover, it is the only

strongly regular graph with µ = k (see [1, Theorem 1.3.1]). In particular, the n-cocktail

party graph is a strongly regular graph with parameters (2n, 2n− 2, 2n− 4, 2n− 2).

Example 3.10. Referring to the Example 3.4, Example 3.6, and Example 3.8, these

graphs are distance-regular graphs with diameter 2, so they are strongly regular graphs.

(i) Referring to the Example 3.4, the graph Γ1,3 of the graph Γ = C6 is a strongly

regular graph with parameters (6, 3, 0, 3) which is a complete bipartite graphK3,3.

(ii) Referring to the Example 3.6, the graph Γ1,2 of the graph Γ = C6 is a strongly

regular graph with parameters (6, 4, 2, 4) which is a 3-cocktail party graph.

(iii) Referring to the Example 3.8, the graph Γ1,2,3 of the graph Γ = C8 is a strongly

regular graph with parameters (8, 6, 4, 6) which is a 4-cocktail party graph.

Let Γ be a distance-regular graph with diameter d. For each integer i (0 ≤ i ≤

d), let Ai denote the |V (Γ)| × |V (Γ)| symmetric matrix with (x, y)-entry

(Ai)xy =

 1 if d(x, y) = i

0 if d(x, y) 6= i
(x, y ∈ V (Γ)).
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We call Ai the ith distance matrix of Γ. We abbreviate A = A1, and call this the

adjacency matrix of Γ. Observe

(i) A0 = I , (ii)
d∑

i=0

Ai = J , (iii) At
i = Ai , (iv) AiAj =

d∑
h=0

phijAh

where J is the all 1’s matrix. We recall some results that will be used later. Brouwer et

al. provided short proofs for the following results ([1, Lemma 2.1.1], [1, Lemma 4.1.7])

for which we extend and give more detailed proofs.

Lemma 3.11. [1, Lemma 2.1.1] For a distance-regular graph with diameter d and for

0 ≤ h, i, j, r ≤ d,
d∑

s=0

psrip
h
sj =

d∑
t=0

phitp
t
rj

.

Proof. Expanding each side of the equation Aj(ArAi) = (AjAr)Ai, we have

Aj(ArAi) = Aj

( d∑
s=0

psriAs

)
=

d∑
s=0

psri(AjAs) =
d∑

s=0

psri

( d∑
h=0

phjsAh

)

(AjAr)Ai =
( d∑

t=0

ptjrAt

)
Ai =

d∑
t=0

ptjr(AtAi) =
d∑

t=0

ptjr

( d∑
h=0

phtiAh

)

Since A0, A1, A2, . . . , Ad are linearly independent, we obtain
d∑

s=0

psrip
h
sj =

d∑
t=0

phitp
t
rj as

desired. �

Lemma 3.12. [1, Lemma 4.1.7] For a distance-regular graph with diameter d and for

0 ≤ h, i, j ≤ d,

ph0j = δhj , phi0 = δhi, phi,d+1 = 0,

phi+1,j =
1

ci+1

(
phi,j−1bj−1 + phij(aj − ai) + phi,j+1cj+1 − phi−1,jbi−1

)
. (3.2)

In particular,

pi+j
ij =

ci+1ci+2 · · · ci+j

c1c2 · · · cj
, pi−jij =

bi−1bi−2 · · · bi−j
c1c2 · · · cj

.
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Proof. Clearly, ph0j = δhj , phi0 = δhi and phi,d+1 = 0.

Taking r = 1 in Lemma 3.11, we have
d∑

s=0

ps1ip
h
sj =

d∑
t=0

phitp
t
1j . By Lemma 3.1,

we have
d∑

s=0

ps1ip
h
sj = pi−1

1 i p
h
i−1,j + pi1ip

h
ij + pi+1

1 i p
h
i+1,j = bi−1p

h
i−1,j + aip

h
ij + ci+1p

h
i+1,j and

d∑
t=0

phitp
t
1j = phi,j−1p

j−1
1 j + phi jp

j
1 j + phi,j+1p

j+1
1 j = phi,j−1bj−1 + phijaj + phi,j+1cj+1. Then

the result follows.

In particular, taking h = i+ j and j = j−1 in (3.2). By Lemma 3.1(i), we have

ci+1p
i+j
i+1,j−1 = cjp

i+j
i j .

In other words,

pi+j
i j =

ci+1

cj
· pi+j

i+1,j−1.

Thus

pi+j
i j =

ci+1ci+2 · · · ci+j

cjcj−1 · · · c1

· pi+j
i+j,0 =

ci+1ci+2 · · · ci+j

c1c2 · · · cj
.

Next, taking h = i− j and j = j − 1 in (3.2). By Lemma 3.1(i) we have

bi−1p
i−j
i−1,j−1 = cjp

i−j
i j .

In other words,

pi−ji j =
bi−1

cj
· pi−ji−1,j−1.

Thus

pi−ji j =
bi−1bi−2 · · · bi−j
cjcj−1 · · · c1

· pi−ji−j,0 =
bi−1bi−2 · · · bi−j
c1c2 · · · cj

.

�

For convenience of use we state some special cases of the above formula.

Corollary 3.13. For a distance-regular graph with diameter d and for 0 ≤ i ≤ d,

pii−2,2 =
ci−1ci
c2

, pi+1
i 2 =

ci+1(ai + ai+1 − a1)

c2

,

pi−1
i+1,2 =

bi−1bi
c2

, pi−1
i 2 =

bi−1(ai + ai−1 − a1)

c2

.

Proposition 3.14. [10, 12, 13] For a distance-regular graph with diameter d, the fol-

lowing restrictions on the intersection array hold.
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(i) k = b0 > b1 ≥ b2 ≥ . . . ≥ bd−1 > bd = 0 and 1 = c1 ≤ c2 ≤ . . . ≤ cd ≤ k.

(ii) If i+ j ≤ d, then ci ≤ bj .

(iii) All parameters phij are nonnegative integers.

(iv) There is an i such that k0 ≤ k1 ≤ . . . ≤ ki and ki+1 ≥ ki+2 ≥ . . . ≥ kd.

An antipodal graph is a connected graph Γ with diameter d > 1 for which Γd is

a disjoint union of complete graphs.

Example 3.15. Referring to Definition 2.7, the complete n-partite graph Kn×r is an

antipodal graph with diameter 2. For instance, the complete 3-partite graph K3×3 in

Figure 3.8 is an antipodal distance-regular graph with intersection array {6, 2; 1, 6}.

Observe that Γ2 of K3×3 is a disjoint union of K3’s.

Figure 3.8: The graphs Γ1 and Γ2 where Γ is the complete 3-partite graph K3×3

Example 3.16. Referring to Definition 2.9, the complement of a (2 × m)-grid is an

antipodal graph with diameter 3. For instance, the complement of a (2 × 5)-grid in

Figure 3.9 is an antipodal distance-regular graph with intersection array {4, 3, 1; 1, 3, 4}.

Observe that Γ3 of the complement of a (2× 5)-grid is a disjoint union of K2’s.

