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Chapter 1

Introduction

Let G be an additive abelian group, A and B nonempty subsets of G, and

x ∈ G. Then the sumset A+B and the translation x+ A are defined by

A+B = {a+ b | a ∈ A and b ∈ B} and x+ A = A+ x = {a+ x | a ∈ A}.

Additive number theory and the study of sumsets have a long history dating

back at least to Lagrange in 1770 who proved that every natural number

can be written as a sum of four squares of integers. Cauchy in 1813 gave

a lower bound for the cardinality of the sumset A + B where A and B are

nonempty subsets of Z/pZ. Davenport [3] rediscovered Cauchy’s result in

1935 and the results is now known as the Cauchy-Davenport theorem. Several

other results on sumsets and in additive number theory have been obtained

by various mathematicians, and we refer the reader to the books by Freiman

[8], Halberstam and Roth [10], Nathanson [18], Tao and Vu [40], and Vaughan

[42] for additional details and references.

On the other hand, Wythoff sequences arise very often in combinatorics and

combinatorial game theory, and so many of their combinatorial properties have

been extensively studied; see for example in the work of Fraenkel [4, 5, 6, 7],

Kimberling [14, 15], Pitman [24], Wythoff [43], and in the online encyclopedia

OEIS [39]. However, as far as we are aware, there are no number theoretic

results, at least in the spirit of this thesis, concerning the sumsets associated
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with Wythoff sequences. This motivates us to investigate more on this topic.

Note that Pitman’s article [24] is closely related to ours but it focuses only

on the cardinality of sumsets of certain finite Beatty sequences in connection

with Sturmian words and the nearest integer algorithm.

Before proceeding further, let us introduce the notation which will be used

throughout this thesis as follows: x is a real number, a, b, m, n are integers,

α = (1 +
√
5)/2 is the golden ratio, β = (1−

√
5)/2, ⌊x⌋ is the largest integer

less than or equal to x, {x} = x− ⌊x⌋,

B(x) = {⌊nx⌋ | n ∈ N} and B0(x) = {⌊nx⌋ | n ∈ N ∪ {0}}. (1.1)

The set B(x) is usually considered as a sequence (⌊nx⌋)n≥1 and is called a

Beatty sequence. The sets B(α) and B(α2) are also called lower and upper

Wythoff sequences, respectively; but for our purpose, it is more convenient to

consider them as sets. In addition, if P is a mathematical statement, then the

Iverson notation [P ] is defined by

[P ] =

1, if P holds;

0, otherwise.

Recall that a generalized Fibonacci sequence (fn)n≥0 is defined by fn =

fn−1+fn−2 for n ≥ 2 where f0 and f1 are arbitrary integers. If f0 = 0 and f1 =

1, then (fn)n≥0 = (Fn)n≥0 is the classical Fibonacci sequence, and if f0 = 2 and

f1 = 1, then (fn)n≥0 = (Ln)n≥0 is the classical sequence of Lucas numbers. The

roots of the characteristic polynomial x2−x− 1 for any generalized Fibonacci

sequence (fn) are α and β, but it turns out that the structures of sumsets

such as B(α) + B(α2) and B(α2) + B(α2) are best described in terms of the

classical Fibonacci numbers Fn. We refer the reader to [12, 13, 20, 21, 22,

25, 26, 27, 34] for some recent results concerning multiplicative properties of

Fn, and to [28, 29] for certain Diophantine equations involving additive and

multiplicative properties of Fn.

In this thesis, we give a new estimate concerning the fractional part {nα}

and study the sumsets associated with B(α) and B(α2). For example, we
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obtain from Theorems 3.1, 3.8, and 3.5, respectively, that for every n ≥ 4,

n = ⌊aα⌋+⌊bα⌋ for some a, b ∈ N, for every n ≥ 27, n = ⌊aα2⌋+⌊bα2⌋+⌊cα2⌋

for some a, b, c ∈ N, and for every n ≥ 1, n = ⌊aα⌋ + ⌊bα2⌋ for some a, b ∈ N

if and only if n is not one less than a Fibonacci number. The structure of

B(α2) + B(α2) contains some kinds of fractal and palindromic patterns in

each interval of the form [Fn, Fn+1]; see for instance Theorem 3.16, Theorem

3.17 , and Remark 3.19, and so the elements in (B(α2)+B(α2))∩ [Fn+1, Fn+2]

can be completely determined by those of (B(α2) +B(α2)) ∩ [Fn, Fn+1].

For a general result on the sumsets associated with B(x) and B(x2) where

x satisfies the conditions such as x > 1 and x2−ax−b = 0 for some a, b ∈ Z, we

think that the answers may be best described in terms of the Lucas sequence

of the first kind. Nevertheless, the calculations even in the case of B(α) and

B(α2) are already complicated, so we postpone this for future research. See

also other problems in the last chapter.

We arrange this thesis as follows. In Chapter 2, we give preliminaries and

lemmas concerning the floor function, fractional parts, Beatty sequences, and

Fibonacci numbers. In Chapter 3, we give our main results concerning various

sumsets associated with B(α) and B(α2). For more information, we invite

the reader to visit Pongsriiam’s ResearchGate website [38] for some freely

downloadable articles [23, 31, 32, 33, 35, 36, 37] in related topics of research.



 

Chapter 2

Preliminaries and Lemmas

We often use the following fact: −1 < β < 0, (|βn|)n≥1 is strictly decreasing, if

a1 > a2 > · · · > ar are even positive integers, then 0 < βa1 < βa2 < · · · < βar ,

and if b1 > b2 > · · · > br are odd positive integers, then 0 > βb1 > βb2 >

· · · > βbr . In addition, α and β are roots of the equation x2 − x − 1 = 0.

So, for instance, β2 = β + 1, β2 + β4 = 4β + 3, αβ = −1,
√
5β + β = −2,

√
5β2 + 1 = −3β, and βn +

√
5βn−1 + βn−2 = 0 for all n ≥ 2. Moreover, it is

useful to have the following numerical approximations: −0.619 < β < −0.618,

−0.237 < β3 < −0.236, 0.854 <
√
5β2 < 0.855, −0.528 <

√
5β3 < −0.527,

0.326 <
√
5β4 < 0.327 and it is convenient to have a list of the first twenty

elements of the sequences B(α) and B(α2) as shown below:

B(α) = (1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, . . .) and

B(α2) = (2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, . . .) .

The following results are also applied throughout this thesis sometimes without

reference.

As introduced in the first chapter, for each x ∈ R, we let ⌊x⌋ be the largest

integer less than or equal to x, and let {x} = x− ⌊x⌋. Basic properties of ⌊x⌋

and {x} are as follows.

Lemma 2.1. For n ∈ Z and x, y ∈ R, the following statements hold.
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(i) ⌊n+ x⌋ = n+ ⌊x⌋.

(ii) {n+ x} = {x}.

(iii) 0 ≤ {x} < 1.

(iv) ⌊x+ y⌋ =

⌊x⌋+ ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋+ ⌊y⌋+ 1, if {x}+ {y} ≥ 1.

Proof. These are well-known and can be proved easily. For more details, see

in [9, Chapter 3]. We also refer the reader to [19] and [36, Proof of Lemma

2.6] for a nice application of these properties.

Lemma 2.2. The following statements hold for all n ∈ N.

(i) (Binet’s formula) Fn = αn−βn

α−β
and Ln = αn + βn.

(ii) βn+1 = βFn+1 + Fn.

(iii) Fn+1 = βn + αFn.

(iv) βLn+1 + Ln = −
√
5βn+1.

(v) Lnα = Ln+1 +
√
5βn.

Proof. The proof of (i) and (ii) can be found in [17, pp. 78–79]. The statement

(iii) follows from (ii) and the fact that αβ = −1. See also [30] for a result

concerning the generating function of the Fibonacci sequence. Since αβ = −1,

multiplying (iv) by α, we obtain (v). The formula (iv) follows from (i) and a

straightforward calculation:

βLn+1+Ln = βαn+1+βn+2+αn+βn = βn+2+βn = βn(−
√
5β) = −

√
5βn+1.

Lemma 2.3. (Zeckendorf’s theorem) For each n ∈ N, n = Fa1 + Fa2 + · · · +

Faℓ where Fa1 is the largest Fibonacci number not exceeding n, aℓ ≥ 2, and

ai−1 − ai ≥ 2 for every i = 2, 3, . . . , ℓ.
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Proof. This is well-known and can be proved by using the greedy algorithm

([41, pp. 108–109] or [44]). See also [16] for a more general result.

Lemma 2.4. If x1, x2, . . . , xn ∈ R, then

{x1 + x2 + · · ·+ xn} = {{x1}+ {x2}+ · · ·+ {xn}}.

Proof. We can write x1 + x2 + · · ·+ xn = m+ {x1}+ {x2}+ · · ·+ {xn}, where

m = ⌊x1⌋ + ⌊x2⌋ + · · · + ⌊xn⌋ ∈ Z. So this lemma follows immediately from

Lemma 2.1.

Lemma 2.5. Let n ∈ N. Then the following statements hold.

(i) ⌊Fnα⌋ = Fn+1 − [n ≡ 0 (mod 2)].

(ii) ⌊Fnα
2⌋ = Fn+2 − [n ≡ 0 (mod 2)].

(iii) {Fnα} = −βn + [n ≡ 0 (mod 2)].

(iv) {Fnα
2} = {Fnα}.

(v) ⌊Lnα⌋ = Ln+1 − [n ≡ 1 (mod 2)].

(vi) {Lnα} =
√
5βn + [n ≡ 1 (mod 2)].

(vii) ⌊Lnα
2⌋ = Ln+2 − [n ≡ 1 (mod 2)].

(viii) {Lnα
2} = {Lnα}.

Proof. By Lemmas 2.2 and 2.1, we obtain ⌊Fnα⌋ = ⌊Fn+1 − βn⌋ = Fn+1 +

⌊−βn⌋. If n is even, then 0 < βn < 1 and so ⌊−βn⌋ = −1. If n is odd, then

−1 < βn < 0 and so ⌊−βn⌋ = 0. Therefore ⌊−βn⌋ = −[n ≡ 0 (mod 2)]. This

implies (i). Then (ii) follows from (i) by writing α2 = α + 1 and ⌊Fnα
2⌋ =

⌊Fnα + Fn⌋ = ⌊Fnα⌋ + Fn. Next, {Fnα} = Fnα − ⌊Fnα⌋, so (iii) can be

obtained from (i) and Lemma 2.2. For (iv), we have {Fnα
2} = {Fnα+ Fn} =

{Fnα}. By Lemma 2.2(v), we obtain ⌊Lnα⌋ = Ln+1 + ⌊
√
5βn⌋. If n is even,

then 0 <
√
5βn ≤

√
5β2 < 1, and so ⌊

√
5βn⌋ = 0. If n is odd, then −1 <
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√
5β3 ≤

√
5βn < 0 and thus ⌊

√
5βn⌋ = −1. This implies (v). Then (vi) is a

consequence of (v) and Lemma 2.2(v). By writing α2 = α+1, we obtain (vii)

from (v), and (viii) from Lemma 2.1(ii). This completes the proof.

