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Chapter 1

Introduction

Throughout this thesis, unless stated otherwise, x, y, z are real numbers,

p always denotes a prime, a, b, k, `,m, n, q are integers, m,n ≥ 1, q ≥ 2, and log x

is the natural logarithm of x. Recall that for each x ∈ R, bxc is the largest integer

less than or equal to x, {x} is the fractional part of x given by {x} = x − bxc,
and dxe is the smallest integer larger than or equal to x. In addition, we write

a mod m to denote the least nonnegative residue of a modulo m. We also use the

Iverson notation: if P is a mathematical statement, then

[P ] =





1, if P holds;

0, otherwise.

For example, [5 ≡ −1 (mod 4)] = 0 and [3 ≡ −1 (mod 4)] = 1. We define

sq(n) to be the sum of digits of n when n is written in base q, that is, if n =

(akak−1 . . . a0)q = akq
k + ak−1qk−1 + · · · + a0 where 0 ≤ ai < q for every i, then

sq(n) = ak + ak−1 + · · ·+ a0.

In this thesis, we study on several topics of factorials, binomial coefficients,

Fibonomial coefficients, and palindrome and have publications on these problems

(See [30, 31, 32]). So we divide this chapter into two sections.

1.1 Explicit formulas for the p-adic valuations of Fibono-

mial coefficients

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn =

Fn−1 + Fn−2 for n ≥ 3 with the initial values F1 = F2 = 1. For each m ≥ 1 and

1 ≤ k ≤ m, the Fibonomial coefficients
(
m
k

)
F

are defined by
(
m

k

)

F

=
F1F2F3 · · ·Fm

(F1F2F3 · · ·Fk)(F1F2F3 · · ·Fm−k)
=
Fm−k+1Fm−k+2 · · ·Fm

F1F2F3 · · ·Fk
,
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where Fn is the nth Fibonacci number. If k = 0, we define
(
m
k

)
F

= 1 and if k > m,

we define
(
m
k

)
F

= 0. It is well known that
(
m
k

)
F

is always an integer for all integers

m ≥ 1 and k ≥ 0. So it is natural to consider the divisibility properties and the

p-adic valuation of
(
m
k

)
F

. As usual, the p-adic valuation (or p-adic order) of n,

denoted by νp(n), is the exponent of p in the prime factorization of n. In addition,

the order (or the rank) of appearance of n in the Fibonacci sequence, denoted by

z(n), is the smallest positive integer k such that n | Fk.
In 1989, Knuth and Wilf [19] gave a short description of the p-adic val-

uation of
(
m
k

)
C

where C is a regularly divisible sequence. However, this does not

give explicit formulas for
(
m
k

)
F

. Then recently, there has been some interest in

explicitly evaluating the p-adic valuation of Fibonomial coefficients of the form
(
pb

pa

)
F

. For example, Marques and Trojovský [26, 27] and Marques, Sellers, and

Trojovský [24] deal with the case b = a+1, a ≥ 1. Then Trojovský [45] give an ex-

act formula for νp

((
pb

pa

)
F

)
where b > a ≥ 1. Additionally, Marques and Trojovský

[25, 26, 27] and Marques, Sellers, and Trojovský [24] find all integers n ≥ 1 such

that
(
pn
n

)
F

is divisible by p in the case p = 2, 3 and in the case that p is any prime

and n = pa for some a ≥ 1. Ballot [6, Theorem 4.2] extends the Kummer-like

theorem of Knuth and Wilf [19, Theorem 2], which gives the p-adic valuation of

Fibonomials, to all Lucasnomials, and uses it to determine explicitly the p-adic

valuation of Lucasnomials of the form
(
pb

pa

)
U

, for all nondegenerate fundamental

Lucas sequences U and all integers b > a ≥ 0, [6, Theorem 7.1]. In particular,

Ballot [6] investigates all integers n such that p |
(
pn
n

)
U

for any nondegenerate

fundamental Lucas sequence U and p = 2, 3 and for p = 5, 7 in the case U = F .

Hence explicit formulas for the p-adic valuations of Fibonomial coefficients of the

form
(
`1pb

`2pa

)
F

have been investigated only in the case `1 = `2 = 1 and the relation

p |
(
pan
n

)
F

has been studied only in the case p = 2, 3, 5, 7 and a = 1.

In this thesis, we enhance Ballot’s theorem [6], Theorem 7.1, in the case

U = F and b ≥ a > 0 and obtain explicit formulas for
(
`1pb

`2pa

)
F

, where `1 and `2

are arbitrary positive integers such that `1p
b > `2p

a. This leads us to study the
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p-adic valuations of integers of the factorial form

⌊
`pa

m

⌋
! or

⌊
`1p

b − `2pa
m

⌋
!,

where p ≡ ±1 (mod m). Then we extend the examination on
(
pan
n

)
F

to the

case of any prime p and any positive integer a. Replacing n by pa and pa by p,

this becomes the result of Marques and Trojovský [27] and Marques, Sellers, and

Trojovský [24]. Substituting a = 1, p ∈ {2, 3, 5, 7}, and letting n be arbitrary, this

reduces to Ballot’s theorems [6]. So our results are indeed an extension of those

previously mentioned. As a reward, we can easily show in Corollaries 3.11 and

3.12 that
(
4n
n

)
F

is odd if and only if n is a nonnegative power of 2, and
(
8n
n

)
F

is

odd if and only if n = (1 + 3 · 2k)/7 for some k ≡ 1 (mod 3).

1.2 Reciprocal sum of Palindrome

Let n ≥ 1 and b ≥ 2 be integers. We call n a palindrome in base b (or

b-adic palindrome) if the b-adic expansion of n = (akak−1 · · · a0)b with ak 6= 0

has the symmetric property ak−i = ai for 0 ≤ i ≤
⌊
k
2

⌋
. As usual, if we write a

number without specifying the base, then it is always in base 10. So, for example,

9 = (1001)2 = (100)3 is a palindrome in bases 2 and 10 but not in base 3.

In recent years, there has been an increasing interest in the importance of

palindromes in mathematics [1, 2, 3, 15, 23, 40], theoretical computer science [4, 11,

14], and theoretical physics [13, 17]. For example, Pongsriiam and Subwattanachai

[36] obtain an exact formula for the number of b-adic palindromes not exceeding N

for allN ≥ 1. There are also some discussions on the reciprocal sum of palindromes

on the internet but as far as we are aware, our observation has not appeared in the

literature. Throughout this thesis, we let b ≥ 2, sb the reciprocal sum of all b-adic

palindromes, and sb,k the reciprocal sum of all b-adic palindromes which have k

digits in their b-adic expansion. The set of all b-adic palindromes is infinite but

quite sparse, so it is not difficult to see that sb converges. In fact, Shallit proposed

the convergence of sb as a problem proved by Klauser in the Fibonacci Quarterly

[41, 42].
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In this thesis, we obtain upper and lower bounds for sb which enable us

to show that sb+1 > sb for all b ≥ 2 and s2b− sb−1sb+1 > 0 for all b ≥ 3. That is the

sequence (sb)b≥2 is strictly increasing and log–concave. We also give an asymptotic

formula for sb of the form sb = g(b) + O(h(b)) where the implied constant can be

taken to be 1 and the order of magnitude of h(b) is log b
b3

as b → ∞. Our result

sb+1 > sb for all b ≥ 2 also implies that if b1 > b2 ≥ 2 and if we use the logarithmic

measure, then we can say that the palindromes in base b1 occur more often than

those in base b2. On the other hand, if we use the usual counting measure, then we

obtain from Pongsriiam and Subwattanachai’s exact formula [36] that the number

of palindromes in different bases which are less than or equal to N are not generally

comparable. It seems that there are races between palindromes in different bases

which may be similar to races between primes in different residue classes.

The reciprocal sum of an integer sequence is also of general interest in

mathematics and theoretical physics as proposed by Bayless and Klyve [10], and

by Roggero, Nardelli, and Di Noto [39]. See also the work of Nguyen and Pomer-

ance [28] on the reciprocal sum of the amicable numbers, the study of Kinlaw,

Kobayashi, and Pomerance [18] on the integers n satisfying ϕ(n) = ϕ(n+ 1), and

the article by Lichtman [22] on the reciprocal sum of primitive nondeficient num-

bers. In addition, Banks [7], Cilleruelo, Luca, and Baxter [12], and Rajasekaran,

Shallit, and Smith [38] have recently investigated some additive properties of palin-

dromes. Banks, Hart, and Sakata [8] and Banks and Shparlinski [9] show some

multiplicative properties of palindromes.

We organize this thesis as follows. In Chapter 2, we give some prelimi-

naries and useful results which are needed in the proof of the main theorems. In

Chapter 3, we give an explicit formula for the p-adic of Fibonomial coefficients

and some related results and apply it to obtain a characterization of the integers

n such that
(
pa

n

)
F

is divisible by p where p is any prime which is congruent to ±2

(mod 5). Finally, in Chapter 4, we show upper and lower bounds, and asymptotic

formula for sb.



 

Chapter 2

Preliminaries and Lemmas

Recall that for each odd prime p and a ∈ Z, the Legendre symbol (a
p
) is

defined by

(
a

p

)
=





0, if p | a;

1, if a is a quadratic residue of p;

−1, if a is a quadratic nonresidue of p.

Then we have the following result.

Lemma 2.1. Let p 6= 5 be a prime and let m and n be positive integers. Then the

following statements hold.

(i) If p > 2, then Fp−( 5
p
) ≡ 0 (mod p).

(ii) n | Fm if and only if z(n) | m.

(iii) z(p) | p+ 1 if and only if p ≡ 2 or − 2 (mod 5), and z(p) | p− 1 otherwise.

(iv) gcd(z(p), p) = 1.

Proof. These are well known results. For example, (i) and (ii) can be found in

[20, p. 410] and [46], respectively. Then (iii) follows from (i) and (ii). By (iii),

z(p) | p ± 1. Since gcd(p, p ± 1) = 1, we obtain gcd(z(p), p) = 1. This proves

(iv).

Lengyel’s result and Legendre’s formula given in the following lemmas are

important tools in evaluating the p-adic valuation of Fibonomial coefficients. We

also refer the reader to [26, 27, 24, 33] for other similar applications of Lengyel’s

result.
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Lemma 2.2. (Lengyel [21]) For n ≥ 1, we have

ν2(Fn) =





0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

ν2(n) + 2, if n ≡ 0 (mod 6),

ν5(Fn) = ν5(n), and if p is a prime distinct from 2 and 5, then

νp(Fn) =




νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p)) :

0, if n 6≡ 0 (mod z(p)),

Lemma 2.3. (Legendre’s formula) Let n be a positive integer and let p be a prime.

Then

νp(n!) =
∞∑

k=1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
.

In the proof of main results, we will deal with a lot of calculation involving

the floor function. So it is useful to recall the following results.

Lemma 2.4. [35, Theorem 3.3] For n ∈ Z and x ∈ R, the following holds

(i) bn+ xc = n+ bxc,

(ii) {n+ x} = {x},

(iii) bxc+ b−xc =




−1, if x 6∈ Z;

0, if x ∈ Z,

(iv) {−x} =





1− {x}, if x 6∈ Z;

0, if x ∈ Z,

(v) bx+ yc =




bxc+ byc, if {x}+ {y} < 1;

bxc+ byc+ 1, if {x}+ {y} ≥ 1,

(vi)
⌊
bxc
n

⌋
=
⌊
x
n

⌋
for n ≥ 1.
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The next lemma is used often in counting the number of positive integers

n ≤ x lying in a residue class a mod q, see for instance in [37, Proof of Lemma

2.6].

Lemma 2.5. For x ∈ [1,∞), a, q ∈ Z and q ≥ 1, we have

∑

1≤n≤x
n≡ a (mod q)

1 =

⌊
x− a
q

⌋
−
⌊
−a
q

⌋
. (2.1)

Proof. Replacing a by a + q and applying Lemma 2.4, we see that the value on

the right-hand side of (2.1) is not changed. Obviously, the left-hand side is also

invariant when we replace a by a + q. So it is enough to consider only the case

1 ≤ a ≤ q. Since n ≡ a (mod q), we write n = a+kq where k ≥ 0 and a+kq ≤ x.

So k ≤ x−a
q

. Therefore

∑

1≤n≤x
n≡ a (mod q)

1 =
∑

0≤k≤x−a
q

1 =

⌊
x− a
q

⌋
+ 1 =

⌊
x− a
q

⌋
−
⌊
−a
q

⌋
.

It is convenient to use the Iverson notation and to denote the least non-

negative residue of a modulo m by a mod m. Therefore we will do so from this

point on.

Lemma 2.6. Let n and k be integers, m a positive integer, r = n mod m, and

s = k mod m. Then

⌊
n− k
m

⌋
=
⌊ n
m

⌋
−
⌊
k

m

⌋
− [r < s].

Proof. By Lemma 2.4(i) and the fact that 0 ≤ r < m, we obtain

⌊ n
m

⌋
=

⌊
n− r
m

+
r

m

⌋
=
n− r
m

+
⌊ r
m

⌋
=
n− r
m

.

Similarly,
⌊
k
m

⌋
= k−s

m
. Therefore

⌊
n−k
m

⌋
is equal to

⌊
n− r
m
− k − s

m
+
r − s
m

⌋
=
n− r
m
−k − s

m
+

⌊
r − s
m

⌋
=





⌊
n
m

⌋
−
⌊
k
m

⌋
, if r ≥ s;

⌊
n
m

⌋
−
⌊
k
m

⌋
− 1, if r < s.
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In Chapter 4, we handle a lot of estimation involving reciprocal sums. So

we recall the next lemma which plays a significant role in evaluating reciprocal

sums.

Lemma 2.7. [35, Theorem 4.6] Let a and b be integers such that a < b and f a

monotone function on [a, b]. Then

min{f(a), f(b)} ≤
b∑

n=a

f(n)−
∫ b

a

f(t)dt ≤ max{f(a), f(b)}.



 

Chapter 3

Explicit Formulas for the p-adic Valuations of Fibonomial

Coefficients

We organize this chapter as follows. In Section 1, we give exact formulas

for the p-adic valuations of certain integers. In Section 2, we apply the results

obtained in Section 1 to Fibonomial coefficient and then use it to characterize the

integers n such that
(
pan
n

)
F

is divisible by p where p is any prime which is con-

gruent to ±2 (mod 5). Finally, in Section 3, we show some examples to illustrate

applications of Theorem 3.7

3.1 The p-adic valuation of integers in special forms

In this section, we calculate the p-adic valuations of
⌊
`pa

m

⌋
! and other

integers in similar forms.

Theorem 3.1. [30, Theorem 7] Let p be a prime and let a ≥ 0, ` ≥ 0, and m ≥ 1

be integers. Assume that p ≡ ±1 (mod m) and let δ = [` 6≡ 0 (mod m)]. Then

νp

(⌊
`pa

m

⌋
!

)
=





`(pa−1)
m(p−1) − a

{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ 1 (mod m);

`(pa−1)
m(p−1) − a

2
δ + νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is even;

`(pa−1)
m(p−1) − a−1

2
δ −

{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is odd.

We remark that if m = 1 or 2, then the expressions in each case of this theorem

are all equal.

We can combine every case in Theorem 3.1 into a single form as given in

the next corollary.
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Corollary 3.2. [30, Corollary 8] Assume that p, a, `, m, and δ satisfy the same

assumptions as in Theorem 3.1. Then the p-adic valuation of
⌊
`pa

m

⌋
! is

`(pa − 1)

m(p− 1)
−
⌊a

2

⌋
δ −

{
`

m

}
[a ≡ 1 (mod 2)]

+ δ
⌊a

2

⌋(
1− 2

{
`

m

})
[p ≡ 1 (mod m)] + νp

(⌊
`

m

⌋
!

)
.

Next we deal with the p-adic valuation of an integer of the form
⌊
`1pb−`2pa

m

⌋
!

where a, b, `1, `2, and m are positive integers. It is natural to assume `1p
b−`2pa >

0. In addition, if a = b, then the above expression is reduced to
⌊
(`1−`2)pb

m

⌋
!, which

can be evaluated by using Theorem 3.1. We consider the case b ≥ a in Theorem

3.3 and the other case in Theorem 3.4.

Theorem 3.3. [30, Theorem 9] Let p be a prime, let a be a nonnegative integer,

and let b, m, `1, `2 be positive integers satisfying b ≥ a and `1p
b − `2p

a > 0.

Assume that p ≡ ±1 (mod m). Then the following statements hold.

(i) If p ≡ 1 (mod m), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1p
b−a − `2)(pa − 1)

m(p− 1)
−a
{
`1 − `2
m

}
+νp

(⌊
`1p

b−a − `2
m

⌋
!

)
.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1p
b−a − `2)(pa − 1)

m(p− 1)
−
{
`1 − `2
m

}
[a ≡ 1 (mod 2)]

−
⌊a

2

⌋
[`1 6≡ `2 (mod m)] + νp

(⌊
`1p

b−a − `2
m

⌋
!

)
.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1p
b−a − `2)(pa − 1)

m(p− 1)
−
{
−`1 + `2

m

}
[a ≡ 1 (mod 2)]

−
⌊a

2

⌋
[`1 6≡ −`2 (mod m)] + νp

(⌊
`1p

b−a − `2
m

⌋
!

)
.

We remark that if m = 1, the expressions in each case of this theorem are equal.

Next we replace the assumption b ≥ a in Theorem 3.3 by b < a. The

calculation follows from the same idea. Although we do not use it in this research,

it may be useful for future reference. So we record it in the next theorem.
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Theorem 3.4. [30, Theorem 10] Let p be a prime, let b be a nonnegative integer,

and let a, m, `1, `2 be positive integers satisfying b < a and `1p
b − `2p

a > 0.

Assume that p ≡ ±1 (mod m). Then the following statements hold.

(i) If p ≡ 1 (mod m), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1 − `2pa−b)(pb − 1)

m(p− 1)
−b
{
`1 − `2
m

}
+νp

(⌊
`1 − `2pa−b

m

⌋
!

)
.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1 − `2pa−b)(pb − 1)

m(p− 1)
−
{
`1 − `2
m

}
[b ≡ 1 (mod 2)]

−
⌊
b

2

⌋
[`1 6≡ `2 (mod m)] + νp

(⌊
`1 − `2pa−b

m

⌋
!

)
.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊
`1p

b − `2pa
m

⌋
!

)
=

(`1 − `2pa−b)(pb − 1)

m(p− 1)
−
{
`1 + `2
m

}
[b ≡ 1 (mod 2)]

−
⌊
b

2

⌋
[`1 6≡ `2 (mod m)] + νp

(⌊
`1 − `2pa−b

m

⌋
!

)
.

3.2 The p-adic valuations of Fibonomial coefficients and

some related divisibility

Recall that the binomial coefficients
(
m
k

)
is defined by

(
m

k

)
=





m!
k!(m−k)! , if 0 ≤ k ≤ m;

0, if k < 0 or k > m.

A classical result of Kummer states that for 0 ≤ k ≤ m, νp
((
m
k

))
is equal to the

number of carries when we add k and m−k in base p. From this, it is not difficult

to show that for all primes p and positive integers k, b, a with b ≥ a, we have

νp

((
pb

pa

))
= b− a, or more generally, νp

((
pa

k

))
= a− νp(k).
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Knuth and Wilf [19] also obtain the result analogous to that of Kummer for a C-

nomial coefficient. However, our purpose is to obtain νp
((
m
k

)
F

)
is an explicit form.

So we first express νp
((
m
k

)
F

)
in terms of the p-adic valuation of some binomial

coefficients in Theorem 3.5. Then we write it in a form which is easy to use in

Corollary 3.6. Then we apply it to obtain the p-adic valuation of Fibonomial

coefficients of the form
(
`1pb

`2pa

)
F

.

Theorem 3.5. [30, Theorem 11] Let 0 ≤ k ≤ m be integers. Then the following

statements hold.

(i) Let m′ =
⌊
m
6

⌋
, k′ =

⌊
k
6

⌋
, and let r = m mod 6 and s = k mod 6 be the least

nonnegative residues of m and k modulo 6, respectively. Then

ν2

((
m

k

)

F

)
= ν2

((
m′

k′

))
+

⌊
r + 3

6

⌋
−
⌊
r − s+ 3

6

⌋
−
⌊
s+ 3

6

⌋
− 3

⌊
r − s

6

⌋

+ [r < s]ν2

(⌊
m− k + 6

6

⌋)
.

(ii) ν5
((
m
k

)
F

)
= ν5

((
m
k

))
.

(iii) Suppose that p is a prime, p 6= 2, and p 6= 5. Let m′ =
⌊

m
z(p)

⌋
, k′ =⌊

k
z(p)

⌋
, and let r = m mod z(p), and s = k mod z(p) be the least nonnegative

residues of m and k modulo z(p), respectively. Then

νp

((
m

k

)

F

)
= νp

((
m′

k′

))
+ [r < s]

(
νp

(⌊
m− k + z(p)

z(p)

⌋)
+ νp(Fz(p))

)
.

By Theorem 3.5(ii), we see that the 5-adic valuations of Fibonomial and

binomial coefficients are the same. So we focus our investigation only on the p-adic

valuations of Fibonomial coefficients when p 6= 5. Calculating r and s in Theorem

3.5(i) in every case and writing Theorem 3.5(iii) in another form, we obtain the

following corollary.

Corollary 3.6. [30, Corollary 12] Let m, k, r, and s be as in Theorem 3.5. Let

A2 = ν2

(⌊m
6

⌋
!
)
− ν2

(⌊
k

6

⌋
!

)
− ν2

(⌊
m− k

6

⌋
!

)
,

and for each prime p 6= 2, 5, let Ap = νp

(⌊
m
z(p)

⌋
!
)
− νp

(⌊
k
z(p)

⌋
!
)
− νp

(⌊
m−k
z(p)

⌋
!
)

.

Then the following statements hold.
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(i) ν2

((
m

k

)

F

)
=





A2, if r ≥ s and (r, s) 6= (3, 1), (3, 2), (4, 2);

A2 + 1, if (r, s) = (3, 1), (3, 2), (4, 2);

A2 + 3, if r < s and (r, s) 6= (0, 3), (1, 3), (2, 3),

(1, 4), (2, 4), (2, 5);

A2 + 2, if (r, s) = (0, 3), (1, 3), (2, 3), (1, 4), (2, 4),

(2, 5).

(ii) For p 6= 2, 5, we have

νp

((
m

k

)

F

)
=




Ap, if r ≥ s;

Ap + νp(Fz(p)), if r < s.

In a series of papers (see [27] and references therein), Marques and Tro-

jovský obtain a formula for νp

((
pb

pa

)
F

)
only when b = a + 1. Then Ballot [6]

extends it to any case b > a. Corollary 3.6 enables us to compute νp

((
`1pb

`2pa

)
F

)
.

We illustrate this in the next theorem.

Theorem 3.7. [30, Theorem 13] Let a, b, `1, and `2 be positive integers and

b ≥ a. Let p 6= 5 be a prime. Assume that `1p
b > `2p

a and let mp =
⌊
`1pb−a

z(p)

⌋
and

kp =
⌊

`2
z(p)

⌋
. Then the following statements hold.

(i) If a ≡ b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to





ν2

((
m2

k2

))
, if `1 ≡ `2 (mod 3) or `2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if `1 ≡ 0 (mod 3) and `2 6≡ 0 (mod 3);

⌈
a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 2 (mod 3);

⌈
a+1
2

⌉
+ ν2

((
m2

k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 1 (mod 3),
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and if a 6≡ b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to





ν2

((
m2

k2

))
, if `1 ≡ −`2 (mod 3) or `2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if `1 ≡ 0 (mod 3) and `2 6≡ 0 (mod 3);

⌈
a+1
2

⌉
+ ν2

((
m2

k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 1 (mod 3);

⌈
a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 2 (mod 3).