Example 3.17. Referring to Definition 2.11, the Hamming graph H(d, 2) is an antipo-

dal graph with diameter d. For instance, the Hamming graph H(3, 2) in Figure 3.10

is an antipodal distance-regular graph with intersection array {3, 2, 1; 1, 2, 3}. Observe

that Γ3 of H(3, 2) is a disjoint union of K2’s.
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Figure 3.9: The graphs Γ1 and Γ3 where Γ is the complement of a (2× 5)-grid

Figure 3.10: The graphs Γ1 and Γ3 where Γ is the Hamming graph H(3, 2)

Proposition 3.18. A distance-regular graph with diameter d is antipodal if and only if

pidd = 0 unless i = 0 or d.

Proof. Let Γ be a distance-regular graph with diameter d. By the definition, Γ is

antipodal if and only if Γd is a disjoint union of complete graphs. Equivalently, the

vertices at distance d from a given vertex are all at distance d from each other. In other

words, for vertices x, y in Γ with dΓ(x, y) = i (1 ≤ i ≤ d − 1), pidd = |{z ∈ V (Γ) |

dΓ(x, z) = d and dΓ(y, z) = d}| = 0. �

Proposition 3.19. [14] Let Γ be a distance-regular graph with diameter d ∈ {2m, 2m+

1}. Then Γ is antipodal if and only if bi = cd−i for all i (0 ≤ i ≤ d− 1, i 6= m).

Corollary 3.20. Let Γ be a bipartite distance-regular graph with odd diameter d. Then

Γ is antipodal if and only if bi = cd−i for all i (0 ≤ i ≤ d− 1).
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Proof. For a positive integerm, let Γ be a bipartite distance-regular graph with diameter

d = 2m+ 1. Assume that Γ is antipodal, by Proposition 3.19, we have bi = cd−i for all

i (0 ≤ i ≤ d − 1, i 6= m). In particular, bm+1 = cd−(m+1) = c2m+1−(m+1) = cm. Since

Γ is bipartite, bj + cj = k for 0 ≤ j ≤ d. Hence bm = k− cm = k− bm+1 = cm+1. The

other direction follows by Proposition 3.19. �

Corollary 3.21. Let Γ be an antipodal bipartite distance-regular graph with odd diam-

eter d. Then ki = kd−i for all i (0 ≤ i ≤ d). In particular, kd = 1.

Proof. For 0 ≤ i ≤ d, we have

kd−i =
b0b1 · · · bi−1bibi+1 · · · bd−i−1

c1c2 · · · cici+1ci+2 · · · cd−i
=
b0b1 · · · bi−1

c1c2 · · · ci
= ki

where the second equality follows from Corollary 3.20. In particular, kd = k0 = 1. �

Corollary 3.22. Let Γ be an antipodal distance-regular graph with even diameter d.

Then ki = kd−ib d
2
/c d

2
for all i (d

2
< i ≤ d). In particular, kd = b d

2
/c d

2
.

Proof. For d
2
< i ≤ d, we have

ki =
b0b1 · · · b d

2
−1b d

2
b d

2
+1 · · · bi−1

c1c2 · · · c d
2
c d

2
+1c d

2
+2 · · · ci

=
b0b1 · · · bd−i−1

c1c2 · · · cd−i
·
b d

2

c d
2

= kd−i ·
b d

2

c d
2

where the second equality follows from Proposition 3.19. In particular, kd = k0 ·
b d

2

c d
2

=

b d
2

c d
2

. �



 

Chapter 4

Merging the first and third classes in bipartite distance-regular

graphs

In this chapter, we start by investigating some properties of Γ1,3, where Γ is bi-

partite or distance-regular. Then, we determine when merging the first and third classes

in a bipartite distance-regular graph produces a distance-regular graph.

For a connected bipartite graph, the distance between two vertices in the same

part is even and the distance between two vertices in different parts is odd. In particular,

let x be a vertex of a connected bipartite graph Γ. Then for vertices y and z of Γ,

dΓ(y, z) is even if and only if dΓ(x, y) and dΓ(x, z) have the same parity, and dΓ(y, z)

is odd otherwise.

Throughout this chapter, we denote Γ′ := Γ1,3, c′i(x, y) = |Γ′i−1(x) ∩ Γ′1(y)|,

a′i(x, y) = |Γ′i(x) ∩ Γ′1(y)| and b′i(x, y) = |Γ′i+1(x) ∩ Γ′1(y)| for i ∈ {0, 1, 2, . . . ,

diam(Γ′)}.

Proposition 4.1. If Γ is a bipartite graph, then Γ1,3 is also bipartite with the same

bipartition.

Proof. Let Γ be a bipartite graph. Let V1 ∪ V2 be a bipartition of Γ. Let x and y be two

adjacent vertices in Γ1,3. Thus dΓ(x, y) = 1 or 3, so x ∈ Vi and y ∈ Vj where i 6= j.

Consequently, Γ1,3 is a bipartite graph with bipartition V (Γ1,3) = V1 ∪ V2. �

Proposition 4.2. If Γ is a distance-regular graph, then Γ′ := Γ1,3 is (k1 + k3)-regular.

Proof. Let Γ be a distance-regular graph. Let x ∈ V (Γ). Then Γ′1(x) = Γ1(x) ∪ Γ3(x)

so the degree of x in Γ′ is |Γ1(x) ∪ Γ3(x)| = k1 + k3. �

A cycle of even length is a bipartite distance-regular graph. We first characterize

when merging the first and third classes in a cycle produces a distance-regular graph.
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Proposition 4.3. Let Γ be a cycle C2d where d ≥ 3. Then Γ′ := Γ1,3 is distance-regular

(with diameter dd+2
3
e) if and only if d ≤ 5.

Proof. For Γ ∈ {C6, C8, C10}, it is easy to see that Γ1,3 is distance-regular. Now let

Γ = C2d where d ≥ 6. Then |V (Γ)| ≥ 12. Let V (Γ) = {v1, v2, v3, ..., v2d} where vi, vj

are adjacent if |i − j| ≡ 1(mod 2d). Note that dΓ′(v1, v3) = dΓ′(v1, v5) = 2. We have

c′2(v1, v3) = |{v2, v4, v2d}| = 3 and c′2(v1, v5) = |{v2, v4}| = 2. Hence c′2 does not

exist, so Γ1,3 is not a distance-regular graph. �

The graphs obtained by merging the first and third classes in the cycles C6 and

C8 are the complete bipartite graphs K3,3 and K4,4, respectively. For C10, the resulting

graph is the complement of a (2× 5)-grid.

We now characterize when merging the first and third classes of a bipartite

distance-regular graph produces a distance-regular graph. We divide our results ac-

cording to the diameter of the original graph.

For diameter 3, Brouwer showed the following characterization. We provide the

proof of this lemma that is omitted in [7].

Lemma 4.4. [7] Let Γ be a distance-regular graph with diameter 3. Then Γ′ := Γ1,3 is

a distance-regular graph with diameter 2 if and only if c3(a3 + a2 − a1) = b1a2.