Lemma 2.6. (Beatty’s theorem [1, 2]) Let x and y be irrational numbers such

that x, y > 1 and 1
x
+ 1

y
= 1. Then B(x)∪B(y) = N and B(x)∩B(y) = ∅. In

particular, B(α) ∪B(α2) = N and B(α) ∩B(α2) = ∅.

If A = (an)n≥1 is a sequence, then a segment of A is a finite sequence of

the form (ak, ak+1, . . . , ak+m) for some k,m ∈ N. Then we have the following

results.

Lemma 2.7. The following statements hold.

(i) For each b ∈ N, ⌊(b+ 1)α⌋ − ⌊bα⌋ is either 1 or 2.

(ii) For each b ∈ N, if ⌊(b+ 1)α⌋−⌊bα⌋ = 1 then ⌊(b+2)α⌋−⌊(b+ 1)α⌋ = 2.

(iii) The sequence (⌊(b+ 1)α⌋−⌊bα⌋)b≥1 does not contain the segment (2, 2, 2).

Proof. Let b ∈ N. By Lemma 2.1, ⌊(b+ 1)α⌋ − ⌊bα⌋ = ⌊bα+ α⌋ − ⌊bα⌋ = ⌊α⌋

or ⌊α⌋+1 = 1 or 2. This proves (i). For (ii), suppose that ⌊(b+ 1)α⌋−⌊bα⌋ =

1 = ⌊(b+ 2)α⌋ − ⌊(b+ 1)α⌋. Then 2 = ⌊(b+ 2)α⌋ − ⌊bα⌋ ≥ ⌊2α⌋ ≥ 3, which

is a contradiction. For (iii), suppose that (2, 2, 2) is a segment of the sequence

(⌊(b+ 1)α⌋ − ⌊bα⌋)b≥1, that is, there exists b ∈ N such that

⌊(b+ 1)α⌋ − ⌊bα⌋ = 2, (2.1)

⌊(b+ 2)α⌋ − ⌊(b+ 1)α⌋ = 2, (2.2)

⌊(b+ 3)α⌋ − ⌊(b+ 2)α⌋ = 2. (2.3)

Adding (2.1) to (2.3), we have 6 = ⌊(b+ 3)α⌋ − ⌊bα⌋ ≤ ⌊3α⌋ + 1 = 5, which

is a contradiction.

Lemma 2.8. Let b ∈ N. Then the following statements hold.

(i) ⌊(b+ 1)α2⌋ − ⌊bα2⌋ is either 2 or 3.
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(ii) If ⌊(b+ 1)α2⌋ − ⌊bα2⌋ = 2, then ⌊(b+ 2)α2⌋ − ⌊(b+ 1)α2⌋ = 3.

(iii) The sequence (⌊(b+ 1)α2⌋ − ⌊bα2⌋)b≥1 does not contain the segment

(3, 3, 3).

Proof. By Lemma 2.1, ⌊(b+ 1)α2⌋−⌊bα2⌋ = ⌊(b+ 1)α⌋−⌊bα⌋+1. Therefore

this lemma is an immediate consequence of Lemma 2.7.



 

Chapter 3

Main Results

In this chapter, we study various sumsets associated with Wythoff sequences.

We begin with simple cases such as B (α) +B (α) and B0 (α) +B (α).

Theorem 3.1. Let B(α) and B0(α) be the sets as defined in (1.1). Then

B (α) +B (α) = N \ {1, 3} and B0 (α) +B (α) = N.

Proof. It is easy to check that 1, 3 /∈ B (α) + B (α) and 2 = ⌊α⌋ + ⌊α⌋ ∈

B (α) + B (α). So we let n ≥ 4 and show that n ∈ B (α) + B (α). Let b be

the largest positive integer such that bα < n. Then b ≥ 2 and ⌊bα⌋ < n ≤

⌊(b+ 1)α⌋. By Lemma 2.7(i), n = ⌊bα⌋+ k, where k is either 1 or 2. If k = 1,

then n = ⌊bα⌋ + ⌊α⌋ ∈ B(α) + B(α). So assume that k = 2. By Lemma

2.7(i), we can divide the proof into two cases. If ⌊bα⌋ − ⌊(b− 1)α⌋ = 1, then

n = ⌊bα⌋+2 = ⌊(b− 1)α⌋+3 = ⌊(b− 1)α⌋+ ⌊2α⌋. If ⌊bα⌋−⌊(b− 1)α⌋ = 2,

then n = ⌊bα⌋ + 2 = ⌊(b− 1)α⌋ + 4 = ⌊(b− 1)α⌋ + ⌊3α⌋. In any case, we

have n ∈ B (α) + B (α), as desired. Since 1 and 3 are in B0(α) + B(α) and

B (α) +B (α) ⊆ B0 (α) +B (α), we obtain that B0 (α) +B (α) = N.

Theorem 3.2. Let B(α) and B(α2) be defined as in (1.1) and n ≥ 3. Then

the following statements hold.

(i) Fn ∈ B(α) if and only if n is even.

(ii) Fn ∈ B(α2) if and only if n is odd.
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(iii) Fn − 1 ∈ B(α) if and only if n is odd.

(iv) Fn − 1 ∈ B(α2) if and only if n is even.

Proof. By Lemma 2.5, we have

Fn − [n ≡ 0 (mod 2)] = ⌊Fn−2α
2⌋ ∈ B(α2),

Fn − [n ≡ 1 (mod 2)] = ⌊Fn−1α⌋ ∈ B(α).

Case 1 n is even. Then by the above equality, we have Fn − 1 ∈ B(α2) and

Fn ∈ B(α). Then by Lemma 2.6, Fn − 1 /∈ B(α) and Fn /∈ B(α2).

Case 2 n is odd. Then Fn ∈ B(α2) and Fn − 1 ∈ B(α). Then by Lemma 2.6,

Fn /∈ B(α) and Fn − 1 /∈ B(α2). This implies the desired result.

The calculation of B (α) + B (α2) is a bit more complicated than B (α) +

B (α) and we need the following theorem.

Theorem 3.3. Let n ≥ 3 and 1 ≤ b ≤ Fn+1. If b ̸= Fn, then 0 < {bα}+βn <

1. If b = Fn, then {bα}+ βn = [n ≡ 0 (mod 2)].

Proof. We use Lemma 2.5 repeatedly without reference. If b = Fn, then the

result follows immediately. If b = Fn+1, then {bα}+ βn is equal to

−βn+1 + [n+ 1 ≡ 0 (mod 2)] + βn = −βn−1 + [n− 1 ≡ 0 (mod 2)]

= {Fn−1α} ∈ (0, 1).

Next we consider the case b = Fk for some k ∈ {2, 3, . . . , n − 1}. If k is even

and n is odd, then

1 > {bα} > {bα}+ βn = 1− βk + βn ≥ 1− β2 + β3 = 1 + β > 0.

If k and n are even, then 0 < {bα}+βn = 1−βk+βn < 1. Similarly, if k is odd

and n is even, then 0 < {bα}+ βn = −βk + βn ≤ βn − β3 ≤ β4 − β3 = β2 < 1.

If k and n are odd, then 1 > {bα}+ βn = −βk + βn > 0. Hence this theorem

is verified in the case b = Fk for some k ≤ n + 1. Next, we suppose that

Fk < b < Fk+1 for some k ∈ {4, 5, . . . , n}. By Lemma 2.3, we can write
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b = Fa1 + Fa2 + · · · + Faℓ where ℓ ≥ 2, k = a1 > a2 > · · · > aℓ ≥ 2,

and ai−1 − ai ≥ 2 for every i = 2, 3, . . . , ℓ. Then by Lemma 2.4, we obtain

{bα} = {{Fa1α}+ {Fa2α}+ · · ·+ {Faℓα}}, which is equal to

{(
1− βb1 + 1− βb2 + · · ·+ 1− βbr

)
+ (−βc1 − βc2 − · · · − βcs)

}
,

where {b1, b2, . . . , br}∪{c1, c2, . . . , cs} = {a1, a2, . . . , aℓ}, b1, b2, . . . , br are even,

and c1, c2, . . . , cs are odd.

Remark that one of the sets {b1, b2, . . . , br}, {c1, c2, . . . , cs} may be empty.

In that case, such the set disappears from the subsequent calculation. Also,

for convenience, we let A = βb1 + βb2 + · · ·+ βbr + βc1 + βc2 + · · ·+ βcs . Then

by Lemma 2.1, {bα} = {−A}.

Case 1 {b1, b2, . . . , br} is empty. Then A = βc1 + βc2 + · · ·+ βcs > β3 + β5 +

β7 + · · · = β3

1−β2 = −β2. Therefore 0 < −A < β2 < 1 and so {bα} = {−A} =

−A− ⌊−A⌋ = −A. Then

{bα}+ βn < β2 + βn ≤ β2 + β4 = 4β + 3 < 1.

It remains to show that {bα}+βn > 0. If n is even, then obviously {bα}+βn >

0. So assume that n is odd. Since {b1, b2, . . . , br} is empty, we see that a1 is

odd and −A > −βa1 . Therefore {bα}+ βn > −βa1 + βn ≥ 0, as required.

Case 2 {c1, c2, . . . , cs} is empty. Then A = βb1 + βb2 + · · · + βbr < β2 +

β4 + β6 + · · · = β2

1−β2 = −β. In addition, a1 is even and A > βa1 . Therefore

−βa1 > −A > β > −1 and so {bα} = {−A} = 1 − A. Then {bα} + βn <

1− βa1 + βn ≤ 1, and {bα}+ βn > 1 + β + βn ≥ 1 + β + β3 = 3β + 2 > 0.

Case 3 {b1, b2, . . . , br} and {c1, c2, . . . , cs} are not empty. Then there is some

cancellation in the sum defining A. Similar to Case 1 and Case 2, we have

A < βb1 + βb2 + · · ·+ βbr < −β and A > βc1 + βc2 + · · ·+ βcs > −β2.

Case 3.1 A is positive. Then −1 < β < −A < 0 and {bα}+βn = 1−A+βn.

So it suffices to show that βn < A < 1 + βn. Since A < −β, we obtain

A−βn < −β−β3 = −3β− 1 < 1, which implies A < 1+βn. So it remains to

show that A > βn. If n is odd, then A > 0 > βn. So suppose that n is even.
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Let u be the smallest even number among {b1, b2, . . . , br} and v the smallest

odd number among {c1, c2, . . . , cs}. Since ai − ai−1 ≥ 2 for all i = 2, 3, . . . , ℓ

and a1 = k ≤ n, we obtain u ≤ n and |v − u| ≥ 3. Then

βu < βb1 + βb2 + · · ·+ βbr < βu + βu+2 + βu+4 + · · · = βu

1− β2
= −βu−1,

(3.1)

βv > βc1 + βc2 + · · ·+ βcs > βv + βv+2 + βv+4 + · · · = βv

1− β2
= −βv−1.

(3.2)

By (3.1) and (3.2), we obtain βu − βv−1 < A < βv − βu−1. Since |v − u| ≥ 3,

we see that either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction that

v−u ≤ −3. Since v ≤ u−3 and both v and u−3 are odd, we have βv ≤ βu−3.

