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The domination game played on a graph G consists of two players,

Dominator and Staller, who alternate taking turns choosing a vertex from G such

that whenever a vertex is chosen, at least one additional vertex is dominated. Play-

ing a vertex will make all vertices in its closed neighborhood dominated. The game

ends when all vertices are dominated i.e., the chosen vertices form a dominating

set. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal

is to prolong it as much as possible. The game domination number is the total

number of chosen vertices after the game ends when Dominator and Staller play

the game by using optimal strategies.

In this thesis, we determine the game domination numbers of a dis-

joint union of chains and cycles of complete graphs together with optimal strategies

for Dominator and Staller.
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Chapter 1

Introduction

A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a set E(G) of

edges where each edge is identified with an unordered pair of vertices (not necessary

distinct vertices). A vertex of a graph which is not an endpoint of any edge is called

isolated. Two vertices are adjacent if they are joined by an edge; they are also the

end vertices of the edge, and the edge is said to be incident to each of its end

vertices. Multiple edges are two or more edges that are incident to the same two

vertices. A loop is an edge connecting a vertex to itself. A graph without loops

or multiple edges is called a simple graph. From now on, we only consider simple

graphs. For any graph G, the number of vertices in G is called the order of G and

it is denoted by |V (G)| or |G|. Consider a graph G, a graph H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A set S of vertices of a graph G is a dominating

set if every vertex not in S is adjacent to some vertex of S. The domination number

of a graph G is the number of vertices in a minimum dominating set of G, denoted

by γ(G).

In real life, domination can be used to optimize resource allocation. For

example, in a school building, we want to install multiple WiFi routers so that all

areas have WiFi coverage and we use as few routers as possible for saving cost.
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To solve the problem we can divide the school building into smaller areas (e.g.

classrooms). Each area is represented by a vertex. Two vertices are joined by an

edge if a WiFi router in one area can cover the other. Then domination can be

applied to solve this kind of resource allocation problem.

Figure 1.1: Example of a domination model for WiFi routers installation in a

school building with 8 classrooms

Example 1.1. Consider Figure 1.1. If we represent the areas in the school building

where we can install WiFi routers as vertices and join an edge between two vertices

that WiFi signal from one area can cover the other, then we will get the graph

H. Hence the domination number of H is equal to the minimum of the number of

WiFi routers needed in the school building. One can see that γ(H) = 2 i.e., the

minimum of the number of WiFi routers needed in this school building is 2.

There are many game variations of domination [1, 2, 3, 4, 10]. In this

thesis we study the domination game introduced in 2010 by Brešar, Klavžar and
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Rall [4], where the original idea of the game is attributed to Henning (2003, per-

sonal communication). The domination game played on a graph G consists of

two players, Dominator and Staller, who alternate taking turns choosing a ver-

tex from G such that whenever a vertex is chosen, at least one additional vertex

is dominated. Playing a vertex will make all vertices in its closed neighborhood

dominated. The game ends when all vertices are dominated i.e., the chosen vertices

form a dominating set. Dominator’s goal is to finish the game as soon as possi-

ble, and Staller’s goal is to prolong it as much as possible. The game domination

number is the size of the final dominating set when both players play optimally; it

is denoted by γg(G) when Dominator starts the game and by γ′
g(G) when Staller

starts the game.

Example 1.2. Let G be the graph in Figure 1.2.

Figure 1.2: Graph G

Since every vertex not in the set {a, b} is adjacent to a or b, the set

{a, b} is a dominating set of G. Note that the vertex a has a maximum degree but

it is not adjacent to all vertices in G. Then each dominating set of G must have

at least two vertices. Thus {a, b} is a minimum dominating set, so we get that
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γ(G) = 2. It implies that both games on G use at least 2 moves, i.e., γg(G) ≥ 2

and γ′
g(G) ≥ 2.

Now we consider the Dominator-start game. Since Dominator wants

to end the game as soon as possible and he cannot finish the game in one move,

the best move he can do is to play a. Then all closed neighborhoods of a are

dominated. By playing a, he can force Staller to end the game by dominating b

on the next move. Therefore γg(G) ≤ 2. We can conclude that γg(G) = 2.