Proof. We first prove the necessity. Assume that Γ′ is a distance-regular graph. Then

b′1 exists. Let x ∈ V (Γ). Then Γ′1(x) = Γ1(x) ∪ Γ3(x) and Γ′2(x) = Γ2(x). We

calculate b′1 from vertices in Γ1(x) and Γ3(x). Let y ∈ Γ1(x) and z ∈ Γ3(x). We have

b′1(x, y) = p1
21 + p1

23 and b′1(x, z) = p3
21 + p3

23. Thus b′1 = p1
21 + p1

23 = p3
21 + p3

23. By

Lemma 3.12, we have p1
21 = b1, p3

21 = c3, p1
23 = b2b1

c1c2
and p3

23 = 1
c2

(c3b2+a2
3−a1a3−b0).

Hence

b1 +
b2b1

c1c2

= c3 +
1

c2

(c3b2 + a2
3 − a1a3 − b0)

Using the fact that ai+bi+ci = k (1 ≤ i ≤ 3), we have a1+b1 = k−1, a2+b2+c2 = k

and a3 + c3 = k. Simplifying the above equation, we obtain c3(a3 + a2− a1) = b1a2 as

desired.

For the sufficiency, we assume that c3(a3 + a2 − a1) = b1a2. From the above

proof, we know that c3(a3 + a2 − a1) = b1a2 implies b′1 exists. Observe that Γ′ has
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diameter 2. We see that b′0 = k1 + k3, c′1 = 1 and c′2 = c2 + 2b2 + p2
33. Hence Γ′ is a

distance-regular graph. �

For a bipartite distance-regular graph of diameter 3, the condition above always

holds, so we obtain the following result.

Theorem 4.5. Let Γ be a bipartite distance-regular graph with diameter 3. Then Γ′ :=

Γ1,3 is a distance-regular graph with diameter 2. Moreover, Γ1,3 is a complete bipartite

graph Km,m, where m = 1 + k2 = k1 + k3.

Proof. Let x ∈ V (Γ). Then Γ′1(x) = Γ1(x)∪Γ3(x) and Γ′2(x) = Γ2(x). By Lemma 4.4

and since a1 = a2 = a3 = 0, the graph Γ′ is a distance-regular graph with diameter

2. Moreover, Γ′ is bipartite with bipartition
(
{x} ∪ Γ2(x)

)
∪
(
Γ1(x) ∪ Γ3(x)

)
. Since

b′0 = c′2 = k1+k3, each vertex in {x}∪Γ2(x) is adjacent to every vertex in Γ1(x)∪Γ3(x).

Consequently, Γ′ is a complete bipartite graph K1+k2,k1+k3 . Since Γ′ is regular, we have

1 + k2 = k1 + k3. �

Theorem 4.6. Let Γ be a bipartite distance-regular graph with diameter 4. Then Γ′ :=

Γ1,3 is a distance-regular graph with diameter 2. Moreover, Γ1,3 is a complete bipartite

graph Km,m, where m = 1 + k2 + k4 = k1 + k3.

Proof. Let x ∈ V (Γ). Then Γ′1(x) = Γ1(x) ∪ Γ3(x) and Γ′2(x) = Γ2(x) ∪ Γ4(x). It is

easy to see that b′0 = k1 + k3 and c′1 = 1. It remains to show that b′1 and c′2 exist.

Let y ∈ Γ1(x). Since dΓ(y, u) = 1 or 3 for all u ∈ Γ2(x) and dΓ(y, v) = 3

for all v ∈ Γ4(x), we have b′1(x, y) = k2 + k4. Let z ∈ Γ3(x). Since Γ is bipartite

with diameter 4, we have dΓ(z, v) = 1 or 3 for all v ∈ Γ2(x) ∪ Γ4(x) = Γ′2(x). Thus

b′1(x, z) = k2 + k4. It follows that b′1 = k2 + k4.

Let u ∈ Γ2(x). Since Γ is bipartite with diameter 4, we have dΓ(u, y) = 1

or 3 for all y ∈ Γ1(x) ∪ Γ3(x) = Γ′1(x). Thus c′2(x, u) = k1 + k3. Let v ∈ Γ4(x).

Since dΓ(v, y) = 3 for all y ∈ Γ1(x) and dΓ(v, z) = 1 or 3 for all z ∈ Γ3(x), we have

c′2(x, v) = k1 + k3. Thus c′2 = k1 + k3.

Thus Γ′ is a distance-regular graph with diameter 2. Moreover, the graph Γ′ is

bipartite with bipartition
(
{x} ∪ Γ2(x) ∪ Γ4(x)

)
∪
(
Γ1(x) ∪ Γ3(x)

)
. Since b′0 = c′2 =

k1 +k3, each vertex in {x}∪Γ2(x)∪Γ4(x) is adjacent to every vertex in Γ1(x)∪Γ3(x).
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Consequently, Γ′ is a complete bipartite graph K1+k2+k4,k1+k3 . Since Γ′ is regular, we

have 1 + k2 + k4 = k1 + k3. �

Theorem 4.7. Let Γ be a bipartite distance-regular graph with diameter 5. Then Γ′ :=

Γ1,3 is a distance-regular graph (with diameter 3) if and only if b2 = b4c3. In this case,

Γ1,3 has the intersection array {k1 + k3, k1 + k3 − 1, p2
53; 1, k1 + k3 − p2

53, k1 + k3}.

Proof. We first prove the necessity. Assume that Γ′ is a distance-regular graph. Then

b′2 exists. Let x ∈ V (Γ). Then Γ′1(x) = Γ1(x) ∪ Γ3(x), Γ′2(x) = Γ2(x) ∪ Γ4(x) and

Γ′3(x) = Γ5(x). We calculate b′2 from vertices in Γ2(x) and Γ4(x). Let y ∈ Γ2(x) and

z ∈ Γ4(x). We have b′2(x, y) = p2
53 and b′2(x, z) = b4 + p4

53. Thus b′2 = p2
53 = b4 + p4

53.

By Lemma 3.12, we have p2
53 = b2b3b4

c1c2c3
and p4

53 = 1
c3

[
1
c2

(c4b3 + b4c5 − b0)b4 − b1b4

]
.

Simplifying the above equation, we have b2b3 = c2c3 + c4b3 + b4c5 − b0 − b1c2. Since

Γ is bipartite, ci = k − bi (1 ≤ i ≤ 5). Substituting ci = k − bi and b1 = k − 1 in the

above equation, we have b2 = b4(k − b3) = b4c3 as desired.

For the sufficiency, we assume that b2 = b4c3. From the above proof, we know

that b2 = b4c3 implies b′2 exists and b′2 = p2
53. Observe that Γ′ has diameter 3. We see

that b′0 = k1 +k3 and c′1 = 1. By Proposition 4.1 and Proposition 4.2, Γ′ is bipartite and

(k1 + k3)-regular. Therefore k1 + k3 = b′i(x, y) + c′i(x, y) for 0 ≤ i ≤ 3 and x ∈ V (Γ),

y ∈ Γ′i(x). So c′3 = k1 + k3. It remains to show that b′1 and c′2 exist. Let x ∈ V (Γ). We

compare b′1(x, y) and b′1(x, z), where y ∈ Γ1(x) and z ∈ Γ3(x). Since c′1 = 1, we have

b′1(x, y) = k1 + k3− c′1(x, y) = k1 + k3− 1 = k1 + k3− c′1(x, z) = b′1(x, z). It follows

that b′1 = k1 + k3 − 1. Also, we compare c′2(x, u) and c′2(x, v), where u ∈ Γ2(x) and

v ∈ Γ4(x). Since b′2 = p2
53, we have c′2(x, u) = k1 + k3 − b′2(x, u) = k1 + k3 − p2

53 =

k1 + k3 − b′2(x, v) = c′2(x, v). It follows that c′2 = k1 + k3 − p2
53. Hence Γ′ is a

distance-regular graph. �

Lemma 4.8. If Γ is an antipodal bipartite distance-regular graph with diameter 5, then

b2 = c3 and b4 = 1. In particular, Γ1,3 is distance-regular.