So A < βu−3 − βu−1 = βu−3(1 − β2) = −βu−2 < 0, which contradicts the

assumption that A is positive. Hence v− u ≥ 3. Since v− 1 ≥ u+2 and both

v−1 and u+2 are even, βv−1 ≤ βu+2. So A > βu−βu+2 = βu(1−β2) = −βu+1.

We have u ≤ v − 3 ≤ a1 − 3 ≤ n− 3. Therefore −βu+1 = |β|u+1 > |β|n = βn.

Therefore A > βn, as desired.

Case 3.2 A is negative. Then 0 < −A < β2 < 1 and

{bα}+ βn = {−A}+ βn = −A+ βn < β2 + βn ≤ β2 + β4 = 4β + 3 < 1.

To show that {bα} + βn > 0, it is enough to show that βn > A. If n is

even, then obviously βn > 0 > A. So assume that n is odd. Let u and v

be as in Case 3.1. Then we obtain u ≤ n, |v − u| ≥ 3, the inequalities in

(3.1) and (3.2) hold, and βu − βv−1 < A < −βu−1 + βv. Again, we have

either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction that v − u ≥ 3.

Following the argument in Case 3.1, we obtain A > βu − βv−1 ≥ −βu+1 > 0,

which contradicts the assumption that A is negative. Therefore v − u ≤ −3.

Then A < −βu−1 + βv ≤ −βu−1 + βu−3 = −βu−2. Since u− 2 < n, u is even,

and n is odd, we obtain −βu−2 = −|β|u−2 < −|β|n = βn. Therefore A < βn,

as desired. Hence the proof is complete.
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Corollary 3.4. For each n ≥ 3 and 1 ≤ b ≤ Fn+1, we have

Fn+1 = ⌊(Fn − b)α⌋+ ⌊bα⌋+ 1− δ and Fn+2 = ⌊(Fn − b)α2⌋+ ⌊bα2⌋+ 1− δ,

where δ = [n ≡ 1 (mod 2)][b = Fn].

Proof. Let n ≥ 3 and 1 ≤ b ≤ Fn+1. If b = Fn, then we obtain by Lemma

2.5 that ⌊(Fn − b)α⌋ + ⌊bα⌋ + 1 − δ = Fn+1 − [n ≡ 0 (mod 2)] + 1 − [n ≡ 1

(mod 2)] = Fn+1. So suppose b ̸= Fn. Then δ = 0 and we obtain by Lemmas

2.1, 2.2 and Theorem 3.3, respectively, that ⌊(Fn − b)α⌋+⌊bα⌋+1−δ is equal

to

⌊Fnα−bα+⌊bα⌋+1⌋ = ⌊Fn+1−βn−{bα}+1⌋ = Fn+1+⌊1−{bα}−βn⌋ = Fn+1.

This proves the first equality. By writing α2 = α+1 and applying Lemma 2.1,

we see that

⌊(Fn − b)α2⌋+ ⌊bα2⌋+ 1− δ = ⌊(Fn − b)α⌋+ ⌊bα⌋+ 1− δ + Fn = Fn+2.

Theorem 3.5. Let B(α), B0(α), B(α2), and B0(α
2) be the sets as defined in

(1.1). Then we have

(i) B (α) +B (α2) = N \ {Fn − 1 | n ≥ 3},

(ii) B0 (α) +B (α2) = N \ {Fn − 1 | n ≥ 3 and n is odd}, and

(iii) B (α) +B0 (α
2) = N \ {Fn − 1 | n ≥ 3 and n is even}.

Proof. We first show that B (α) +B (α2) ⊆ N \ {Fn − 1 | n ≥ 3}. It is easy to

check that F3 − 1, F4 − 1 /∈ B (α) + B (α2). So let n ≥ 5. In order to get a

contradiction, suppose Fn−1 is in B (α)+B (α2). Then Fn−1 = ⌊bα⌋+⌊aα2⌋

for some a, b ∈ N. If b ≥ Fn−1, then we obtain by Lemma 2.5 that

⌊bα⌋+
⌊
aα2

⌋
≥ ⌊Fn−1α⌋+

⌊
α2

⌋
= Fn − [n ≡ 1 (mod 2)] + 2 > Fn − 1,
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which is not in case. So b < Fn−1. Replacing n by n− 1 in Corollary 3.4, we

have ⌊aα2⌋ = Fn−1−⌊bα⌋ = ⌊(Fn−1 − b)α⌋ ∈ B(α), so ⌊aα2⌋ ∈ B(α)∩B(α2),

which contradicts Lemma 2.6. Therefore Fn − 1 /∈ B(α) + B(α2) for any

n ≥ 3. This shows that B(α) +B(α2) is a subset of N \ {Fn − 1 | n ≥ 3}. For

the other direction, let m ∈ N \ {Fn − 1 | n ≥ 3}. Then there exists n ∈ N

such that n ≥ 3 and Fn − 1 < m < Fn+1 − 1. Thus m = Fn − 1 + b

where 1 ≤ b < Fn−1. By Corollary 3.4, we obtain m = ⌊(Fn−1 − b)α⌋ +

⌊bα⌋ + b = ⌊(Fn−1 − b)α⌋ + ⌊bα2⌋ ∈ B (α) + B (α2). This proves (i). Next

B0 (α)+B (α2) = (B(α)+B(α2))∪B(α2) = N\{Fn−1 | n ≥ 3 and n is odd},

by (i) and Theorem 3.2. Similarly, (iii) can be obtained by using (i) and

Theorem 3.2. This completes the proof.

Remark 3.6. It follows immediately from Beatty’s theorem that B0 (α) +

B0 (α
2) = N.

Theorem 3.7. Let B(α), B0(α), B(α2), and B0(α
2) be defined as in (1.1).

Then the following statements hold.

(i) B (α) +B (α2) +B (α2) = N \ {1, 2, 3, 4, 6, 9}.

(ii) B0 (α) +B (α2) +B (α2) = N \ {1, 2, 3, 6}.

(iii) B (α) +B (α2) +B0 (α
2) = N \ {1, 2, 4}.

(iv) B (α) +B0 (α
2) +B0 (α

2) = N \ {2}.

Proof. We can write Theorem 3.5 in another form as

B(α) +B(α2) =
∞∪
n=4

((Fn − 1, Fn+1 − 1) ∩ N) =
∞∪
n=4

([Fn, Fn+1 − 2] ∩ N) .

Then B(α) + B(α2) + ⌊α2⌋ =
∪∞

n=4 ([Fn + 2, Fn+1] ∩ N) = N \ A, where A =

{Fn +1 | n ≥ 5}∪ {1, 2, 3, 4}. Similarly, B(α) +B(α2) + ⌊2α2⌋ = N \B where

B = {Fm+4 | m ≥ 2}∪{1, 2, 3, 4}. Therefore N\(A∩B) = (N\A)∪(N\B) ⊆

B(α) +B(α2) +B(α2). It is easy to see that

A ∩B = ({Fn + 1 | n ≥ 5} ∩ {Fm + 4 | m ≥ 2}) ∪ {1, 2, 3, 4}

= ({Fn + 1 | n ≥ 7} ∩ {Fm + 4 | m ≥ 6}) ∪ {1, 2, 3, 4, 6, 9}.
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If n ≥ 7, m ≥ 6, and Fn + 1 = Fm + 4, then n > m and 3 = Fn − Fm ≥

Fn−Fn−1 = Fn−2 ≥ 5, which is a contradiction. So {Fn+1 | n ≥ 7}∩{Fm+4 |

m ≥ 6} = ∅. Therefore A∩B = {1, 2, 3, 4, 6, 9} and thus N \ {1, 2, 3, 4, 6, 9} ⊆

B(α)+B(α2)+B(α2). It is easy to check that 1, 2, 3, 4, 6, 9 /∈ B(α)+B(α2)+

B(α2). This proves (i). The other parts follows from (i) and straightforward

verification.

The structure of B (α2)+B (α2) seems to be the most complicated among

sumsets associated with B(α) and B(α2). So we first consider a simpler sumset

B (α2) +B (α2) +B (α2).

Theorem 3.8. Let B(α2) and B0(α
2) be defined as in (1.1). Then we have

B
(
α2

)
+B

(
α2

)
+B

(
α2

)
= N \ {1, 2, 3, 4, 5, 7, 8, 10, 13, 18, 26},

B0

(
α2

)
+B

(
α2

)
+B

(
α2

)
= N \ {1, 2, 3, 5, 8, 13},

B0

(
α2

)
+B0

(
α2

)
+B

(
α2

)
= N \ {1, 3, 8}.

Proof. Let A1 = ⌊4α2⌋+⌊6α2⌋+B (α2), A2 = ⌊5α2⌋+⌊5α2⌋+B (α2), and A3 =

⌊3α2⌋+ ⌊8α2⌋+B (α2). We first show that A1 ∪A2 ∪A3 = {n ∈ N | n ≥ 27}.

Note that ⌊3α2⌋, ⌊4α2⌋, ⌊5α2⌋, ⌊6α2⌋, ⌊8α2⌋ are equal to 7, 10, 13, 15, 20,

respectively. Then it is easy to see that every element in A1∪A2∪A3 is larger

than or equal to 27. Next, let n ≥ 27. Then there exists k ∈ N such that

⌊4α2⌋+ ⌊6α2⌋+ ⌊kα2⌋ ≤ n < ⌊4α2⌋+ ⌊6α2⌋+ ⌊(k + 1)α2⌋.

By Lemma 2.8, we have ⌊(k + 1)α2⌋ − ⌊kα2⌋ = 2 or 3, and so n = ⌊4α2⌋ +

⌊6α2⌋ + ⌊kα2⌋ + b, where b = 0, 1 or 2. If b = 0, then n ∈ A1. If b = 1, then

n = ⌊4α2⌋ + ⌊6α2⌋ + ⌊kα2⌋ + 1 = ⌊5α2⌋ + ⌊5α2⌋ + ⌊kα2⌋ ∈ A2. Similarly, if

b = 2, then n = ⌊3α2⌋ + ⌊8α2⌋ + ⌊kα2⌋ ∈ A3. In any case, n ∈ A1 ∪ A2 ∪ A3,

as required. This implies that B (α2) + B (α2) + B (α2) contains N ∩ [27,∞).

For the integers in N ∩ [1, 26], we can straightforwardly check whether they

are in B (α2) + B (α2) + B (α2) or not. For the reader’s convenience, we give

the integers which are in B (α2) + B (α2) + B (α2) as follows: 6 = 2 + 2 + 2,
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9 = 5 + 2 + 2, 11 = 7 + 2 + 2, 12 = 5 + 5 + 2, 14 = 10 + 2 + 2, 15 = 5 + 5 + 5,

16 = 7+7+2, 17 = 7+5+5, 19 = 15+2+2, 20 = 10+5+5, 21 = 7+7+7,

22 = 18+2+2, 23 = 13+5+5, 24 = 20+2+2, 25 = 15+5+5. This proves

the first part. The other parts follow from the first part and straightforward

verification.

In order to prove Theorem 3.10, it is convenient to use the following ob-

servation.

Lemma 3.9. Let n ≥ 3, a ∈ Z, and b, c ∈ N. If Fn + a = ⌊bα2⌋+ ⌊cα2⌋, then

b and c are less than Fn−2 +
a
α2 .