Finally let’s consider the Staller-start game. Since Staller wants to pro-

long the game as much as possible, if Staller starts the game on a vertex not in

N(a) r N(b), then Dominator can finish the game on the next move. So Staller

starts the game on a vertex in N(a)rN(b) to prolong the game. Then Dominator

plays a to force Staller to end the game on the next move. We can conclude that

γ′
g(G) = 3.

Among many results, Brešar, Klavžar and Rall [4] gave a lower bound

and the upper bound of the game domination number in terms of the domination

number: for any graph G, we have γ(G) ≤ γg(G) ≤ 2γ(G)− 1. They also studied

the difference between the two types of the game domination numbers of a graph.

Later, Kinnersley, West and Zamani [11] improved upon this result and showed

that the difference is at most 1 i.e., for any graph G, |γg(G)− γ′
g(G)| ≤ 1.

The game version can be viewed as a form of negotiation. For example,

in an apartment building the owner and residents want to install WiFi routers so

that all areas have WiFi coverage. The owner who pays for the installation cost
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wishes to minimize the number of routers while the residents who want strong

signal wish to maximize the number of routers. For fairness both parties can play

the domination game to pick locations for router installation where the owner acts

as Dominator and the residents together act as Staller.

For a graph G and a subset of vertices S ⊆ V (G), we denote by G|S the

partially dominated graph where the vertices in S are already dominated initially.

In particular, if S = {x}, we write G|x. The notion of the game domination

number extends naturally to partially-dominated graphs by considering the number

of moves to dominate the remaining undominated vertices. We denote the open

neighborhood of a vertex v in a graph G by NG(v) and its closed neighborhood by

NG[v]. We simply write N(v) and N [v], respectively, if the graph is understood.

Let v be a vertex of a graph G. The degree of v, denoted by deg(v), is the number of

edges incident with v, or equivalently, deg(v) = |NG(v)|. A vertex u of a partially

dominated graph G is saturated if every vertex in N [u] is dominated. The residual

graph of a graph G is the graph obtained from G by removing all saturated vertices

and all edges joining between two dominated vertices. Since removing such vertices

and edges does not affect the game, the game domination numbers of a partially

dominated graph and its residual graph are the same.

Example 1.3. Let G1 be the partially dominated graph of the graph G in Figure

1.2 where vertices b and c are already dominated. One can see that every vertex

in N [b] is dominated. Then vertex b is saturated. After removing vertex b and

the edge joining between b and its neighbor c, we will get the residual graph G2
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of G1 as shown in Figure 1.3. Since playing vertex b does not dominate any new

vertices, removing b does not effect the game domination number of G1. So the

game domination numbers of G1 and G2 are equal.

To find the game domination numbers of G1, we consider G1 as the

graph where the vertices b and c are already dominated before the game starts.

In Dominator-start game, Dominator can end the game in one move by playing

a vertex a and in Staller-start game, Staller can prolong the game by playing a

vertex in N(a). Then γg(G1) = 1 and γ′
g(G1) = 2.

Figure 1.3: The partially dominated graph G1 and its residual graph G2

A path Pn is a graph of order n whose vertices can be listed in the order

v1, v2, ..., vn such that vi and vi+1 are adjacent and no other pairs of vertices are

adjacent where i = 1, 2, ..., n− 1. A cycle Cn is a connected graph of order n such

that every vertex has degree 2. A graph G is said to be a complete graph if every

pair of vertices in G are adjacent. We denote a complete graph on n vertices by

Kn. In this thesis, we only consider complete graphs with at least 3 vertices. A

graph G is called a chain of complete graphs Kn1 , Kn2 , ..., Knk
if G can be obtained

from Kn1 , Kn2 , ..., Knk
by identifying a vertex in Kni

and a vertex in Kni+1
for

1 ≤ i ≤ k−1 (a vertex can be identified at most once). A cycle of complete graphs
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Kn1 , Kn2 , ..., Knk
(k ≥ 3) is the graph obtained from the chain of Kn1 , Kn2 , ..., Knk

by identifying a vertex in V (Kn1)r V (Kn2) and a vertex in V (Knk
)r V (Knk−1

).