Proof. By Corollary 3.20 and Theorem 4.7. �

Lemma 4.9. Let Γ be a bipartite distance-regular graph with diameter 5 such that

b2 = b4c3. Then b4 = 1 if and only if Γ is antipodal.
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Proof. The sufficiency result follows from Lemma 4.8. To prove the necessity, let Γ be

a bipartite distance-regular graph with diameter 5 such that b2 = b4c3 and b4 = 1. Then

b2 = c3 and b3 = c2. Since b4 = 1 = c1, we have b1 = k− 1 = c4. Since Γ is a bipartite

distance-regular graph, b0 = c5. Thus Γ is antipodal. �

Corollary 4.10. Let Γ be a bipartite distance-regular graph with diameter 5 such that

b4 = 1. Then Γ1,3 is a distance-regular graph (with diameter 3) if and only if Γ is

antipodal. In this case, Γ1,3 is the complement of a 2× (k1 + k3 + 1)-grid.

Proof. Let Γ be a bipartite distance-regular graph with diameter 5 such that b4 =

1. By Theorem 4.7, Lemma 4.8 and Lemma 4.9, the graph Γ1,3 is distance-regular if

and only if Γ is antipodal. In this case, by Theorem 4.7, the graph Γ1,3 is a bipartite

antipodal graph with diameter 3 having intersection array {k1 + k3, k1 + k3 − 1, 1; 1,

k1+k3−1, k1+k3}. By [1, p.432], we have Γ1,3 is the complement of a 2×(k1+k3+1)-

grid. �

Theorem 4.11. Let Γ be a bipartite distance-regular graph with diameter d ≥ 6. Then

Γ′ := Γ1,3 is not a distance-regular graph.

Proof. Let x ∈ V (Γ). Since d ≥ 6, then Γ′1(x) = Γ1(x) ∪ Γ3(x), Γ′2(x) = Γ2(x) ∪

Γ4(x)∪Γ6(x) and Γ5(x) ⊆ Γ′3(x). Suppose that Γ′ is a distance-regular graph. Then b′2

exists. We calculate b′2 from vertices in Γ2(x) and Γ4(x). Let y ∈ Γ2(x) and z ∈ Γ4(x).

By Lemma 3.12, we have p2
53 = b2b3b4

c1c2c3
and p4

53 = 1
c3

[
1
c2

(c4b3 + b4c5 − b0)b4 + b4b5c6
c1c2
− b1b4

]
for d ≥ 6 and p4

73 = b4b5b6
c1c2c3

for d ≥ 7. We distinguish two cases.

Case 1 : d = 6.

We have b′2(x, y) = p2
53 and b′2(x, z) = b4 + p4

53. Thus b′2 = p2
53 = b4 + p4

53.

Simplifying the above equation, we have

b2b3 = c2c3 + c4b3 + b4c5 − b0 + b5c6 − b1c2. (4.1)

Case 2 : d ≥ 7.

We have b′2(x, y) = p2
53 and b′2(x, z) = p4

73 + b4 + p4
53. Thus b′2 = p2

53 =

p4
73 + b4 + p4

53. Simplifying the above equation, we have

b2b3 = b5b6 + c2c3 + c4b3 + b4c5 − b0 + b5c6 − b1c2. (4.2)
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Since Γ is bipartite, bi = k − ci (0 ≤ i ≤ d). Substituting bi by k − ci in

equations (4.1) and (4.2), we have c4(c3 + c5) = (c4 + c3− 1)k+ c2 for d ≥ 6. Observe

that
c4(c3 + c5) ≤ c4(c3 + k − 1) = c4k + c4(c3 − 1)

≤ c4k + k(c3 − 1) < c4k + k(c3 − 1) + c2

= (c4 + c3 − 1)k + c2.

It follows that c4(c3 + c5) < (c4 + c3 − 1)k + c2, a contradiction. Hence, Γ1,3 is not a

distance-regular graph. �

We summarize our results in the last theorem.

Theorem 4.12. Let Γ be a bipartite distance-regular graph with diameter d ≥ 3. Then

Γ1,3 is a distance-regular graph if and only if one of the following conditions holds:

(i) d ≤ 4,

(ii) d = 5 and b2 = b4c3.



 

Chapter 5

Merging the first m classes in bipartite distance-regular graphs

In this chapter, we start by investigating some properties of Γ1,2, where Γ is

a bipartite distance-regular. Then, we characterize when merging the first and second

classes in a bipartite distance-regular graph produces a distance-regular graph.

Next, we describe some properties of Γ1,2,...,m, where Γ is bipartite distance-

regular and m ≥ 3. Then we determine when merging the first m classes in a bipartite

distance-regular graph produces a distance-regular graph.

Throughout this chapter, we denote Γ′ := Γ1,2,...,m, c′i(x, y) = |Γ′i−1(x)∩Γ′1(y)|,

a′i(x, y) = |Γ′i(x) ∩ Γ′1(y)| and b′i(x, y) = |Γ′i+1(x) ∩ Γ′1(y)| for i ∈ {0, 1, 2, . . . ,

diam(Γ′)}.

5.1 Merging the first and second classes in bipartite distance-regular

graphs

In this section, we determine when merging the first and second classes in a

bipartite distance-regular graph produces a distance-regular graph.

Observe that for a bipartite distance-regular graph Γ with diameter d, the graph

Γ′ = Γ1,2 is (k1 + k2)-regular with diameter bd+1
2
c and Γ′i(x) = Γ2i−1(x) ∪ Γ2i(x) for

1 ≤ i ≤ bd+1
2
c.

For the case d = 2, the graph Γ1,2 is a complete graph of order k1 +k2 +1 which

is a distance-regular graph. Now we consider the case d ≥ 3.

Throughout this section, we denote µ = c2 and λ = a1.

First we discuss the characterization result from [1]. We provide the proof of

this theorem that is omitted in [1].

Proposition 5.1. [1, Proposition 4.2.18] Let Γ be a distance-regular graph with diam-
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eter d. Then Γ′ := Γ1,2 is distance-regular if and only if we have

bj−1 + cj+1 − aj = k + µ− λ for 2 ≤ j ≤ d− 1. (5.1)

If this is the case, then Γ1,2 has diameter
⌊
d+1

2

⌋
and parameters

b′j =

 b2j−1b2j/µ if 1 ≤ j ≤ bd+1
2
c

k1 + k2 if j = 0,
,

c′j =

 cd(k + µ− λ+ ad − bd−1)/µ if j = d+1
2

and d is odd

c2j−1c2j/µ otherwise
.