(ii) Let p 6= 5 be an odd prime and let r = `1p
b mod z(p) and s = `2p

a

mod z(p). If p ≡ ±1 (mod 5), then

νp

((
`1p

b

`2pa

)

F

)
= [r < s]

(
a+ νp (mp − kp) + νp(Fz(p))

)
+ νp

((
mp

kp

))
,

and if p ≡ ±2 (mod 5), then νp

((
`1pb

`2pa

)
F

)
is equal to





νp

((
mp
kp

))
, if r = s or `2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp
kp

))
, if `1 ≡ 0 (mod z(p)) and

`2 6≡ 0 (mod z(p));

a
2

+ νp

((
mp
kp

))
, if r > s, `1, `2 6≡ 0 (mod z(p)),

and a is even;

a
2

+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp
kp

))
, if r < s, `1, `2 6≡ 0 (mod z(p)),

and a is even;

a+1
2

+ νp (mp − kp) + νp

((
mp
kp

))
, if r > s, `1, `2 6≡ 0 (mod z(p)),

and a is odd;

a−1
2

+ νp(Fz(p)) + νp

((
mp
kp

))
, if r < s, `1, `2 6≡ 0 (mod z(p)),

and a is odd.

Remark 3.8. In the proof of this theorem, we also show that the condition r = s

in Theorem 3.7(ii) is equivalent to `1 ≡ `2 − 2`2[a 6≡ b (mod 2)] (mod z(p)). It

seems more natural to write r = s in the statement of the theorem, but it is more

convenient in the proof to use the condition `1 ≡ `2−2`2[a 6≡ b (mod 2)] (mod z(p)).
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Next, we calculate the 2-adic valuation of
(
2an
n

)
F

and then use it to deter-

mine the integers n such that
(
2n
n

)
F
,
(
4n
n

)
F
,
(
8n
n

)
F

are even. Then we determine the

p-adic valuation of
(
pan
n

)
F

for all odd primes p. For binomial coefficients, we know

that ν2
((

2n
n

))
= s2(n). For Fibonomial coefficients, we have the following result.

Theorem 3.9. [32, Theorem 7] Let a and n be positive integers, ε = [n 6≡ 0

(mod 3)], and A =
⌊
(2a−1)n
3·2ν2(n)

⌋
. Then the following statements hold.

(i) If a is even, then

ν2

((
2an

n

)

F

)
= δ + A− a

2
ε− ν2(A!) = δ + s2(A)− a

2
ε,

where δ = [n mod 6 = 3, 5]. In other words, δ = 1 if n ≡ 3, 5 (mod 6) and

δ = 0 otherwise.

(ii) If a is odd, then

ν2

((
2an

n

)

F

)
= δ + A− a− 1

2
ε− ν2(A!) = δ + s2(A)− a− 1

2
ε,

where δ = (n mod 6)−1
2

[2 - n] +
⌈
ν2(n)+3−n mod 3

2

⌉
[n mod 6 = 2, 4]. In other

words, δ = (n mod 6)−1
2

if n is odd, δ = 0 if n ≡ 0 (mod 6), δ =
⌈
ν2(n)
2

⌉
+ 1 if

n ≡ 4 (mod 6), and δ =
⌈
ν2(n)+1

2

⌉
if n ≡ 2 (mod 6).

We can obtain the main result of Maques and Trojovský [25] as a corollary.

Corollary 3.10. [32, Corollary 8]
(
2n
n

)
F

is even for all n ≥ 2.

Corollary 3.11. [32, Corollary 9] Let n ≥ 2. Then
(
4n
n

)
F

is even if and only if n

is not a power of 2. In other words, for each n ∈ N,
(
4n
n

)
F

is odd if and only if

n = 2k for some k ≥ 0.

Observe that 2, 22, 23 are congruent to 2, 4, 1 (mod 7), respectively. This

implies that if k ≥ 1 and k ≡ 1 (mod 3), then (1 + 3 · 2k)/7 is an integer. We can

determine the integers n such that
(
8n
n

)
F

is odd as follows.

Corollary 3.12. [32, Corollary 10]
(
8n
n

)
F

is odd if and only if n = 1+3·2k
7

for some

k ≡ 1 (mod 3).
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Theorem 3.13. [32, Theorem 11] For each a, n ∈ N, ν5
((

5an
n

)
F

)
= ν5

((
5an
n

))
=

s5((5a−1)n)
4

. In particular,
(
5an
n

)
F

is divisible by 5 for every a, n ∈ N.

Theorem 3.14. [32, Theorem 12] Let p 6= 2, 5, a, n ∈ N, r = pan mod z(p),

s = n mod z(p), and A =
⌊
n(pa−1)
pνp(n)z(p)

⌋
. Then the following statements hold.

(i) If p ≡ ±1 (mod 5), then νp
((
pan
n

)
F

)
is equal to

A

p− 1
− a

{
n

pνp(n)z(p)

}
− νp(A!) =

sp(A)

p− 1
− a

{
n

pνp(n)z(p)

}
.

(ii) If p ≡ ±2 (mod 5) and a is even, then νp
((
pan
n

)
F

)
is equal to

A

p− 1
− a

2
[s 6= 0]− νp(A!) =

sp(A)

p− 1
− a

2
[s 6= 0].

(iii) If p ≡ ±2 (mod 5) and a is odd, then νp
((
pan
n

)
F

)
is equal to

⌊
A

p− 1

⌋
− a− 1

2
[s 6= 0]− νp(A!) + δ,

where δ =
(⌊

νp(n)

2

⌋
+ [2 - νp(n)][r > s] + [r < s]νp(Fz(p))

)
[r 6= s], or equiva-

lently, δ = 0 if r = s, δ =
⌊
νp(n)

2

⌋
+ νp(Fz(p)) if r < s, and δ =

⌈
νp(n)

2

⌉
if

r > s.

In the next two corollaries, we give some characterizations of the integers

n such that
(
pan
n

)
F

is divisible by p.

Corollary 3.15. [32, Corollary 13] Let p be a prime and let a and n be positive

integers. If n ≡ 0 (mod z(p)), then p |
(
pan
n

)
F

.

Corollary 3.16. [32, Corollary 14] Let p 6= 2, 5 be a prime and let a, n, r, s, and

A be as in Theorem 3.14. Assume that p ≡ ±2 (mod 5) and n 6≡ 0 (mod z(p)).

Then the following statements hold.

(i) Assume that a is even. Then p |
(
pan
n

)
F

if and only if sp(A) > a
2
(p− 1).

(ii) Assume that a is odd and p - n. If r < s, then p |
(
pan
n

)
F

. If r ≥ s, then

p |
(
pan
n

)
F

if and only if sp(A) ≥ a+1
2

(p− 1).
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(iii) Assume that a is odd and p | n. If r 6= s, then p |
(
pan
n

)
F

. If r = s, then

p |
(
pan
n

)
F

if and only if sp(A) ≥ a+1
2

(p− 1).

We also obtain some characterization of the integers n such that
(
pan
n

)
F

is divisible by p where a = 1 and p ≡ ±1 (mod 5) as follows.

Corollary 3.17. [32, Corollary 15] Let p 6= 2, 5 be a prime and let A = n(p−1)
pνp(n)z(p)

.

Assume that p ≡ ±1 (mod 5). Then p |
(
pn
n

)
F

if and only if sp(A) ≥ p− 1.

3.3 Examples

In this last section, we give several examples to show applications of our

main results. We also recall from Remark 3.8 that the condition r = s in The-

orem 3.7(ii) can be replaced by `1 ≡ `2 − 2`2[a 6≡ b (mod 2)] (mod z(p)). In

the calculation given in this section, we will use this observation without further

reference.

Example 3.18. Let a, b, and ` be positive integers and b ≥ a. We assert that for

` 6≡ 0 (mod 3), we have

ν2

((
` · 2b
2a

)

F

)
=

⌈
a+ 1

2

⌉
(ε1ε2 + ε′1ε

′
2) , (3.1)

where ε1 = [` ≡ 2 (mod 3)], ε2 = [a ≡ b (mod 2)], ε′1 = [` ≡ 1 (mod 3)], and

ε′2 = [a 6≡ b (mod 2)]. In addition, if ` ≡ 0 (mod 3), then

ν2

((
` · 2b
2a

)

F

)
= b+ 2 + ν2(`). (3.2)

Proof. We apply Theorem 3.7 to verify our assertion. Here m2 =
⌊
`·2b−a

3

⌋
and

k2 =
⌊
1
3

⌋
= 0. So we immediately obtain the following: if a ≡ b (mod 2), then

ν2

((
` · 2b
2a

)

F

)
=





0, if ` ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ` ≡ 0 (mod 3);

⌈
a+1
2

⌉
, if ` ≡ 2 (mod 3),



 18

and if a 6≡ b (mod 2), then

ν2

((
` · 2b
2a

)

F

)
=





0, if ` ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ` ≡ 0 (mod 3);

⌈
a+1
2

⌉
, if ` ≡ 1 (mod 3).

This proves (3.1). If ` ≡ 0 (mod 3), then m2 = `
3
· 2b−a and ν2(m2) is equal to

ν2(m2) = ν2 (`) + ν2(2
b−a)− ν2(3) = b− a+ ν2 (`) ,

which implies (3.2).

Example 3.19. Substituting ` = 1 in Example 3.18, we see that

ν2

((
2b

2a

)

F

)
=

⌈
a+ 1

2

⌉
[a 6≡ b (mod 2)]

=





0, if a ≡ b (mod 2);

⌈
a+1
2

⌉
, if a 6≡ b (mod 2).

(3.3)

Our example also implies that (3.3) still holds for the 2-adic valuations of
(
2b+2c

2a

)
F

,
(
7·2b
2a

)
F

,
(
5·2b+1

2a

)
F

,
(
13·2b
2a

)
F

, etc.

Example 3.20. Let a, b, and ` be positive integers, b ≥ a, and p a prime distinct

from 2 and 5. If p ≡ ±1 (mod 5), then

νp

((
`pb

pa

)

F

)
=
(
b+ νp(Fz(p)) + νp(`)

)
[` ≡ 0 (mod z(p))],

and if p ≡ ±2 (mod 5), then

νp

((
`pb

pa

)

F

)
=





0, if ` ≡ 1− 2ε (mod z(p));

b+ νp(Fz(p)) + νp(`), if ` ≡ 0 (mod z(p));

a
2
, if ` 6≡ 0, 1− 2ε (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ` 6≡ 0, 1− 2ε (mod z(p)) and a is odd,

where ε = [a 6≡ b (mod 2)].
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Proof. Similar to Example 3.18, we verify this by applying Theorem 3.7. Here

mp =
⌊
`pb−a

z(p)

⌋
, kp =

⌊
1
z(p)

⌋
= 0, r = `pb mod z(p), and s = pa mod z(p). We first

assume that p ≡ ±1 (mod 5). Then by Lemma 2.1, we have p ≡ 1 (mod z(p)).

Therefore s = 1, r ≡ ` (mod z(p)), and

νp

((
`pb

pa

)

F

)
=
(
a+ νp(mp) + νp(Fz(p))

)
[` ≡ 0 (mod z(p))].

Similarly, if p ≡ ±2 (mod 5) and a ≡ b (mod 2), then we obtain by Lemma 2.1

and Theorem 3.7 that

νp

((
`pb

pa

)

F

)
=





0, if ` ≡ 1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ` ≡ 0 (mod z(p));

a
2
, if ` 6≡ mod 0, 1z(p) and a is even;

a−1
2

+ νp(Fz(p)), if ` 6≡ 0, 1 (mod z(p)) and a is odd.

In addition, if p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((
`pb

pa

)

F

)
=





0, if ` ≡ −1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ` ≡ 0 (mod z(p));

a
2
, if ` 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ` 6≡ 0,−1 (mod z(p)) and a is odd.

It remains to calculate νp(mp) when ` ≡ 0 (mod z(p)). In this case, we have

νp(mp) = νp

(
`pb−a

z(p)

)
= νp(`) + νp(p

b−a)− νp(z(p)) = b− a+ νp(`).

This implies the desired result.

Example 3.21. Substituting ` = 1 in Example 3.20, we see that for p 6= 2, 5, we

have

νp

((
pb

pa

)

F

)
=





0, if p ≡ ±1 (mod 5) or a ≡ b (mod 2);

a
2
, if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is odd.

(3.4)
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Our example also implies that (3.4) still holds for the p-adic valuations of
(
pb+2c

pa

)
F

and
(
(z(p)+1)·pb

pa

)
F

. Similarly, for p 6= 2, 5, we have

νp

((
2pb

pa

)

F

)
=





0, if p ≡ ±1 (mod 5);

a
2
, if p ≡ ±2 (mod 5) and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5) and a is odd.

(3.5)

In addition, (3.5) also holds when
(
2pb

pa

)
F

is replaced by
(
`pb

pa

)
F

for ` 6≡ 0,±1 (mod z(p))

and p 6= 2, 5. Furthermore, replacing
(
2pb

pa

)
F

by
(
(z(p)−1)pb

pa

)
F

, the formula becomes





0, if p ≡ ±1 (mod 5) or a 6≡ b (mod 2);

a
2
, if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is odd.

Example 3.22. We know that the 5-adic valuations of Fibonomial coefficients

are the same as those of binomial coefficients. For example, by Theorem 3.5(ii)

and Kummer’s theorem, we obtain

ν5

((
` · 5b
5a

)

F

)
= ν5

((
` · 5b
5a

))
= b− a+ ν5(`),

for every a, b, ` ∈ N with b ≥ a. Similarly, ν5

((
5b

`·5a
)
F

)
= b − a − ν5(`) for every

a, b, ` ∈ N such that 5b > ` · 5a.

Example 3.23. Let a, b, and ` be positive integers and 2b > `·2a. Letm2 =
⌊
2b−a
3

⌋

and k2 =
⌊
`
3

⌋
. Then

ν2

((
2b

` · 2a
)

F

)
= ν2

((
m2

k2

))
+

(⌈
a+ 2

2

⌉
+ ν2(m2 − k2)

)
ε1ε2 +

⌈
a+ 1

2

⌉
ε3ε4,

(3.6)

where ε1 = [a ≡ b (mod 2)], ε2 = [` ≡ 2 (mod 3)], ε3 = [a 6≡ b (mod 2)], and

ε4 = [` ≡ 1 (mod 3)].

Proof. Similar to Example 3.18, this follows from the application of Theorem 3.7.

So we leave the details to the reader.
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Example 3.24. Let k ≥ 2. We observe that

⌊
2k

3

⌋
=





2k−1
3
, if k is even;

2(2k−1−1)
3

, if k is odd,

which implies,

ν2

(⌊
2k

3

⌋)
= [k ≡ 1 (mod 2)]. (3.7)

By a similar reason, we also see that for k ≥ 3,

ν2

(⌊
2k

3

⌋
− 1

)
= 2[k ≡ 0 (mod 2)]. (3.8)

From (3.6), (3.7), and (3.8), we obtain the following results:

(i) if b− a ≥ 2, then ν2

((
2b

3·2a
)
F

)
= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 3, then ν2

((
2b

5·2a
)
F

)
is equal to

[a 6≡ b (mod 2)] +

(⌈
a+ 2

2

⌉
+ 2[a ≡ b (mod 2)]

)
[a ≡ b (mod 2)]

= 1 +

⌈
a+ 4

2

⌉
[a ≡ b (mod 2)],

(iii) if b− a ≥ 3, then ν2

((
2b

6·2a
)
F

)
= [a ≡ b (mod 2)],

(iv) if b− a ≥ 4, then ν2

((
2b

7·2a
)
F

)
= [a ≡ b (mod 2)] +

⌈
a+1
2

⌉
[a 6≡ b (mod 2)].

Example 3.25. Let p 6= 5 be an odd prime and let a, b, and ` be positive integers,

pb > `pa, mp =
⌊
pb−a

z(p)

⌋
, and kp =

⌊
`

z(p)

⌋
. Then the following statements hold.

(i) If p ≡ ±1 (mod 5), then

νp

((
pb

`pa

)

F

)
=
(
a+ νp (mp − kp) + νp(Fz(p))

)
[` 6≡ 0, 1 (mod z(p))]+νp

((
mp

kp

))
,

(ii) If p ≡ ±2 (mod 5), then νp

((
pb

`pa

)
F

)
is equal to

νp

((
mp

kp

))
+ ε1ε2ε5

(⌈a
2

⌉
+ νp(mp − kp) + ε3νp(Fz(p))

)

+ ε1ε4(1− ε5)
(⌊a

2

⌋
+ ε3νp(Fz(p))

)
(3.9)

where ε1 = [` 6≡ 0 (mod z(p))], ε2 = [` 6≡ 1 (mod z(p))], ε3 = [b ≡ 0 (mod 2)],

ε4 = [` 6≡ −1 (mod z(p))], and ε5 = [a ≡ b (mod 2)].
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Proof. Similar to Example 3.20, this follows from the application of Lemma 2.1

and Theorem 3.7. Since (i) is easily verified, we only give the proof of (ii). The

calculation is done in two cases. If p ≡ ±2 (mod 5) and a ≡ b (mod 2), then

νp

((
pb

`pa

)
F

)
is equal to





νp

((
mp
kp

))
, if ` ≡ 0, 1 (mod z(p));

a
2

+ νp(Fz(p)) + νp(mp − kp) + νp

((
mp
kp

))
, if ` 6≡ 0, 1 (mod z(p)) and a is even;

a+1
2

+ νp(mp − kp) + νp

((
mp
kp

))
, if ` 6≡ 0, 1 (mod z(p)) and a is odd,

= νp

((
mp

kp

))
+ ε1ε2

(⌈a
2

⌉
+ νp(mp − kp) + ε3νp(Fz(p))

)
,

where ε1 = [` 6≡ 0 (mod z(p))], ε2 = [` 6≡ 1 (mod z(p))], and ε3 = [b ≡ 0 (mod 2)].

If p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((
pb

`pa

)

F

)
=





νp

((
mp
kp

))
, if ` ≡ 0,−1 (mod z(p));

a
2

+ νp

((
mp
kp

))
, if ` 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)) + νp

((
mp
kp

))
, if ` 6≡ 0,−1 (mod z(p)) and a is odd,

= νp

((
mp

kp

))
+ ε1ε4

(⌊a
2

⌋
+ ε3νp(Fz(p))

)
,

where ε1, ε2, ε3 are as above and ε4 = [` 6≡ −1 (mod z(p))]. Let ε5 = [a ≡
b (mod 2)]. Then both cases can be combined to obtain (ii).

Example 3.26. Let k ≥ 2. We observe that z(7) = 8 and

⌊
7k

8

⌋
=





7k−1
8
, if k is even;

7(7k−1−1)
8

, if k is odd.

Therefore

ν7

(⌊
7k

8

⌋)
= [k ≡ 1 (mod 2)] and ν7

(⌊
7k

8

⌋
− 1

)
= 0. (3.10)

From (3.9) and (3.10), we obtain the following results:

(i) if b− a ≥ 2, then ν7

((
7b

8·7a
)
F

)
= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 2, then ν7

((
7b

9·7a
)
F

)
=
(⌊

a+2
2

⌋
+ [b ≡ 0 (mod 2)]

)
[a 6≡ b (mod 2)],
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(iii) if b− a ≥ 2, then ν7

((
7b

15·7a
)
F

)
is equal to

[a 6≡ b (mod 2)] +
(⌈a

2

⌉
+ [b ≡ 0 (mod 2)]

)
[a ≡ b (mod 2)].

In Corollaries 3.16 and 3.17, we have the characterization of the integers

n such that
(
pn
n

)
F

is divisible by p for p 6= 5. However, these do not give the such

characterization in the digital representation. We will show our solution of this

problem in the near future but, for now, we give our result when p = 11 in the

following example.

Example 3.27. Let n be a positive integer. Then 11 |
(
11n
n

)
F

if and only if n is

not of the following form:

n = 10m+ k where 1 ≤ k ≤ 9, m ≥ 0, and the 11-adic representation of m

has the last digit ≤ k and is increasing when we read it

from the left to the right.



 

Chapter 4

Reciprocal Sum of Palindromes

Throughout this section, x, y, z are positive real numbers, a, b, m, n, k,

` are positive integers, b ≥ 2,

xb =
b−1∑

m=1

1

m
, yb =

b2−1∑

m=b

1

m
, and zb =

b2∑

m=b+1

1

m
.

Note that xb = sb,1, xb/(b+ 1) = sb,2, and that

zb − yb =
1

b2
− 1

b
=

1− b
b2

.

Theorem 4.1. [31, Theorem 1] We have

yb
b
− xb
b3
≤ sb,3 ≤

yb
b

and
zb

bb k2c
≤ sb,k ≤

yb

bb k2c
for every k ≥ 4.

Theorem 4.2. [31, Theorem 2] For every b, ` ≥ 2, we have

(
b+ 2

b+ 1

)
xb +

2`−1∑

k=3

sb,k +
2zb

(b− 1)b`−1
≤ sb ≤

(
b+ 2

b+ 1

)
xb +

2`−1∑

k=3

sb,k +
2yb

(b− 1)b`−1
.

(4.1)

In particular,
(
b+ 2

b+ 1

)
xb +

yb
b
− xb
b3

+
2zb

b(b− 1)
≤ sb ≤

(
b+ 2

b+ 1

)
xb +

(
1

b
+

2

b(b− 1)

)
yb.

Let b ≥ 2 and let Ub = Ub(`) and Lb = Lb(`) be the upper and lower

bounds of sb given in (4.1). We see that yb − zb = b−1
b2

and

0 ≤ Ub − sb ≤ Ub − Lb =
2(yb − zb)
(b− 1)b`−1

=
2

b`+1
,

which converges to 0. We apply (4.1) and run the computation in a computer

to approximate sb by Ub and Lb with errors less than 10−8 as the following table

below. In fact, if ` is large enough. we can find the first n digits of sb where n is

arbitrary.
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Table 4.1: Upper and lower bounds for sb

b Lower bound for sb Upper bound for sb

2 2.378795704268652 2.378795711719233

3 2.616761112331746 2.616761117494096

4 2.785771526362811 2.785771533813391

5 2.920048244568022 2.920048252760022

6 3.033033181096604 3.033033186609329

7 3.131376859365746 3.131376866446013

8 3.218887858788806 3.218887860651451

9 3.297976950072639 3.297976955234989

10 3.370283258515688 3.370283260515688

11 3.436981687017363 3.436981696347511

12 3.498948958553883 3.498948963205244

13 3.556860134337803 3.556860136789592

14 3.611248238723658 3.611248240078865

15 3.662542857892273 3.662542858672642

16 3.711096160282906 3.711096167733487

17 3.757201045822589 3.757201050696611

18 3.801104117340674 3.801104120607473

19 3.843015238782920 3.843015241020377

20 3.883114678846523 3.883114680409023

According to the table, we see that the upper bound for sb is less than

the lower bound for sb+1, that is, Ub < Lb+1 for b = 2, 3, . . . , 19 and large enough

`. So we have s2 < s3 < s4 < · · · < s20. This observation leads us to obtain the

next theorem.

Theorem 4.3. [31, Theorem 3] The sequence (sb)b≥2 is strictly increasing.

Recall that if we write f(b) = g(b) +O∗(h(b)), then it means that f(b) =

g(b) +O(h(b)) and the implied constant can be taken to be 1. In addition, f(b) =
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g(b) + Ω+(h(b)) means lim supb→∞
f(b)−g(b)
h(b)

> 0.

Theorem 4.4. [31, Theorem 4] Uniformly for b ≥ 2,

sb =

(
b+ 2

b+ 1

)
xb +

(
1

b
+

2

b2

)
yb +O∗

(
5 log b

b3

)
. (4.2)

This estimate is sharp in the sense that O∗
(
5 log b
b3

)
can be replaced by Ω+

(
log b
b3

)
.

Let Ab =
(
b+2
b+1

)
xb +

(
1
b

+ 2
b2

)
yb be the main term given in (4.2). We can

use Theorem 4.4 to evaluate sb with errors not exceeding log b
b3

as the following table

below compared with the upper and lower bounds for sb.