Proof. If b or c ≥ Fn−2 +
a
α2 , then ⌊bα2⌋+ ⌊cα2⌋ is larger than or equal to

⌊
Fn−2α

2 + a
⌋
+
⌊
α2

⌋
= Fn − [n ≡ 0 (mod 2)] + a+ 2 > Fn + a.

The positive integers in N \ (B (α2) +B (α2)) are 1, 2, 3, 5, 6, 8, 11, 13,

16, 19, 21, 24, 29, 32, 34, 37, 42, 45, 50, 53, 55, . . .. From this, we notice the

following pattern.

Theorem 3.10. Let n ∈ N and B(α2) the Beatty set as defined in (1.1). Then

the following statements hold.

(i) Fn /∈ B(α2) +B(α2).

(ii) If n ≥ 5, then Fn − 1 ∈ B(α2) +B(α2).

(iii) If n ̸= 1, 2, 3, 5, then Fn + 1 ∈ B(α2) +B(α2).

(iv) Fn − 2 /∈ B(α2) +B(α2).

(v) If n ̸= 1, 2, 4, then Fn + 2 ∈ B(α2) +B(α2).

(vi) If n ≥ 7, then Fn − 3 ∈ B(α2) +B(α2).

(vii) If n ≥ 3, then Fn + 3 /∈ B(α2) +B(α2).



 17

Proof. For n ≤ 6, the result is easily checked. So we assume throughout that

n ≥ 7. For (i), suppose for a contradiction that Fn ∈ B(α2) + B(α2). Then

Fn = ⌊bα2⌋ + ⌊cα2⌋ for some a, b ∈ N. By Lemma 3.9, b and c are less than

Fn−2. By Corollary 3.4,

⌊
cα2

⌋
−

⌊
(Fn−2 − b)α2

⌋
= Fn −

⌊
bα2

⌋
−

⌊
(Fn−2 − b)α2

⌋
= 1.

But by Lemma 2.8, we know that the difference between the elements in B(α2)

is at least two. So we obtain a contradiction. This proves (i). The statements

(ii), (iii), (v), and (vi) also follow from applications of Corollary 3.4 as follows:

Fn − 1 =
⌊
(Fn−2 − 1)α2

⌋
+
⌊
α2

⌋
∈ B(α2) +B(α2),

Fn + 1 =
⌊
(Fn−2 − 2)α2

⌋
+
⌊
2α2

⌋
+ 2

=
⌊
(Fn−2 − 2)α2

⌋
+
⌊
3α2

⌋
∈ B(α2) +B(α2),

Fn + 2 =
⌊
(Fn−2 − 1)α2

⌋
+
⌊
α2

⌋
+ 3

=
⌊
(Fn−2 − 1)α2

⌋
+
⌊
2α2

⌋
∈ B(α2) +B(α2),

Fn − 3 =
⌊
(Fn−2 − 3)α2

⌋
+
⌊
3α2

⌋
− 2

=
⌊
(Fn−2 − 3)α2

⌋
+
⌊
2α2

⌋
∈ B(α2) +B(α2).

So it remains to prove (iv) and (vii). Similar to the proof of (i), if Fn − 2 =

⌊bα2⌋+⌊cα2⌋, then we have b, c < Fn−2− 2
α2 , Fn = ⌊(Fn−2 − b)α2⌋+⌊bα2⌋+1,

and ⌊(Fn−2 − b)α2⌋ − ⌊cα2⌋ = ⌊(Fn−2 − b)α2⌋ − (Fn − 2 − ⌊bα2⌋) = 1, which

contradicts Lemma 2.8. For (vii), suppose that Fn + 3 = ⌊bα2⌋ + ⌊cα2⌋ for

some b, c ∈ N. Then by Lemma 3.9, b and c < Fn−2 +
3
α2 < Fn−1. If b and c

= Fn−2, then Fn+3 = ⌊bα2⌋+⌊cα2⌋ = 2Fn−2[n ≡ 0 (mod 2)], which leads to

F7 ≤ Fn = 3+2[n ≡ 0 (mod 2)] ≤ 5, a contradiction. So one of b, c is not equal

to Fn−2. Without loss of generality, assume that b ̸= Fn−2. So we can apply

Corollary 3.4 and follow the same idea to obtain ⌊cα2⌋ − ⌊(Fn−2 − b)α2⌋ = 4.

By Lemma 2.8(i), the difference between consecutive terms in B(α2) is either 2

or 3. So there are k, r ∈ N∪{0} such that 4 = 2k+3r. If r ≥ 2, then 2k+3r >

4. If r = 1, then 2k + 3r = 2k + 3 ̸= 4. So r = 0 and k = 2. This implies that
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c = Fn−2 − b+ 2, ⌊cα2⌋ − ⌊(c− 1)α2⌋ = ⌊(c− 1)α2⌋ − ⌊(c− 2)α2⌋ = 2, which

contradicts Lemma 2.8(ii). So the proof is complete.

Our next goal is to determine completely the integers a such that Fn+a ∈

B(α2) + B(α2). The reader will see that there is a recurrence and fractal-like

behavior involving those integers.

Lemma 3.11. Let n ≥ 5, a ∈ Z, and Fn + a /∈ B(α2) + B(α2) where B(α2)

is the set as defined in (1.1). Then the following statements hold.

(i) For every integer d ∈ [−Fn−3, 0) ∪ (0, Fn−2), we have a + 1 + ⌊dα2⌋ /∈

B(α2).

(ii) a+ 1− [n ≡ 1 (mod 2)] /∈ B(α2).

Proof. Let 1 ≤ b ≤ Fn−1 and δb = [n ≡ 1 (mod 2)][b = Fn−2]. By Corollary

3.4, we have Fn + a = ⌊(Fn−2 − b)α2⌋ + a + 1 − δb + ⌊bα2⌋. Since Fn + a /∈

B(α2) +B(α2) and ⌊bα2⌋ ∈ B(α2), we see that

⌊
(Fn−2 − b)α2

⌋
+ a+ 1− δb /∈ B(α2). (3.3)

Since (3.3) holds for all b ≤ Fn−1, we can substitute b = Fn−2 in (3.3) to obtain

(ii). Similarly, by running b over the integers in [1, Fn−2) ∪ (Fn−2, Fn−1], we

obtain (i).

Suppose n ≥ 5 and the integers in [Fn, Fn+1] ∩ (B(α2) +B(α2)) are given.

Then the next theorem gives us some integers in [Fn+1, Fn+2]∩(B(α2)+B(α2)).

Theorem 3.12. Let B(α2) be the set as defined in (1.1). Let n ≥ 5, a ∈ Z,

and 1 ≤ a < Fn−2. If Fn+a ∈ B(α2)+B(α2), then Fn+1+a ∈ B(α2)+B(α2).

Proof. If n = 5, the result is easily checked. So assume that n ≥ 6. Suppose

for a contradiction that Fn+a ∈ B(α2)+B(α2) but Fn+1+a /∈ B(α2)+B(α2).

By applying Lemma 3.11 to Fn+1 + a, we obtain that

a+ 1 +
⌊
dα2

⌋
/∈ B(α2) for 0 < d < Fn−1. (3.4)
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Since Fn + a ∈ B(α2) + B(α2), there are b, c ∈ N such that Fn + a = ⌊bα2⌋+

⌊cα2⌋. If b < Fn−2, then by Corollary 3.4, a + 1 + ⌊(Fn−2 − b)α2⌋ = Fn +

a − ⌊bα2⌋ = ⌊cα2⌋ ∈ B(α2), which contradicts (3.4). Therefore b ≥ Fn−2.

Similarly, by applying the same argument to c, we obtain c ≥ Fn−2. Then

Fn+a = ⌊bα2⌋+⌊cα2⌋ ≥ 2 ⌊Fn−2α
2⌋ = 2(Fn− [n ≡ 0 (mod 2)]), which implies

a ≥ Fn − 2[n ≡ 0 (mod 2)] contradicting the assumption that a < Fn − 2.

Hence the proof is complete.

Remark 3.13. Let n ≥ 4. By Lemma 2.5, we have Fn−3α
2 = Fn−1 − βn−3.

So for a ∈ Z, the condition a ≤ Fn−1 − [n ≡ 1 (mod 2)] is equivalent to

a ≤ Fn−3α
2. We will use this observation later.

To obtain the converse of Theorem 3.12, we first prove the following lemma.

Lemma 3.14. Let B(α2) be the Beatty set as defined in (1.1), n ≥ 5, a, b, c ∈

N, and 1 ≤ a ≤ Fn−3α
2. Suppose Fn + a /∈ B(α2) + B(α2) and Fn+1 + a =

⌊bα2⌋+⌊cα2⌋. Then one of b, c is equal to Fn−1 and the other, say c, satisfying

⌊cα2⌋ = a+ [n ≡ 1 (mod 2)].

Proof. Suppose for a contradiction that both b and c are not equal to Fn−1.

Since Fn+1 + a = ⌊bα2⌋ + ⌊cα2⌋, we obtain by Lemma 3.9 that both b and c

are less than Fn−1 +
a
α2 ≤ Fn. So we can apply Corollary 3.4 to write

Fn+1 + a =
⌊
(Fn−1 − b)α2

⌋
+
⌊
bα2

⌋
+ 1 + a,

Fn+1 + a =
⌊
(Fn−1 − c)α2

⌋
+
⌊
cα2

⌋
+ 1 + a.

Since Fn+a /∈ B(α2)+B(α2) and a+1+⌊(Fn−1 − b)α2⌋ = Fn+1+a−⌊bα2⌋ =

⌊cα2⌋ ∈ B(α2), we obtain by Lemma 3.11 that Fn−1−b /∈ [−Fn−3, 0)∪(0, Fn−2).

Therefore Fn−1−b ≥ Fn−2, Fn−1−b = 0, or Fn−1−b < −Fn−3. Then b ≤ Fn−3

or b > Fn−1+Fn−3. Applying the above argument to a+1+ ⌊(Fn−1 − c)α2⌋ =

⌊bα2⌋ ∈ B(α2), we also obtain c ≤ Fn−3 or c > Fn−1+Fn−3. Recall that b and

c < Fn−1 +
a
α2 . So if b or c > Fn−1 + Fn+3, then we would obtain Fn−1 +

a
α2 >

Fn−1+Fn−3, which contradicts the assumption that a ≤ Fn−3α
2. Hence b and
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c ≤ Fn−3. Then Fn+1 + a = ⌊bα2⌋+ ⌊cα2⌋ ≤ 2 ⌊Fn−3α
2⌋ ≤ 2Fn−1 < Fn+1 + a,

which is a contradiction. Thus b or c is equal to Fn−1. If b = Fn−1, then

Fn+1 + a = ⌊Fn−1α
2⌋ + ⌊cα2⌋ = Fn+1 − [n ≡ 1 (mod 2)] + ⌊cα2⌋, and so

⌊cα2⌋ = a + [n ≡ 1 (mod 2)]. Similarly, if c = Fn−1, then ⌊bα2⌋ = a + [n ≡ 1

(mod 2)]. This completes the proof.

Lemma 3.15. Let B(α2) be the set as defined in (1.1), n ≥ 6 and 1 ≤ a ≤

Fn−3α
2. If Fn−1 + a and Fn + a are not in B(α2) + B(α2), then Fn+1 + a /∈

B(α2) +B(α2).