Proof. We first prove the necessity. Assume that Γ′ is a distance-regular graph with

diameter d′ = bd+1
2
c. Then b′i and c′i exist for 1 ≤ i ≤ d′. Let x ∈ V (Γ). Then

Γ′i(x) = Γ2i−1(x) ∪ Γ2i(x) and Γd(x) ⊆ Γ′d′(x) for 1 ≤ i ≤ d′. We calculate b′i

(1 ≤ i ≤ d′−2) from vertices in Γ2i−1(x) and Γ2i(x). Let y ∈ Γ2i−1(x) and z ∈ Γ2i(x).

We have b′i(x, y) = p2i−1
2i+1,2 and b′i(x, z) = p2i

2i+1,1 + p2i
2i+1,2 + p2i

2i+2,2. Thus

b′i = p2i−1
2i+1,2 = p2i

2i+1,1 + p2i
2i+1,2 + p2i

2i+2,2. (5.2)

By Lemma 3.12, we have p2i
2i+1,1 = b2i. By Corollary 3.13, we have p2i−1

2i+1,2 = b2i−1b2i
c2

,

p2i
2i+1,2 = b2i(a2i+1+a2i−a1)

c2
and p2i

2i+2,2 = b2ib2i+1

c2
. Simplifying equation (5.2) by using the

fact that ai + bi + ci = k (1 ≤ i ≤ d), we obtain b2i−1 + c2i+1 − a2i = k + c2 − a1

(1 ≤ i ≤ d′ − 2). That is bj−1 + cj+1 − aj = k + µ − λ for 2 ≤ j ≤ d − 1. We also

calculate c′i (2 ≤ i ≤ d′ − 1) from vertices in Γ2i−1(x) and Γ2i(x). Let y ∈ Γ2i−1(x)

and z ∈ Γ2i(x). We have c′i(x, y) = p2i−1
2i−2,1 + p2i−1

2i−2,2 + p2i−1
2i−3,2 and c′i(x, z) = p2i

2i−2,2.

Thus

c′i = p2i−1
2i−2,1 + p2i−1

2i−2,2 + p2i−1
2i−3,2 = p2i

2i−2,2. (5.3)

By Lemma 3.12, we have p2i−1
2i−2,1 = c2i−1. By Corollary 3.13, we have p2i−1

2i−2,2 =

c2i−1(a2i−2+a2i−1−a1)
c2

, p2i−1
2i−3,2 = c2i−2c2i−1

c2
and p2i

2i−2,2 = c2i−1c2i
c2

. Simplifying equa-

tion (5.3) by using the fact that ai + bi + ci = k (1 ≤ i ≤ d), we obtain b2i−2 +

c2i − a2i−1 = k + c2 − a1 (2 ≤ i ≤ d′ − 1). That is bj−1 + cj+1 − aj = k + µ− λ for

2 ≤ j ≤ d− 1.

For the sufficiency, we assume that bj−1 + cj+1 − aj = k + µ − λ for 2 ≤

j ≤ d − 1. Observe that Γ′ has diameter bd+1
2
c. From the above proof, we know that
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bj−1+cj+1−aj = k+µ−λ for 2 ≤ j ≤ d−1 implies b′j = b2j−1b2j/µ for 1 ≤ j ≤ bd+1
2
c

and c′j = c2j−1c2j/µ for 2 ≤ j ≤ d
2
. We see that b′0 = k1 + k2, c′1 = 1 and if j = d+1

2

and d is odd, c′j = cd(k + µ− λ+ ad − bd−1)/µ. Hence, Γ′ is distance-regular. �

Note that (5.1) is equivalent to

bj + cj+1 = k + 1 where j is even (0 ≤ j ≤ d− 1),

and bj + cj+1 = b1 + µ where j is odd (1 ≤ j ≤ d− 1).

For bipartite graphs, we can rewrite Proposition 5.1 into the following simpler

form.

Corollary 5.2. Let Γ be a bipartite distance-regular graph with diameter d ≥ 3. Then

the following statements are equivalent.

(i) Γ1,2 is a distance-regular graph.

(ii) bj = µ+ bj+2 for 1 ≤ j ≤ d− 2.

(iii) cj = µ+ cj−2 for 3 ≤ j ≤ d.

Proof. (i) ⇐⇒ (ii) By Proposition 5.1 and the fact that ai = 0 and bi = k − ci

(1 ≤ i ≤ d).

(ii)⇐⇒ (iii) By the fact that ai = 0 and bi = k − ci (1 ≤ i ≤ d). �

Corollary 5.3. Let Γ be a bipartite distance-regular graph with even diameter d ≥ 4.

Then Γ1,2 is a distance-regular graph if and only if Γ has intersection array

b2j = d−2j
2
µ, b2j+1 = d−2j

2
µ− 1 (0 ≤ j ≤ d

2
− 1)

c2j−1 = (j − 1)µ+ 1, c2j = jµ (1 ≤ j ≤ d
2
)

Proof. From Corollary 5.2, the graph Γ1,2 is a distance-regular graph if and only if

cj = µ + cj−2 for 3 ≤ j ≤ d. In this case, since c1 = 1 and c2 = µ, we have

c2j−1 = (j − 1)µ + 1 and c2j = jµ for 1 ≤ j ≤ d
2
. In particular, k = cd = d

2
µ.

Since bi = k − ci (0 ≤ i ≤ d), we have b2j = k − c2j = d
2
µ − jµ = d−2j

2
µ and

b2j+1 = k− c2j+1 = d
2
µ− (jµ+ 1) = d−2j

2
µ− 1. Hence, Γ has the desired intersection

array. �
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Corollary 5.4. Let Γ be a bipartite distance-regular graph with odd diameter d ≥ 3.

Then Γ1,2 is a distance-regular graph if and only if Γ has intersection array

b2j = d−2j−1
2

µ+ 1, b2j+1 = d−2j−1
2

µ (0 ≤ j ≤ d−1
2

)

c2j = jµ, c2j+1 = jµ+ 1 (0 ≤ j ≤ d−1
2

)

Proof. From Corollary 5.2, the graph Γ1,2 is a distance-regular graph if and only if

cj = µ + cj−2 for 3 ≤ j ≤ d. In this case, since c1 = 1 and c2 = µ, we have c2j = jµ

and c2j+1 = jµ + 1 for 0 ≤ j ≤ d−1
2

. In particular, k = cd = d−1
2
µ + 1. Since

bi = k − ci (0 ≤ i ≤ d), we have b2j = k − c2j = (d−1
2
µ + 1) − jµ = d−2j−1

2
µ + 1

and b2j+1 = k − c2j+1 = (d−1
2
µ + 1)− (jµ + 1) = d−2j−1

2
µ. Hence, Γ has the desired

intersection array. �

We recall one useful necessary condition of a distance-regular graph.

Theorem 5.5. [1, Theorem 5.4.1] Let Γ be a distance-regular graph with diameter

d ≥ 3. If µ > 1, then one of the following statements holds.

(i) c3 ≥ 3
2
µ.

(ii) c3 ≥ µ+ b2, d = 3.