Table 4.2: Estimate for sb

b Lower bounds for sb Upper bounds for sb Approximations Ab for sb

2 2.378795704268652 2.378795711719233 2.166666666666667

3 2.616761112331746 2.616761117494096 2.551587301587301

4 2.785771526362811 2.785771533813391 2.756835872460873

5 2.920048244568022 2.920048252760022 2.904490511993204

6 3.033033181096604 3.033033186609329 3.023623384120149

7 3.131376859365746 3.131376866446013 3.125212746440348

8 3.218887858788806 3.218887860651451 3.214609999834978

9 3.297976950072639 3.297976955234989 3.294875492907945

10 3.370283258515688 3.370283260515688 3.367956297787750

11 3.436981687017363 3.436981696347511 3.435186961914700

12 3.498948958553883 3.498948963205244 3.497532930652704

13 3.556860134337803 3.556860136789592 3.555721442141313

14 3.611248238723658 3.611248240078865 3.610317641886406

15 3.662542857892273 3.662542858672642 3.661771673430161

16 3.711096160282906 3.711096167733487 3.710449304915721

17 3.757201045822589 3.757201050696611 3.756652678610918

18 3.801104117340674 3.801104120607473 3.800634853047960

19 3.843015238782920 3.843015241020377 3.842610288601568

20 3.883114678846523 3.883114680409023 3.882762592688996
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Recall that by applying Euler–Maclaurin summation formula, we get

∑

m≤n

1

m
= log n+ γ +

1

2n
− 1

12n2
+

θn
60n4

, (4.3)

where γ is Euler’s constant and θn ∈ [0, 1]. The calculation of (4.3) can be found

in Tenenbaum [44, p. 6]. From this, we obtain another form of Theorem 4.4 as

follows.

Theorem 4.5. [31, Theorem 5] Uniformly for b ≥ 2,

sb = log b+γ+

(
1

b
+

1

b+ 1

)
log b+

γ

b+ 1
− 1

2b
+

2 log b

b2
− 1

12b(b+ 1)
+O∗

(
6 log b

b3

)
.

(4.4)

This estimate is sharp in the sense that O∗
(
6 log b
b3

)
is also Ω+

(
log b
b3

)
.

Corollary 4.6. [31, Corollary 6] The sequence (sb)b≥2 diverges to +∞ and the

sequence (sb − sb−1)b≥3 converges to zero as b→∞.

Recall that a sequence (an)n≥0 is said to be log–concave if a2n−an−1an+1 >

0 for every n ≥ 1 and is said to be log–convex if a2n−an−1an+1 < 0 for every n ≥ 1.

For a survey article concerning the log–concavity and log–convexity of sequences,

we refer the reader to Stanley [43]. See also Pongsriiam [34] for some combina-

torial sequences which are log–concave or log–convex, and some open problems

concerning the log–properties of a certain sequence.

Theorem 4.7. [31, Theorem 7] The sequence (sb)b≥2 is log–concave.
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Abstract

We obtain explicit formulas for the p-adic valuations of Fibonomial coefficients
which extend some results in the literature.

1 Introduction

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn = Fn−1 + Fn−2 for
n ≥ 3 with the initial values F1 = F2 = 1. For each m ≥ 1 and 1 ≤ k ≤ m, the Fibonomial
coefficients

(
m
k

)
F
are defined by

(
m

k

)

F

=
F1F2F3 · · ·Fm

(F1F2F3 · · ·Fk)(F1F2F3 · · ·Fm−k)
=

Fm−k+1Fm−k+2 · · ·Fm

F1F2F3 · · ·Fk

,

where Fn is the nth Fibonacci number. If k = 0, we define
(
m
k

)
F
= 1 and if k > m, we define(

m
k

)
F
= 0. It is well known that

(
m
k

)
F
is an integer for all positive integers m and k. So it

1Prapanpong Pongsriiam receives financial support jointly from The Thailand Research Fund and Faculty
of Science Silpakorn University, grant number RSA5980040. Prapanpong Pongsriiam is the corresponding
author.
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is natural to consider the divisibility properties and the p-adic valuation of
(
m
k

)
F
. As usual,

p always denotes a prime and the p-adic valuation (or p-adic order) of a positive integer n,
denoted by νp(n), is the exponent of p in the prime factorization of n. In addition, the order
(or the rank) of appearance of n in the Fibonacci sequence, denoted by z(n), is the smallest
positive integer k such that n | Fk. The Fibonacci sequence and the triangle of Fibonomial
coefficients are, respectively, A000045 and A010048 in OEIS [25]. Also see A055870 and
A003267 for signed Fibonomial triangle and central Fibonomial coefficients, respectively.

In 1989, Knuth and Wilf [8] gave a short description of the p-adic valuation of
(
m
k

)
C

where C is a regularly divisible sequence. However, this does not give explicit formulas
for

(
m
k

)
F
. Then recently, there has been some interest in explicitly evaluating the p-adic

valuation of Fibonomial coefficients of the form
(
pb

pa

)
F
. For example, Marques and Trojovský

[10, 11] and Marques, Sellers, and Trojovský [12] deal with the case b = a + 1, a ≥ 1.
Ballot [2, Theorem 4.2] extends the Kummer-like theorem of Knuth and Wilf [8, Theorem
2], which gives the p-adic valuation of Fibonomials, to all Lucasnomials, and, in particular,

uses it to determine explicitly the p-adic valuation of Lucasnomials of the form
(
pb

pa

)
U
, for all

nondegenerate fundamental Lucas sequences U and all integers b > a ≥ 0, [2, Theorem 7.1].
Note that in the formula given by Marques and Trojovský [11, Theorem 1] for U = F

and b = a + 1, only the case of a even is actually explicitly computed. It appears, using
the theorem of Ballot [1, Theorem 7.1], that their stated result for a odd is correct only for
primes p for which p2 does not divide Fz(p), where z(p) is the rank of appearance of p in the
Fibonacci sequence. Also see Examples 16 and 18 in this article.

Our purpose is to extend Ballot’s theorem, Theorem 7.1, in the case U = F and b ≥ a > 0

and obtain explicit formulas for
(
ℓ1pb

ℓ2pa

)
F
, where ℓ1 and ℓ2 are arbitrary positive integers such

that ℓ1p
b > ℓ2p

a. This leads us to study the p-adic valuations of integers of the forms

⌊
ℓpa

m

⌋
! or

⌊
ℓ1p

b − ℓ2p
a

m

⌋
!, (1)

where p ≡ ±1 (mod m). For instance, we obtain in Example 17 the following result: for
positive integers a, b, ℓ with b ≥ a, and a prime p distinct from 2 and 5, if p ≡ ±1 (mod 5),
then

νp

((
ℓpb

pa

)

F

)
=

{
b+ νp(Fz(p)) + νp(ℓ), if z(p) | ℓ;
0, otherwise.

Furthermore, if p ≡ ±2 (mod 5), then

νp

((
ℓpb

pa

)

F

)
=





0, if ℓ ≡ 1− 2ε (mod z(p));

b+ νp(Fz(p)) + νp(ℓ), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is odd,
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where ε = 1 if a and b have different parity and ε = 0 otherwise. We also obtain the
corresponding results for p ∈ {2, 5} in Examples 15 and 19. These extend all the main
results in [10, 11, 12] and Ballot’s theorem, Theorem 7.1, in the case U = F .

Recall that for each x ∈ R, ⌊x⌋ is the largest integer less than or equal to x, {x} is the
fractional part of x given by {x} = x − ⌊x⌋, and ⌈x⌉ is the smallest integer larger than
or equal to x. In addition, we write a mod m to denote the least nonnegative residue of a
modulo m. We also use the Iverson notation: if P is a mathematical statement, then

[P ] =

{
1, if P holds;

0, otherwise.

For example, [5 ≡ −1 (mod 4)] = 0 and [3 ≡ −1 (mod 4)] = 1.
We organize this article as follows. In Section 2, we give some preliminaries and useful

results which are needed in the proof of the main theorems. In Section 3, we give exact
formulas for the p-adic valuations of integers (1). In Section 4, we apply the results obtained
in Section 3 to Fibonomial coefficients. Our most general theorem is Theorem 13. Finally, in
Section 5, we give the p-adic valuations of some specific sub-families of Fibonomial coefficients
of type (1), since generally, the more specific the family, the shortest the formula becomes.

For more information related to Fibonacci numbers, we invite the readers to visit the
second author’s Researchgate account [23] which contains some freely downloadable versions
of his publications [5, 6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

2 Preliminaries and lemmas

Recall that for each odd prime p and a ∈ Z, the Legendre symbol (a
p
) is defined by

(
a

p

)
=





0, if p | a;
1, if a is a quadratic residue of p;

−1, if a is a quadratic nonresidue of p.

Then we have the following result.

Lemma 1. Let p 6= 5 be a prime and let m and n be positive integers. Then the following
statements hold.

(i) If p > 2, then Fp−( 5
p
) ≡ 0 (mod p).

(ii) n | Fm if and only if z(n) | m.

(iii) z(p) | p+ 1 if and only if p ≡ 2 or − 2 (mod 5), and z(p) | p− 1 otherwise.

(iv) gcd(z(p), p) = 1.
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Proof. These are well known results. For example, (i) and (ii) can be found in [4, p. 410]
and [26], respectively. Then (iii) follows from (i) and (ii). By (iii), z(p) | p ± 1. Since
gcd(p, p± 1) = 1, we obtain gcd(z(p), p) = 1. This proves (iv).

Lengyel’s result and Legendre’s formula given in the following lemmas are important
tools in evaluating the p-adic valuation of Fibonomial coefficients. We also refer the reader
to [10, 11, 12, 15] for other similar applications of Lengyel’s result.

Lemma 2. (Lengyel [9]) For n ≥ 1, we have

ν2(Fn) =





0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

ν2(n) + 2, if n ≡ 0 (mod 6),

ν5(Fn) = ν5(n), and if p is a prime distinct from 2 and 5, then

νp(Fn) =

{
νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p)) :

0, if n 6≡ 0 (mod z(p)),

Lemma 3. (Legendre’s formula) Let n be a positive integer and let p be a prime. Then

νp(n!) =
∞∑

k=1

⌊
n

pk

⌋
.

In the proof of the main results, we will deal with a lot of calculation involving the floor
function. So it is useful to recall the following results.

Lemma 4. For n ∈ Z and x ∈ R, the following holds

(i) ⌊n+ x⌋ = n+ ⌊x⌋,

(ii) {n+ x} = {x},

(iii) ⌊x⌋+ ⌊−x⌋ =
{
−1, if x 6∈ Z;
0, if x ∈ Z,

(iv) {−x} =

{
1− {x}, if x 6∈ Z;
0, if x ∈ Z,

(v) ⌊x+ y⌋ =
{
⌊x⌋+ ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋+ ⌊y⌋+ 1, if {x}+ {y} ≥ 1,

(vi)
⌊
⌊x⌋
n

⌋
=
⌊
x
n

⌋
for n ≥ 1.
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Proof. These are well-known results and can be proved easily. For more details, see in [1,
Exercise 13, p. 72] or in [3, Chapter 3]. We also refer the reader to [14] for a nice application
of (v).

The next lemma is used often in counting the number of positive integers n ≤ x lying in
a residue class a mod q, see for instance in [24, Proof of Lemma 2.6].

Lemma 5. For x ∈ [1,∞), a, q ∈ Z and q ≥ 1, we have

∑

1≤n≤x
n≡ a (mod q)

1 =

⌊
x− a

q

⌋
−
⌊
−a

q

⌋
. (2)

Proof. Replacing a by a+ q and applying Lemma 4, we see that the value on the right-hand
side of (2) is not changed. Obviously, the left-hand side is also invariant when we replace a
by a+ q. So it is enough to consider only the case 1 ≤ a ≤ q. Since n ≡ a (mod q), we write
n = a+ kq where k ≥ 0 and a+ kq ≤ x. So k ≤ x−a

q
. Therefore

∑

1≤n≤x
n≡ a (mod q)

1 =
∑

0≤k≤x−a
q

1 =

⌊
x− a

q

⌋
+ 1 =

⌊
x− a

q

⌋
−
⌊
−a

q

⌋
.

It is convenient to use the Iverson notation and to denote the least nonnegative residue
of a modulo m by a mod m. Therefore we will do so from this point on.

Lemma 6. Let n and k be integers, m a positive integer, r = n mod m, and s = k mod m.
Then ⌊

n− k

m

⌋
=
⌊ n
m

⌋
−
⌊
k

m

⌋
− [r < s].

Proof. By Lemma 4(i) and the fact that 0 ≤ r < m, we obtain

⌊ n
m

⌋
=

⌊
n− r

m
+

r

m

⌋
=

n− r

m
+
⌊ r
m

⌋
=

n− r

m
.

Similarly,
⌊

k
m

⌋
= k−s

m
. Therefore

⌊
n−k
m

⌋
is equal to

⌊
n− r

m
− k − s

m
+

r − s

m

⌋
=

n− r

m
− k − s

m
+

⌊
r − s

m

⌋
=

{⌊
n
m

⌋
−
⌊

k
m

⌋
, if r ≥ s;⌊

n
m

⌋
−
⌊

k
m

⌋
− 1, if r < s.
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3 The p-adic valuation of integers in special forms

In this section, we calculate the p-adic valuation of
⌊
ℓpa

m

⌋
! and other integers in similar forms.

Theorem 7. Let p be a prime and let a ≥ 0, ℓ ≥ 0, and m ≥ 1 be integers. Assume that
p ≡ ±1 (mod m) and let δ = [ℓ 6≡ 0 (mod m)]. Then

νp

(⌊
ℓpa

m

⌋
!

)
=





ℓ(pa−1)
m(p−1)

− a
{

ℓ
m

}
+ νp

(⌊
ℓ
m

⌋
!
)
, if p ≡ 1 (mod m);

ℓ(pa−1)
m(p−1)

− a
2
δ + νp

(⌊
ℓ
m

⌋
!
)
, if p ≡ −1 (mod m) and a is even;

ℓ(pa−1)
m(p−1)

− a−1
2
δ −

{
ℓ
m

}
+ νp

(⌊
ℓ
m

⌋
!
)
, if p ≡ −1 (mod m) and a is odd.

We remark that if m = 1 or 2, then the expressions in each case of this theorem are all
equal.

Proof. The result is easily verified when a = 0 or ℓ = 0. So we assume throughout that
a ≥ 1 and ℓ ≥ 1. We also use Lemmas 4(i), 4(vi), and 5 repeatedly without reference. By
Legendre’s formula, we obtain

νp

(⌊
ℓpa

m

⌋
!

)
=

∞∑

j=1

⌊
ℓpa

mpj

⌋
=

a∑

j=1

⌊
ℓpa−j

m

⌋
+

∞∑

j=a+1

⌊
ℓpa−j

m

⌋
=

a∑

j=1

⌊
ℓpa−j

m

⌋
+ νp

(⌊
ℓ

m

⌋
!

)
.

(3)
From (3), it is immediate that for m = 1, we obtain

νp ((ℓp
a)!) =

ℓ(pa − 1)

p− 1
+ νp(ℓ!).

So we assume throughout that m ≥ 2.

Case 1. p ≡ 1 (mod m). Then, for every k ≥ 0, pk ≡ 1 (mod m) and
⌊
ℓpk

m

⌋
=

⌊
ℓ(pk − 1)

m
+

ℓ

m

⌋
=

ℓ(pk − 1)

m
+

⌊
ℓ

m

⌋
.

Therefore the sum
∑a

j=1

⌊
ℓpa−j

m

⌋
appearing in (3) is equal to

a∑

j=1

(
ℓ(pa−j − 1)

m
+

⌊
ℓ

m

⌋)
=

(
ℓ

m

a∑

j=1

pa−j

)
− a

(
ℓ

m
−
⌊
ℓ

m

⌋)
=

ℓ(pa − 1)

m(p− 1)
− a

{
ℓ

m

}
.

Case 2. p ≡ −1 (mod m). Then for k ≥ 0, we have pk ≡ 1 (mod m) if k is even, and
pk ≡ −1 (mod m) if k is odd. Therefore

⌊
ℓpk

m

⌋
=

⌊
ℓ(pk − 1)

m
+

ℓ

m

⌋
=

ℓ(pk − 1)

m
+

⌊
ℓ

m

⌋
if k ≥ 0 and k is even,

⌊
ℓpk

m

⌋
=

⌊
ℓ(pk + 1)

m
− ℓ

m

⌋
=

ℓ(pk + 1)

m
+

⌊
− ℓ

m

⌋
if k ≥ 0 and k is odd.
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Therefore the sum
∑a

j=1

⌊
ℓpa−j

m

⌋
appearing in (3) is equal to

∑

1≤j≤a
a−j≡ 0 (mod 2)

(
ℓ(pa−j − 1)

m
+

⌊
ℓ

m

⌋)
+

∑

1≤j≤a
a−j≡ 1 (mod 2)

(
ℓ(pa−j + 1)

m
+

⌊
− ℓ

m

⌋)

=
ℓ

m

∑

1≤j≤a

pa−j −
∑

1≤j≤a
j≡a (mod 2)

(
ℓ

m
−
⌊
ℓ

m

⌋)
+

∑

1≤j≤a
j≡ a−1 (mod 2)

(
ℓ

m
+

⌊
− ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+
⌊
−a

2

⌋( ℓ

m
−
⌊
ℓ

m

⌋)
−
⌊
−a− 1

2

⌋(
ℓ

m
+

⌊
− ℓ

m

⌋)
. (4)

By Lemma 4(iii), we see that

⌊
ℓ

m

⌋
+

⌊
− ℓ

m

⌋
= −[ℓ 6≡ 0 (mod m)] = −δ.

Therefore if a is even, then (4) is equal to

ℓ(pa − 1)

m(p− 1)
− a

2

(
ℓ

m
−
⌊
ℓ

m

⌋)
+

a

2

(
ℓ

m
+

⌊
− ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+

a

2

(⌊
ℓ

m

⌋
+

⌊
− ℓ

m

⌋)
=

ℓ(pa − 1)

m(p− 1)
− a

2
δ,

and if a is odd, then (4) is equal to

ℓ(pa − 1)

m(p− 1)
− a+ 1

2

(
ℓ

m
−
⌊
ℓ

m

⌋)
+

a− 1

2

(
ℓ

m
+

⌊
− ℓ

m

⌋)

=
ℓ(pa − 1)

m(p− 1)
+

a− 1

2

(⌊
ℓ

m

⌋
+

⌊
− ℓ

m

⌋)
+

⌊
ℓ

m

⌋
− ℓ

m

=
ℓ(pa − 1)

m(p− 1)
−
(
a− 1

2

)
δ −

{
ℓ

m

}
.

This completes the proof.

We can combine every case in Theorem 7 into a single form as given in the next corollary.

Corollary 8. Assume that p, a, ℓ, m, and δ satisfy the same assumptions as in Theorem 7.
Then the p-adic valuation of

⌊
ℓpa

m

⌋
! is

ℓ(pa − 1)

m(p− 1)
−
⌊a
2

⌋
δ −

{
ℓ

m

}
[a ≡ 1 (mod 2)]

+ δ
⌊a
2

⌋(
1− 2

{
ℓ

m

})
[p ≡ 1 (mod m)] + νp

(⌊
ℓ

m

⌋
!

)
. (5)
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Proof. This is merely a combination of each case from Theorem 7. For example, when
p ≡ −1 (mod m), the right-hand side of (5) reduces to

ℓ(pa − 1)

m(p− 1)
−
⌊a
2

⌋
δ −

{
ℓ

m

}
[a ≡ 1 (mod 2)] + νp

(⌊
ℓ

m

⌋
!

)

=





ℓ(pa−1)
m(p−1)

− a
2
δ + νp

(⌊
ℓ
m

⌋
!
)
, if a is even;

ℓ(pa−1)
m(p−1)

−
(
a−1
2

)
δ −

{
ℓ
m

}
+ νp

(⌊
ℓ
m

⌋
!
)
, if a is odd,

which is the same as Theorem 7. The other cases are similar. We leave the details to the
reader.

Next we deal with the p-adic valuation of an integer of the form
⌊
ℓ1pb−ℓ2pa

m

⌋
! where a, b,

ℓ1, ℓ2, and m are positive integers. It is natural to assume ℓ1p
b − ℓ2p

a > 0. In addition, if

a = b, then the above expression is reduced to
⌊
(ℓ1−ℓ2)pb

m

⌋
!, which can be evaluated by using

Theorem 7. We consider the case b ≥ a in Theorem 9 and the other case in Theorem 10.

Theorem 9. Let p be a prime, let a be a nonnegative integer, and let b, m, ℓ1, ℓ2 be positive
integers satisfying b ≥ a and ℓ1p

b − ℓ2p
a > 0. Assume that p ≡ ±1 (mod m). Then the

following statements hold.

(i) If p ≡ 1 (mod m), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
− a

{
ℓ1 − ℓ2
m

}
+ νp

(⌊
ℓ1p

b−a − ℓ2
m

⌋
!

)
.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−
{
ℓ1 − ℓ2
m

}
[a ≡ 1 (mod 2)]

−
⌊a
2

⌋
[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊
ℓ1p

b−a − ℓ2
m

⌋
!

)
.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−
{
−ℓ1 + ℓ2

m

}
[a ≡ 1 (mod 2)]

−
⌊a
2

⌋
[ℓ1 6≡ −ℓ2 (mod m)] + νp

(⌊
ℓ1p

b−a − ℓ2
m

⌋
!

)
.

We remark that if m = 1, the expressions in each case of this theorem are equal.
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Proof. The result is easily checked when a = 0, and as discussed above, if b = a, then the
result can be verified using Theorem 7. So we assume throughout that a ≥ 1 and b > a.
Similar to the proof of Theorem 7, we use Lemmas 4(i), 4(vi), and 5 repeatedly without
reference. Then, as for (3), we obtain

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

a∑

j=1

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
+

∞∑

j=a+1

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋

=
a∑

j=1

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
+ νp

(⌊
ℓ1p

b−a − ℓ2
m

⌋
!

)
. (6)

We see that when m = 1, (6) becomes

νp
(
(ℓ1p

b − ℓ2p
a)!
)
=

(ℓ1p
b−a − ℓ2)(p

a − 1)

p− 1
+ νp

(
(ℓ1p

b−a − ℓ2)!
)
.

So assume throughout that m ≥ 2. We begin with the proof of (i). Suppose that p ≡
1 (mod m). For each 1 ≤ j ≤ a, we have

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
=

⌊
ℓ1p

b−j − ℓ1
m

− ℓ2p
a−j − ℓ2
m

+
ℓ1 − ℓ2
m

⌋

=
ℓ1p

b−j − ℓ2p
a−j

m
− ℓ1 − ℓ2

m
+

⌊
ℓ1 − ℓ2
m

⌋
.

Then the sum
∑a

j=1

⌊
ℓ1pb−j−ℓ2pa−j

m

⌋
appearing in (6) is equal to

ℓ1
m

∑

1≤j≤a

pb−j − ℓ2
m

∑

1≤j≤a

pa−j − a

(
ℓ1 − ℓ2
m

−
⌊
ℓ1 − ℓ2
m

⌋)

=
ℓ1
m

(
pb−a(pa − 1)

p− 1

)
− ℓ2

m

(
pa − 1

p− 1

)
− a

{
ℓ1 − ℓ2
m

}

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
− a

{
ℓ1 − ℓ2
m

}
.