Proof. Suppose for a contradiction that Fn−1+a and Fn+a are not in B(α2)+

B(α2) but Fn+1 + a ∈ B(α2) + B(α2). Then there are b, c ∈ N such that

Fn+1 + a = ⌊bα2⌋+ ⌊cα2⌋. By Lemma 3.14, we can assume that b = Fn−1 and⌊
cα2

⌋
= a+ [n ≡ 1 (mod 2)]. (3.5)

But by applying Lemma 3.11 to the case Fn−1+a /∈ B(α2)+B(α2), we obtain

that

a+ 1− [n− 1 ≡ 1 (mod 2)] /∈ B(α2), or equivalently,

a+ [n ≡ 1 (mod 2)] /∈ B(α2),

which contradicts (3.5). So the proof is complete.

Suppose n ≥ 6 and the integers in [Fn, Fn+1] ∩ (B(α2) +B(α2)) are given.

Then the next theorem gives us more than a half of the integers in and outside

the set

[Fn+1, Fn+2] ∩ (B(α2) +B(α2)). (3.6)

Theorem 3.16. Let B(α2) be the Beatty set as defined in (1.1), n ≥ 6, a ∈ Z,

and 0 ≤ a < Fn−1 − 2. Then

Fn + a ∈ B(α2) +B(α2) if and only if Fn+1 + a ∈ B(α2) +B(α2).

Proof. If a = 0, the result follows from Theorem 3.10. So assume that a ≥ 1.

By Theorem 3.12, we only need to prove the converse. Assume that Fn +
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a /∈ B(α2) + B(α2). Then we obtain by Theorem 3.12 that Fn−1 + a /∈

B(α2) +B(α2). Then by Lemma 3.15, Fn+1 /∈ B(α2) +B(α2). So the proof is

complete.

The next theorem gives the remaining integers in (3.6).

Theorem 3.17. Let B(α2) be the set as defined in (1.1), n ≥ 6, a ∈ Z, and

0 ≤ a ≤ Fn−1 − [n ≡ 1 (mod 2)]. Then Fn + a ∈ B(α2) +B(α2) if and only if

Fn+1 − 2− a ∈ B(α2) +B(α2).

Proof. If a = 0, the result follows from Theorem 3.10. So assume that a ≥ 1.

Suppose Fn + a ∈ B(α2) + B(α2) but Fn+1 − 2 − a /∈ B(α2) + B(α2). By

applying Lemma 3.11 to Fn+1 − 2− a, we obtain that

−a− 1 +
⌊
dα2

⌋
/∈ B(α2) for d ∈ [−Fn−2, 0) ∪ (0, Fn−1). (3.7)

Since Fn + a ∈ B(α2) + B(α2), there are b, c ∈ N such that Fn + a = ⌊bα2⌋+

⌊cα2⌋. Then by Lemma 3.9, b and c < Fn−2+
a
α2 . Recall also from Remark 3.13

that a ≤ Fn−3α
2. If b < Fn−2, then by Corollary 3.4 and the fact given in (3.7),

we obtain, respectively, −a− 1 + ⌊cα2⌋ = Fn − 1− ⌊bα2⌋ = ⌊(Fn−2 − b)α2⌋ ∈

B(α2), and c ≥ Fn−1, which contradicts the fact that c < Fn−2 +
a
α2 . So

b ≥ Fn−2. Similarly, applying the above argument to c, we have c ≥ Fn−2.

Then Fn + a = ⌊bα2⌋ + ⌊bα2⌋ ≥ 2 ⌊Fn−2α
2⌋ ≥ 2Fn − 2 > Fn + a, which is a

contradiction. Hence the first part of this theorem is proved.

For the converse, we also suppose for a contradiction that Fn+1 − 2− a ∈

B(α2)+B(α2) but Fn+a /∈ B(α2)+B(α2). Then there are b, c ∈ N such that

Fn+1 − 2− a = ⌊bα2⌋+ ⌊cα2⌋ and by Lemma 3.11,

a+ 1 +
⌊
dα2

⌋
/∈ B(α2) for d ∈ [−Fn−3, 0) ∪ (0, Fn−2). (3.8)

By Lemma 3.9, b and c < Fn−1 − a+2
α2 < Fn−1. Then by Corollary 3.4, we

obtain

Fn+1 − 2− a =
⌊
(Fn−1 − b)α2

⌋
+
⌊
bα2

⌋
− a− 1,
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which implies a+1+ ⌊cα2⌋ = ⌊(Fn−1 − b)α2⌋ ∈ B(α2). So by (3.8), c ≥ Fn−2.

By the same argument, b ≥ Fn−2. Therefore Fn+1 − 2− a = ⌊bα2⌋ + ⌊cα2⌋ ≥

2 ⌊Fn−2α
2⌋ ≥ 2Fn − 2, which implies a ≤ Fn−1 − Fn < 0, a contradiction.

Hence the proof is complete.

Theorems 3.10, 3.16, and 3.17 give a complete description of B(α2)+B(α2).

We illustrate this in Example 3.18 and Theorem 3.20 as follows.

Example 3.18. For convenience, if A ⊆ N, we write Ac to denote the com-

plement of A in N. That is Ac = N \ A. By direct calculation, the elements

in (B(α2) + B(α2))c ∩ [1, F9] are 1, 2, 3, 5, 6, 8, 11, 13, 16, 19, 21, 24, 29, 32,

34. To determine the elements in [F9, F10]∩ (B(α2)+B(α2))c, we first observe

that for 0 ≤ a ≤ F7,

F8 + a /∈ B(α2) +B(α2) if and only if a ∈ {0, 3, 8, 11, 13}.

Applying Theorem 3.16 for n = 8, we obtain that for 0 ≤ a < F7 − 2,

F9 + a /∈ B(α2) +B(α2) if and only if a ∈ {0, 3, 8}.

Applying Theorem 3.17 for n = 9, we obtain that for 0 ≤ a < F7 − 2,

F10 − 2− a /∈ B(α2) +B(α2) if and only if a ∈ {0, 3, 8}.

In addition, F10 /∈ B(α2)+B(α2) by Theorem 3.10. The length of the interval

[F9, F10] is F10 − F9 = F8 which is less than 2(F7 − 2). Therefore the elements

in (B(α2)+B(α2))c∩ [F9, F10] are completely determined. They are F9, F9+3,

F9+8, F10−10, F10−5, F10−2, F10, which are 34, 37, 42, 45, 50, 53, 55. By doing

this process repeatedly, we obtain (B(α2) +B(α2))c ∩A where A = [F10, F11],

[F11, F12], [F12, F13], and so on. Thus we can find (B(α2) +B(α2))∩ [1, Fn] for

any given n.

Remark 3.19. In the abstract and introduction, we mention that the struc-

ture of the set X =: B(α2)+B(α2) has some kinds of fractal and palindromic
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patterns. This is not intended to be a precise or mathematically rigorous state-

ment. What we (vaguely) means is that the distribution of the elements of X

in the interval [Fn, Fn+1] looks like fractal for all n ≥ 6. Suppose we display

the points of X ∩ [Fn+1, Fn+2] on the real line and zoom in for a smaller scale,

namely, X ∩ [Fn+1, Fn+1 + Fn−1 − 3]. Then, by Theorem 3.16, the picture

(in a smaller scale) is the same as that of X ∩ [Fn, Fn+1]. Then by Theorem

3.16 again, the picture (in a smaller scale) of X ∩ [Fn+2, Fn+3] is the same as

that of X ∩ [Fn+1, Fn+2]. Since Theorem 3.16 holds for all n ≥ 6, we can con-

tinue this process and see the distribution of the elements of X on [Fn, Fn+1],

[Fn+1, Fn+2], [Fn+2, Fn+3], and so on, as fractal-like pattern. See the figure

shown below for an illustration.

For the palindromicity, recall that a positive integer n can be written

uniquely in the decimal expansion as

n = (akak−1 · · · a0)10 = ak10
k + ak−110

k−1 + · · ·+ a0,

where ak ̸= 0 and 0 ≤ ai ≤ 9 for all i, and n is called a palindrome or a

palindromic number if ak−i = ai for 0 ≤ i ≤ ⌊k/2⌋. So if n is a palindrome

and we know the values of ak−i only for 0 ≤ i ≤ ⌊k/2⌋, then we can completely

find all the decimal digits of n. Now suppose n ≥ 6 and the elements of

X ∩ [Fn, Fn+1] are known. We can divide [Fn+1, Fn+2] into two overlapped

intervals:

the left-hand interval L =: [Fn+1, Fn+1 + Fn−1 − 3]

the right-hand interval R =: [Fn+2 − Fn−1 − 1, Fn+2].

By Theorem 3.16, X∩L is completely determined by X∩ [Fn, Fn+1]. Theorem

3.17 gives us the palindromic pattern which helps us obtain all elements in

R from L. Hence we can basically say that for all n ≥ 6, the distribution of

points in X ∩ [Fn+1, Fn+2] are completely determined by that of X ∩ [Fn, Fn+1]

by the fractal-like and palindromic patterns.

In general, we have the following result.
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Fn Fn+1

Fn+1 Fn+2

Fn+2 Fn+3

Theorem 3.20. Let B(α2) be the set as defined in (1.1). For each n ∈ N, let

An = {a ∈ Z | 0 ≤ a ≤ Fn−1 and Fn + a /∈ B(α2) + B(α2)}. Then A1 = {0},

A2 = A3 = {0, 1}, A4 = {0, 2}, A5 = {0, 1, 3}, A6 = {0, 3, 5}, A7 = {0, 3, 6, 8},

and for n ≥ 8, the set An is the disjoint union

An = (An−1 \ {Fn−2, Fn−2 − 2})

∪ {Fn−1 − 2− a | a ∈ An−1 and 0 ≤ a ≤ Fn−3} ∪ {Fn−1}.

Proof. The sets A1, A2, . . . , A7 can be obtained by direct calculation. So as-

sume that n ≥ 8. Since Fn + Fn−1 = Fn+1 /∈ B(α2) + B(α2), Fn−1 ∈ An.

Then we write An = C ∪ B ∪ {Fn−1}, where C = An ∩ [0, Fn−2 − 2) and

B = An ∩ [Fn−2 − 2, Fn−1). Obviously, the sets C, B, and {Fn−1} are disjoint.

So it remains to show that

C = An−1 \ {Fn−2, Fn−2 − 2} and (3.9)

B = {Fn−1 − 2− a | a ∈ An−1 and 0 ≤ a ≤ Fn−3}. (3.10)

To prove (3.9), let a ∈ C. Then 0 ≤ a < Fn−2−2 and Fn+a /∈ B(α2)+B(α2).

Applying Theorem 3.16, we obtain Fn−1 + a /∈ B(α2) +B(α2). So a ∈ An−1 \

{Fn−2, Fn−2−2}. Conversely, suppose that a ∈ An−1 \{Fn−2, Fn−2−2}. Then

a ∈ [0, Fn−2− 2)∪{Fn−2− 1} and Fn−1+ a /∈ B(α2)+B(α2). If a = Fn−2− 1,

then we obtain by Theorem 3.10 that Fn−1 + a = Fn − 1 ∈ B(α2) + B(α2),

which is not the case. So 0 ≤ a < Fn−2 − 2. In addition, by Theorem 3.16,

Fn+ a /∈ B(α2)+B(α2). Hence a ∈ An ∩ [0, Fn−2− 2) = C. This proves (3.9).