We now characterize when merging the first and second classes in a bipartite

distance-regular graph produces a distance-regular graph.

Theorem 5.6. Let Γ be a bipartite distance-regular graph with diameter d where d ≥ 3.

Then Γ1,2 is distance-regular if and only if Γ is either the complement of a 2× (µ+ 2)-

grid, a doubled Odd graph of odd points or a Hamming d-cube. Moreover, the following

statements hold.

(i) If Γ is the complement of a 2× (µ+ 2)-grid, then Γ1,2 is a strongly regular graph

with parameters (2µ + 4, 2µ + 2, 2µ, 2µ + 2) which is a (µ + 2)-cocktail party

graph.

(ii) If Γ is a doubled Odd graph of d points where d is odd, then Γ1,2 is a Johnson

graph J(d+ 1, d+1
2

).
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(iii) If Γ is a Hamming d-cube, then Γ1,2 is a halved (d+ 1)-cube.

Proof. Let Γ be a bipartite distance-regular graph with diameter d ≥ 3. Suppose that

Γ1,2 is distance-regular. We consider two cases.

Case 1: d = 3

By Corollary 5.4, the graph Γ has the intersection array {µ+1, µ, 1; 1, µ, µ+1}.

From [1, p.432], the graph Γ is the complement of a 2× (µ+ 2)-grid.

Moreover, by Proposition 5.1, the graph Γ1,2 has intersection array {2µ+2, 1; 1,

2µ+2}. That is Γ1,2 is a strongly regular graph with parameters (2µ+4, 2µ+2, 2µ, 2µ+

2) which is a (µ+ 2)-cocktail party graph.

Case 2: d > 3

Case 2.1: µ = 1

If d is even, then by Corollary 5.3, the value bd−1 = 0, a contradiction. Thus d

is odd. By Corollary 5.4, the graph Γ has the intersection array
{

d−1
2

+ 1, d−1
2
, d−3

2
+

1, d−3
2
, ..., 2, 1, 1; 1, 1, 2, ..., d−3

2
, d−3

2
+ 1, d−1

2
, d−1

2
+ 1
}

which is the same as the inter-

section array of a doubled Odd graph on d points [1, p.414]. Since doubled Odd graphs

are characterized by their intersection array [1, Proposition 9.1.8], Γ must be a doubled

Odd graph on d points.

Moreover, by Proposition 5.1, the graph Γ1,2 has intersection array

b′i =

(
d+ 1

2
− i
)2

and c′i = i2 for 0 ≤ i ≤ d+ 1

2

which is the same as the intersection array of a Johnson graph J(d + 1, d+1
2

). Since

Johnson graphs are characterized by their intersection array (see [15] and [16]), the

graph Γ1,2 must be a Johnson graph.

Case 2.2: µ > 1

By Theorem 5.5, we have c3 ≥ 3
2
µ. By Corollary 5.3 and Corollary 5.4, we

have c3 = µ + 1. Thus µ ≤ 2. Since we are in the case µ > 1, so we consider only the

case µ = 2. By Corollary 5.3 and Corollary 5.4, the graph Γ has the intersection array

{d, d − 1, d − 2, d − 3, ..., 3, 2, 1; 1, 2, 3, ..., d − 3, d − 2, d − 1, d} for all d > 3 which

is the same as the intersection array of a Hamming graph d-cube [1, p.413]. Since the
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Hamming graph d-cube is bipartite, by [17] it is characterized by its intersection array.

Thus Γ must be the Hamming graph d-cube.

Moreover, by Proposition 5.1, the graph Γ1,2 has intersection array

b′i =
(d− 2i)(d− 2i+ 1)

2
and c′i = i(2i− 1) for 0 ≤ i ≤

⌊
d+ 1

2

⌋

which is the same as the intersection array of a halved (d + 1)-cube. Since halved

(d+ 1)-cubes are characterized by their intersection array (see [15] and [18]), the graph

Γ1,2 must be a halved (d+ 1)-cube.

The arguments above also show that the sufficiency holds. �

5.2 Merging the first m classes in bipartite distance-regular graphs

In this section, we determine when merging the first m classes in a bipartite

distance-regular graph produces a distance-regular graph where m ≥ 3. Observe that

for a bipartite distance-regular graph Γ with diameter d = m, the graph Γ1,2,...,m is a

complete graph of order k1 + k2 + ...+ km + 1 which is a distance-regular graph. Now

we consider the case d ≥ m+ 1.

We first compute some phij in terms of the intersection array.

Lemma 5.7. Let Γ be a bipartite distance-regular graph with diameter d ≥ 4. For

3 ≤ n ≤ d− 1, we have

p3
n+1,n =

bnbn−1 · · · b3

c1c2 · · · cn
(bn+1cn+2 + bncn+1 + bn−1cn − b0c1 − b1c2).

Proof. We will prove by induction on n. For n = 3, by Lemma 3.12 and since ai = 0

for all i (0 ≤ i ≤ d), we have

p3
43 = 1

c3
(p3

23b3 + p3
25c5 − p3

14b1)

= 1
c3

[
b3
c2

(c3b2 + b3c4 − b0c1) + b4b3
c1c2

c5 − b3b1

]
= b3

c1c2c3
(b2c3 + b3c4 − b0c1 + b4c5 − b1c2).

For n ≥ 3, assume that p3
n+1,n = bnbn−1···b3

c1c2...cn
(bn+1cn+2 + bncn+1 + bn−1cn− b0c1− b1c2).
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Then by Lemma 3.12, we have

p3
n+2,n+1 = 1

cn+1
(p3

n,n+1bn+1 + p3
n,n+3cn+3 − p3

n−1,n+2bn−1)

= 1
cn+1

[
bn+1bn···b3
c1c2···cn (bn+1cn+2 + bncn+1 + bn−1cn − b0c1 − b1c2)

+ bn+2bn+1···b3
c1c2···cn cn+3 − bn+1bn···b3

c1c2···cn−1
bn−1

]
= bn+1bn···b3

c1c2···cn+1
[(bn+1cn+2 + bncn+1 + bn−1cn − b0c1 − b1c2)

+bn+2cn+3 − bn−1cn]

= bn+1bn···b3
c1c2···cn+1

(bn+2cn+3 + bn+1cn+2 + bncn+1 − b0c1 − b1c2).

This completes the proof of our lemma. �

Next we show that Γ1,2,...,m is not distance-regular for a bipartite distance-regular

graph with diameter d ≥ m+ 2.

Theorem 5.8. For m ≥ 3, let Γ be a bipartite distance-regular graph with diameter

d ≥ m+ 2. Then Γ′ := Γ1,2,...,m is not distance-regular.

Proof. Let x ∈ V (Γ). We consider two cases.

Case 1: d = m+ 2

Then Γ′1(x) = Γ1(x) ∪ Γ2(x) ∪ ... ∪ Γm(x) and Γ′2(x) = Γm+1(x) ∪ Γm+2(x).