Figure 1.4: Some of paths and cycles

Figure 1.5: Some of complete graphs

Figure 1.6: A chain of K3, K3, K4, K3, K3, K4

Domination game played on various families of graphs have been stud-

ied. In 2013, Zamani [11, 14] determined the game domination numbers of paths

and cycles, and Brešar and Klavžar [5] proved a lower bound of the game domina-

tion number of a tree in terms of its order and maximum degree. In 2015, Bujtás

[7] proved a lower bound of the game domination number of a certain families

of forests. Dorbec, Košmrlj, and Renault [9] showed how the game domination
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Figure 1.7: A cycle of K3, K3, K4, K3, K3, K4

number of the union of two no-minus graphs corresponds to the game domination

numbers of the initial graphs. This result led to another proof of the game dom-

ination numbers of paths and cycles [12], and the game domination numbers of a

graph constructed from 1-sum of paths [8]. In 2018, Raksasakcha, Onphaeng, and

Worawannotai [13] determined the game domination numbers of a disjoint union

of paths and cycles.

In this thesis, we determine the game domination numbers of a disjoint

union of chains and cycles of complete graphs together with optimal strategies

for Dominator and Staller. Chapter 2 recalls some definitions and known results

of game domination numbers. Finally, Chapter 3 shows the game domination

numbers of a disjoint union of chains and cycles of complete graphs together with

optimal strategies for Dominator and Staller. Our proof is based on the following

observation. When the domination game is played on a disjoint union of chains

and cycles of complete graphs, at any stage of the game, the residual graph is

a disjoint union of cycles of complete graphs and partially-dominated chains of

complete graphs. In other words, the type of the residual graph does not change
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during the game. Therefore, if we can find an optimal first move, we have an

optimal strategy for the whole game.



 

Chapter 2

Preliminaries

In this section, we give some definitions for describing the game domination num-

bers of a disjoint union of chains and cycles of complete graphs, and we also give

useful lemmas for proving our results.

Definition 2.1. A graph is CC if each of its component is either a chain of

complete graphs or a cycle of complete graphs.

Figure 2.1: A CC graph

For convenience, we define some notations for the components of CC

graphs and their residual graphs.

Definition 2.2. Let Mm denote a chain of m complete graphs. Let M ′
m denote
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a partially-dominated chain of m complete graphs where one vertex in V (Kn1) r

V (Kn2) is dominated. Let M ′′
m denote a partially-dominated chain of m complete

graphs where a vertex in V (Kn1) r V (Kn2) and a vertex in V (Knm) r V (Knm−1)

are dominated. Let Nn denote a cycle of n complete graphs.

Figure 2.2: M3, M ′
3 and M ′′

3 of K3’s

Definition 2.3. For i ∈ {0, 1, 2, 3}, Mm is said to be in class [i] if m ≡ i (mod 4),

where m is a positive integer, and Nn is said to be in class (i) if n ≡ i (mod 4),

where n ≥ 3. Moreover, Mm is said to be in class [m]∗ if m ∈ {1, 2} and in class

[i]> if m ≡ i (mod 4) and m ≥ 3.

Figure 2.3: Some of chains of complete graphs in different classes

Definition 2.4. For a CC graph G, let a(G) denote the numbers of components

of G that are in [2] or [3] and let b(G) denote the numbers of components of G

that are (2).
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Figure 2.4: Some of cycles of complete graphs in different classes

Figure 2.5: Example of a CC graph

Example 2.5. Let G be the CC graph in Figure 2.5. Since M3, M2 and M6 of G

are in [2] or [3], we get that a(G) = 3. And since there is only N6 of G that is in

(2), we get that b(G) = 1.

When a graph G is a disjoint union of graphs G1, G2, ..., Gn, we simply

write G = G1 +G2 + ...+Gn.

Definition 2.6. Let G = Mm1 +Mm2 + ...+Mmk
+Nn1 +Nn2 + ...+Nnl

. Define

θ(G) =
∑k

i=1(mi − ⌊mi

4
⌋) +

∑l
j=1(nj − ⌊nj+2

4
⌋).

When there are two vertices in a graph whose closed neighborhoods are
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the same, we can remove one of the vertices or mark it dominated without changing

the game domination number of the graph.

Lemma 2.7. [6, Proposition 1.4] Let G be a graph and let u, v be two distinct

vertices of G. If N [u] = N [v], then γg(G r {u}) = γg(G) = γg(G|{u}) and

γ′
g(Gr {u}) = γ′

g(G) = γ′
g(G|{u}).