Next, let b ∈ B. Then Fn−2 − 2 ≤ b < Fn−1 and Fn + b /∈ B(α2) + B(α2).

If b = Fn−1 − 1, then we obtain by Theorem 3.10 that Fn + b = Fn+1 − 1 ∈
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B(α2) +B(α2), which is not the case. So b ≤ Fn−1 − 2. Let a = Fn−1 − 2− b.

Then b = Fn−1 − 2 − a and 0 ≤ a ≤ Fn−3. So it remains to show that

a ∈ An−1. Since Fn + b /∈ B(α2) + B(α2), we obtain by Theorem 3.17 that

Fn+a = Fn+1−2−(Fn−1−2−a) = Fn+1−2−b /∈ B(α2)+B(α2). Since Fn+a /∈

B(α2) + B(α2), we obtain by Theorem 3.16 that Fn−1 + a /∈ B(α2) + B(α2).

So a ∈ An−1, as required.

Finally, suppose b = Fn−1−2−a where a ∈ An−1 and 0 ≤ a ≤ Fn−3. Then

Fn−2 − 2 ≤ b < Fn−1. Since a ∈ An−1, Fn−1 + a /∈ B(α2) + B(α2). Then by

Theorem 3.16, Fn + a /∈ B(α2) + B(α2). Applying Theorem 3.17, we obtain

Fn + b = Fn+1 − 2− a /∈ B(α2) +B(α2). So b ∈ An ∩ [Fn−2 − 2, Fn−1) = B, as

desired. This completes the proof.

Questions

Q1 Let (fn) be a kth order linear recurrence sequence defined by

fn = fn−1 + fn−2 + · · ·+ fn−k for n ≥ 2

with the initial values f−(k−2), f−(k−3), . . . , f0, f1 ∈ Z. Let α be the root

of the characteristic polynomial xk −xk−1−xk−2−· · ·− 1 with maximal

absolute value. Can we described the structure of the sumsets associated

with B(α), B(α2), . . . , B(αk)? Is the structure best described in terms

of the k-step Fibonacci sequence (F
(k)
n ) defined by the same recurrence

as (fn) but with the initial values

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
−1 = F

(k)
0 = 0 and F

(k)
1 = 1?

Q2 Let α = (1+
√
5)/2. Since α2−α−1 = 0, the set {α2, α, 1} is not linearly

independent over Q. Suppose {αk, αk−1, . . . , α, 1} is linearly independent

over Q, for example, α is an algebraic number of degree larger than k,

α = e, or α = π, can we describe the structure of the sumsets associated

with B(αk), B(αk−1), . . . , B(α)?
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Q3 Let a, b ∈ Z, (a, b) = 1, b ̸= 0, and let (un) be the Lucas sequence of

the first kind defined by un = aun−1 + bun−2 for n ≥ 2 with u0 = 0 and

u1 = 1. Let α be the root of the characteristic polynomial x2−ax−b. Is

the structure of the sumsets associated with B(α) and B(α2) connected

to (un)?

The proof of the following theorem is similar to that of Theorem 3.3. In

fact, applying Theorem 3.3 leads to Theorem 3.21 but with a smaller range of

b, which may not be enough in some applications.

Theorem 3.21. Let n ≥ 5 and 1 ≤ b ≤ Fn+1. Then the following statements

hold.

(i) If b = Ln−1, then
√
5βn−1 − {bα} = −[n ≡ 0 (mod 2)].

(ii) If b ∈ {Fn−2, Fn}, then 0 <
√
5βn−1 − {bα}+ 2[n ≡ 0 (mod 2)] < 1.

(iii) If b /∈ {Fn−2, Fn, Ln−1}, then −1 <
√
5βn−1 − {bα} < 0.

Proof. The statement (i) follows immediately from Lemma 2.5(vi). For (ii),

let b ∈ {Fn−2, Fn} and A =
√
5βn−1 − {bα} + 2[n ≡ 0 (mod 2)]. Since βn +

√
5βn−1 + βn−2 = 0, we obtain by Lemma 2.5(iii) that

if b = Fn, then

A =
√
5βn−1 + βn + [n ≡ 0 (mod 2)] = −βn−2 + [n ≡ 0 (mod 2)]

if b = Fn−2, then

A =
√
5βn−1 + βn−2 + [n ≡ 0 (mod 2)] = −βn + [n ≡ 0 (mod 2)].

By calculating A according to the parity of n, it is not difficult to see that

0 < A < 1. This proves (ii). For (iii), if b = Fn+1, then we apply Lemma

2.5(iii) to obtain

√
5βn−1−{bα} =

√
5βn−1+βn+1−[n ≡ 1 (mod 2)] = βn−3−[n ≡ 1 (mod 2)],
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which is in the interval (−1, 0). Next, let B =
√
5βn−1 − {bα}+ 1, where b is

not equal to any of Fn−2, Fn, Ln−1, Fn+1. We need to show that 0 < B < 1.

Case 1 b = Fk where 2 ≤ k ≤ n− 3 or k = n− 1.

Case 1.1 b = F2. Then by Lemma 2.5, B =
√
5βn−1 + β2. Therefore,

B ≤
√
5β4 + β2 = β2(−3β) = −3β3 < 1. If n is odd, then it is obvious that

B > 0. If n is even, then n ≥ 6, and B ≥
√
5β5 + β2 = β2(

√
5β3 + 1) > 0.

Case 1.2 b = Fn−1. Then by Lemma 2.5, B =
√
5βn−1 + βn−1 − [n ≡ 1

(mod 2)] + 1. If n is even, then B < 1 and B ≥ 1+ β5 +
√
5β5 = 1− 2β4 > 0.

If n is odd, then B > 0 and B ≤
√
5β4 + β4 = −2β3 < 1.

Case 1.3 b = Fk and 3 ≤ k ≤ n − 3. This case occurs only when n ≥ 6. By

Lemma 2.5,

B =
√
5βn−1 + βk − [k ≡ 0 (mod 2)] + 1.

We first consider the case that k is even. Then B =
√
5βn−1 + βk. If n

is odd, then B > 0 and B ≤
√
5β4 + β4 = −2β3 < 1. If n is even, then

B < βk ≤ β4 < 1, k ≤ n− 4, and B ≥
√
5βn−1 + βn−4 = βn−4(

√
5β3 + 1) > 0.

Next, suppose k is odd. Then B =
√
5βn−1 + βk + 1. If n is even, then

B < 1 and B ≥
√
5β5 + β3 + 1 = 1 − 3β4 > 0. If n is odd, then k ≤ n − 4,

B >
√
5βn−1 > 0 and B ≤

√
5βn−1 + βn−4 + 1 < 1.

Case 2 Fk < b < Fk+1 for some k ∈ {4, 5, . . . , n}. We apply Lemma 2.5

without further reference. By Zeckendorf’s theorem, we can write b = Fa1 +

Fa2 + · · · + Faℓ where ℓ ≥ 2, k = a1 > a2 > · · · > aℓ ≥ 2 and ai−1 − ai ≥ 2

for every i = 2, 3, . . . , ℓ. Then by Lemma 2.4, we obtain {bα} = {{Fa1α} +

{Fa2α}+ · · ·+ {Faℓα}} which is equal to

{(1− βb1 + 1− βb2 + · · ·+ 1− βbr) + (−βc1 − βc2 − · · · − βcs)},

where {b1, b2, . . . , br}∪{c1, c2, . . . , cs} = {a1, a2, . . . , aℓ}, b1 > b2 > · · · > br are

even numbers, and c1 > c2 > · · · > cs are odd numbers. Remark that one of

the sets {b1, b2, . . . , br} and {c1, c2, . . . , cs} may be empty. In this case, such

the set disappears from the subsequent calculation. Also, for convenience, we

let A = βb1 + βb2 + · · · + βbr + βc1 + βc2 + · · · + βcs . Then by Lemma 2.1,
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{bα} = {−A}. To show that 0 < B < 1, it is enough to prove

√
5βn−1 < {bα} < 1 +

√
5βn−1.

Case 2.1 {b1, b2, . . . , br} is empty. Then

A = βc1 + βc2 + · · ·+ βcs > β3 + β5 + · · · = β3

1− β2
= −β2.

Therefore 0 < −A < β2 < 1 and so {bα} = {−A} = −A. If n is even,

then obviously {bα} > 0 >
√
5βn−1 and {bα} = −A < β2 < 1 +

√
5β3 <

1 +
√
5βn−1. So assume that n is odd. Then {bα} = −A < β2 < 1 +

√
5βn−1,

and {bα} = −A = |β|c1 + |β|c2 + · · ·+ |β|cs . If ℓ ≥ 3, then s ≥ 3, and so

{bα} ≥ |β|c1 + |β|c2 + |β|c3 ≥ |β|n + |β|n−2 + |β|n−4 > |β|n + |β|n−2 =
√
5βn−1.

Suppose ℓ = 2. Then s = 2 and {bα} = |β|c1 + |β|c2 . If c1 ̸= n, then

|β|c1 + |β|c2 ≥ |β|n−2 + |β|n−4 > |β|n−2 + |β|n = −(βn + βn−2) =
√
5βn−1.

Since Ln−1 = Fn + Fn−2 and b ̸= Ln−1, we see that {c1, c2} ̸= {n, n − 2}.

Therefore, if c1 = n, then c2 ̸= n− 2, and so c2 ≤ n− 4

|β|c1 + |β|c2 ≥ |β|n + |β|n−4 > |β|n + |β|n−2 =
√
5βn−1.

In any case, {bα} >
√
5βn−1, as required.

Case 2.2 {c1, c2, . . . , cs} is empty. Then

A = βb1 + βb2 + · · ·+ βbr < β2 + β4 + · · · = β2

1− β2
= −β.

Therefore −1 < β < −A < 0 and {bα} = {−A} = 1− A. Suppose n is even.

Then {bα} > 0 >
√
5βn−1 and {bα} = 1 − A = 1 − βb1 − βb2 − · · · − βbr .

Similar to the proof of Case 2.1, if ℓ ≥ 3, then r ≥ 3 and

{bα} ≤ 1−βb1−βb2−βb3 ≤ 1−βn−βn−2−βn−4 < 1−βn−βn−2 = 1+
√
5βn−1.

If ℓ = 2 and b1 ̸= n, then

{bα} = 1− βb1 − βb2 ≤ 1− βn−2 − βn−4 < 1− βn−2 − βn = 1 +
√
5βn−1.
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If ℓ = 2 and b1 = n, then b2 ≤ n− 4 and

{bα} = 1− βb1 − βb2 ≤ 1− βn − βn−4 < 1− βn − βn−2 = 1 +
√
5βn−1.

If n is odd, then {bα} < 1 < 1 +
√
5βn−1 and {bα} = 1 − A > 1 + β = β2 ≥

βn−3 ≥
√
5βn−1.