This proves (i). So from this point on, we assume that p ≡ −1 (mod m). For each 1 ≤ j ≤ a,
we have
⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
=

⌊
ℓ1p

b−j − (−1)b−jℓ1
m

− ℓ2p
a−j − (−1)a−jℓ2

m
+

(−1)b−jℓ1 − (−1)a−jℓ2
m

⌋

=
ℓ1p

b−j − ℓ2p
a−j

m
− (−1)b−jℓ1 − (−1)a−jℓ2

m
+

⌊
(−1)b−jℓ1 − (−1)a−jℓ2

m

⌋

=





ℓ1pb−j−ℓ2pa−j

m
− (−1)b−j(ℓ1−ℓ2)

m
+
⌊
(−1)b−j(ℓ1−ℓ2)

m

⌋
, if a ≡ b (mod 2);

ℓ1pb−j−ℓ2pa−j

m
− (−1)b−j(ℓ1+ℓ2)

m
+
⌊
(−1)b−j(ℓ1+ℓ2)

m

⌋
, if a 6≡ b (mod 2).
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Case 1. a ≡ b (mod 2). Then the sum
∑a

j=1

⌊
ℓ1pb−j−ℓ2pa−j

m

⌋
appearing in (6) is equal to

ℓ1
m

∑

1≤j≤a

pb−j − ℓ2
m

∑

1≤j≤a

pa−j −
(
ℓ1 − ℓ2
m

) ∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊
(−1)b−j(ℓ1 − ℓ2)

m

⌋

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−
(
ℓ1 − ℓ2
m

) ∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊
(−1)b−j(ℓ1 − ℓ2)

m

⌋
. (7)

Observe that
∑

1≤j≤a

(−1)b−j =

{
0, if a is even;

1, if a is odd.

So we have (
ℓ1 − ℓ2
m

) ∑

1≤j≤a

(−1)b−j =

(
ℓ1 − ℓ2
m

)
[a ≡ 1 (mod 2)].

It remains to calculate the last term in (7). If ℓ1 ≡ ℓ2 (mod m), then we obtain by Lemma
4(iii) that

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 − ℓ2)

m

⌋
=

{
0, if a is even;⌊
ℓ1−ℓ2
m

⌋
, if a is odd;

=

⌊
ℓ1 − ℓ2
m

⌋
[a ≡ 1 (mod 2)].

Similarly, if ℓ1 6≡ ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 − ℓ2)

m

⌋
=




−a

2
, if a is even;

⌊
ℓ1−ℓ2
m

⌋
− a−1

2
, if a is odd;

=

⌊
ℓ1 − ℓ2
m

⌋
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
.

In any case,

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 − ℓ2)

m

⌋
=

⌊
ℓ1 − ℓ2
m

⌋
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
[ℓ1 6≡ ℓ2 (mod m)].

Therefore (7) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−
(
ℓ1 − ℓ2
m

)
[a ≡ 1 (mod 2)] +

⌊
ℓ1 − ℓ2
m

⌋
[a ≡ 1 (mod 2)]

−
⌊a
2

⌋
[ℓ1 6≡ ℓ2 (mod m)]

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−
{
ℓ1 − ℓ2
m

}
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
[ℓ1 6≡ ℓ2 (mod m)].
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This proves (ii). Next we prove (iii).

Case 2. a 6≡ b (mod 2). Similar to Case 1, the sum
∑a

j=1

⌊
ℓ1pb−j−ℓ2pa−j

m

⌋
appearing in (6) is

equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
−
(
ℓ1 + ℓ2
m

) ∑

1≤j≤a

(−1)b−j +
∑

1≤j≤a

⌊
(−1)b−j(ℓ1 + ℓ2)

m

⌋

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
+

(
ℓ1 + ℓ2
m

)
[a ≡ 1 (mod 2)] +

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 + ℓ2)

m

⌋
. (8)

If ℓ1 ≡ −ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 + ℓ2)

m

⌋
=

{
0, if a is even;⌊
− ℓ1+ℓ2

m

⌋
, if a is odd;

=

⌊
−ℓ1 + ℓ2

m

⌋
[a ≡ 1 (mod 2)].

Similarly, if ℓ1 6≡ −ℓ2 (mod m), then we obtain by Lemma 4(iii) that

∑

1≤j≤a

⌊
(−1)b−j(ℓ1 + ℓ2)

m

⌋
=

{
−a

2
, if a is even;⌊

− ℓ1+ℓ2
m

⌋
− a−1

2
, if a is odd;

=

⌊
−ℓ1 + ℓ2

m

⌋
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
.

In any case,
∑

1≤j≤a

⌊
(−1)b−j(ℓ1+ℓ2)

m

⌋
=
⌊
− ℓ1+ℓ2

m

⌋
[a ≡ 1 (mod 2)] −

⌊
a
2

⌋
[ℓ1 6≡ −ℓ2 (mod m)].

Therefore (8) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

m(p− 1)
+

(
ℓ1 + ℓ2
m

)
[a ≡ 1 (mod 2)] +

⌊
−ℓ1 + ℓ2

m

⌋
[a ≡ 1 (mod 2)]

−
⌊a
2

⌋
[ℓ1 6≡ −ℓ2 (mod m)]

=
(ℓ1p

b−a − ℓ2)(p
a − 1)

m(p− 1)
−
{
−ℓ1 + ℓ2

m

}
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
[ℓ1 6≡ −ℓ2 (mod m)].

This completes the proof.

Next we replace the assumption b ≥ a in Theorem 9 by b < a. The calculation follows
from the same idea so we skip the details of the proof. Although we do not use it in this
article, it may be useful for future reference. So we record it in the next theorem.

Theorem 10. Let p be a prime, let b be a nonnegative integer, and let a, m, ℓ1, ℓ2 be positive
integers satisfying b < a and ℓ1p

b − ℓ2p
a > 0. Assume that p ≡ ±1 (mod m). Then the

following statements hold.
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(i) If p ≡ 1 (mod m), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1 − ℓ2p
a−b)(pb − 1)

m(p− 1)
− b

{
ℓ1 − ℓ2
m

}
+ νp

(⌊
ℓ1 − ℓ2p

a−b

m

⌋
!

)
.

(ii) If p ≡ −1 (mod m) and a ≡ b (mod 2), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1 − ℓ2p
a−b)(pb − 1)

m(p− 1)
−
{
ℓ1 − ℓ2
m

}
[b ≡ 1 (mod 2)]

−
⌊
b

2

⌋
[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊
ℓ1 − ℓ2p

a−b

m

⌋
!

)
.

(iii) If p ≡ −1 (mod m) and a 6≡ b (mod 2), then

νp

(⌊
ℓ1p

b − ℓ2p
a

m

⌋
!

)
=

(ℓ1 − ℓ2p
a−b)(pb − 1)

m(p− 1)
−
{
ℓ1 + ℓ2
m

}
[b ≡ 1 (mod 2)]

−
⌊
b

2

⌋
[ℓ1 6≡ ℓ2 (mod m)] + νp

(⌊
ℓ1 − ℓ2p

a−b

m

⌋
!

)
.

Proof. We begin by writing νp

(⌊
ℓ1pb−ℓ2pa

m

⌋
!
)
as

b∑

j=1

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
+

∞∑

j=b+1

⌊
ℓ1p

b−j − ℓ2p
a−j

m

⌋
.

The second sum above is νp

(⌊
ℓ1−ℓ2pa−b

m

⌋
!
)
. The first sum can be evaluated in the same way

as in Theorem 9. We leave the details to the reader.

When we put more restrictions on the range of ℓ1 and ℓ2, the expression νp

(⌊
ℓ1pb−a−ℓ2

m

⌋
!
)

appearing in Theorems 9 and 10 can be evaluated further. Nevertheless, since we do not
need it in our application, we do not give them here. In the future, we plan to put it in the
second author’s Researchgate account. So the interested reader can find it there.

4 The p-adic valuations of Fibonomial coefficients

Recall that the binomial coefficients
(
m
k

)
is defined by

(
m

k

)
=

{
m!

k!(m−k)!
, if 0 ≤ k ≤ m;

0, if k < 0 or k > m.
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A classical result of Kummer states that for 0 ≤ k ≤ m, νp
((

m
k

))
is equal to the number of

carries when we add k and m− k in base p. From this, it is not difficult to show that for all
primes p and positive integers k, b, a with b ≥ a, we have

νp

((
pb

pa

))
= b− a, or more generally, νp

((
pa

k

))
= a− νp(k).

Knuth and Wilf [8] also obtain the result analogous to that of Kummer for a C-nomial
coefficient. However, our purpose is to obtain νp

((
m
k

)
F

)
is an explicit form. So we first

express νp
((

m
k

)
F

)
in terms of the p-adic valuation of some binomial coefficients in Theorem

11. Then we write it in a form which is easy to use in Corollary 12. Then we apply it to

obtain the p-adic valuation of Fibonomial coefficients of the form
(
ℓ1pb

ℓ2pa

)
F
.

Theorem 11. Let 0 ≤ k ≤ m be integers. Then the following statements hold.

(i) Let m′ =
⌊
m
6

⌋
, k′ =

⌊
k
6

⌋
, and let r = m mod 6 and s = k mod 6 be the least nonnegative

residues of m and k modulo 6, respectively. Then

ν2

((
m

k

)

F

)
= ν2

((
m′

k′

))
+

⌊
r + 3

6

⌋
−
⌊
r − s+ 3

6

⌋
−
⌊
s+ 3

6

⌋
− 3

⌊
r − s

6

⌋

+ [r < s]ν2

(⌊
m− k + 6

6

⌋)
.

(ii) ν5
((

m
k

)
F

)
= ν5

((
m
k

))
.

(iii) Suppose that p is a prime, p 6= 2, and p 6= 5. Let m′ =
⌊

m
z(p)

⌋
, k′ =

⌊
k

z(p)

⌋
, and let

r = m mod z(p), and s = k mod z(p) be the least nonnegative residues of m and k
modulo z(p), respectively. Then

νp

((
m

k

)

F

)
= νp

((
m′

k′

))
+ [r < s]

(
νp

(⌊
m− k + z(p)

z(p)

⌋)
+ νp(Fz(p))

)
.

Proof. We will use Lemmas 4(i) and 5 repeatedly without reference. In addition, it is useful
to recall that for every a, b ∈ N, νp(ab) = νp(a)+νp(b) and if b | a, then νp(

a
b
) = νp(a)−νp(b).

Since the formulas to prove clearly hold when k = 0 or m, we assume m ≥ 2 and 1 ≤ k < m.
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By Lemma 2, we obtain, for every ℓ ≥ 1,

ν2(F1F2F3 · · ·Fℓ) =
∑

1≤n≤ℓ
n≡ 3 (mod 6)

ν2(Fn) +
∑

1≤n≤ℓ
n≡ 0 (mod 6)

ν2(Fn)

=
∑

1≤n≤ℓ
n≡ 3 (mod 6)

1 +
∑

1≤n≤ℓ
n≡ 0 (mod 6)

(ν2(n) + 2)

=

⌊
ℓ+ 3

6

⌋
+ 2

⌊
ℓ

6

⌋
+
∑

1≤j≤ ℓ
6

ν2(6j)

=

⌊
ℓ+ 3

6

⌋
+ 3

⌊
ℓ

6

⌋
+
∑

1≤j≤ ℓ
6

ν2(j)

=

⌊
ℓ+ 3

6

⌋
+ 3

⌊
ℓ

6

⌋
+ ν2

(⌊
ℓ

6

⌋
!

)
. (9)

Then we obtain from the definition of
(
m
k

)
F
and from (9) that

ν2

((
m

k

)

F

)
= ν2(F1F2 · · ·Fm)− ν2(F1F2 · · ·Fm−k)− ν2(F1F2 · · ·Fk)

=

(⌊
m+ 3

6

⌋
−
⌊
m− k + 3

6

⌋
−
⌊
k + 3

6

⌋)
+ 3

(⌊m
6

⌋
−
⌊
m− k

6

⌋
−
⌊
k

6

⌋)

+ ν2

(⌊m
6

⌋
!
)
− ν2

(⌊
m− k

6

⌋
!

)
− ν2

(⌊
k

6

⌋
!

)
. (10)

The expression in the first parenthesis in (10) is equal to

⌊
m− r

6
+

r + 3

6

⌋
−
⌊
(m− r)− (k − s)

6
+

r − s+ 3

6

⌋
−
⌊
k − s

6
+

s+ 3

6

⌋

=
m− r

6
+

⌊
r + 3

6

⌋
− (m− r)− (k − s)

6
−
⌊
r − s+ 3

6

⌋
− k − s

6
−
⌊
s+ 3

6

⌋

=

⌊
r + 3

6

⌋
−
⌊
r − s+ 3

6

⌋
−
⌊
s+ 3

6

⌋
.

Similarly, the expression in the second parenthesis is

3

(⌊r
6

⌋
−
⌊
r − s

6

⌋
−
⌊s
6

⌋)
= −3

⌊
r − s

6

⌋
.

Therefore (10) becomes

ν2

((
m

k

)

F

)
=

⌊
r + 3

6

⌋
−
⌊
r − s+ 3

6

⌋
−
⌊
s+ 3

6

⌋
− 3

⌊
r − s

6

⌋
+ ν2

(⌊x+ y⌋!
⌊x⌋!⌊y⌋!

)
(11)
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where x = m−k
6

and y = k
6
. By Lemma 4(v), we see that

⌊x+ y⌋!
⌊x⌋!⌊y⌋! =





(⌊x+y⌋
⌊y⌋
)
, if {x}+ {y} < 1;

(⌊x+y⌋
⌊y⌋
)
(⌊x⌋+ 1), if {x}+ {y} ≥ 1;

=





(
m′

k′
)
, if {x}+ {y} < 1;

(
m′

k′
) (⌊

m−k+6
6

⌋)
, if {x}+ {y} ≥ 1.

By Lemma 4(ii), we obtain

{x} =

{
(m− r)− (k − s)

6
+

r − s

6

}
=

{
r − s

6

}
and {y} =

{
k − s

6
+

s

6

}
=

s

6
.

If r ≥ s, then {x}+{y} =
{

r−s
6

}
+ s

6
= r−s

6
+ s

6
= r

6
< 1. If r < s, then we obtain by Lemma

4(iv) that {x}+ {y} =
{
− s−r

6

}
+ s

6
= 1− s−r

6
+ s

6
= 1 + r

6
≥ 1. Therefore

⌊x+ y⌋!
⌊x⌋!⌊y⌋! =





(
m′

k′
)
, if r ≥ s;

(
m′

k′
) (⌊

m−k+6
6

⌋)
, if r < s.

(12)

Substituting (12) in (11), we obtain part (i) of this theorem. The calculation in parts (ii)
and (iii) are similar, so we give fewer details than given in part (i). By Lemma 2, for every
ℓ ≥ 1, we have

ν5(F1F2 · · ·Fℓ) =
∑

1≤n≤ℓ

ν5(Fn) =
∑

1≤n≤ℓ

ν5(n) = ν5(ℓ!),

which implies

ν5

((
m

k

)

F

)
= ν5(m!)− ν5(k!)− ν5((m− k)!) = ν5

((
m

k

))
.

For (iii), we apply Lemmas 2 and 1(iv) to obtain

νp(F1F2 · · ·Fℓ) =
∑

1≤n≤ℓ
n≡ 0 (mod z(p))

νp(Fn) =
∑

1≤n≤ℓ
n≡ 0 (mod z(p))

(νp(n) + νp(Fz(p)))

=
∑

1≤k≤ ℓ
z(p)

νp(kz(p)) +

⌊
ℓ

z(p)

⌋
νp(Fz(p))

= νp

(⌊
ℓ

z(p)

⌋
!

)
+

⌊
ℓ

z(p)

⌋
νp(Fz(p)).

As in part (i), the above implies that

νp

((
m

k

)

F

)
= νp

(⌊x+ y⌋!
⌊x⌋!⌊y⌋!

)
+ (⌊x+ y⌋ − ⌊x⌋ − ⌊y⌋)νp(Fz(p)), (13)
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where x = m−k
z(p)

and y = k
z(p)

. In addition, if r ≥ s, then {x} + {y} < 1 and if r < s, then

{x} + {y} ≥ 1. Therefore (13) can be simplified to the desired result. This completes the
proof.

By Theorem 11(ii), we see that the 5-adic valuations of Fibonomial and binomial coeffi-
cients are the same. So we focus our investigation only on the p-adic valuations of Fibonomial
coefficients when p 6= 5. Calculating r and s in Theorem 11(i) in every case and writing
Theorem 11(iii) in another form, we obtain the following corollary.

Corollary 12. Let m, k, r, and s be as in Theorem 11. Let

A2 = ν2

(⌊m
6

⌋
!
)
− ν2

(⌊
k

6

⌋
!

)
− ν2

(⌊
m− k

6

⌋
!

)
,

and for each prime p 6= 2, 5, let Ap = νp

(⌊
m
z(p)

⌋
!
)
− νp

(⌊
k

z(p)

⌋
!
)
− νp

(⌊
m−k
z(p)

⌋
!
)
. Then the

following statements hold.

(i) ν2

((
m

k

)

F

)
=





A2, if r ≥ s and (r, s) 6= (3, 1), (3, 2), (4, 2);

A2 + 1, if (r, s) = (3, 1), (3, 2), (4, 2);

A2 + 3, if r < s and (r, s) 6= (0, 3), (1, 3), (2, 3),

(1, 4), (2, 4), (2, 5);

A2 + 2, if (r, s) = (0, 3), (1, 3), (2, 3), (1, 4), (2, 4),

(2, 5).

(ii) For p 6= 2, 5, we have

νp

((
m

k

)

F

)
=

{
Ap, if r ≥ s;

Ap + νp(Fz(p)), if r < s.

Proof. For (i), we have 0 ≤ r ≤ 5 and 0 ≤ s ≤ 5, so we can directly consider every case and
reduce Theorem 11(i) to the result in this corollary. In addition, (ii) follows directly from
(13).

In a series of papers (see [11] and references therein), Marques and Trojovský obtain a

formula for νp

((
pb

pa

)
F

)
only when b = a + 1. Then Ballot [2] extends it to any case b > a.

Corollary 12 enables us to compute νp

((
ℓ1pb

ℓ2pa

)
F

)
. We illustrate this in the next theorem.

Theorem 13. Let a, b, ℓ1, and ℓ2 be positive integers and b ≥ a. Let p 6= 5 be a prime. As-

sume that ℓ1p
b > ℓ2p

a and let mp =
⌊
ℓ1pb−a

z(p)

⌋
and kp =

⌊
ℓ2
z(p)

⌋
. Then the following statements

hold.
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(i) If a ≡ b (mod 2), then ν2

((
ℓ12b

ℓ22a

)
F

)
is equal to





ν2

((
m2

k2

))
, if ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);

⌈
a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3);

⌈
a+1
2

⌉
+ ν2

((
m2

k2

))
, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3),

and if a 6≡ b (mod 2), then ν2

((
ℓ12b

ℓ22a

)
F

)
is equal to





ν2

((
m2

k2

))
, if ℓ1 ≡ −ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a+ 2 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);

⌈
a+1
2

⌉
+ ν2

((
m2

k2

))
, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 1 (mod 3);

⌈
a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 2 (mod 3).

(ii) Let p 6= 5 be an odd prime and let r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). If
p ≡ ±1 (mod 5), then

νp

((
ℓ1p

b

ℓ2pa

)

F

)
= [r < s]

(
a+ νp (mp − kp) + νp(Fz(p))

)
+ νp

((
mp

kp

))
,

and if p ≡ ±2 (mod 5), then νp

((
ℓ1pb

ℓ2pa

)
F

)
is equal to





νp

((
mp

kp

))
, if r = s or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1 ≡ 0 (mod z(p)) and

ℓ2 6≡ 0 (mod z(p));
a
2
+ νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is even;
a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is even;
a+1
2

+ νp (mp − kp) + νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is odd;
a−1
2

+ νp(Fz(p)) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)),

and a is odd.
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Remark 14. In the proof of this theorem, we also show that the condition r = s in Theorem
13(ii) is equivalent to ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)). It seems more natural to
write r = s in the statement of the theorem, but it is more convenient in the proof to use
the condition ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)).

Proof of Theorem 13. We apply Corollary 12 to calculate ν2

((
ℓ12b

ℓ22a

)
F

)
with m = ℓ12

b, k =

ℓ22
a, r = ℓ12

b mod 6, and s = ℓ22
a mod 6. For convenience, we also let r′ = ℓ1 mod 3,

and s′ = ℓ2 mod 3. Therefore A2 given in Corollary 12 is

A2 = ν2

(⌊
ℓ12

b−1

3

⌋
!

)
− ν2

(⌊
ℓ22

a−1

3

⌋
!

)
− ν2

(⌊
ℓ12

b−1 − ℓ22
a−1

3

⌋
!

)
. (14)

By Corollary 8, the first term on the right-hand side of (14) is equal to

ℓ1(2
b−1 − 1)

3
−
⌊
b− 1

2

⌋
[ℓ1 6≡ 0 (mod 3)]−

{
ℓ1
3

}
[b ≡ 0 (mod 2)] + ν2

(⌊
ℓ1
3

⌋
!

)

=
ℓ1(2

b−1 − 1)

3
−
⌊
b− 1

2

⌋
[r′ 6= 0]− r′

3
[b ≡ 0 (mod 2)] + ν2

(⌊
ℓ1
3

⌋
!

)
. (15)

Similarly, the second term is

ℓ2(2
a−1 − 1)

3
−
⌊
a− 1

2

⌋
[s′ 6= 0]− s′

3
[a ≡ 0 (mod 2)] + ν2

(⌊
ℓ2
3

⌋
!

)
. (16)

To evaluate the third term on the right-hand side of (14), we divide the proof into two cases
according to the parity of a and b.

Case 1. a ≡ b (mod 2). Observe that ℓ1 ≡ ℓ2 (mod 3) if and only if r′ = s′. In addition,{
ℓ1−ℓ2

3

}
=
{

r′−s′
3

}
and

⌊
r′−s′
3

⌋
= −[r′ < s′]. Then by Theorem 9, the third term on the

right-hand side of (14) is equal to

(ℓ12
b−a − ℓ2)(2

a−1 − 1)

3
−
{
r′ − s′

3

}
[a ≡ 0 (mod 2)]−

⌊
a− 1

2

⌋
[r′ 6= s′] + ν2

(⌊
ℓ12

b−a − ℓ2
3

⌋
!

)

=
(ℓ12

b−a − ℓ2)(2
a−1 − 1)

3
−
(
r′ − s′

3
+ [r′ < s′]

)
[a ≡ 0 (mod 2)]−

⌊
a− 1

2

⌋
[r′ 6= s′]

+ ν2

(⌊
ℓ12

b−a − ℓ2
3

⌋
!

)
. (17)

Recall that m2 =
⌊
ℓ12b−a

3

⌋
and k2 =

⌊
ℓ2
3

⌋
. Since b − a is even, 2b−a ≡ 1 (mod 3) and we

obtain by Lemma 6 that

⌊
ℓ12

b−a − ℓ2
3

⌋
= m2 − k2 − [r′ < s′].
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Therefore ν2

(⌊
ℓ12b−a−ℓ2

3

⌋
!
)
is equal to

ν2(m2!)− [r′ < s′]ν2(m2 − k2)− ν2

(
m2!

(m2 − k2)!

)
.

By Corollary 8, ν2(m2!) is equal to

ℓ1(2
b−a − 1)

3
− b− a

2
[r′ 6= 0] + ν2

(⌊
ℓ1
3

⌋
!

)
.

We substitute the value of ν2

(⌊
ℓ12b−a−ℓ2

3

⌋
!
)
in (17) and then substitute (15), (16), and (17)

in (14) to obtain A2. We see that there are some cancellations. For instance,

r′

3

(
[a ≡ 0 (mod 2)]− [b ≡ 0 (mod 2)]

)
= 0.

and

ν2

(
m2!

(m2 − k2)!

)
− ν2

(⌊
ℓ2
3

⌋
!

)
= ν2

((
m2

k2

))

Then we obtain

A2 = −
⌊
b− 1

2

⌋
[r′ 6= 0] +

⌊
a− 1

2

⌋
[s′ 6= 0] + [r′ < s′][a ≡ 0 (mod 2)]

+

⌊
a− 1

2

⌋
[r′ 6= s′] +

b− a

2
[r′ 6= 0] + [r′ < s′]ν2(m2 − k2) + ν2

((
m2

k2

))
. (18)

Next we divide the calculation of A2 into 4 cases:

• Case 1.1. ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3),

• Case 1.2. ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3),

• Case 1.3. ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3),

• Case 1.4. ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3).