From the lemma above and since we only consider complete graphs with

at least 3 vertices, the game domination numbers of a chain of m complete graphs

are the same as those of a chain of m K3’s and the game domination numbers of

a cycle of n complete graphs are the same as those of a cycle of n K3’s. Moreover,

Lemma 2.7 yields the following important result.

Lemma 2.8. Let G be a graph. Then for any positive integer m, γg(G +Mm) =

γg(G+M ′
m) = γg(G+M ′′

m) and γ′
g(G+Mm) = γ′

g(G+M ′
m) = γ′

g(G+M ′′
m).

A fundamental tool for comparing choices of moves called Continuation

Principle is given below.

Theorem 2.9. [11, Lemma 2.1 (Continuation Principle)] Let G be a (partially-

dominated) graph and let A and B be subsets of V (G). If B ⊆ A, then γg(G|A) ≤

γg(G|B) and γ′
g(G|A) ≤ γ′

g(G|B).

Lemma 2.10. For each turn of Dominator, playing an identified vertex on a

chain of complete graphs or a cycle of complete graphs is not worse than playing

an unidentified vertex. For each turn of Staller, playing an unidentified vertex on

a chain of complete graphs or a cycle of complete graphs is not worse than playing

an identified vertex.
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Proof. For any two consecutive K3’s on a chain or a cycle of complete graphs, let

A = {a, b, c, d, e} be a set of vertices for the two consecutive K3’s where c is an

identified vertex of them. Let A1 = {a, b, c} and A2 = {c, d, e} be two sets of

vertices for each K3 i.e., A1 ⊂ A and A1 ⊂ A.

Consider playing a vertex in A, the dominating set after playing c is A

but the dominating set after playing a vertex in A r {c} is either A1 or A2 for

these two consecutive K3’s. Since A1 and A2 are subset of A, by the continuation

principle, we get that playing an identified vertex will make the game domination

numbers less than or equal to playing an unidentified vertex. Thus as a Dominator,

playing an identified vertex on a chain or a cycle of complete graphs is not worse

than playing an unidentified vertex. On the other hand, as a Staller, playing an

unidentified vertex on a chain or a cycle of complete graphs is not worse than

playing an identified vertex.

Lemma 2.10 allows us to make the following assumption which we will

use throughout the paper.

Assumption 2.11. A Dominator’s move always dominates two consecutive com-

plete graphs (if available) and a Staller’s move always dominates exactly one com-

plete graph.

Next, we give an important lemma that can be used for establishing

bounds for the game domination numbers. Recall that Dominator’s goal is to

finish the game as soon as possible, and Staller’s goal is to prolong it as much as

possible. If Dominator has a strategy, possibly suboptimal, that can end the game
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within a certain number of moves or Staller has a strategy, possibly suboptimal,

that can prolong the game to at least a certain number of moves, then a bound

for game domination numbers can be established as follows.

Lemma 2.12. Let G be a graph, the following statements hold.

(i) For Dominator-start game, if Dominator has a strategy that can end the

game within k moves, then γg(G) ≤ k.

(ii) For Staller-start game, if Dominator has a strategy that can end the game

within k moves, then γ′
g(G) ≤ k.

(iii) For Dominator-start game, if Staller has a strategy that can prolong the game

to at least k moves, then γg(G) ≥ k.

(iv) For Staller-start game, if Staller has a strategy that can prolong the game to

at least k moves, then γ′
g(G) ≥ k.

Lemma 2.12 can be used to prove a bound of a game domination num-

ber by presenting an appropriate Dominator’s strategy or a Staller’s strategy.



 

Chapter 3

Main results

In this section, we find the game domination numbers of a disjoint union of chains

and cycles of complete graphs together with optimal strategies for both players.

Theorem 3.1. Let G be a CC graph. Let θ = θ(G), a = a(G) and b = b(G).

Then

γg(G) = θ +

⌊
b− a

2

⌋
and

γ′
g(G) = θ +

⌈
b− a

2

⌉
.

Moreover, an optimal strategy for each player is as follows.

A Dominator’s optimal strategy: For each turn, Dominator always plays

on a component that is not in [1]∗ or (3) if possible. When Dominator plays on a

chain component (except M1 and M2), he plays to dominate the first two complete

graphs or the last two complete graphs of a chain.