Suppose that Γ1,2,...,m is a distance-regular graph. Then b′1 exists. We can calculate b′1

from vertices in Γ1(x) and Γ3(x). Let y ∈ Γ1(x) and z ∈ Γ3(x). Since Γ is bipartite,

phij = 0 whenever i + j + h is odd. So we have b′1(x, y) = p1
m+1,m and b′1(x, z) =

p3
m+2,m−1 + p3

m+1,m−2 + p3
m+1,m. Thus

p1
m+1,m = p3

m+2,m−1 + p3
m+1,m−2 + p3

m+1,m. (5.4)

By Lemma 3.12, we have p1
m+1,m = bmbm−1···b1

c1c2···cm , p3
m+2,m−1 = bm+1bm···b3

c1c2···cm−1
, and p3

m+1,m−2 =

bmbm−1···b3
c1c2···cm−2

. By Lemma 5.7, we have p3
m+1,m = bmbm−1···b3

c1c2···cm (bm+1cm+2 + bmcm+1 +

bm−1cm−b0c1−b1c2). Simplifying equation (5.4) by using bi = k−ci (0 ≤ i ≤ m+2)

and cm+2 = k, we have cm+1 = k. Since Γ is bipartite, bm+1 = k − cm+1 = 0, which is

a contradiction. Therefore Γ1,2,...,m is not distance-regular.

Case 2: d ≥ m+ 3

Then Γ′1(x) = Γ1(x) ∪ Γ2(x) ∪ ... ∪ Γm(x) and Γm+1 ∪ Γm+2(x) ∪ Γm+3(x) ⊂
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Γ′2(x). Suppose that Γ1,2,...,m is a distance-regular graph. Then b′1 exists. We can cal-

culate b′1 from vertices in Γ1(x) and Γ3(x). Let y ∈ Γ1(x) and z ∈ Γ3(x). Since Γ

is bipartite, phij = 0 whenever i + j + h is odd. So we have b′1(x, y) = p1
m+1,m and

b′1(x, z) = p3
m+3,m + p3

m+2,m−1 + p3
m+1,m−2 + p3

m+1,m. Thus

p1
m+1,m = p3

m+3,m + p3
m+2,m−1 + p3

m+1,m−2 + p3
m+1,m. (5.5)

By Lemma 3.12, we have p1
m+1,m = bmbm−1···b1

c1c2···cm , p3
m+3,m = bm+2bm+1···b3

c1c2···cm , p3
m+2,m−1 =

bm+1bm···b3
c1c2···cm−1

, and p3
m+1,m−2 = bmbm−1···b3

c1c2···cm−2
. Simplifying equation (5.5) using bi = k − ci

and Lemma 5.7, we have cm+1 = k. Since Γ is bipartite, bm+1 = k − cm+1 = 0, which

is a contradiction. Therefore Γ1,2,...,m is not distance-regular. �

Now it remains to consider the case that Γ is a bipartite distance-regular graph

with diameter d = m+ 1 where m ≥ 3. Since Γ1,2,...,m has diameter 2, if it is distance-

regular, then it is strongly regular.

We discuss some results that we will use later.

Lemma 5.9. Let Γ be a bipartite distance-regular graph with diameter d. Then

kd =


pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−3 + pid,d−1 ; i is odd

pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−2 + pid,d ; i is even

for 0 ≤ i ≤ d− 1.

Proof. Fix x ∈ V (Γ) and let yi ∈ Γi(x) (0 ≤ i ≤ d − 1). Since d(yi, z) ≥ d − i for

z ∈ Γd(x), we have

kd = |Γd(x)|

= |Γd(x) ∩ Γd−i(yi)|+ |Γd(x) ∩ Γd−i+1(yi)|+ . . .+ |Γd(x) ∩ Γd(yi)|

= pid,d−i + pid,d−i+1 + . . .+ pid,d.

By Lemma 3.2, phij = 0 for all h+ i+ j is odd. Thus

kd =


pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−3 + pid,d−1 ; i is odd

pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−2 + pid,d ; i is even

The result follows. �



 36

Lemma 5.10. Let Γ be a bipartite distance-regular graph with diameter d. Then Γ′ :=

Γ1,2,...,d−1 is a strongly regular graph if and only if

kd =


pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−3 + pid,d−1 ; i is odd

pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−4 + pid,d−2 ; i is even
(5.6)

for 0 ≤ i ≤ d− 1. In this case, b′1 = kd.

Proof. We first prove the necessity. Assume that Γ′ is a strongly regular graph (that is,

Γ′ is a distance-regular graph with diameter 2). Then b′1 exists. Let x ∈ V (Γ). Then

Γ′1(x) = Γ1(x)∪Γ2(x)∪...∪Γd−1(x) and Γ′2(x) = Γd(x). We calculate b′1 from vertices

in Γ1(x),Γ2(x), . . . ,Γd−1(x). Let yi ∈ Γi(x) for 0 ≤ i ≤ d − 1 and let z ∈ Γd(x). By

Lemma 3.2, phij = 0 whenever h+ i+ j is odd. So we have

b′1(x, yi) =


pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−3 + pid,d−1 ; i is odd

pid,d−i + pid,d−i+2 + pid,d−i+4 + . . .+ pid,d−4 + pid,d−2 ; i is even

for 0 ≤ i ≤ d− 1. Thus

b′1 = p1
d,d−1 = p2

d,d−2 = p3
d,d−3 + p3

d,d−1 = p4
d,d−4 + p4

d,d−2 = . . .

=


pd−1
d 1 + pd−1

d 3 + pd−1
d 5 + . . .+ pd−1

d,d−3 + pd−1
d,d−1 ; d is even

pd−1
d 1 + pd−1

d 3 + pd−1
d 5 + . . .+ pd−1

d,d−4 + pd−1
d,d−2 ; d is odd

In particular, b′1 = p1
d,d−1 = kd. The result follows.

For the sufficiency, we assume that equation (5.6) holds. From the above proof,

we know that equation (5.6) implies b′1 exists and b′1 = kd. Observe that Γ′ has diameter

2. We see that b′0 = k1 + k2 + . . .+ kd−1, c′1 = 1 and

c′2 =


pd1,d−1 + pd2,d−2 + pd3,d−3 + pd3,d−1 + ...+ pdd−1,1 + pdd−1,3 + ...+ pdd−1,d−1 ; d is even

pd1,d−1 + pd2,d−2 + pd3,d−3 + pd3,d−1 + ...+ pdd−1,1 + pdd−1,3 + ...+ pdd−1,d−2 ; d is odd

Hence, Γ′ is a strongly regular graph. �

We now characterize when merging the first d−1 classes in a bipartite distance-

regular graph with diameter d produces a distance-regular graph.
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Theorem 5.11. Let Γ be a bipartite distance-regular graph with diameter d ≥ 4. Then

Γ′ := Γ1,2,...,d−1 is a strongly regular graph if and only if Γ is antipodal. In this case, Γ′

is a strongly regular graph with parameters (1 + k1 + k2 + . . . + kd, k1 + k2 + . . . +

kd−1, k1 + k2 + . . . + kd−1 − kd − 1, k1 + k2 + . . . + kd−1) which corresponds to the

complete multipartite graph Kn×(1+kd) where n = (1 + k1 + k2 + . . . + kd)/(1 + kd).

Moreover, if d is odd, or d is even and b d
2

= c d
2
, then Γ′ is an n-cocktail party graph.