Case 2.3 {b1, b2, . . . , br} and {c1, c2, . . . , cs} are not empty. Then there is some

cancellation in the sum defining A. Similar to Case 2.1 and Case 2.2, we have

A < βb1 + βb2 + · · ·+ βbr < −β and A > βc1 + βc2 + · · ·+ βcs > −β2.

Case 2.3.1 A is positive. Then −1 < β < −A < 0, and so {bα} = {−A} =

1 − A. If n is odd, then {bα} < 1 +
√
5βn−1 and {bα} = 1 − A > 1 +

β >
√
5β4 ≥

√
5βn−1. Assume that n is even. Then {bα} > 0 >

√
5βn−1.

It remains to show that {bα} < 1 +
√
5βn−1. Let u = min{b1, b2, . . . , br}

and v = min{c1, c2, . . . , cs}. Since ai−1 − ai ≥ 2 for all i = 2, 3, . . . , ℓ and

a1 = k ≤ n, we obtain that u ≤ n and |v − u| ≥ 3. Then

βu ≤ βb1 + βb2 + · · ·+ βbr < βu + βu+2 + βu+4 + · · · = βu

1− β2
= −βu−1,

(3.11)

βv ≥ βc1 + βc2 + · · ·+ βcs > βv + βv+2 + βv+4 + · · · = βv

1− β2
= −βv−1.

(3.12)

By (3.11) and (3.12), we obtain βu−βv−1 < A < βv −βu−1. Since |v−u| ≥ 3,

we see that either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction

that v − u ≤ −3. Since v ≤ u − 3 and both v and u − 3 are odd, we have

βv ≤ βu−3. Thus A < βv − βu−1 ≤ βu−3 − βu−1 = βu−3(1 − β2) = −βu−2 <

0, which contradicts the assumption that A is positive. Hence v − u ≥ 3.

Since v − 1 ≥ u + 2 and both v − 1 and u + 2 are even, βv−1 ≤ βu+2. So

A > βu − βu+2 = βu(1 − β2) = −βu+1. We have u ≤ v − 3 ≤ n − 3. Thus

u + 1 ≤ n − 2. Since n − 2 is even and u + 1 is odd, we have u + 1 ≤ n − 3.

Then {bα} = 1−A < 1 + βu+1 ≤ 1 + βn−3. Since
√
5β2 < 1 and n− 3 is odd,

√
5βn−1 > βn−3. Therefore {bα} < 1 + βn−3 < 1 +

√
5βn−1, as required.
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Case 2.3.2 A is negative. Then 0 < −A < β2 < 1. Then {bα} = {−A} = −A.

We first show that {bα} < 1 +
√
5βn−1. If n is odd, then {bα} < 1 <

1 +
√
5βn−1. If n is even, then {bα} = −A < β2 < 1 +

√
5β3 < 1 +

√
5βn−1.

Next, we show that {bα} >
√
5βn−1. If n is even, then

√
5βn−1 < 0 < {bα}. So

assume that n is odd. Let u = min{b1, b2, . . . , br} and v = min{c1, c2, . . . , cs}.

Similar to Case 2.3.1, we have u ≤ n, |v − u| ≥ 3, the equalities (3.11) and

(3.12) hold, and βu − βv−1 < A < βv − βu−1. Since |v − u| ≥ 3, we see that

either v − u ≥ 3 or v − u ≤ −3. If v − u ≥ 3, then βv−1 ≤ βu+2 and A >

βu − βv−1 ≥ βu − βu+2 = −βu+1 > 0, which contradicts the assumption that

A < 0. Thus v− u ≤ −3, and so A < βu−3 − βu−1 = −βu−2. Since u ≤ n, u is

even and n is odd, we have u−2 ≤ n−3. Then −A > βu−2 ≥ βn−3 >
√
5βn−1.

Therefore {bα} = −A >
√
5βn−1 as desired. This completes the proof.

We can apply Theorem 3.21 to give a short proof the key result in [11,

Theorem 3.3].

Corollary 3.22. [11, Theorem 3.3] Let n ≥ 5, 1 ≤ b ≤ Fn+1, and b ̸= Fn.

Then

0 < {bα}+ βn < 1.

Proof. If b = Fn−2 or b = Ln−1, we can apply Lemma 2.5 to obtain the desired

result. So suppose that b ̸= Fn−2 and b ̸= Ln−1. We first consider the case n

is odd. Then it is obvious that {bα} + βn < 1. For the other inequality, we

apply Theorem 3.21 to obtain {bα} >
√
5βn−1 > −βn. Similarly, if n is even,

then it is immediate that {bα}+βn > 0 and by using Theorem 3.21, we obtain

{bα} < 1 +
√
5βn−1 < 1− βn. This completes the proof.

It is possible to extend the range of b in Theorem 3.21 and Corollary

3.22 but the results are not nice and we do not need them in our application.

Therefore, we only give some special cases as an example and leave the general

case to the interested readers.

Example 3.23. Let n ≥ 5, k ≥ n+ 2, b = Fk, and B = {bα}+ βn. Then the

following statements hold.
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(i) If k and n are odd, then −1 < B < 0.

(ii) If k ̸≡ n (mod 2), then 0 < B < 1.

(iii) If k and n are even, then 1 < B < 2.

Proof. By Lemma 2.5, B = βn − βk + [k ≡ 0 (mod 2)].

Case 1 k is odd. Then B = βn − βk. If n is odd, then −1 < βn < βn+2 ≤

βk < 0, and so −1 < B < 0. If n is even, then k ≥ n + 3, and 0 < B ≤

βn − βn+3 = −2βn+1 < 1.

Case 2 k is even. Then B = βn−βk+1. If n is odd, then B < 1, k ≥ n+3, and

B ≥ 1+βn−βn+3 = 1−2βn+1 > 0. If n is even, then 0 < βk ≤ βn+2 < βn < 1,

and so 1 < B < 2. This completes the proof.
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Abstract
Letα = (1+√

5)/2 be the golden ratio, and let B(α) = (�nα�)n≥1 and B(α2) = (⌊
nα2

⌋)
n≥1

be the lower and upper Wythoff sequences, respectively. In this article, we obtain a new
estimate concerning the fractional part {nα} and study the sumsets associated with Wythoff
sequences. For example, we show that every n ≥ 4 can be written as a sum of two terms in
B(α) and a positive integer n can be written as the sum �aα� + ⌊

bα2
⌋
for some a, b ∈ N if

and only if n is not one less than a Fibonacci number. The structure of the set B(α2)+ B(α2)

contains some kinds of fractal and palindromic patterns and is more complicated than the
other sets, but we can also give a complete description of this set.

Keywords Wythoff sequence · Sumset · Fibonacci number · Golden ratio · Beatty sequence

Mathematics Subject Classification 11B13 · 11B39

1 Introduction

Let G be an additive abelian group, A and B nonempty subsets of G, and x ∈ G. Then the
sumset A + B and the translation x + A are defined by

A + B = {a + b | a ∈ A and b ∈ B} and x + A = A + x = {a + x | a ∈ A}.
Additive number theory and the study of sumsets have a long history dating back at least
to Lagrange in 1770 who proved that every natural number can be written as a sum of four
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squares of integers. Cauchy in 1813 gave a lower bound for the cardinality of the sumset A+B
where A and B are nonempty subsets of Z/pZ. Davenport [3] rediscovered Cauchy’s result
in 1935 and the results is now known as the Cauchy-Davenport theorem. Several other results
on sumsets and in additive number theory have been obtained by various mathematicians,
and we refer the reader to the books by Freiman [8], Halberstam and Roth [10], Nathanson
[17], Tao and Vu [39], and Vaughan [41] for additional details and references.

On the other hand,Wythoff sequences arise very often in combinatorics and combinatorial
game theory, and so many of their combinatorial properties have been extensively studied;
see for example in the work of Fraenkel [4–7], Kimberling [13,14], Pitman [23], Wythoff
[42], and in the online encyclopedia OEIS [38]. However, as far as we are aware, there
are no number theoretic results, at least in the spirit of this paper, concerning the sumsets
associated with Wythoff sequences. This motivates us to investigate more on this topic. Note
that Pitman’s article [23] is closely related to ours but it focuses only on the cardinality of
sumsets of certain finite Beatty sequences in connection with Sturmian words and the nearest
integer algorithm.

Before proceeding further, let us introduce the notation which will be used throughout this
article as follows: x is a real number, a, b, m, n are integers, α = (1 + √

5)/2 is the golden
ratio, β = (1 − √

5)/2, �x� is the largest integer less than or equal to x , {x} = x − �x�,
B(x) = {�nx� | n ∈ N} and B0(x) = {�nx� | n ≥ 0} . (1.1)

The set B(x) is usually considered as a sequence (�nx�)n≥1 and is called a Beatty sequence.
The sets B(α) and B(α2) are also called lower and upper Wythoff sequences, respectively;
but for our purpose, it is more convenient to consider them as sets. In addition, if P is a
mathematical statement, then the Iverson notation [P] is defined by

[P] =
{
1, if P holds;

0, otherwise.

Recall that a generalized Fibonacci sequence ( fn)n≥0 is defined by fn = fn−1 + fn−2 for
n ≥ 2 where f0 and f1 are arbitrary integers. If f0 = 0 and f1 = 1, then ( fn)n≥0 = (Fn)n≥0

is the classical Fibonacci sequence, and if f0 = 2 and f1 = 1, then ( fn)n≥0 = (Ln)n≥0 is the
classical sequence of Lucas numbers. The roots of the characteristic polynomial x2 − x − 1
for any generalized Fibonacci sequence ( fn) are α and β, but it turns out that the structures of
sumsets such as B(α)+ B(α2) and B(α2)+ B(α2) are best described in terms of the classical
Fibonacci numbers Fn .We refer the reader to [11,12,19–21,24–26,33] for some recent results
concerning multiplicative properties of Fn , and to [27,28] for certain Diophantine equations
involving additive and multiplicative properties of Fn .

In this article, we give a new estimate concerning the fractional part {nα} and study the
sumsets associated with B(α) and B(α2). For example, we obtain from Theorems 3.1, 3.5,
and 3.8, respectively, that for every n ≥ 4, n = �aα� + �bα� for some a, b ∈ N, for
every n ≥ 27, n = ⌊

aα2
⌋ + ⌊

bα2
⌋ + ⌊

cα2
⌋
for some a, b, c ∈ N, and for every n ≥ 1,

n = �aα�+⌊
bα2

⌋
for some a, b ∈ N if and only if n is not one less than a Fibonacci number.

The structure of B(α2) + B(α2) contains some kinds of fractal and palindromic patterns in
each interval of the form [Fn, Fn+1]; see for instance Theorems 3.16, 3.17, and Remark 3.19,
and so the elements in (B(α2) + B(α2)) ∩ [Fn+1, Fn+2] can be completely determined by
those of (B(α2) + B(α2)) ∩ [Fn, Fn+1].

For a general result on the sumsets associated with B(x) and B(x2) where x satisfies the
conditions such as x > 1 and x2 − ax − b = 0 for some a, b ∈ Z, we think that the answers
may be best described in terms of the Lucas sequence of the first kind. Nevertheless, the
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calculations even in the case of B(α) and B(α2) are already complicated, so we postpone
this for future research. See also other problems in the last section.