A Staller’s optimal strategy: For each turn, Staller always plays on a

component that is not in [1]∗ or (1) if possible. When Staller plays on a chain

component (except M1), he plays to make the residual graph of this component

contains a component from class [1] or [3].
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Proof. Let G = Mm1 +Mm2 + ... +Mmk
+Nn1 +Nn2 + ... +Nnl

. By Lemma 2.7

we can assume that each component of G is either a chain or a cycle of K3’s. We

prove the results by induction on m1 + m2 + ... + mk + n1 + n2 + ... + nl. One

can check that the theorem holds for any CC graph with
∑k

i=1mi +
∑l

j=1 nj ≤ 4.

Assume that
∑k

i=1mi +
∑l

j=1 nj ≥ 5. First, we determine the value of γg(G). To

do this, we find Dominator’s optimal first move by comparing all his valid first

moves on a Dominator-start game.

Let G̃ be the residual graph of G after Dominator plays his first move

on G. Then γg(G) ≤ 1 + γ′
g(G̃) with equality if Dominator plays his first move

optimally. We divide our arguments based on the choice of Dominator’s first move.

In each case, we count the number of moves of the game with specified Dominator’s

first move and the remaining moves are played optimally by both players. After

Dominator makes his first move, the component in G on which he plays will either

be

1. reduced to nothing in G̃ if Dominator plays his first move on a component

of G that is M1 or M2,

2. reduced to one component in G̃ if Dominator plays his first move on a com-

ponent of G that is a cycle of complete graphs, or his first move dominates

the first two complete graphs or the last two complete graphs of a chain of

complete graphs, or

3. reduced to two components in G̃ if his first move does not dominate the first

nor the last complete graph of a chain of complete graphs of G with at least
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four complete graphs.

Table 3.1 shows the values of 1+γ′
g(G̃) for all residual graphs G̃ obtained

from Dominator making first move on G. The first column of the table shows the

classes of components on which Dominator plays his first move. The second column

shows the classes of residual graphs of the components that were played on. The

third to fifth columns show the changes in values of parameters g ∈ {θ, a, b} where

∆g = g(G̃)− g(G). The last column shows the values of 1 + γ′
g(G̃).

Now, we show how to obtain the entries in Table 3.1 by considering how

Dominator makes his first move. Let R be the residual graph of the component

that Dominator starts on. By Lemma 2.8, when computing the domination game

of G̃, we can view G̃ as a CC graph whose vertices are not dominated.

Case 1 : Dominator starts on Mmj
where mj ≡ 0 (mod 4).

Case 1.1 : R contains exactly one component and it is in [2] or R contains

exactly two components and one is in [0] and the other is in [2].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 1.2 : R contains exactly two components and both are in [1].

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γ′
g(G̃) = θ−1+

⌈
b−a
2

⌉
. Thus the number of moves in this case is θ+

⌈
b−a
2

⌉
.

Case 1.3 : R contains exactly two components and both are in [3].

Then θ(G̃) = θ, a(G̃) = a+2 and b(G̃) = b. By the induction hypothesis,
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1st move Residual ∆θ ∆a ∆b 1 + γ′
g(G̃)

[0]

[2]
−1 +1 0 θ +

⌈
b−a−1

2

⌉
[0], [2]

[1], [1] −1 0 0 θ +
⌈
b−a
2

⌉
[3], [3] 0 +2 0 θ +

⌈
b−a
2

⌉
[1]∗ − −1 0 0 θ +

⌈
b−a
2

⌉

[1]>

[3]
−1 +1 0 θ +

⌈
b−a−1

2

⌉
[0], [3]

[1], [2] −1 +1 0 θ +
⌈
b−a−1

2

⌉
[2]∗ − −2 −1 0 θ +

⌈
b−a−1

2

⌉

[2]>

[0]
−2 −1 0 θ +

⌈
b−a−1

2

⌉
[0], [0]

[1], [3] −1 0 0 θ +
⌈
b−a
2

⌉
[2], [2] −1 +1 0 θ +

⌈
b−a−1

2

⌉

[3]

[1]
−2 −1 0 θ +

⌈
b−a−1

2

⌉
[0], [1]