Proof. By Proposition 3.18, Lemma 5.9 and Lemma 5.10, the graph Γ1,2,...,d−1 is a

strongly regular graph if and only if Γ is antipodal. In this case, Γ′ is a strongly regular

graph with parameters v′ = 1 + k1 + k2 + k3 + . . .+ kd, k′ = k1 + k2 + k3 + . . .+ kd−1,

λ′ = a′1 = k1 + k2 + k3 + . . .+ kd−1 − b′1 − c′1 = k1 + k2 + k3 + . . .+ kd−1 − kd − 1.

Since Γ is antipodal, Γd is a disjoint union of complete graphs. Thus for a fixed vertex

x in Γ, for each y ∈ Γd(x), there is no vertex in Γi(x) (1 ≤ i ≤ d − 1) which has

distance d from y. That is, dΓ(y, z) ≤ d− 1 for any z ∈ Γ1(x) ∪ Γ2(x) ∪ ... ∪ Γd−1(x).

It follows that µ′ = c′2 = k1 + k2 + k3 + . . .+ kd−1 = k′. Hence, Γ′ is a strongly regular

graph with parameters (1 + k1 + k2 + . . . + kd, k1 + k2 + . . . + kd−1, k1 + k2 + . . . +

kd−1 − kd − 1, k1 + k2 + . . .+ kd−1) which is a complete multipartite graph Kn×(1+kd)

where n = (1 + k1 + k2 + . . . + kd)/(1 + kd). Moreover, if d is odd, or d is even and

b d
2

= c d
2
, by Corollary 3.21 and Corollary 3.22, we have kd = 1. It follows that Γ′ is an

n-cocktail party graph where n = (1 + k1 + k2 + . . .+ kd)/(1 + kd). �

Corollary 5.12. Let Γ be a bipartite antipodal distance-regular graph with even diam-

eter d. Then (1 + kd) | k d
2
.

Proof. By Theorem 5.11, we have (1+kd) | (1+k1 +k2 + . . .+kd). By Corollary 3.22,

the result follows. �

Finally, we give some families of distance-regular graphs Γ with diameter d

that both are bipartite and antipodal, and the resulting graphs Γ1,2,...,d−1 obtained by

Theorem 5.11.

• Let Γ be a cycle on 2d vertices (d ≥ 4). Then Γ is a distance-regular graph with

parameters k0 = kd = 1, ki = 2 (1 ≤ i ≤ d − 1). Thus Γ1,2,...,d−1 is a strongly
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regular graph with parameters (2d, 2d − 2, 2d − 4, 2d − 2) which is a d-cocktail

party graph.

• Let Γ be a Hamming d-cube (d ≥ 4). Then Γ is a distance-regular graph with

parameters ki =
(
d
i

)
(0 ≤ i ≤ d). Thus Γ1,2,...,d−1 is a strongly regular graph with

parameters (2d, 2d − 2, 2d − 4, 2d − 2) which is a 2d−1-cocktail party graph.

• Let Γ be a doubled Odd graph on 2m + 1 points (m ≥ 2). Then Γ is a distance-

regular graph with parameters k0 = kd = 1, and k1+k2+. . .+kd−1 = 2
(

2m+1
m

)
−2.

Thus Γ1,2,...,d−1 is a strongly regular graph with parameters
(
2
(

2m+1
m

)
, 2
(

2m+1
m

)
−

2, 2
(

2m+1
m

)
− 4, 2

(
2m+1
m

)
− 2
)

which is a
(

2m+1
m

)
-cocktail party graph.

• Let Γ be a graph which has intersection array {rc2, rc2−1, (r−1)c2, 1; 1, c2, rc2−

1, rc2} where r ≥ 2 (See [1, p.425]). Then Γ is a distance-regular graph with

diameter 4 and parameters k0 = 1, k1 = rc2, k2 = r(rc2 − 1), k3 = rc2(r −

1), and k4 = r − 1. Thus Γ1,2,3 is a strongly regular graph with parameters

(2r2c2, 2r
2c2 − r, 2r2c2 − 2r, 2r2c2 − r) which is a complete multipartite graph

K2rc2×r.



 

Chapter 6

Conclusions

When merging the first and third classes in bipartite distance-regular graphs, we

have the following main results.

(1) Let Γ be a bipartite distance-regular graph with diameter 3. Then Γ1,3 is a distance-

regular graph with diameter 2. Moreover Γ1,3 is a complete bipartite graph Km,m

where m = 1 + k2 = k1 + k3.

(2) Let Γ be a bipartite distance-regular graph with diameter 4. Then Γ1,3 is a distance-

regular graph with diameter 2. Moreover Γ1,3 is a complete bipartite graph Km,m

where m = 1 + k2 + k4 = k1 + k3.

(3) Let Γ be a bipartite distance-regular graph with diameter 5. Then Γ1,3 is a distance-

regular graph (with diameter 3) if and only if b2 = b4c3. In this case, Γ1,3 has

intersection array {k1 + k3, k1 + k3− 1, p2
53; 1, k1 + k3− p2

53, k1 + k3}. Moreover,

if b4 = 1, then Γ1,3 is a distance-regular graph if and only if Γ is antipodal. In this

case, Γ1,3 is the complement of a 2× (k1 + k3 + 1)-grid.

(4) If Γ is a bipartite distance-regular graph with diameter d ≥ 6, then Γ1,3 is not a

distance-regular graph.

When merging the first m classes in bipartite distance-regular graphs where

m ≥ 2, we have the following main results.

(1) Let Γ be a bipartite distance-regular graph with diameter d ≥ 3. Then Γ1,2 is

distance-regular if and only if Γ is either the complement of a 2× (µ+ 2)-grid, a

doubled Odd graph on odd points or a Hamming d-cube. Moreover, the following

statements hold.
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(i) If Γ is the complement of a 2× (µ+ 2)-grid, then Γ1,2 is a strongly regular

graph with parameters (2µ+4, 2µ+2, 2µ, 2µ+2) which is a (µ+2)-cocktail

party graph.

(ii) If Γ is a doubled Odd graph on d points where d is odd, then Γ1,2 is a Johnson

graph J(d+ 1, d+1
2

).

(iii) If Γ is a Hamming d-cube, then Γ1,2 is a halved (d+ 1)-cube.

(2) For m ≥ 3, let Γ be a bipartite distance-regular graph with diameter d ≥ m + 2.

Then Γ1,2,...,m is not distance-regular.

(3) Let Γ be a bipartite distance-regular graph with diameter d ≥ 4. Then Γ′ :=

Γ1,2,...,d−1 is a strongly regular graph if and only if Γ is antipodal. In this case, Γ′

is a strongly regular graph with parameters (1+k1 +k2 + . . .+kd, k1 +k2 + . . .+

kd−1, k1 +k2 + . . .+kd−1−kd−1, k1 +k2 + . . .+kd−1) which corresponds to the

complete multipartite graphKn×(1+kd) where n = (1+k1+k2+. . .+kd)/(1+kd).

Moreover, if d is odd, or d is even and b d
2

= c d
2
, then Γ′ is an n-cocktail party

graph.
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