Since the calculation in each case is similar, we only show the details in Case 1.1 and Case
1.2. So assume that ℓ1 ≡ ℓ2 (mod 3). Then r′ = s′ and (18) becomes

A2 = −
⌊
b− 1

2

⌋
[r′ 6= 0] +

⌊
a− 1

2

⌋
[r′ 6= 0] +

b− a

2
[r′ 6= 0] + ν2

((
m2

k2

))

Since −
⌊
b−1
2

⌋
+
⌊
a−1
2

⌋
+ b−a

2
= 0, we see that A2 = ν2

((
m2

k2

))
. Next if ℓ2 ≡ 0 (mod 3), then

s′ = 0 and the same calculation leads to A2 = ν2

((
m2

k2

))
. Next assume that ℓ1 ≡ 0 (mod 3)

and ℓ2 6≡ 0 (mod 3). Then r′ = 0, s′ 6= 0, and (18) becomes

A2 =

⌊
a− 1

2

⌋
+ [a ≡ 0 (mod 2)] +

⌊
a− 1

2

⌋
+ ν2(m2 − k2) + ν2

((
m2

k2

))
.
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Observing that the sum of the first three terms above is equal to a − 1, we obtain A2 =

a− 1 + ν2(m2 − k2) + ν2

((
m2

k2

))
. The other cases are similar. Therefore A2 is





ν2

((
m2

k2

))
, if ℓ1 ≡ ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a− 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);

⌊
a
2

⌋
+ ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 2 (mod 3);

⌊
a−1
2

⌋
+ ν2

((
m2

k2

))
, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 1 (mod 3).

Recall that r = ℓ12
b mod 6 and s = ℓ22

a mod 6. Therefore

r =





0, if ℓ1 ≡ 0 (mod 3);

2, if b is even and ℓ1 ≡ 2 (mod 3) or if b is odd and ℓ1 ≡ 1 (mod 3);

4 if b is even and ℓ1 ≡ 1 (mod 3) or if b is odd and ℓ1 ≡ 2 (mod 3),

and

s =





0, if ℓ2 ≡ 0 (mod 3);

2, if a is even and ℓ2 ≡ 2 (mod 3) or if a is odd and ℓ2 ≡ 1 (mod 3);

4 if a is even and ℓ2 ≡ 1 (mod 3) or if a is odd and ℓ2 ≡ 2 (mod 3).

To obtain the formula for ν2

((
ℓ12b

ℓ22a

)
F

)
, we divide the calculation into 4 cases: Case 1.1 to

Case 1.4 as before. Then we consider the values of r and s in each case, and substitute A2 in
Corollary 12. This leads to the desired result. Since the calculation in each case is similar,

we only give the details in Case 1.3. In this case, A2 =
⌊
a
2

⌋
+ ν2(m2 − k2) + ν2

((
m2

k2

))
,

(r, s) = (2, 4) if a and b are odd, and (r, s) = (4, 2) if a and b are even. By Corollary 12, we
obtain

ν2

((
ℓ12

b

ℓ22a

)

F

)
=

{
A2 + 2, if a and b are odd;

A2 + 1, if a and b are even,

=
⌈a
2

⌉
+ 1 + ν2(m2 − k2) + ν2

((
m2

k2

))
,

as required. The other cases are similar.

Case 2. a 6≡ b (mod 2). The calculation in this case is similar to Case 1, so we omit some
details. By Theorem 9, the third term on the right-hand side of (14) is equal to

(ℓ12
b−a − ℓ2)(2

a−1 − 1)

3
−
{
−r′ + s′

3

}
[a ≡ 0 (mod 2)]−

⌊
a− 1

2

⌋
[ℓ1 6≡ −ℓ2 (mod 3)]

+ ν2

(⌊
ℓ12

b−a − ℓ2
3

⌋
!

)
. (19)
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Since b− a is odd, ℓ12
b−a ≡ −r′ (mod 3) and we obtain by Lemma 6 that

⌊
ℓ12

b−a − ℓ2
3

⌋
= m2 − k2 − B

where B = [(r′, s′) ∈ {(0, 1), (0, 2), (2, 2)}]. Similar to Case 1, ν2

(⌊
ℓ12b−a−ℓ2

3

⌋
!
)
is

ν2 (m2!)−Bν2 (m2 − k2)− ν2

(
m2!

(m2 − k2)!

)
.

Then we evaluate ν2(m2!) by Corollary 8, and substitute all of these in (14) to obtain that
A2 is equal to

(
b− a− 1

2
−
⌊
b− 1

2

⌋)
[r′ 6= 0]− r′

3
[b ≡ 0 (mod 2)] +

⌊
a− 1

2

⌋
[s′ 6= 0]

+

(
s′

3
+

{
−r′ + s′

3

})
[a ≡ 0 (mod 2)] +

⌊
a− 1

2

⌋
[ℓ1 6≡ −ℓ2 (mod 3)] +

r′

3

+ Bν2 (m2 − k2) + ν2

((
m2

k2

))
.

Then we divide the calculation into 4 cases and obtain that A2 is




ν2

((
m2

k2

))
, if ℓ1 ≡ −ℓ2 (mod 3) or ℓ2 ≡ 0 (mod 3);

a− 1 + ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 0 (mod 3) and ℓ2 6≡ 0 (mod 3);

⌊
a−1
2

⌋
+ ν2

((
m2

k2

))
, if ℓ1 ≡ 1 (mod 3) and ℓ2 ≡ 1 (mod 3);

⌊
a
2

⌋
+ ν2 (m2 − k2) + ν2

((
m2

k2

))
, if ℓ1 ≡ 2 (mod 3) and ℓ2 ≡ 2 (mod 3).

We illustrate the calculation of A2 above only for the case ℓ2 ≡ 0 (mod 3) since the other
cases are similar. So suppose ℓ2 ≡ 0 (mod 3). So s′ = 0. If r′ = 0, then it is easy to see that

A2 is equal to ν2

((
m2

k2

))
. So assume that r′ 6= 0. Then A2 is equal to x + y + ν2

((
m2

k2

))
,

where

x =
b− a− 1

2
−
⌊
b− 1

2

⌋
+

⌊
a− 1

2

⌋
=

{
0, if a is odd;

−1, if a is even,

y =
−r′

3
[b ≡ 0 (mod 2)] +

{
−r′

3

}
[a ≡ 0 (mod 2)] +

r′

3
=

{
0, if a is odd;

1, if a is even.

Therefore A2 = ν2

((
m2

k2

))
, as required. As in Case 1, we divide the calculation of ν2

((
ℓ12b

ℓ22a

)
F

)

into 4 cases according to the value of A2, which leads to the desired result. This proves (i).
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For (ii), we apply Corollary 12 with m = ℓ1p
b and k = ℓ2p

a. For convenience, we let
r′ = ℓ1 mod z(p) and s′ = ℓ2 mod z(p). The calculation of this part is similar to that of
part (i), so we omit some details. We have

Ap = νp

(⌊
ℓ1p

b

z(p)

⌋
!

)
− νp

(⌊
ℓ2p

a

z(p)

⌋
!

)
− νp

(⌊
ℓ1p

b − ℓ2p
a

z(p)

⌋
!

)
. (20)

Case 1. p ≡ ±1 (mod 5). Then by Lemma 1(iii), p ≡ 1 (mod z(p)). By Corollary 8, the
first term on the right-hand side of (20) is equal to

ℓ1(p
b − 1)

z(p)(p− 1)
+ νp

(⌊
ℓ1
z(p)

⌋
!

)
−
⌊
b

2

⌋
[r′ 6= 0]− r′

z(p)
[b ≡ 1 (mod 2)] +

⌊
b

2

⌋
[r′ 6= 0]

(
1− 2r′

z(p)

)

=
ℓ1(p

b − 1)

z(p)(p− 1)
− br′

z(p)
+ νp

(⌊
ℓ1
z(p)

⌋
!

)
,

and similarly, the second term is

ℓ2(p
a − 1)

z(p)(p− 1)
− as′

z(p)
+ νp

(⌊
ℓ2
z(p)

⌋
!

)
.

By Theorem 9, the third term is

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
− a

(
r′ − s′

z(p)
+ [r′ < s′]

)
+ νp

(⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
!

)
.

Since p ≡ 1 (mod z(p)), we obtain by Lemma 6 that

⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
= mp − kp − [r′ < s′].

Therefore νp

(⌊
ℓ1pb−a−ℓ2

z(p)

⌋
!
)
is equal to

νp (mp!)− [r′ < s′]νp (mp − kp)− νp

(
mp!

(mp − kp)!

)
.

As usual, the first term above can be evaluated by Corollary 8 and is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
− (b− a)

r′

z(p)
+ νp

(⌊
ℓ1
z(p)

⌋
!

)
.

We substitute all of these in (20) to obtain

Ap = [r′ < s′] (a+ νp (mp − kp)) + νp

((
mp

kp

))
.
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Since p ≡ 1 (mod z(p)), r = r′ and s = s′. Substituting Ap and applying Corollary 12, we
obtain the desired result.

Case 2. p ≡ ±2 (mod 5). Then by Lemma 1(iii), p ≡ −1 (mod z(p)). By Corollary 8, the
first term on the right-hand side of (20) is equal to

ℓ1(p
b − 1)

z(p)(p− 1)
−
⌊
b

2

⌋
[r′ 6= 0]− r′

z(p)
[b ≡ 1 (mod 2)] + νp

(⌊
ℓ1
z(p)

⌋
!

)
.

Similarly, the second term is

ℓ2(p
a − 1)

z(p)(p− 1)
−
⌊a
2

⌋
[s′ 6= 0]− s′

z(p)
[a ≡ 1 (mod 2)] + νp

(⌊
ℓ2
z(p)

⌋
!

)
.

For the third term, we divide the proof into two cases according to the parity of a and b.

Case 2.1. a ≡ b (mod 2). Then by Theorem 9, the third term on the right-hand side of
(20) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
−
(
r′ − s′

z(p)
+ [r′ < s′]

)
[a ≡ 1 (mod 2)]−

⌊a
2

⌋
[r′ 6= s′]

+ νp

(⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
!

)
.

As in Case 1, we apply Lemma 6 to write
⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
= mp − kp − [r′ < s′],

and then use Corollary 8 to show that νp

(⌊
ℓ1pb−a−ℓ2

z(p)

⌋
!
)
is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
− b− a

2
[r′ 6= 0] + νp

(⌊
ℓ1
z(p)

⌋
!

)
− [r′ < s′]νp (mp − kp)− νp

(
mp!

(mp − kp)!

)
.

Substituting all of these in (20), we see that Ap is equal to

−
⌊
b

2

⌋
[r′ 6= 0] +

⌊a
2

⌋
[s′ 6= 0] + [r′ < s′][b ≡ 1 (mod 2)] +

⌊a
2

⌋
[r′ 6= s′] +

b− a

2
[r′ 6= 0]

+ [r′ < s′]νp (mp − kp) + νp

((
mp

kp

))

=





νp

((
mp

kp

))
, if ℓ1 ≡ ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

⌊
a
2

⌋
+ νp

((
mp

kp

))
, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ > s′;

⌈
a
2

⌉
+ νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ < s′.
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Recall that r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). If a and b are even, then pb ≡
pa ≡ 1 (mod z(p)), r = r′, and s = s′, and we can obtain νp

((
ℓ1pb

ℓ2pa

)
F

)
by substituting Ap in

Corollary 12. Suppose a and b are odd. Then r ≡ −r′ (mod z(p)) and s ≡ −s′ (mod z(p))
and thus when r and s are both nonzero or are both zero, we have

r ≥ s if and only if r′ ≤ s′.

Similar to the above, we can obtain νp

((
ℓ1pb

ℓ2pa

)
F

)
by the substitution of Ap in Corollary 12.

We see that νp

((
ℓ1pb

ℓ2pa

))
is equal to





νp

((
mp

kp

))
, if ℓ1 ≡ ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

a
2
+ νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a+1
2

+ νp (mp − kp) + νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a−1
2

+ νp(Fz(p)) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd.

Since a ≡ b (mod 2), we see that pa ≡ pb (mod z(p)) and therefore

ℓ1 ≡ ℓ2 (mod z(p)) ⇔ r = s (21)

So the condition ℓ1 ≡ ℓ2 (mod z(p)) can be replaced by r = s.

Case 2.2. a 6≡ b (mod 2). The calculation in this case is similar to that given before. So we
skip some details. By Theorem 9, the third term on the right-hand side of (20) is equal to

(ℓ1p
b−a − ℓ2)(p

a − 1)

z(p)(p− 1)
−[a ≡ 1 (mod 2)]B1−

⌊a
2

⌋
[ℓ1 6≡ −ℓ2 (mod z(p))]+νp

(⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
!

)
,

where B1 =
{
− r′+s′

z(p)

}
= − r′+s′

z(p)
+ [r′ + s′ > 0] + [r′ + s′ > z(p)]. Since p ≡ −1 (mod z(p)),

we obtain by Lemma 6 and a straightforward verification that

⌊
ℓ1p

b−a − ℓ2
z(p)

⌋
= mp − kp − ε,

where ε = [−r′ mod z(p) < s′] = [r′ = 0 and s′ 6= 0] + [r′ + s′ > z(p)]. Then by Corollary 8,

νp

(⌊
ℓ1pb−a−ℓ2

z(p)

⌋
!
)
is equal to

ℓ1(p
b−a − 1)

z(p)(p− 1)
−
⌊
b− a

2

⌋
[r′ 6= 0]− r′

z(p)
+ νp

(⌊
ℓ1
z(p)

⌋
!

)
−B2 − νp

(
mp!

(mp − kp)!

)
,
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where B2 = ενp (mp − kp). Since a 6≡ b (mod 2), [b ≡ 1 (mod 2)] = 1− [a ≡ 1 (mod 2)] and⌊
b−a
2

⌋
+
⌊
a
2

⌋
−
⌊
b
2

⌋
+ [a ≡ 1 (mod 2)]. We substitute all of these in (20) to obtain that Ap is

equal to
(⌊

b− a

2

⌋
−
⌊
b

2

⌋)
[r′ 6= 0] +

⌊a
2

⌋(
[s′ 6= 0] + [ℓ1 6≡ −ℓ2 (mod z(p))]

)

+ ([r′ + s′ > 0] + [r′ + s′ > z(p)]) [a ≡ 1 (mod 2)] + B2 + νp

((
mp

kp

))

=





νp

((
mp

kp

))
, if ℓ1 ≡ −ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

⌊
a
2

⌋
+ νp

((
mp

kp

))
, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ + s′ < z(p);

⌈
a
2

⌉
+ νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1, ℓ2 6≡ 0 (mod z(p)) and r′ + s′ > z(p).

Recall that r = ℓ1p
b mod z(p) and s = ℓ2p

a mod z(p). Suppose that a is odd and b is even.
Then r = r′ and s ≡ −s′ (mod z(p)). Moreover, if s′ 6= 0, then s = z(p)− s′ and thus

r < s ⇔ r′ + s′ < z(p) and r > s ⇔ r′ + s′ > z(p).

Similarly, if a is even and b is odd, then r ≡ −r′ (mod z(p)) and s = s′, and for r′ 6= 0, we
have

r < s ⇔ r′ + s′ > z(p) and r > s ⇔ r′ + s′ < z(p).

From the above observation and the substitution ofAp in Corollary 12, we see that νp

((
ℓ1pb

ℓ2pa

)
F

)

is equal to




νp

((
mp

kp

))
, if ℓ1 ≡ −ℓ2 (mod z(p)) or ℓ2 ≡ 0 (mod z(p));

a+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if ℓ1 ≡ 0 (mod z(p)) and ℓ2 6≡ 0 (mod z(p));

a+1
2

+ νp (mp − kp) + νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a−1
2

+ νp(Fz(p)) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is odd;

a
2
+ νp

((
mp

kp

))
, if r > s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even;

a
2
+ νp(Fz(p)) + νp (mp − kp) + νp

((
mp

kp

))
, if r < s, ℓ1, ℓ2 6≡ 0 (mod z(p)), and a is even.

Since a 6≡ b (mod 2), we see that pa ≡ −pb (mod z(p)) and therefore

ℓ1 ≡ −ℓ2 (mod z(p)) ⇔ r = s.

Combining this with (21), we conclude that

ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)) ⇔ r = s.

This completes the proof.
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5 Examples

In this last section, we give several examples to show applications of our main results. We
also recall from Remark 14 that the condition r = s in Theorem 13(ii) can be replaced by
ℓ1 ≡ ℓ2 − 2ℓ2[a 6≡ b (mod 2)] (mod z(p)). In the calculation given in this section, we will use
this observation without further reference.

Example 15. Let a, b, and ℓ be positive integers and b ≥ a. We assert that for ℓ 6≡ 0 (mod 3),
we have

ν2

((
ℓ · 2b
2a

)

F

)
=

⌈
a+ 1

2

⌉
(ε1ε2 + ε′1ε

′
2) , (22)

where ε1 = [ℓ ≡ 2 (mod 3)], ε2 = [a ≡ b (mod 2)], ε′1 = [ℓ ≡ 1 (mod 3)], and ε′2 = [a 6≡
b (mod 2)]. In addition, if ℓ ≡ 0 (mod 3), then

ν2

((
ℓ · 2b
2a

)

F

)
= b+ 2 + ν2(ℓ). (23)

Proof. We apply Theorem 13 to verify our assertion. Here m2 =
⌊
ℓ·2b−a

3

⌋
and k2 =

⌊
1
3

⌋
= 0.

So we immediately obtain the following: if a ≡ b (mod 2), then

ν2

((
ℓ · 2b
2a

)

F

)
=





0, if ℓ ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ℓ ≡ 0 (mod 3);⌈
a+1
2

⌉
, if ℓ ≡ 2 (mod 3),

and if a 6≡ b (mod 2), then

ν2

((
ℓ · 2b
2a

)

F

)
=





0, if ℓ ≡ 1 (mod 3);

a+ 2 + ν2(m2), if ℓ ≡ 0 (mod 3);⌈
a+1
2

⌉
, if ℓ ≡ 1 (mod 3).

This proves (22). If ℓ ≡ 0 (mod 3), then m2 =
ℓ
3
· 2b−a and ν2(m2) is equal to

ν2(m2) = ν2 (ℓ) + ν2(2
b−a)− ν2(3) = b− a+ ν2 (ℓ) ,

which implies (23).

Example 16. Substituting ℓ = 1 in Example 15, we see that

ν2

((
2b

2a

)

F

)
=

⌈
a+ 1

2

⌉
[a 6≡ b (mod 2)]

=

{
0, if a ≡ b (mod 2);⌈
a+1
2

⌉
, if a 6≡ b (mod 2).

(24)

Our example also implies that (24) still holds for the 2-adic valuations of
(
2b+2c

2a

)
F
,
(
7·2b
2a

)
F
,(

5·2b+1

2a

)
F
,
(
13·2b
2a

)
F
, etc.
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Example 17. Let a, b, and ℓ be positive integers, b ≥ a, and p a prime distinct from 2 and
5. If p ≡ ±1 (mod 5), then

νp

((
ℓpb

pa

)

F

)
=
(
b+ νp(Fz(p)) + νp(ℓ)

)
[ℓ ≡ 0 (mod z(p))],

and if p ≡ ±2 (mod 5), then

νp

((
ℓpb

pa

)

F

)
=





0, if ℓ ≡ 1− 2ε (mod z(p));

b+ νp(Fz(p)) + νp(ℓ), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1− 2ε (mod z(p)) and a is odd,

where ε = [a 6≡ b (mod 2)].

Proof. Similar to Example 15, we verify this by applying Theorem 13. Here mp =
⌊
ℓpb−a

z(p)

⌋
,

kp =
⌊

1
z(p)

⌋
= 0, r = ℓpb mod z(p), and s = pa mod z(p). We first assume that p ≡

±1 (mod 5). Then by Lemma 1, we have p ≡ 1 (mod z(p)). Therefore s = 1, r ≡
ℓ (mod z(p)), and

νp

((
ℓpb

pa

)

F

)
=
(
a+ νp(mp) + νp(Fz(p))

)
[ℓ ≡ 0 (mod z(p))].

Similarly, if p ≡ ±2 (mod 5) and a ≡ b (mod 2), then we obtain by Lemma 1 and Theorem
13 that

νp

((
ℓpb

pa

)

F

)
=





0, if ℓ ≡ 1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ mod 0, 1z(p) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0, 1 (mod z(p)) and a is odd.

In addition, if p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((
ℓpb

pa

)

F

)
=





0, if ℓ ≡ −1 (mod z(p));

a+ νp(mp) + νp(Fz(p)), if ℓ ≡ 0 (mod z(p));
a
2
, if ℓ 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)), if ℓ 6≡ 0,−1 (mod z(p)) and a is odd.

It remains to calculate νp(mp) when ℓ ≡ 0 (mod z(p)). In this case, we have

νp(mp) = νp

(
ℓpb−a

z(p)

)
= νp(ℓ) + νp(p

b−a)− νp(z(p)) = b− a+ νp(ℓ).

This implies the desired result.
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Example 18. Substituting ℓ = 1 in Example 17, we see that for p 6= 2, 5, we have

νp

((
pb

pa

)

F

)
=





0, if p ≡ ±1 (mod 5) or a ≡ b (mod 2);
a
2
, if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a 6≡ b (mod 2), and a is odd.

(25)

Our example also implies that (25) still holds for the p-adic valuations of
(
pb+2c

pa

)
F

and
(
(z(p)+1)·pb

pa

)
F
. Similarly, for p 6= 2, 5, we have

νp

((
2pb

pa

)

F

)
=





0, if p ≡ ±1 (mod 5);
a
2
, if p ≡ ±2 (mod 5) and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5) and a is odd.

(26)

In addition, (26) also holds when
(
2pb

pa

)
F
is replaced by

(
ℓpb

pa

)
F
for ℓ 6≡ 0,±1 (mod z(p)) and

p 6= 2, 5. Furthermore, replacing
(
2pb

pa

)
F
by
(
(z(p)−1)pb

pa

)
F
, the formula becomes





0, if p ≡ ±1 (mod 5) or a 6≡ b (mod 2);
a
2
, if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is even;

a−1
2

+ νp(Fz(p)), if p ≡ ±2 (mod 5), a ≡ b (mod 2), and a is odd.

Example 19. We know that the 5-adic valuations of Fibonomial coefficients are the same
as those of binomial coefficients. For example, by Theorem 11(ii) and Kummer’s theorem,
we obtain

ν5

((
ℓ · 5b
5a

)

F

)
= ν5

((
ℓ · 5b
5a

))
= b− a+ ν5(ℓ),

for every a, b, ℓ ∈ N with b ≥ a. Similarly, ν5

((
5b

ℓ·5a
)
F

)
= b − a − ν5(ℓ) for every a, b, ℓ ∈ N

such that 5b > ℓ · 5a.

Example 20. Let a, b, and ℓ be positive integers and 2b > ℓ · 2a. Let m2 =
⌊
2b−a

3

⌋
and

k2 =
⌊
ℓ
3

⌋
. Then

ν2

((
2b

ℓ · 2a
)

F

)
= ν2

((
m2

k2

))
+

(⌈
a+ 2

2

⌉
+ ν2(m2 − k2)

)
ε1ε2 +

⌈
a+ 1

2

⌉
ε3ε4, (27)

where ε1 = [a ≡ b (mod 2)], ε2 = [ℓ ≡ 2 (mod 3)], ε3 = [a 6≡ b (mod 2)], and ε4 = [ℓ ≡
1 (mod 3)].