[2], [3] −1 +1 0 θ +
⌈
b−a−1

2

⌉
(0) [2] −1 +1 0 θ +

⌈
b−a−1

2

⌉
(1) [3] −1 +1 0 θ +

⌈
b−a−1

2

⌉
(2) [0] −1 0 −1 θ +

⌈
b−a−1

2

⌉
(3) [1] −1 0 0 θ +

⌈
b−a
2

⌉
Table 3.1: Effect of Dominator’s first moves on a CC graph.
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Figure 3.1: Dominator plays his first move on M8 (in class [0]) and results in the

residual graph with two new components in classes [2]∗ and [0], respectively

we have γ′
g(G̃) = θ+

⌈
b−(a+2)

2

⌉
. Thus the number of moves in this case is θ+

⌈
b−a
2

⌉
.

Case 2 : Dominator starts on M1.

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γ′
g(G̃) = θ−1+

⌈
b−a
2

⌉
. Thus the number of moves in this case is θ+

⌈
b−a
2

⌉
.

Case 3 : Dominator starts on Mmj
where mj ≡ 1 (mod 4) and mj ≥ 5.

Case 3.1 : R contains exactly one component and it is in [3] or R contains

exactly two components and one is in [0] and the other is in [3].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this
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case is θ +
⌈
b−a−1

2

⌉
.

Case 3.2 : R contains exactly two components and one is in [1] and the

other is in [2].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 4 : Dominator starts on M2.

Then θ(G̃) = θ − 2, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 2 +

⌈
b−(a−1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 5 : Dominator starts on Mmj
where mj ≡ 2 (mod 4) and mj ≥ 6.

Case 5.1 : R contains exactly one component and it is in [0] or R contains

exactly two components and one is in [0] and the other is in [0].

Then θ(G̃) = θ − 2, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 2 +

⌈
b−(a−1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 5.2 : R contains exactly two components and one is in [1] and the

other is in [3].

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γ′
g(G̃) = θ−1+

⌈
b−a
2

⌉
. Thus the number of moves in this case is θ+

⌈
b−a
2

⌉
.

Case 5.3 : R contains exactly two components and both are in [2].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction
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hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 6 : Dominator starts on Mmj
where mj ≡ 3 (mod 4).

Case 6.1 : R contains exactly one component and it is in [1] or R contains

exactly two components and one is in [0] and the other is in [1].

Then θ(G̃) = θ − 2, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 2 +

⌈
b−(a−1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 6.2 : R contains exactly two components and one is in [2] and the

other is in [3].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 7 : Dominator starts on Nnj
where nj ≡ 0 (mod 4). Then R

contains exactly one component and it is in [2].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 8 : Dominator starts on Nnj
where nj ≡ 1 (mod 4). Then R

contains exactly one component and it is in [3].

Then θ(G̃) = θ − 1, a(G̃) = a + 1 and b(G̃) = b. By the induction

hypothesis, we have γ′
g(G̃) = θ− 1 +

⌈
b−(a+1)

2

⌉
. Thus the number of moves in this
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case is θ +
⌈
b−a−1

2

⌉
.

Case 9 : Dominator starts on Nnj
where nj ≡ 2 (mod 4). Then R

contains exactly one component and it is in [0].

Then θ(G̃) = θ − 1, a(G̃) = a and b(G̃) = b − 1. By the induction

hypothesis, we have γ′
g(G̃) = θ − 1 +

⌈
b−1−a

2

⌉
. Thus the number of moves in this

case is θ +
⌈
b−a−1

2

⌉
.

Case 10 : Dominator starts on Nnj
where nj ≡ 3 (mod 4). Then R

contains exactly one component and it is in [1].

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γ′
g(G̃) = θ−1+

⌈
b−a
2

⌉
. Thus the number of moves in this case is θ+

⌈
b−a
2

⌉
.

From 10 cases above, we get that γg(G) = min(1 + γ′
g(G̃)) = θ +⌈

b−a−1
2

⌉
= θ +

⌊
b−a
2

⌋
.

Next, we determine the value of γ′
g(G). To do this, we find Staller’s

optimal first move by comparing all his valid first moves on a Staller-start game.

Let G̃ be the residual graph of G after Staller plays his first move on

G. Then γ′
g(G) ≥ 1 + γg(G̃) with equality if Staller plays his first move optimally.

We divide our arguments based on the choice of Staller’s first move. In each case,

we count the number of moves of the game with specified Staller’s first move and

the remaining moves are played optimally by both players. After Staller makes his

first move, the component in G on which he plays will either be

1. reduced to nothing in G̃ if Staller plays his first move on a component of G

that is M1,
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2. reduced to one component in G̃ if Staller plays his first move on a component

of G that is a cycle of complete graphs, or his first move dominates the first

complete graph or the last complete graph of a chain of complete graphs, or

3. reduced to two components in G̃ if his first move does not dominate the first

complete graph nor the last complete graph of a chain of complete graphs of

G with at least three complete graphs.

Table 3.2 shows the values of 1+γg(G̃) for all residual graphs G̃ obtained

from Staller making first move on G. The first column of the table shows the classes

of components on which Staller plays his first move. The second column shows

the classes of residual graphs of the components that were played on. The third

to fifth columns show the changes in values of parameters g ∈ {θ, a, b} where

∆g = g(G̃)− g(G). The last column shows the values of 1 + γg(G̃).

Now, we show how to obtain the entries in Table 3.2 by considering how

Staller makes his first move. Let R be the residual graph of the component that

Staller starts on. By Lemma 2.8, when computing the domination game of G̃, we

can view G̃ as a CC graph whose vertices are not dominated.

Case 1 : Staller starts on Mmj
where mj ≡ 0 (mod 4).

Case 1.1 : R contains exactly one component and it is in [3] or R contains

exactly two components and one is in [0] and the other is in [3].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 1.2 : R contains exactly two components and one is in [1] and the



 25

1st move Residual ∆θ ∆a ∆b 1 + γg(G̃)

[0]

[3]
0 +1 0 θ +

⌊
b−a+1

2

⌋
[0], [3]

[1], [2] 0 +1 0 θ +
⌊
b−a+1

2

⌋
[1]∗ − −1 0 0 θ +

⌊
b−a
2

⌋

[1]>

[0]
−1 0 0 θ +

⌊
b−a
2

⌋
[0], [0]

[1], [3] 0 +1 0 θ +
⌊
b−a+1

2

⌋
[2], [2] 0 +2 0 θ +

⌊
b−a
2

⌋
[2]∗ [1]∗ −1 −1 0 θ +

⌊
b−a+1

2

⌋

[2]>

[1]
−1 −1 0 θ +

⌊
b−a+1

2

⌋
[0], [1]

[2], [3] 0 +1 0 θ +
⌊
b−a+1

2

⌋

[3]

[2]
−1 0 0 θ +

⌊
b−a
2

⌋
[0], [2]

[1], [1] −1 −1 0 θ +
⌊
b−a+1

2

⌋
[3], [3] 0 +1 0 θ +

⌊
b−a+1

2

⌋
(0) [3] 0 +1 0 θ +

⌊
b−a+1

2

⌋
(1) [0] −1 0 0 θ +

⌊
b−a
2

⌋
(2) [1] 0 0 −1 θ +

⌊
b−a+1

2

⌋
(3) [2] 0 +1 0 θ +

⌊
b−a+1

2

⌋
Table 3.2: Effect of Staller’s first moves on a CC graph.
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Figure 3.2: Staller plays his first move on M8 (in class [0]) and results in the

residual graph with two new components in classes [0] and [3], respectively

other is in [2].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 2 : Staller starts on M1.

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ−1+
⌊
b−a
2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a
2

⌋
.

Case 3 : Staller starts on Mmj
where mj ≡ 1 (mod 4) and mj ≥ 5.

Case 3.1 : R contains exactly one component and it is in [0] or R contains

exactly two components and both are in [0].
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Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ−1+
⌊
b−a
2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a
2

⌋
.

Case 3.2 : R contains exactly two components and one is in [1] and the

other is in [3].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 3.3 : R contains exactly two components and both are in [2].

Then θ(G̃) = θ, a(G̃) = a+2 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+2)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a
2

⌋
.

Case 4 : Staller starts on M2.

Then θ(G̃) = θ − 1, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γg(G̃) = θ− 1 +
⌊
b−(a−1)

2

⌋
. Thus the number of moves in this

case is θ +
⌊
b−a+1

2

⌋
.