Proof. Similar to Example 15, this follows from the application of Theorem 13. So we leave
the details to the reader.
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Example 21. Let k ≥ 2. We observe that

⌊
2k

3

⌋
=

{
2k−1
3

, if k is even;
2(2k−1−1)

3
, if k is odd,

which implies,

ν2

(⌊
2k

3

⌋)
= [k ≡ 1 (mod 2)]. (28)

By a similar reason, we also see that for k ≥ 3,

ν2

(⌊
2k

3

⌋
− 1

)
= 2[k ≡ 0 (mod 2)]. (29)

From (27), (28), and (29), we obtain the following results:

(i) if b− a ≥ 2, then ν2

((
2b

3·2a
)
F

)
= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 3, then ν2

((
2b

5·2a
)
F

)
is equal to

[a 6≡ b (mod 2)] +

(⌈
a+ 2

2

⌉
+ 2[a ≡ b (mod 2)]

)
[a ≡ b (mod 2)]

= 1 +

⌈
a+ 4

2

⌉
[a ≡ b (mod 2)],

(iii) if b− a ≥ 3, then ν2

((
2b

6·2a
)
F

)
= [a ≡ b (mod 2)],

(iv) if b− a ≥ 4, then ν2

((
2b

7·2a
)
F

)
= [a ≡ b (mod 2)] +

⌈
a+1
2

⌉
[a 6≡ b (mod 2)].

Example 22. Let p 6= 5 be an odd prime and let a, b, and ℓ be positive integers, pb > ℓpa,

mp =
⌊
pb−a

z(p)

⌋
, and kp =

⌊
ℓ

z(p)

⌋
. Then the following statements hold.

(i) If p ≡ ±1 (mod 5), then

νp

((
pb

ℓpa

)

F

)
=
(
a+ νp (mp − kp) + νp(Fz(p))

)
[ℓ 6≡ 0, 1 (mod z(p))] + νp

((
mp

kp

))
,

(ii) If p ≡ ±2 (mod 5), then νp

((
pb

ℓpa

)
F

)
is equal to

νp

((
mp

kp

))
+ε1ε2ε5

(⌈a
2

⌉
+ νp(mp − kp) + ε3νp(Fz(p))

)
+ε1ε4(1−ε5)

(⌊a
2

⌋
+ ε3νp(Fz(p))

)

(30)
where ε1 = [ℓ 6≡ 0 (mod z(p))], ε2 = [ℓ 6≡ 1 (mod z(p))], ε3 = [b ≡ 0 (mod 2)],
ε4 = [ℓ 6≡ −1 (mod z(p))], and ε5 = [a ≡ b (mod 2)].
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Proof. Similar to Example 17, this follows from the application of Lemma 1 and Theorem
13. Since (i) is easily verified, we only give the proof of (ii). The calculation is done in two

cases. If p ≡ ±2 (mod 5) and a ≡ b (mod 2), then νp

((
pb

ℓpa

)
F

)
is equal to





νp

((
mp

kp

))
, if ℓ ≡ 0, 1 (mod z(p));

a
2
+ νp(Fz(p)) + νp(mp − kp) + νp

((
mp

kp

))
, if ℓ 6≡ 0, 1 (mod z(p)) and a is even;

a+1
2

+ νp(mp − kp) + νp

((
mp

kp

))
, if ℓ 6≡ 0, 1 (mod z(p)) and a is odd,

= νp

((
mp

kp

))
+ ε1ε2

(⌈a
2

⌉
+ νp(mp − kp) + ε3νp(Fz(p))

)
,

where ε1 = [ℓ 6≡ 0 (mod z(p))], ε2 = [ℓ 6≡ 1 (mod z(p))], and ε3 = [b ≡ 0 (mod 2)]. If
p ≡ ±2 (mod 5) and a 6≡ b (mod 2), then

νp

((
pb

ℓpa

)

F

)
=





νp

((
mp

kp

))
, if ℓ ≡ 0,−1 (mod z(p));

a
2
+ νp

((
mp

kp

))
, if ℓ 6≡ 0,−1 (mod z(p)) and a is even;

a−1
2

+ νp(Fz(p)) + νp

((
mp

kp

))
, if ℓ 6≡ 0,−1 (mod z(p)) and a is odd,

= νp

((
mp

kp

))
+ ε1ε4

(⌊a
2

⌋
+ ε3νp(Fz(p))

)
,

where ε1, ε2, ε3 are as above and ε4 = [ℓ 6≡ −1 (mod z(p))]. Let ε5 = [a ≡ b (mod 2)]. Then
both cases can be combined to obtain (ii).

Example 23. Let k ≥ 2. We observe that z(7) = 8 and
⌊
7k

8

⌋
=

{
7k−1
8

, if k is even;
7(7k−1−1)

8
, if k is odd.

Therefore

ν7

(⌊
7k

8

⌋)
= [k ≡ 1 (mod 2)] and ν7

(⌊
7k

8

⌋
− 1

)
= 0. (31)

From (30) and (31), we obtain the following results:

(i) if b− a ≥ 2, then ν7

((
7b

8·7a
)
F

)
= [a 6≡ b (mod 2)],

(ii) if b− a ≥ 2, then ν7

((
7b

9·7a
)
F

)
=
(⌊

a+2
2

⌋
+ [b ≡ 0 (mod 2)]

)
[a 6≡ b (mod 2)],

(iii) if b− a ≥ 2, then ν7

((
7b

15·7a
)
F

)
is equal to

[a 6≡ b (mod 2)] +
(⌈a

2

⌉
+ [b ≡ 0 (mod 2)]

)
[a ≡ b (mod 2)].

To keep this article not too lengthy, we plan to give more applications of our main results
in the next article.
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Abstract

A positive integer n is a b-adic palindrome if the representation of n in base b reads
the same backward as forward. Let sb be the reciprocal sum of all b-adic palindromes.
In this article, we obtain upper and lower bounds, and an asymptotic formula for sb.
We also show that the sequence (sb)b≥2 is strictly increasing and log-concave.

1 Introduction

Let n ≥ 1 and b ≥ 2 be integers. We call n a palindrome in base b (or b-adic palindrome) if
the b-adic expansion of n = (akak−1 · · · a0)b with ak 6= 0 has the symmetric property ak−i = ai
for 0 ≤ i ≤

⌊
k
2

⌋
. As usual, if we write a number without specifying the base, then it is always

in base 10. So, for example, 9 = (1001)2 = (100)3 is a palindrome in bases 2 and 10 but not
in base 3.

In recent years, there has been an increasing interest in the importance of palindromes
in mathematics [1, 2, 3, 13, 17, 25], theoretical computer science [4, 9, 12], and theoretical
physics [11, 14]. There are also some discussions on the reciprocal sum of palindromes on
the internet but as far as we are aware, our observation has not appeared in the literature.
Throughout this article, we let b ≥ 2, sb the reciprocal sum of all b-adic palindromes, and sb,k
the reciprocal sum of all b-adic palindromes which have k digits in their b-adic expansions.

1Prapanpong Pongsriiam is the corresponding author.
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The set of all b-adic palindromes is infinite but quite sparse, so it is not difficult to see that
sb converges. In fact, Shallit proposed the convergence of sb as a problem in the Fibonacci
Quarterly in 1980 [26, 27].

In this article, we obtain upper and lower bounds for sb, which enable us to show that
sb+1 > sb for all b ≥ 2 and s2b − sb−1sb+1 > 0 for all b ≥ 3. That is, the sequence (sb)b≥2

is strictly increasing and log-concave. Furthermore, we give an asymptotic formula for sb of
the form sb = g(b) +O(h(b)) where the implied constant can be taken to be 1 and the order
of magnitude of h(b) is log b

b3
as b → ∞. Our result sb+1 > sb for all b ≥ 2 also implies that

if b1 > b2 ≥ 2 and if we use the logarithmic measure, then we can say that the palindromes
in base b1 occur more often than those in base b2. On the other hand, if we use the usual
counting measure, then we obtain from Pongsriiam and Subwattanachai’s exact formula [22]
that the number of palindromes in different bases which are less than or equal to N are not
generally comparable. It seems that there are races between palindromes in different bases
which may be similar to races between primes in different residue classes. We will get back
to this problem in the near future.

The reciprocal sum of an integer sequence is also of general interest in mathematics and
theoretical physics as proposed by Bayless and Klyve [8], and by Roggero, Nardelli, and Di
Noto [24]. See also the work of Nguyen and Pomerance [19] on the reciprocal sum of the
amicable numbers, the preprint of Kinlaw, Kobayashi, and Pomerance [15] on the reciprocal
sum of the positive integers n satisfying ϕ(n) = ϕ(n + 1), and the article by Lichtman [16]
on the reciprocal sum of primitive nondeficient numbers. In addition, Banks [5], Cilleruelo,
Luca, and Baxter [10], and Rajasekaran, Shallit, and Smith [23] have recently investigated
some additive properties of palindromes while Banks, Hart, and Sakata [6] and Banks and
Shparlinski [7] show some of their multiplicative properties. For more information concerning
palindromes, we refer the reader to the entry A002113 in the On-Line Encyclopedia of Integer
Sequences (OEIS) [28].

2 Results

Throughout this section, a, c, m, n, k, ℓ denote positive integers, and x, y, z denote positive
real numbers. Furthermore,

• ⌊x⌋ is the greatest integer less than or equal to x;

• ⌈x⌉ is the least integer greater than or equal to x;

• log x is the natural logarithm of x;

• xb =
∑b−1

m=1
1
m
;

• yb =
∑b2−1

m=b
1
m
; and

• zb =
∑b2

m=b+1
1
m
.
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Note that xb = sb,1 and xb/(b+ 1) = sb,2 and that

zb − yb =
1

b2
− 1

b
=

1− b

b2
.

Theorem 1. We have

yb
b
− xb

b3
≤ sb,3 ≤

yb
b

and
zb

b⌊ k
2⌋

≤ sb,k ≤
yb

b⌊ k
2⌋

for every k ≥ 4.

Proof. We first consider the case k = 3. The b-adic palindromes which have 3 digits are of
the form (aca)b where 1 ≤ a ≤ b− 1 and 0 ≤ c ≤ b− 1. Since

∣∣∣∣
1

(aca)b
− 1

(ac0)b

∣∣∣∣ =
∣∣∣∣

−a

(ab2 + cb+ a)(ab2 + cb)

∣∣∣∣ ≤
a

(ab2)2
=

1

ab4
,

we obtain
1

(ac0)b
− 1

ab4
≤ 1

(aca)b
≤ 1

(ac0)b
. (1)

Observe that

∑

1≤a≤b−1
0≤c≤b−1

1

(ac0)b
=

1

b

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c
=

yb
b

and
∑

1≤a≤b−1
0≤c≤b−1

1

ab4
=

xb

b3
.

So by summing (1) over all a = 1, 2, . . . , b−1 and c = 0, 1, . . . , b−1, we obtain the inequality
yb
b
− xb

b3
≤ sb,3 ≤ yb

b
. For k = 4, 1 ≤ a ≤ b− 1, and 0 ≤ c ≤ b− 1, we have

1

b2(ab+ c+ 1)
=

1

(ac00)b + b2
≤ 1

(acca)b
≤ 1

(ac00)b
=

1

b2(ab+ c)
.

Summing over all a = 1, 2, . . . , b− 1 and c = 0, 1, . . . , b− 1 leads to

zb
b2

=
1

b2

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c+ 1
≤ sb,4 ≤

1

b2

∑

1≤a≤b−1
0≤c≤b−1

1

ab+ c
=

yb
b2
.

Let k ≥ 5. The b-adic palindromes which have k digits are of the form (aa1a2 · · · ak−2a)b
where 1 ≤ a ≤ b − 1, 0 ≤ ai ≤ b − 1 for all i ∈ {1, 2, . . . , k − 2} with the usual symmetric
property on ai. We fix a and a1 and count the number of palindromes in this form. There
are b choices for a2 ∈ {0, 1, 2, . . . , b−1} and so there is only 1 choice for ak−3 = a2. Similarly,
there are b choices for a3 and 1 choice for ak−4. By continuing this counting, we see that the

number of palindromes in this form (when a and a1 are already chosen) is equal to b⌈ k−4
2 ⌉.

Therefore the reciprocal sum of such palindromes satisfies

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≤ b⌈ k−4

2 ⌉
(aa10 · · · 0a1a)b

≤ b⌈ k−4
2 ⌉

bk−2(ab+ a1)
=

1

b⌊ k
2⌋(ab+ a1)

,
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where a2, . . . , ak−3 run over all integers 0, 1, 2, . . . , b − 1 with the symmetric condition of
palindromes. Hence

sb,k =
∑

1≤a≤b−1
0≤a1≤b−1

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≤

∑

1≤a≤b−1
0≤a1≤b−1

1

b⌊ k
2⌋(ab+ a1)

=
yb

b⌊ k
2⌋

.

Similarly, if a and a1 are fixed, then

∑

a2,...,ak−3

1

(aa1a2 · · · ak−2a)b
≥ b⌈ k−4

2 ⌉
abk−1 + a1bk−2 + bk−2

=
1

b⌊ k
2⌋(ab+ a1 + 1)

.

Summing the above over all a = 1, 2, . . . , b− 1 and a1 = 0, 1, . . . , b− 1, we obtain the desired
lower bound for sb,k. This completes the proof.

Theorem 2. For every b, ℓ ≥ 2, we have

(
b+ 2

b+ 1

)
xb +

2ℓ−1∑

k=3

sb,k +
2zb

(b− 1)bℓ−1
≤ sb ≤

(
b+ 2

b+ 1

)
xb +

2ℓ−1∑

k=3

sb,k +
2yb

(b− 1)bℓ−1
.

In particular,

(
b+ 2

b+ 1

)
xb +

yb
b
− xb

b3
+

2zb
b(b− 1)

≤ sb ≤
(
b+ 2

b+ 1

)
xb +

(
1

b
+

2

b(b− 1)

)
yb. (2)

Proof. For simplicity, we write x, y, z instead of xb, yb, zb, respectively. We consider sb,k for
each k as follows. Obviously sb,1 = 1 + 1

2
+ · · ·+ 1

b−1
= x. For k = 2, sb,k is

b−1∑

a=1

1

(aa)b
=

b−1∑

a=1

1

a(b+ 1)
=

x

b+ 1
.

By writing sb = x+ x
b+1

+
∑2ℓ−1

k=3 sb,k +
∑∞

k=2ℓ sb,k and applying Theorem 1, we obtain

sb ≤
b+ 2

b+ 1
x+

2ℓ−1∑

k=3

sb,k +
∞∑

k=2ℓ

y

b⌊ k
2⌋

=
b+ 2

b+ 1
x+

2ℓ−1∑

k=3

sb,k +
2y

(b− 1)bℓ−1
.

Similarly,

sb ≥
b+ 2

b+ 1
x+

2ℓ−1∑

k=3

sb,k +
∞∑

k=2ℓ

z

b⌊ k
2⌋

=

(
b+ 2

b+ 1

)
x+

2ℓ−1∑

k=3

sb,k +
2z

(b− 1)bℓ−1
.

This proves the first part of this theorem. The second part follows from Theorem 1 and the
substitution ℓ = 2 in the first part.
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Theorem 3. The sequence (sb)b≥2 is strictly increasing.

Proof. We first verify that sb+1 > sb for 2 ≤ b ≤ 16. Myers gives the decimal expansion of s2
in the entry A244162 in the OEIS [28]. Myers also describe the algorithm in his calculation,
which can be found in the web page [18]. So we know that s2 < 2.3787957. Alternatively,
substituting ℓ = 3 and b = 2, 3 in Theorem 2 and running the computation in a computer,
we obtain 2.32137259 ≤ s2 ≤ 2.44637260 and 2.60503980 ≤ s3 ≤ 2.62973117, which implies
that s2 < s3. Similarly, we apply (2) to obtain upper and lower bounds for sb and we see
that sb < sb+1 for 3 ≤ b ≤ 16. So we assume throughout that b ≥ 16. We first observe that

yb = zb +
1

b
− 1

b2
and

yb
b
− zb

b
=

b− 1

b3
≥ xb

b3
.

Therefore yb
b
− xb

b3
≥ zb

b
for all b ≥ 2. So the term yb

b
− xb

b3
in (2) can be replaced by zb

b
.

Therefore we obtain by (2) that sb+1 − sb is larger than
(
b+ 3

b+ 2

)
xb+1 −

(
b+ 2

b+ 1

)
xb +

(
1

b+ 1
+

2

(b+ 1)b

)
zb+1 −

(
1

b
+

2

b(b− 1)

)
yb. (3)

In addition, zb+1 − zb is equal to

− 1

b+ 1
+

b2+2b+1∑

m=b2+1

1

m
≥ − 1

b+ 1
+

2b+ 1

b2 + 2b+ 1
=

b

(b+ 1)2
> 0.

Since xb+1 = xb +
1
b
and zb+1 > zb = yb − 1

b
+ 1

b2
, we obtain from (3) that sb+1 − sb is larger

than or equal to
(
b+ 3

b+ 2

)(
1

b

)
+ xb

(
b+ 3

b+ 2
− b+ 2

b+ 1

)
+ yb

(
1

b+ 1
+

2

b(b+ 1)
− 1

b
− 2

b(b− 1)

)

+

(
1

b2
− 1

b

)(
1

b+ 1
+

2

b(b+ 1)

)

=
1

b
+

1

b(b+ 2)
− xb

(b+ 1)(b+ 2)
− (b+ 3)yb

b(b− 1)(b+ 1)
− (b− 1)(b+ 2)

b3(b+ 1)
.

Recall that if a and b are integers, a < b, and f is monotone on [a, b], then

min{f(a), f(b)} ≤
b∑

n=a

f(n)−
∫ b

a

f(t)dt ≤ max{f(a), f(b)}. (4)

From (4), we obtain

xb =
b−1∑

m=1

1

m
≤ 1 + log(b− 1) ≤ 3

2
log b,

yb = − 1

b− 1
+

b2−1∑

m=b−1

1

m
≤ log(b+ 1) ≤ 5

4
log b.
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In addition, it is straightforward to verify that

1

b(b+ 2)
− (b− 1)(b+ 2)

b3(b+ 1)
> − 1

b2
.

Therefore sb+1 − sb is larger than

1

b
− 3 log b

2(b+ 1)(b+ 2)
− 5(b+ 3) log b

4b(b− 1)(b+ 1)
− 1

b2
>

1

b
− 3 log b

2b2
− 3 log b

2b2
− 1

b2
=

1

b
− 1

b2
− 3 log b

b2
.

(5)

Observe that the function x 7→ log x
x

is decreasing on [3,∞). Since b ≥ 16, we obtain

3 log b

b
≤ 3 log 16

16
<

7

10
and

1

b
<

1

10
.

Hence we obtain from (5) that

sb+1 − sb >
1

b
− 1

b2
− 3 log b

b2
>

1

b
− 1

10b
− 7

10b
=

1

5b
> 0.

This completes the proof.

Recall that if we write f(b) = g(b) +O∗(h(b)), then it means that f(b) = g(b) +O(h(b))
and the implied constant can be taken to be 1. In addition, f(b) = g(b) + Ω+(h(b)) means

lim supb→∞
f(b)−g(b)

h(b)
> 0. From this point on, we use (4) without further reference.

Theorem 4. Uniformly for b ≥ 2,

sb =

(
b+ 2

b+ 1

)
xb +

(
1

b
+

2

b2

)
yb +O∗

(
5 log b

b3

)
.

This estimate is sharp in the sense that O∗ (5 log b
b3

)
can be replaced by Ω+

(
log b
b3

)
.

Proof. Let g(b) =
(
b+2
b+1

)
xb +

(
1
b
+ 2

b2

)
yb be the main term above. Since yb ≤ log(b + 1), we

obtain by (2) that

sb − g(b) ≤ 2yb
b2(b− 1)

≤ 2 log(b+ 1)

b2(b− 1)
.

If b = 2, then it is easy to check that 2yb
b2(b−1)

= 5
12

< 5 log b
b3

. If b ≥ 3, then we assert that
2 log(b+1)
b2(b−1)

≤ 5 log b
b3

. To verify this assertion, we observe that it is equivalent to
(
5
2
log b

) (
b−1
b

)
≥

log(b+ 1). Since b ≥ 3, we obtain

(
5

2
log b

)(
b− 1

b

)
≥ 5

3
log b ≥ log 2 + log b = log(2b) ≥ log(b+ 1), as desired.
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So in any case,

sb − g(b) ≤ 5 log b

b3
. (6)

We also obtain by (2) that sb − g(b) is larger than or equal to

2zb
b(b− 1)

− 2yb
b2

− xb

b3
=

2zb
b(b− 1)

− 2
(
zb +

1
b
− 1

b2

)

b2
− xb

b3
=

2zb
b2(b− 1)

− xb

b3
− 2

b3
+

2

b4
. (7)

We have

xb =
b−1∑

m=1

1

m
≤ 1 + log(b− 1) ≤ 2 log b, (8)

zb =
b2∑

m=b

1

m
− 1

b
≥

∫ b2

b

1

t
dt+

1

b2
− 1

b
≥ log b− 1

b
≥ log b

4
. (9)

Therefore (7) implies that

sb − g(b) ≥ log b

2b2(b− 1)
− 2 log b

b3
− 2

b3
≥ log b

2b3
− 2 log b

b3
− 3 log b

b3
> −5 log b

b3
. (10)

By (6) and (10), we obtain |sb − g(b)| ≤ 5 log b
b3

. This proves the first part of this theorem.
For the Ω+ result, we only need to observe that as b → ∞, (7) and the inequalities xb ≤
1 + log(b− 1) and zb ≥ log b− 1

b
given in (8) and (9) imply that

sb − g(b) ≥ 2
(
log b− 1

b

)

b2(b− 1)
− 1 + log(b− 1)

b3
− 2

b3
+

2

b4
>

3 log b

2b2(b− 1)
− 11 log b

10b3
− 2

b3
+

2

b4
,

so

lim sup
b→∞

sb − g(b)(
log b
b3

) ≥ 3

2
− 11

10
> 0.

This completes the proof.

Recall that by applying Euler-Maclaurin summation formula, we get

∑

m≤n

1

m
= log n+ γ +

1

2n
− 1

12n2
+

θn
60n4

, (11)

where γ is Euler’s constant and θn ∈ [0, 1]. The calculation of (11) can be found in Tenen-
baum [30, p. 6]. From this, we obtain another form of Theorem 4 as follows.

Theorem 5. Uniformly for b ≥ 2,

sb = log b+ γ+

(
1

b
+

1

b+ 1

)
log b+

γ

b+ 1
− 1

2b
+

2 log b

b2
− 1

12b(b+ 1)
+O∗

(
6 log b

b3

)
. (12)

This estimate is sharp in the sense that O∗ (6 log b
b3

)
is also Ω+

(
log b
b3

)
.
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Proof. By (11), we have

xb =
∑

m≤b

1

m
− 1

b
= log b+ γ − 1

2b
− 1

12b2
+

θb
60b4

,

zb =
∑

m≤b2

1

m
−

∑

m≤b

1

m
=

(
log b2 + γ +

1

2b2
− 1

12b4
+

θb2

60b8

)
−

(
log b+ γ +

1

2b
− 1

12b2
+

θb
60b4

)

= log b− 1

2b
+

7

12b2
− 5 + θb

60b4
+

θb2

60b8
,

yb = zb +
1

b
− 1

b2
= log b+

1

2b
− 5

12b2
− 5 + θb

60b4
+

θb2

60b8
.

Writing b+2
b+1

= 1 + 1
b+1

and substituting xb and yb in Theorem 4, we obtain

sb = h(b) + h1(b) +O∗
(
5 log b

b3

)
(13)

where h(b) is the main term given in (12) and

h1(b) =
11b2 − 3b− 10

12b4(b+ 1)
+

θb
60b4

+
θb

60b4(b+ 1)
+

θb2

60b9
+

θb2

30b10
− 5 + θb

60b5
− 5 + θb

30b6
.