Case 5 : Staller starts on Mmj
where mj ≡ 2 (mod 4).

Case 5.1 : R contains exactly one component and it is in [1] or R contains

exactly two components and one is in [0] and the other is in [1].

Then θ(G̃) = θ − 1, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γg(G̃) = θ− 1 +
⌊
b−(a−1)

2

⌋
. Thus the number of moves in this

case is θ +
⌊
b−a+1

2

⌋
.

Case 5.2 : R contains exactly two components and one is in [2] and the

other is in [3].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,
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we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 6 : Staller starts on Mmj
where mj ≡ 3 (mod 4).

Case 6.1 : R contains exactly one component and it is in [2] or R contains

exactly two components and one is in [0] and the other is in [2].

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ−1+
⌊
b−a
2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a
2

⌋
.

Case 6.2 : R contains exactly two components and both are in [1].

Then θ(G̃) = θ − 1, a(G̃) = a − 1 and b(G̃) = b. By the induction

hypothesis, we have γg(G̃) = θ− 1 +
⌊
b−(a−1)

2

⌋
. Thus the number of moves in this

case is θ +
⌊
b−a+1

2

⌋
.

Case 6.3 : R contains exactly two components and both are in [3].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 7 : Staller starts on Nnj
where nj ≡ 0 (mod 4). Then R contains

exactly one component and it is in [3].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 8 : Staller starts on Nnj
where nj ≡ 1 (mod 4). Then R contains

exactly one component and it is in [0].

Then θ(G̃) = θ−1, a(G̃) = a and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ−1+
⌊
b−a
2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a
2

⌋
.

Case 9 : Staller starts on Nnj
where nj ≡ 2 (mod 4). Then R contains
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exactly one component and it is in [1].

Then θ(G̃) = θ, a(G̃) = a and b(G̃) = b−1. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−1−a

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

Case 10 : Staller starts on Nnj
where nj ≡ 3 (mod 4). Then R contains

exactly one component and it is in [2].

Then θ(G̃) = θ, a(G̃) = a+1 and b(G̃) = b. By the induction hypothesis,

we have γg(G̃) = θ+
⌊
b−(a+1)

2

⌋
. Thus the number of moves in this case is θ+

⌊
b−a+1

2

⌋
.

From 10 cases above, we get that γ′
g(G) = max(1 + γg(G̃)) = θ +⌊

b−a+1
2

⌋
= θ +

⌈
b−a
2

⌉
.

For a predicate P , let [P ] equals 1 if P is true; otherwise [P ] = 0.

Corollary 3.2. Let G be a chain of m complete graphs. Then γg(G) = m−
⌊
m
4

⌋
−

[m ≡ 2, 3 (mod 4)] and γ′
g(G) = m−

⌊
m
4

⌋
.

Corollary 3.3. Let G be a cycle of n complete graphs. Then γg(G) = n−
⌊
n+2
4

⌋
and γ′

g(G) = n−
⌊
n+2
4

⌋
+ [n ≡ 2 (mod 4)].

Example 3.4. Recall the CC graph in Figure 2.5. We calculate the game domi-

nation numbers of this CC graph by using Theorem 3.1 as follows.

Let G = M3 +M4 +M5 +M2 +M6 +M1 +N6 +N4.

Then θ(G) =
∑6

i=1(mi − ⌊mi

4
⌋) +

∑2
j=1(nj − ⌊nj+2

4
⌋) = (3− ⌊3

4
⌋) + (4−

⌊4
4
⌋)+(5−⌊5

4
⌋)+(2−⌊2

4
⌋)+(6−⌊6

4
⌋)+(1−⌊1

4
⌋)+(6−⌊6+2

4
⌋)+(4−⌊4+2

4
⌋) = 25.

Recall that a(G) and b(G) denote the numbers of components of G that

are in [2] ∪ [3] and (2), respectively. So a(G) = 3 and b(G) = 1.
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By theorem 3.1, we get that γg(G) = θ +
⌊
b−a
2

⌋
= 25 +

⌊
1−3
2

⌋
= 24 and

γ′
g(G) = θ +

⌈
b−a
2

⌉
= γ′

g(G) = 25 +
⌈
1−3
2

⌉
= 24.
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