It is not difficult to see that h1(b) ≥ 0 and

h1(b) ≤
11b2

12b4(b+ 1)
+

1

60b4
+

1

60b4(b+ 1)
≤ 11 log b

12b3
+

log b

60b3
+

log b

60b3
≤ log b

b3
. (14)

Therefore (13) implies that sb = h(b)+O∗ (6 log b
b3

)
, which is the same as (12). In addition, by

the first inequality given in (14), we see that h1(b) ≪ 1
b3
. Since O∗ (5 log b

b3

)
in (13) is Ω+

(
log b
b3

)

and h1(b) ≪ 1
b3
, h1(b) +O∗ (5 log b

b3

)
in (13) is Ω+

(
log b
b3

)
. This completes the proof.

Corollary 6. The sequence (sb)b≥2 diverges to +∞ and the sequence (sb−sb−1)b≥3 converges
to zero as b → ∞.

Proof. The first assertion follows immediately from Theorem 5. Recall that log(b − 1) =
log b+O

(
1
b

)
. So we obtain by Theorem 5 that as b → ∞,

0 < sb − sb−1 = log b− log(b− 1) +O

(
log b

b

)
≪ log b

b
,

which implies our assertion.

Recall that a sequence (an)n≥0 is said to be log-concave if a2n − an−1an+1 > 0 for every
n ≥ 1 and is said to be log-convex if a2n − an−1an+1 < 0 for every n ≥ 1. For a survey article
concerning the log-concavity and log-convexity of sequences, we refer the reader to Stanley
[29]. See also Pongsriiam [21] for some combinatorial sequences which are log-concave or
log-convex, and some open problems concerning the log-properties of a certain sequence.

8



 

Theorem 7. The sequence (sb)b≥2 is log-concave.

Proof. For each b = 2, 3, . . . , 15, we use Theorem 2 with ℓ = 4 to get an upper bound Cb

and a lower bound Db for sb. In addition, for each b ≥ 13, let Ub and Lb be the upper and
lower bounds of sb given in (2), respectively. Then

s2b − sb−1sb+1 > D2
b −Cb−1Cb+1 for 3 ≤ b ≤ 14 and s2b − sb−1sb+1 > L2

b −Ub−1Ub+1 for b ≥ 14.

We use MATLAB to check that D2
b − Cb−1Cb+1 > 0 for 3 ≤ b ≤ 14 and L2

b − Ub−1Ub+1 > 0
for 14 ≤ b ≤ 1500. So s2b − sb−1sb+1 > 0 for 3 ≤ b ≤ 1500. So we assume throughout that
b > 1500. Then

Ub−1Ub+1 =
(b+ 1)(b+ 3)

b(b+ 2)
xb−1xb+1 +

b+ 2

(b− 2)(b− 1)(b+ 1)
yb−1yb+1

+
b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xb+1yb−1 +

b+ 2

b2
xb−1yb+1

= A1 + A2 + A3 + A4, say. (15)

Since

zb = yb +
1

b2
− 1

b
, b4 + 2b3 − b− 1 ≥ b4 + 2b3 − 2b− 1 = (b− 1)(b+ 1)3, and

Lb =
b4 + 2b3 − b− 1

b3(b+ 1)
xb +

yb
b
+

2zb
b(b− 1)

,

we obtain

Lb =
b4 + 2b3 − b− 1

b3(b+ 1)
xb +

b+ 1

b(b− 1)
yb −

2

b3
≥ (b− 1)(b+ 1)2

b3
xb +

b+ 1

b(b− 1)
yb −

2

b3
.

Therefore L2
b is larger than or equal to

(b− 1)2(b+ 1)4

b6
x2
b +

(b+ 1)2

b2(b− 1)2
y2b +

4

b6
+

2(b+ 1)3

b4
xbyb −

4(b− 1)(b+ 1)2

b6
xb −

4(b+ 1)

b4(b− 1)
yb

≥ (b− 1)2(b+ 1)4

b6
x2
b +

(b+ 1)2

b2(b− 1)2
y2b +

2(b+ 1)3

b4
xbyb −

4(b− 1)(b+ 1)2

b6
xb −

4(b+ 1)

b4(b− 1)
yb

= B1 + B2 + B3 −B4 −B5, say. (16)

In addition, we see that

yb−1 = yb +
1

b− 1
−

b2−1∑

m=(b−1)2

1

m
≤ yb +

1

b− 1
− 2b− 1

b2 − 1
≤ yb −

b− 2

b2
,

yb+1 = yb −
1

b
+

b2+2b∑

m=b2

1

m
≤ yb −

1

b
+

2b+ 1

b2
= yb +

b+ 1

b2
,

xb−1 = xb −
1

b− 1
, and xb+1 = xb +

1

b
.
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From these, we obtain the following inequalities:

A1 =
(b+ 1)(b+ 3)

b(b+ 2)
x2
b −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)
xb −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)

≤ (b+ 1)(b+ 3)

b(b+ 2)
x2
b −

(b+ 1)(b+ 3)

b2(b− 1)(b+ 2)
xb −

1

b2
,

A2 ≤
b+ 2

(b− 2)(b− 1)(b+ 1)
y2b +

3(b+ 2)

b2(b− 2)(b− 1)(b+ 1)
yb −

b+ 2

b4(b− 1)
,

A3 ≤
b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xbyb +

b+ 3

(b− 2)(b− 1)(b+ 2)
yb −

b+ 3

b(b− 1)(b+ 2)
xb −

b+ 3

b2(b− 1)(b+ 2)

≤ b(b+ 3)

(b− 2)(b− 1)(b+ 2)
xbyb +

b+ 3

(b− 2)(b− 1)(b+ 2)
yb −

b+ 3

b(b− 1)(b+ 2)
xb,

A4 ≤
b+ 2

b2
xbyb −

b+ 2

b2(b− 1)
yb +

(b+ 1)(b+ 2)

b4
xb −

(b+ 1)(b+ 2)

b4(b− 1)

≤ b+ 2

b2
xbyb −

b+ 2

b2(b− 1)
yb +

(b+ 1)(b+ 2)

b4
xb.

Since b > 1500, it is not difficult to verify that

B1 −B4 − A1 ≥ −(b+ 1)(6b3 + 3b2 − 3b− 2)

b6(b+ 2)
x2
b +

b6 − 5b4 + 8b3 + 16b2 − 4b− 8

b6(b− 1)(b+ 2)
xb +

1

b2

≥ − 7

b3
x2
b +

1

b2
,

B2 −B5 − A2 ≥ − b2 + 5b+ 2

b2(b− 2)(b− 1)2(b+ 1)
y2b −

7b3 + 6b2 − 12b− 8

b4(b− 2)(b− 1)(b+ 1)
yb +

b+ 2

b4(b− 1)

≥ − 1

b3
y2b −

1

b3
yb,

B3 − A3 − A4 ≥ −2(b4 + 8b3 + 5b2 − 8b− 4)

b4(b− 2)(b− 1)(b+ 2)
xbyb −

b2 + 4b+ 8

b2(b− 2)(b− 1)(b+ 2)
yb

− b3 + 3b2 − 4b− 4

b4(b− 1)(b+ 2)
xb

≥ − 4

b3
xbyb −

3

b3
yb −

3

b3
xb.

From (15), (16), and the above inequalities, we obtain

L2
b − Ub−1Ub+1 ≥

1

b2
− 7

b3
x2
b −

1

b3
y2b −

4

b3
xbyb −

4

b3
yb −

3

b3
xb.

Since xb ≤ 4
3
log b and yb ≤ 5

4
log b,

L2
b − Ub−1Ub+1 ≥

1

b2
− 2977

144

(log b)2

b3
− 9 log b

b3
≥ b− 23(log b)2

b3
.
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Observe that the function x 7→ x − 23(log x)2 is strictly increasing on [300,∞). Since
b ≥ 1500,

b− 23(log b)2 ≥ 1500− 23(log 1500)2 > 0.

Therefore s2b − sb−1sb+1 ≥ L2
b − Ub−1Ub+1 > 0. Hence (sb)b≥2 is log-concave, as desired.

Remark 8. We have uploaded the numerical data on the computation of sb in the second
author’s ResearchGate account [20] which are freely downloadable by everyone.

3 Acknowledgments

We are grateful to the referee for pointing out References [15, 16, 19] and for his/her sugges-
tions which improve the presentation of this article. We also thank the Editor-in-Chief for
letting us know about the problem in the Fibonacci Quarterly [26, 27] and the algorithm of
Myers [18]. Furthermore, we would like to thank Wannarut Rungrottheera for her support.
Phakhinkon Phunphayap receives a scholarship from Science Achievement Scholarship of
Thailand(SAST). Prapanpong Pongsriiam received financial support jointly from the Thai-
land Research Fund and Faculty of Science Silpakorn University, grant number RSA5980040.
Prapanpong Pongsriiam is the corresponding author.

References

[1] B. Adamczewski and J.-P. Allouche, Reversal and palindromes in continued fractions,
Theoret. Comput. Sci. 380 (2007), 220–237.

[2] B. Adamczewski and Y. Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier
57 (2007), 1557–1574.

[3] B. Adamczewski and Y. Bugeaud, Transcendence measure for continued fractions in-
volving repetitive or symmetric patterns, J. Eur. Math. Soc. 12 (2010), 883–914.
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Abstract: In this article, we give explicit formulas for the p-adic valuations of the Fibonomial
coefficients

(
pan
n

)
F

for all primes p and positive integers a and n. This is a continuation from our
previous article extending some results in the literature, which deal only with p = 2, 3, 5, 7 and a = 1.
Then we use these formulas to characterize the positive integers n such that

(
pn
n

)
F

is divisible by p,
where p is any prime which is congruent to ±2 (mod 5).

Keywords: Fibonacci number; binomial coefficient; Fibonomial coefficient; p-adic valuation; p-adic
order; divisibility
Mathematics Subject Classification: 11B39; 11B65; 11A63

1. Introduction

The Fibonacci sequence (Fn)n≥1 is given by the recurrence relation Fn = Fn−1 + Fn−2 for n ≥ 3 with
the initial values F1 = F2 = 1. For each m ≥ 1 and 1 ≤ k ≤ m, the Fibonomial coefficients

(
m
k

)
F

is
defined by (

m
k

)

F
=

F1F2F3 · · · Fm

(F1F2F3 · · · Fk)(F1F2F3 · · · Fm−k)
=

Fm−k+1Fm−k+2 · · · Fm

F1F2F3 · · · Fk
.

Similar to the binomial coefficients, we define
(

m
k

)
F

= 1 if k = 0 and
(

m
k

)
F

= 0 if k > m, and it is

well-known that
(

m
k

)
F

is always an integer for every m ≥ 1 and k ≥ 0.
Recently, there has been an increasing interest in the study of Fibonomial coefficients. Marques

and Trojovský [25, 26] start the investigation on the divisibility of Fibonomial coefficients by
determining the integers n ≥ 1 such that

(
pn
n

)
F

is divisible by p for p = 2, 3. Marques, Sellers, and

Trojovský [24] show that p divides
(

pa+1

pa

)
F

for p ≡ ±2 (mod 5) and a ≥ 1. Marques and
Trojovsk´ [27] and Trojovský [42] extend their results further and obtained the p-adic valuation of(

pa+1

pa

)
F

in [42]. Then Ballot [2, Theorem 2] generalizes the Kummer-like theorem of Knuth and
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Wilf [22] and uses it to give a generalization of Marques and Trojovský’s results. In particular,
Ballot [2, Theorems 3.6, 5.2, and 5.3] finds all integers n such that p |

(
pn
n

)
U

for any nondegenerate
fundamental Lucas sequence U and p = 2, 3 and for p = 5, 7 in the case U = F. Phunphayap and
Pongsriiam [31] provide the most general formula for the p-adic valuation of Fibonomial coefficients
in the most general form

(
m
n

)
F
. For other recent results on the divisibility properties of the Fibonacci

numbers, the Fibonomial coefficients, and other combinatorial numbers, see for
example [3–5, 11–13, 16, 17, 28, 30, 32–34, 37, 38, 41, 43]. For some identities involving Fibonomial
coefficients and generalizations, we refer the reader to the work of Kilic and his
coauthors [7, 8, 18–21]. For the p-adic valuations of Eulerian, Bernoulli, and Stirling numbers,
see [6, 9, 14, 23, 40]. Hence the relation p |

(
pan
n

)
F

has been studied only in the case p = 2, 3, 5, 7 and
a = 1.

In this article, we extend the investigation on
(

pan
n

)
F

to the case of any prime p and any positive
integer a. Replacing n by pa and pa by p, this becomes Marques and Trojovský’s results [27, 42].
Substituting a = 1, p ∈ {2, 3, 5, 7}, and letting n be arbitrary, this reduces to Ballot’s theorems [2]. So
our results are indeed an extension of those previously mentioned. To obtain such the general result for
all p and a, the calculation is inevitably long but we try to make it as simple as possible. As a reward,
we can easily show in Corollaries 9 and 10 that

(
4n
n

)
F

is odd if and only if n is a nonnegative power of

2, and
(

8n
n

)
F

is odd if and only if n = (1 + 3 · 2k)/7 for some k ≡ 1 (mod 3).
We organize this article as follows. In Section 2, we give some preliminaries and results which are

needed in the proof of the main theorems. In Section 3, we calculate the p-adic valuation of
(

pan
n

)
F

for

all a, p, and n, and use it to give a characterization of the positive integers n such that
(

pan
n

)
F

is divisible
by p where p is any prime which is congruent to ±2 (mod 5). Remark that there also is an interesting
pattern in the p-adic representation of the integers n such that

(
pn
n

)
F

is divisible by p. The proof is being
prepared but it is a bit too long to include in this paper. We are trying to make it simpler and shorter
and will publish it in the future. For more information and some recent articles related to the Fibonacci
numbers, we refer the readers to [15, 35, 36, 39] and references therein.

2. Preliminaries and lemmas

Throughout this article, unless stated otherwise, x is a real number, p is a prime, a, b, k,m, n, q are
integers, m, n ≥ 1, and q ≥ 2. The p-adic valuation (or p-adic order) of n, denoted by νp(n), is the
exponent of p in the prime factorization of n. In addition, the order (or the rank) of appearance of n in
the Fibonacci sequence, denoted by z(n), is the smallest positive integer m such that n | Fm, bxc is the
largest integer less than or equal to x, {x} is the fractional part of x given by {x} = x − bxc, dxe is the
smallest integer larger than or equal to x, and a mod m is the least nonnegative residue of a modulo m.
Furthermore, for a mathematical statement P, the Iverson notation [P] is defined by

[P] =


1, if P holds;
0, otherwise.

We define sq(n) to be the sum of digits of n when n is written in base q, that is, if n = (akak−1 . . . a0)q =

akqk + ak−1qk−1 + · · ·+ a0 where 0 ≤ ai < q for every i, then sq(n) = ak + ak−1 + · · ·+ a0. Next, we recall
some well-known and useful results for the reader’s convenience.

AIMS Mathematics Volume 5, Issue 6, 5685–5699.
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Lemma 1. Let p , 5 be a prime. Then the following statements hold.

(i) n | Fm if and only if z(n) | m
(ii) z(p) | p + 1 if and only if p ≡ ±2 (mod 5) and z(p) | p − 1, otherwise.

(iii) gcd(z(p), p) = 1.

Proof. These are well-known. See, for example, in [31, Lemma 1] for more details. �

Lemma 2. (Legendre’s formula) Let n be a positive integer and let p be a prime. Then

νp(n!) =

∞∑

k=1

⌊
n
pk

⌋
=

n − sp(n)
p − 1

.

We will deal with a lot of calculations involving the floor function. So we recall the following
results, which will be used throughout this article, sometimes without reference.

Lemma 3. For k ∈ Z and x ∈ R, the following holds

(i) bk + xc = k + bxc,
(ii) {k + x} = {x},

(iii) bxc + b−xc =


−1, if x < Z;

0, if x ∈ Z,
(iv) 0 ≤ {x} < 1 and {x} = 0 if and only if x ∈ Z.

(v) bx + yc =


bxc + byc, if {x} + {y} < 1;

bxc + byc + 1, if {x} + {y} ≥ 1,

(vi)
⌊ bxc

k

⌋
=

⌊
x
k

⌋
for k ≥ 1.

Proof. These are well-known and can be proved easily. For more details, see in [10, Chapter 3]. We
also refer the reader to [1, 29] for a nice application of these properties. �

The next three theorems given by Phunphayap and Pongsriiam [31] are important tools for obtaining
the main results of this article.

Theorem 4. [31, Theorem 7] Let p be a prime, a ≥ 0, ` ≥ 0, and m ≥ 1. Assume that p ≡ ±1
(mod m) and δ = [` . 0 (mod m)] is the Iverson notation. Then

νp

(⌊
`pa

m

⌋
!
)

=



`(pa−1)
m(p−1) − a

{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ 1 (mod m);

`(pa−1)
m(p−1) − a

2δ + νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is even;

`(pa−1)
m(p−1) − a−1

2 δ −
{
`
m

}
+ νp

(⌊
`
m

⌋
!
)
, if p ≡ −1 (mod m) and a is odd.

Theorem 5. [31, Theorem 11 and Corollary 12] Let 0 ≤ k ≤ m be integers. Then the following
statements hold.

AIMS Mathematics Volume 5, Issue 6, 5685–5699.
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(i) Let A2 = ν2

(⌊
m
6

⌋
!
)
− ν2

(⌊
k
6

⌋
!
)
− ν2

(⌊
m−k

6

⌋
!
)
. If r = m mod 6 and s = k mod 6, then

ν2

((
m
k

)

F

)
=



A2, if r ≥ s and (r, s) , (3, 1), (3, 2), (4, 2);
A2 + 1, if (r, s) = (3, 1), (3, 2), (4, 2);
A2 + 3, if r < s and (r, s) , (0, 3), (1, 3), (2, 3),

(1, 4), (2, 4), (2, 5);
A2 + 2, if (r, s) = (0, 3), (1, 3), (2, 3), (1, 4), (2, 4),

(2, 5).

(ii) ν5

((
m
k

)
F

)
= ν5

((
m
k

))
.

(iii) Suppose that p is a prime, p , 2, and p , 5. If m′ =
⌊

m
z(p)

⌋
, k′ =

⌊
k

z(p)

⌋
, r = m mod z(p), and

s = k mod z(p), then

νp

((
m
k

)

F

)
= νp

((
m′

k′

))
+ [r < s]

(
νp

(⌊
m − k + z(p)

z(p)

⌋)
+ νp(Fz(p))

)
.

Theorem 6. [31, Theorem 13] Let a, b, `1, and `2 be positive integers and b ≥ a. For each p , 5,
assume that `1 pb > `2 pa and let mp =

⌊
`1 pb−a

z(p)

⌋
and kp =

⌊
`2

z(p)

⌋
. Then the following statements hold.

(i) If a ≡ b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to



ν2

((
m2
k2

))
, if `1 ≡ `2 (mod 3) or `2 ≡ 0 (mod 3);

a + 2 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 0 (mod 3) and `2 . 0 (mod 3);⌈

a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 2 (mod 3);⌈

a+1
2

⌉
+ ν2

((
m2
k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 1 (mod 3),

and if a . b (mod 2), then ν2

((
`12b

`22a

)
F

)
is equal to



ν2

((
m2
k2

))
, if `1 ≡ −`2 (mod 3) or `2 ≡ 0 (mod 3);

a + 2 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 0 (mod 3) and `2 . 0 (mod 3);⌈

a+1
2

⌉
+ ν2

((
m2
k2

))
, if `1 ≡ 1 (mod 3) and `2 ≡ 1 (mod 3);⌈

a
2

⌉
+ 1 + ν2 (m2 − k2) + ν2

((
m2
k2

))
, if `1 ≡ 2 (mod 3) and `2 ≡ 2 (mod 3).

(ii) Let p , 5 be an odd prime and let r = `1 pb mod z(p) and s = `2 pa mod z(p). If p ≡ ±1
(mod 5), then

νp

((
`1 pb

`2 pa

)

F

)
= [r < s]

(
a + νp

(
mp − kp

)
+ νp(Fz(p))

)
+ νp

((
mp

kp

))
,
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and if p ≡ ±2 (mod 5), then νp

((
`1 pb

`2 pa

)
F

)
is equal to



νp

((
mp
kp

))
, if r = s or `2 ≡ 0 (mod z(p));

a + νp(Fz(p)) + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if `1 ≡ 0 (mod z(p)) and

`2 . 0 (mod z(p));
a
2 + νp

((
mp
kp

))
, if r > s, `1, `2 . 0 (mod z(p)),

and a is even;
a
2 + νp(Fz(p)) + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if r < s, `1, `2 . 0 (mod z(p)),

and a is even;
a+1

2 + νp

(
mp − kp

)
+ νp

((
mp
kp

))
, if r > s, `1, `2 . 0 (mod z(p)),

and a is odd;
a−1

2 + νp(Fz(p)) + νp

((
mp
kp

))
, if r < s, `1, `2 . 0 (mod z(p)),

and a is odd.

In fact, Phunphayap and Pongsriiam [31] obtain other results analogous to Theorems 5 and 6 too
but we do not need them in this article.

3. Main results

We begin with the calculation of the 2-adic valuation of
(

2an
n

)
F

and then use it to determine the

integers n such that
(

2n
n

)
F
,
(

4n
n

)
F
,
(

8n
n

)
F

are even. Then we calculate the p-adic valuation of
(

pan
n

)
F

for all

odd primes p. For binomial coefficients, we know that ν2

((
2n
n

))
= s2(n). For Fibonomial coefficients,

we have the following result.

Theorem 7. Let a and n be positive integers, ε = [n . 0 (mod 3)], and A =
⌊

(2a−1)n
3·2ν2(n)

⌋
. Then the

following statements hold.

(i) If a is even, then

ν2

((
2an
n

)

F

)
= δ + A − a

2
ε − ν2(A!) = δ + s2(A) − a

2
ε, (3.1)

where δ = [n mod 6 = 3, 5]. In other words, δ = 1 if n ≡ 3, 5 (mod 6) and δ = 0 otherwise.
(ii) If a is odd, then

ν2

((
2an
n

)

F

)
= δ + A − a − 1

2
ε − ν2(A!) = δ + s2(A) − a − 1

2
ε, (3.2)

where δ =
(n mod 6)−1

2 [2 - n] +
⌈
ν2(n)+3−n mod 3

2

⌉
[n mod 6 = 2, 4]. In other words, δ =

(n mod 6)−1
2 if n is

odd, δ = 0 if n ≡ 0 (mod 6), δ =
⌈
ν2(n)

2

⌉
+ 1 if n ≡ 4 (mod 6), and δ =

⌈
ν2(n)+1

2

⌉
if n ≡ 2 (mod 6).
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Proof. The second equalities in (3.1) and (3.2) follow from Legendre’s formula. So it remains to prove
the first equalities in (3.1) and (3.2). To prove (i), we suppose that a is even and divide the consideration
into two cases.
Case 1. 2 - n. Let r = 2an mod 6 and s = n mod 6. Then s ∈ {1, 3, 5}, r ≡ 2an ≡ 4n ≡ 4s
(mod 6), and therefore (r, s) = (4, 1), (0, 3), (2, 5). In addition, A =

⌊
(2a−1)n

3

⌋
=

(2a−1)n
3 and δ = [s =

3, 5]. By Theorem 5(i), the left–hand side of (3.1) is A2 if s = 1 and A2 + 2 if s = 3, 5, where
A2 = ν2

(⌊
2an
6

⌋
!
)
− ν2

(⌊
n
6

⌋
!
)
− ν2

(⌊
(2a−1)n

6

⌋
!
)
. We obtain by Theorem 4 that

ν2

(⌊
2an
6

⌋
!
)

= ν2

(⌊
2a−1n

3

⌋
!
)

=
(2a−1 − 1)n

3
− a − 2

2
ε −

{n
3

}
+ ν2

(⌊n
3

⌋
!
)
.

By Legendre’s formula and Lemma 3, we have

ν2

(⌊n
6

⌋
!
)

= ν2

(⌊n
3

⌋
!
)
−

⌊n
6

⌋
,

ν2

(⌊
(2a − 1)n

6

⌋
!
)

= ν2

(⌊
(2a − 1)n

3

⌋
!
)
−

⌊
(2a − 1)n

6

⌋
= ν2(A!) −

⌊
(2a − 1)n

6

⌋
,

⌊n
6

⌋
+

⌊
(2a − 1)n

6

⌋
=

n − s
6

+
2an − r

6
− n − s

6
+

⌊r − s
6

⌋
=

2an − r
6

− [s ∈ {3, 5}].

From the above observation, we obtain

A2 =
(2a−1 − 1)n

3
− a − 2

2
ε −

{n
3

}
+

2an − r
6

− [s ∈ {3, 5}] − ν2(A!)

= A − a − 2
2

ε −
{n

3

}
− r

6
− [s ∈ {3, 5}] − ν2(A!)

=



A − a
2 − ν2(A!), if s = 1;

A − ν2(A!) − 1, if s = 3;
A − a

2 − ν2(A!) − 1, if s = 5.

It is now easy to check that A2 (if s = 1), A2 + 2 (if s = 3, 5) are the same as δ + A − a
2ε − ν2(A!) in

(3.1). So (3.1) is verified.
Case 2. 2 | n. We write n = 2b` where 2 - ` and let m =

⌊
2a`
3

⌋
, k =

⌊
`
3

⌋
, r = 2a` mod 3, and s = ` mod 3.

Since a is even, r = s. Then we apply Theorem 6(i) to obtain

ν2

((
2an
n

)

F

)
= ν2

((
`2a+b

`2b

)

F

)
= ν2

((
m
k

))
= ν2(m!) − ν2(k!) − ν2((m − k)!). (3.3)

We see that ` . 0 (mod 3) if and only if n . 0 (mod 3). In addition, A =
(2a−1)`

3 and δ = 0. By
Theorem 4, we have

ν2(m!) = A − a
2
ε + ν2(k!).

In addition,

m − k =

⌊
2a`

3

⌋
−

⌊
`

3

⌋
=

2a` − r
3

− ` − s
3

=
2a` − `

3
= A.
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So ν2((m − k)!) = ν2(A!). Substituting these in (3.3), we obtain (3.1). This completes the proof of (i).
To prove (ii), we suppose that a is odd and divide the proof into two cases.

Case 1. 2 - n. This case is similar to Case 1 of the previous part. So we let r = 2an mod 6 and
s = n mod 6. Then s ∈ {1, 3, 5}, r ≡ 2an ≡ 2n ≡ 2s (mod 6), (r, s) = (2, 1), (0, 3), (4, 5), δ = s−1

2 ,
and the left–hand side of (3.2) is A2 if s = 1, A2 + 2 if s = 3, and A2 + 3 if s = 5, where A2 =

ν2

(⌊
2an
6

⌋
!
)
− ν2

(⌊
n
6

⌋
!
)
− ν2

(⌊
(2a−1)n

6

⌋
!
)
. In addition, we have

ν2

(⌊
2an
6

⌋
!
)

=
(2a−1 − 1)n

3
− a − 1

2
ε + ν2

(⌊n
3

⌋
!
)
,

ν2

(⌊n
6

⌋
!
)

= ν2

(⌊n
3

⌋
!
)
−

⌊n
6

⌋
,

ν2

(⌊
(2a − 1)n

6

⌋
!
)

= ν2(A!) −
⌊
(2a − 1)n

6

⌋
,

⌊n
6

⌋
+

⌊
(2a − 1)n

6

⌋
=

2an − r
6

− [s ∈ {3, 5}].

Therefore

A2 =
(2a−1 − 1)n

3
− a − 1

2
ε +

2an − r
6

− [s ∈ {3, 5}] − ν2(A!).

Furthermore,

A =

⌊
(2a − 1)n

3

⌋
=

2an − r
3

− n − s
3

+

⌊r − s
3

⌋
=



(2a−1)n
3 − 1

3 , if s = 1;
(2a−1)n

3 , if s = 3;
(2a−1)n

3 − 2
3 , if s = 5,

which implies that A =
(2a−1)n

3 − r
6 . Then

A2 = A − a − 1
2

ε − [s ∈ {3, 5}] − ν2(A!).

It is now easy to check that A2 (if s = 1), A2 + 2 (if s = 3), and A2 + 3 (if s = 5), are the same as
δ + A − a−1

2 ε − ν2(A!) in (3.2). So (3.2) is verified.
Case 2. 2 | n. This case is similar to Case 2 of the previous part. So we write n = 2b` where 2 - ` and
let m =

⌊
2a`
3

⌋
, k =

⌊
`
3

⌋
, r = 2a` mod 3, and s = ` mod 3. We obtain by Theorem 6 that ν2

((
2an
n

)
F

)
is

equal to

ν2

((
`2a+b

`2b

)

F

)
=



ν2

((
m
k

))
, if ` ≡ 0 (mod 3);⌈

b+1
2

⌉
+ ν2

((
m
k

))
, if ` ≡ 1 (mod 3);⌈

b
2

⌉
+ 1 + ν2(m − k) + ν2

((
m
k

))
, if ` ≡ 2 (mod 3).

(3.4)

By Theorem 4, we have

ν2(m!) =
(2a − 1)`

3
− a − 1

2
ε −

{
`

3

}
+ ν2(k!).
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Since (2a − 1)` ≡ ` (mod 3),
{

(2a−1)`
3

}
=

{
`
3

}
. This implies that ν2(m!) = A − a−1

2 ε + ν2(k!). In addition,
(r, s) = (0, 0), (2, 1), (1, 2), and

m − k =

⌊
2a`

3

⌋
−

⌊
`

3

⌋
=

2a` − r
3

− ` − s
3

=
(2a − 1)` − (r − s)

3
= A + [s = 2].

From the above observation, we obtain

ν2

((
m
k

))
= ν2(m!) − ν2(k!) − ν2((m − k)!) =


A − a−1

2 ε − ν2(A!), if s = 0, 1;
A − a−1

2 ε − ν2((A + 1)!), if s = 2.

Substituting this in (3.4), we see that

ν2

((
2an
n

)

F

)
=



A − ν2(A!), if ` ≡ 0 (mod 3);⌈
b+1

2

⌉
+ A − a−1

2 − ν2(A!), if ` ≡ 1 (mod 3);⌈
b
2

⌉
+ 1 + A − a−1

2 − ν2(A!), if ` ≡ 2 (mod 3).

(3.5)

Recall that n = 2b` ≡ (−1)b` (mod 3). So (3.5) implies that

ν2

((
2an
n

)

F

)
=



A − ν2(A!), if n ≡ 0 (mod 3);
b
2 + 1 + A − a−1

2 − ν2(A!), if n ≡ 1 (mod 3) and b is even;
b+1

2 + 1 + A − a−1
2 − ν2(A!), if n ≡ 1 (mod 3) and b is odd;

b
2 + 1 + A − a−1

2 − ν2(A!), if n ≡ 2 (mod 3) and b is even;
b+1

2 + A − a−1
2 − ν2(A!), if n ≡ 2 (mod 3) and b is odd,

which is the same as (3.2). This completes the proof. �

We can obtain the main result of Maques and Trojovský [25] as a corollary.

Corollary 8. (Marques and Trojovský [25])
(

2n
n

)
F

is even for all n ≥ 2.

Proof. Let n ≥ 2 and apply Theorem 7 with a = 1 to obtain ν2

((
2n
n

)
F

)
= δ+ s2(A). If n . 0, 1 (mod 6),

then δ > 0. If n ≡ 0 (mod 6), then n ≥ 3 · 2ν2(n), and so A ≥ 1 and s2(A) > 0. If n ≡ 1 (mod 6), then
A =

⌊
n
3

⌋
> 1 and so s2(A) > 0. In any case, ν2

((
2n
n

)
F

)
> 0. So

(
2n
n

)
F

is even. �

Corollary 9. Let n ≥ 2. Then
(

4n
n

)
F

is even if and only if n is not a power of 2. In other words, for each

n ∈ N,
(

4n
n

)
F

is odd if and only if n = 2k for some k ≥ 0.

Proof. Let δ, ε, and A be as in Theorem 7. If n = 2k for some k ≥ 1, then we apply Theorem 7 with
a = 2, δ = 0, ε = 1, A = 1 leading to ν2

((
4n
n

)
F

)
= 0, which implies that

(
4n
n

)
F

is odd.

Suppose n is not a power of 2. By Theorem 7, ν2

((
4n
n

)
F

)
= δ + s2(A) − ε ≥ s2(A) − 1. Since n is

not a power of 2, the sum s2(n) ≥ 2. It is easy to see that s2(m) = s2(2cm) for any c,m ∈ N. Therefore
s2(A) = s2

(
n

2ν2(n)

)
= s2

(
2ν2(n) · n

2ν2(n)

)
= s2(n) ≥ 2, which implies ν2

((
4n
n

)
F

)
≥ 1, as required. �

Observe that 2, 22, 23 are congruent to 2, 4, 1 (mod 7), respectively. This implies that if k ≥ 1 and
k ≡ 1 (mod 3), then (1 + 3 · 2k)/7 is an integer. We can determine the integers n such that

(
8n
n

)
F

is odd
as follows.
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Corollary 10.
(

8n
n

)
F

is odd if and only if n = 1+3·2k

7 for some k ≡ 1 (mod 3).

Proof. Let a, δ, A, ε be as in Theorem 7. We first suppose n = (1 + 3 · 2k)/7 where k ≥ 1 and k ≡ 1
(mod 3). Then n ≡ 7n ≡ 1+3 ·2k ≡ 1 (mod 6). Then a = 3, ε = 1, δ = 0, A = 2k, and so ν2

((
8n
n

)
F

)
= 0.

Therefore
(

8n
n

)
F

is odd. Next, assume that
(

8n
n

)
F

is odd. Observe that A ≥ 2 and s2(A) > 0. If n ≡ 0

(mod 3), then ε = 0 and ν2

((
8n
n

)
F

)
= δ + s2(A) > 0, which is not the case. Therefore n ≡ 1, 2 (mod 3),

and so ε = 1. If n ≡ 0 (mod 2), then δ =
⌈
ν2(n)+3−n mod 3

2

⌉
≥ 1, and so

((
8n
n

))
F
≥ s2(A) > 0, which is a

contradiction. So n ≡ 1 (mod 2). This implies n ≡ 1, 5 (mod 6). But if n ≡ 5 (mod 6), then δ ≥ 2 and
ν2

((
8n
n

)
F

)
> 0, a contradiction. Hence n ≡ 1 (mod 6). Then δ = 0. Since s2(A)− 1 = ν2

((
8n
n

)
F

)
= 0, we

see that A = 2k for some k ≥ 1. Then 7n−1
3 =

⌊
7n
3

⌋
= A = 2k, which implies n = 1+3·2k

7 , as required. �

Theorem 11. For each a, n ∈ N, ν5

((
5an
n

)
F

)
= ν5

((
5an
n

))
=

s5((5a−1)n)
4 . In particular,

(
5an
n

)
F

is divisible by
5 for every a, n ∈ N.

Proof. The first equality follows immediately from Theorem 5(ii). By Legendre’s formula, ν5

((
n
k

))
=

s5(k)+s5(n−k)−s5(n)
4 for all n ≥ k ≥ 1. So ν5

((
5an
n

)
F

)
is

s5(n) + s5(5an − n) − s5(5an)
4

=
s5((5a − 1)n)

4
. �

Theorem 12. Let p , 2, 5, a, n ∈ N, r = pan mod z(p), s = n mod z(p), and A =
⌊

n(pa−1)
pνp(n)z(p)

⌋
. Then the

following statements hold.

(i) If p ≡ ±1 (mod 5), then νp

((
pan
n

)
F

)
is equal to

A
p − 1

− a
{

n
pνp(n)z(p)

}
− νp(A!) =

sp(A)
p − 1

− a
{

n
pνp(n)z(p)

}
. (3.6)

(ii) If p ≡ ±2 (mod 5) and a is even, then νp

((
pan
n

)
F

)
is equal to

A
p − 1

− a
2

[s , 0] − νp(A!) =
sp(A)
p − 1

− a
2

[s , 0]. (3.7)

(iii) If p ≡ ±2 (mod 5) and a is odd, then νp

((
pan
n

)
F

)
is equal to

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) + δ, (3.8)

where δ =
(⌊

νp(n)
2

⌋
+ [2 - νp(n)][r > s] + [r < s]νp(Fz(p))

)
[r , s], or equivalently, δ = 0 if r = s,

δ =
⌊
νp(n)

2

⌋
+ νp(Fz(p)) if r < s, and δ =

⌈
νp(n)

2

⌉
if r > s.

Proof. We first prove (i) and (ii). So we suppose that the hypothesis of (i) or (ii) is true. By writing
νp(A!) =

A−sp(A)
p−1 , we obtain the equalities in (3.6) and (3.7). By Lemma 1(ii), pa ≡ 1 (mod z(p)). Then

r = s.
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Case 1. p - n. Let m =
⌊

pan
z(p)

⌋
and k =

⌊
n

z(p)

⌋
. Then we obtain by Theorem 5(iii) that

νp

((
pan
n

)

F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!). (3.9)

By Lemma 1(ii) and Theorem 4, we see that if p ≡ ±1 (mod 5), then p ≡ 1 (mod z(p)) and

νp(m!) = νp

(⌊
npa

z(p)

⌋
!
)

=
n(pa − 1)

z(p)(p − 1)
− a

{
n

z(p)

}
+ νp (k!) , (3.10)

and if p ≡ ±2 (mod 5) and a is even, then p ≡ −1 (mod z(p)) and

νp(m!) =
n(pa − 1)

z(p)(p − 1)
− a

2
[s , 0] + νp (k!) . (3.11)

Since z(p) | pa − 1 and p - n, A =
n(pa−1)

z(p) . Therefore

m − k =

⌊
pan
z(p)

⌋
−

⌊
n

z(p)

⌋
=

pan − r
z(p)

− n − s
z(p)

=
n(pa − 1)

z(p)
= A. (3.12)

Substituting (3.10), (3.11), and (3.12) in (3.9), we obtain (3.6) and (3.7).
Case 2. p | n. Let n = pb` where p - `, m =

⌊
`pa

z(p)

⌋
, and k =

⌊
`

z(p)

⌋
. Since r = s, we obtain by Theorem

6 that νp

((
pan
n

)
F

)
is equal to

νp

((
`pa+b

`pb

)

F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!). (3.13)

Since gcd(p, z(p)) = 1, we see that ` ≡ 0 (mod z(p)) ⇔ n ≡ 0 (mod z(p)) ⇔ s = 0. Similar to Case
1, we have νp(m!) =

`(pa−1)
z(p)(p−1) − a

{
`

z(p)

}
+ νp(k!) if p ≡ ±1 (mod 5), νp(m!) =

`(pa−1)
z(p)(p−1) − a

2 [s , 0] + νp (k!)

if p ≡ ±2 (mod 5) and a is even, `pa ≡ ` (mod z(p)), A =
`(pa−1)

z(p) , and m − k = A. So (3.13) leads to
(3.6) and (3.7). This proves (i) and (ii).

To prove (iii), suppose that p ≡ ±2 (mod 5) and a is odd. By Lemma 1(ii), p ≡ −1 (mod z(p)). In
addition, pa−1

p−1 = pa−1 + pa−2 + . . . + 1 ≡ 1 (mod z(p)). We divide the consideration into two cases.
Case 1. p - n. This case is similar to Case 1 of the previous part. So we apply Theorems 4 and 5(iii).
Let m =

⌊
pan
z(p)

⌋
and k =

⌊
n

z(p)

⌋
. Then

νp(m!) =
n(pa − 1)

z(p)(p − 1)
− a − 1

2
[s , 0] −

{
n

z(p)

}
+ νp(k!),

m − k =
pan − r

z(p)
− n − s

z(p)
=

n(pa − 1) − (r − s)
z(p)

,

A =

⌊
npa − r

z(p)
− n − s

z(p)
+

r − s
z(p)

⌋
= m − k +

⌊
r − s
z(p)

⌋
.

Since pa−1
p−1 ≡ 1 (mod z(p)), n(pa−1)

p−1 ≡ n (mod z(p)). This implies that
{

n(pa−1)
z(p)(p−1)

}
=

{
n

z(p)

}
. Therefore

νp(m!) =

⌊
n(pa − 1)

z(p)(p − 1)

⌋
− a − 1

2
[s , 0] + νp(k!) =

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] + νp(k!).
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From the above observation, if r ≥ s, then A = m − k and

νp

((
pan
n

)

F

)
= νp

((
m
k

))
=

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!),

which leads to (3.8). If r < s, then A = m − k − 1,
⌊

pan−n+z(p)
z(p)

⌋
= A + 1, and νp

((
pan
n

)
F

)
is equal to

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp((A + 1)!) + νp(A + 1) + νp(Fz(p))

=

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) + νp(Fz(p)),

which is the same as (3.8).
Case 2. p | n. Let n = pb` where p - `, m =

⌊
`pa

z(p)

⌋
, and k =

⌊
`

z(p)

⌋
. Similar to Case 1, s = 0 ⇔ ` ≡ 0

(mod z(p)). In addition, `(pa−1)
p−1 ≡ ` (mod z(p)), and so we obtain by Theorem 4 that νp(m!) =

⌊
A

p−1

⌋
−

a−1
2 [s , 0] + νp(k!). The calculation of νp

((
pan
n

)
F

)
= νp

((
`pa+b

`pb

)
F

)
is done by the applications of Theorem

6 and is divided into several cases. Suppose r = s. Then pa+b` ≡ pan ≡ r ≡ s ≡ n ≡ pb` (mod z(p)).
Since (p, z(p)) = 1, this implies `pa ≡ ` (mod z(p)). Therefore A =

⌊
`pa−`
z(p)

⌋
=

`pa−`
z(p) = m − k and

νp

((
pan
n

)

F

)
= νp

((
m
k

))
= νp(m!) − νp(k!) − νp((m − k)!),

which is (3.8). Obviously, if ` ≡ 0 (mod z(p)), then r = s, which is already done. So from this point
on, we assume that r , s and ` . 0 (mod z(p)). Recall that p ≡ −1 (mod z(p)) and a is odd. So if b
is odd, then

r ≡ npa ≡ −n ≡ −pb` ≡ ` (mod z(p)), s ≡ n ≡ pb` ≡ −` ≡ `pa (mod z(p)), and

A =

⌊
`pa − s

z(p)
− ` − r

z(p)
+

s − r
z(p)

⌋
=
`pa − s

z(p)
− ` − r

z(p)
+

⌊
s − r
z(p)

⌋
= m − k +

⌊
s − r
z(p)

⌋
.

Similarly, if b is even, then r = `pa mod z(p), s = ` mod z(p), and A = m − k +
⌊

r−s
z(p)

⌋
. Let R =⌊

A
p−1

⌋
− a−1

2 [s , 0]− νp(A!) + δ be the quantity in (3.8). From the above observation and the application

of Theorem 6, we obtain νp

((
pan
n

)
F

)
as follows. If r > s and b is even, then A = m − k and

νp

((
pan
n

)

F

)
=

b
2

+ νp

((
m
k

))
=

b
2

+

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) = R.

If r > s and b is odd, then A = m − k − 1 and

νp

((
pan
n

)

F

)
=

b + 1
2

+ νp(A + 1) + νp

((
m
k

))

=
b + 1

2
+

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) = R.
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If r < s and b is even, then A = m − k − 1 and

νp

((
pan
n

)

F

)
=

b
2

+ νp

(
Fz(p)

)
+ νp(A + 1) + νp

((
m
k

))

=
b
2

+ νp(Fz(p)) +

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) = R.

If r < s and b is odd, then A = m − k and

νp

((
pan
n

)

F

)
=

b − 1
2

+ νp

(
Fz(p)

)
+ νp

((
m
k

))

=
b − 1

2
+ νp(Fz(p)) +

⌊
A

p − 1

⌋
− a − 1

2
[s , 0] − νp(A!) = R.

This completes the proof. �

In the next two corollaries, we give some characterizations of the integers n such that
(

pan
n

)
F

is
divisible by p.

Corollary 13. Let p be a prime and let a and n be positive integers. If n ≡ 0 (mod z(p)), then p |
(

pan
n

)
F
.

Proof. We first consider the case p , 2, 5. Assume that n ≡ 0 (mod z(p)) and r, s, A, and δ are as
in Theorem 12. Then n

pνp(n)z(p)
, A

p−1 ∈ Z, r = s = 0, and δ = 0. Every case in Theorem 12 leads to

νp

((
pan
n

)
F

)
=

sp(A)
p−1 > 0, which implies p |

(
pan
n

)
F
. If p = 5, then the result follows immediately from

Theorem 11. If p = 2, then every case of Theorem 7 leads to ν2

((
2an
n

)
F

)
≥ s2(A) > 0, which implies the

desired result. �

Corollary 14. Let p , 2, 5 be a prime and let a, n, r, s, and A be as in Theorem 12. Assume that
p ≡ ±2 (mod 5) and n . 0 (mod z(p)). Then the following statements hold.

(i) Assume that a is even. Then p |
(

pan
n

)
F

if and only if sp(A) > a
2 (p − 1).

(ii) Assume that a is odd and p - n. If r < s, then p |
(

pan
n

)
F
. If r ≥ s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).
(iii) Assume that a is odd and p | n. If r , s, then p |

(
pan
n

)
F
. If r = s, then p |

(
pan
n

)
F

if and only if
sp(A) ≥ a+1

2 (p − 1).

Proof. We use Lemmas 2 and 3 repeatedly without reference. For (i), we obtain by (3.7) that

νp

((
pan
n

)

F

)
=

sp(A)
p − 1

− a
2
, which is positive if and only if sp(A) >

a
2

(p − 1).

This proves (i). To prove (ii) and (iii), we let δ be as in Theorem 12 and divide the consideration into
two cases.
Case 1. p - n. If r < s, then we obtain by Theorem 5(iii) that νp

((
pan
n

)
F

)
≥ νp(Fz(p)) ≥ 1. Suppose

r ≥ s. Then δ = 0 and (3.8) is
⌊

A
p − 1

⌋
− a − 1

2
− νp(A!) =

⌊
A

p − 1

⌋
− a − 1

2
− A − sp(A)

p − 1
=

sp(A)
p − 1

−
{

A
p − 1

}
− a − 1

2
.
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If sp(A) ≥ a+1
2 (p − 1), then (3.8) implies that

νp

((
pan
n

)

F

)
≥ 1 −

{
A

p − 1

}
> 0.

Similarly, if sp(A) < a+1
2 (p − 1), then νp

((
pan
n

)
F

)
< 1 −

{
A

p−1

}
≤ 1. This proves (ii).

Case 2. p | n. We write n = pb` where p - `. Then b ≥ 1. Recall that νp(Fz(p)) ≥ 1. If r , s,
then Theorem 6 implies that νp

((
pan
n

))
≥ b

2 if b is even and it is ≥ b+1
2 if b is odd. In any case,

νp

((
pan
n

)
F

)
≥ 1. So p |

(
pan
n

)
F
. If r = s, then δ = 0 and we obtain as in Case 1 that p |

(
pan
n

)
F

if and only
if sp(A) ≥ a+1

2 (p − 1). This proves (iii). �

Corollary 15. Let p , 2, 5 be a prime and let A =
n(p−1)

pνp(n)z(p)
. Assume that p ≡ ±1 (mod 5). Then

p |
(

pn
n

)
F

if and only if sp(A) ≥ p − 1.

Proof. We remark that by Lemma 1(ii), A is an integer. Let x = n
pνp(n)z(p)

. We apply Theorem 12(i)

with a = 1. If sp(A) ≥ p − 1, then (3.6) implies that νp

((
pn
n

)
F

)
≥ 1 − {x} > 0. If sp(A) < p − 1, then

νp

((
pn
n

)
F

)
< 1 − {x} ≤ 1. This completes the proof. �

4. Conclusions

We give exact formulas for the p-adic valuations of Fibonomial coefficients of the form
(

pan
n

)
F

for

all primes p and a, n ∈ N. Then we use it to characterize the integers n such that
(

pan
n

)
F

is divisible by
p.
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