We arrange this article as follows. In Sect. 2, we give preliminaries and lemmas concerning
the floor function, fractional parts, Beatty sequences, and Fibonacci numbers. In Sect. 3, we
give our main results concerning various sumsets associated with B(α) and B(α2). For more
information, we invite the reader to visit the fourth author’s ResearchGate website [37] for
some freely downloadable articles [22,30–32,34–36] in related topics of research.

2 Preliminaries and lemmas

We often use the following fact: −1 < β < 0, (|βn |)n≥1 is strictly decreasing, if
a1 > a2 > · · · > ar are even positive integers, then 0 < βa1 < βa2 < · · · < βar , and
if b1 > b2 > · · · > br are odd positive integers, then 0 > βb1 > βb2 > · · · > βbr . In
addition, α and β are roots of the equation x2 − x − 1 = 0. So, for instance, β2 = β + 1 and
β2 + β4 = 4β + 3. Moreover, it is convenient to have a list of the first twenty elements of
the sequences B(α) and B(α2) as shown below:

B(α) = (1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, . . .) and

B(α2) = (2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, . . .) .

The following results are also applied throughout this article sometimes without reference.

Lemma 2.1 For n ∈ Z and x, y ∈ R, the following statements hold.

(i) �n + x� = n + �x�.
(ii) {n + x} = {x}.
(iii) 0 ≤ {x} < 1.

(iv) �x + y� =
{

�x� + �y�, if {x} + {y} < 1;
�x� + �y� + 1, if {x} + {y} ≥ 1.

Proof These are well-known and can be proved easily. For more details, see in [9, Chapter 3].
We also refer the reader to [18] and [35, Proof of Lemma 2.6] for a nice application of these
properties. 	

Lemma 2.2 The following statements hold for all n ∈ N.

(i) (Binet’s formula) Fn = αn−βn

α−β
.

(ii) βn+1 = βFn+1 + Fn.
(iii) Fn+1 = βn + αFn.

Proof The proof of (i) and (ii) can be found in [16, pp. 78–79]. The statement (iii) follows
from (ii) and the fact that αβ = −1. See also [29] for a result concerning the generating
function of the Fibonacci sequence. 	

Lemma 2.3 (Zeckendorf’s theorem) For each n ∈ N, n = Fa1 + Fa2 + · · · + Fa�

where
Fa1 is the largest Fibonacci number not exceeding n, a� ≥ 2, and ai−1 − ai ≥ 2 for every
i = 2, 3, . . . , �.

Proof This iswell-known and can be proved by using the greedy algorithm ([40, pp. 108–109]
or [43]). See also [15] for a more general result. 	
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Lemma 2.4 If x1, x2, . . . , xn ∈ R, then

{x1 + x2 + · · · + xn} = {{x1} + {x2} + · · · + {xn}}.
Proof We can write x1 + x2 + · · · + xn = m + {x1} + {x2} + · · · + {xn}, where m =
�x1� + �x2� + · · · + �xn� ∈ Z. So this lemma follows immediately from Lemma 2.1(ii). 	

Lemma 2.5 Let n ∈ N. Then the following statements hold.

(i) �Fnα� = Fn+1 − [n ≡ 0 (mod 2)].
(ii)

⌊
Fnα2

⌋ = Fn+2 − [n ≡ 0 (mod 2)].
(iii) {Fnα} = −βn + [n ≡ 0 (mod 2)].
(iv) {Fnα2} = {Fnα}.
Proof By Lemmas 2.2 and 2.1, we obtain �Fnα� = �Fn+1 − βn� = Fn+1 + �−βn�. If
n is even, then 0 < βn < 1 and so �−βn� = −1. If n is odd, then −1 < βn < 0
and so �−βn� = 0. Therefore �−βn� = −[n ≡ 0 (mod 2)]. This implies (i). Then (ii)
follows from (i) by writing α2 = α + 1 and

⌊
Fnα2

⌋ = �Fnα + Fn� = �Fnα� + Fn . Next,
{Fnα} = Fnα − �Fnα�, so (iii) can be obtained from (i) and Lemma 2.2. For (iv), we have
{Fnα2} = {Fnα + Fn} = {Fnα}. 	

Lemma 2.6 (Beatty’s theorem [1,2])Let x and y be irrational numbers such that x, y > 1 and
1
x + 1

y = 1. Then B(x)∪ B(y) = N and B(x)∩ B(y) = ∅. In particular, B(α)∪ B(α2) = N

and B(α) ∩ B(α2) = ∅.

If A = (an)n≥1 is a sequence, then a segment of A is a finite sequence of the form
(ak, ak+1, . . . , ak+m) for some k, m ∈ N. Then we have the following results.

Lemma 2.7 The following statements hold.

(i) For each b ∈ N, �(b + 1)α� − �bα� is either 1 or 2.
(ii) For each b ∈ N, if �(b + 1)α� − �bα� = 1 then �(b + 2)α� − �(b + 1)α� = 2.
(iii) The sequence (�(b + 1)α� − �bα�)b≥1 does not contain the segment (2, 2, 2).

Proof Let b ∈ N. ByLemma2.1, �(b+1)α�−�bα� = �bα+α�−�bα� = �α� or �α�+1 = 1
or 2. This proves (i). For (ii), suppose that �(b+1)α�−�bα� = 1 = �(b+2)α�−�(b+1)α�.
Then 2 = �(b + 2)α� − �bα� ≥ �2α� ≥ 3, which is a contradiction. For (iii), suppose that
(2, 2, 2) is a segment of the sequence (�(b + 1)α� − �bα�)b≥1, that is, there exists b ∈ N

such that

�(b + 1)α� − �bα� = 2, (2.1)

�(b + 2)α� − �(b + 1)α� = 2, (2.2)

�(b + 3)α� − �(b + 2)α� = 2. (2.3)

Adding (2.1)–(2.3), we have 6 = �(b+3)α�−�bα� ≤ �3α�+1 = 5,which is a contradiction.
	


Lemma 2.8 Let b ∈ N. Then the following statements hold.

(i) �(b + 1)α2� − �bα2� is either 2 or 3.
(ii) If �(b + 1)α2� − �bα2� = 2, then �(b + 2)α2� − �(b + 1)α2� = 3.
(iii) The sequence (�(b + 1)α2� − �bα2�)b≥1 does not contain the segment (3, 3, 3).

Proof By Lemma 2.1, �(b +1)α2�−�bα2� = �(b +1)α�−�bα�+1. Therefore this lemma
is an immediate consequence of Lemma 2.7. 	


123

Author's personal copy



 

Sumsets associated with Wythoff sequences and Fibonacci…

3 Main results

In this section, we study various sumsets associated with Wythoff sequences. We begin with
simple cases such as B(α) + B(α) and B0(α) + B(α).

Theorem 3.1 Let B(α) and B0(α) be the sets as defined in (1.1). Then

B(α) + B(α) = N\{1, 3} and B0(α) + B(α) = N.

Proof It is easy to check that 1, 3 /∈ B(α) + B(α) and 2 = �α� + �α� ∈ B(α) + B(α). So
we let n ≥ 4 and show that n ∈ B(α) + B(α). Let b be the largest positive integer such that
bα < n. Then b ≥ 2 and �bα� < n ≤ �(b + 1)α�. By Lemma 2.7(i), n = �bα� + k, where
k is either 1 or 2. If k = 1, then n = �bα� + �α� ∈ B(α) + B(α). So assume that k = 2.
By Lemma 2.7(i), we can divide the proof into two cases. If �bα� − �(b − 1)α� = 1, then
n = �bα� + 2 = �(b − 1)α� + 3 = �(b − 1)α� + �2α�. If �bα� − �(b − 1)α� = 2, then
n = �bα�+2 = �(b−1)α�+4 = �(b−1)α�+�3α�. In any case, we have n ∈ B(α)+ B(α),
as desired. Since 1 and 3 are in B0(α)+ B(α) and B(α)+ B(α) ⊆ B0(α)+ B(α), we obtain
that B0(α) + B(α) = N. 	

Theorem 3.2 Let B(α) and B(α2) be defined as in (1.1) and n ≥ 3. Then the following
statements hold.

(i) Fn ∈ B(α) if and only if n is even.
(ii) Fn ∈ B(α2) if and only if n is odd.
(iii) Fn − 1 ∈ B(α) if and only if n is odd.
(iv) Fn − 1 ∈ B(α2) if and only if n is even.

Proof By Lemma 2.5, we have

Fn − [n ≡ 0 (mod 2)] = �Fn−2α
2� ∈ B(α2),

Fn − [n ≡ 1 (mod 2)] = �Fn−1α� ∈ B(α).

Case 1: n is even. Then by the above equality, we have Fn − 1 ∈ B(α2) and Fn ∈ B(α).
Then by Lemma 2.6, Fn − 1 /∈ B(α) and Fn /∈ B(α2).

Case 2: n is odd. Then Fn ∈ B(α2) and Fn − 1 ∈ B(α). Then by Lemma 2.6, Fn /∈ B(α)

and Fn − 1 /∈ B(α2). This implies the desired result. 	

The calculation of B(α) + B(α2) is a bit more complicated than B(α) + B(α) and we

need the following theorem.

Theorem 3.3 Let n ≥ 3 and 1 ≤ b ≤ Fn+1. If b �= Fn, then 0 < {bα} + βn < 1. If b = Fn,
then {bα} + βn = [n ≡ 0 (mod 2)].
Proof We use Lemma 2.5 repeatedly without reference. If b = Fn , then the result follows
immediately. If b = Fn+1, then {bα} + βn is equal to

−βn+1 + [n + 1 ≡ 0 (mod 2)] + βn = −βn−1 + [n − 1 ≡ 0 (mod 2)]
= {Fn−1α} ∈ (0, 1).

Next we consider the case b = Fk for some k ∈ {2, 3, . . . , n − 1}. If k is even and n is odd,
then

1 > {bα} > {bα} + βn = 1 − βk + βn ≥ 1 − β2 + β3 = 1 + β > 0.
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If k and n are even, then 0 < {bα} + βn = 1 − βk + βn < 1. Similarly, if k is odd and
n is even, then 0 < {bα} + βn = −βk + βn ≤ βn − β3 ≤ β4 − β3 = β2 < 1. If k
and n are odd, then 1 > {bα} + βn = −βk + βn > 0. Hence this theorem is verified in
the case b = Fk for some k ≤ n + 1. Next, we suppose that Fk < b < Fk+1 for some
k ∈ {4, 5, . . . , n}. By Lemma 2.3, we can write b = Fa1 + Fa2 + · · · + Fa�

where � ≥ 2,
k = a1 > a2 > · · · > a� ≥ 2, and ai−1 − ai ≥ 2 for every i = 2, 3, . . . , �. Then by
Lemma 2.4, we obtain {bα} = {{Fa1α} + {Fa2α} + · · · + {Fa�

α}}, which is equal to
{(

1 − βb1 + 1 − βb2 + · · · + 1 − βbr
)

+ (−βc1 − βc2 − · · · − βcs
)}

,

where {b1, b2, . . . , br } ∪ {c1, c2, . . . , cs} = {a1, a2, . . . , a�}, b1, b2, . . . , br are even, and
c1, c2, . . . , cs are odd.

Remark that one of the sets {b1, b2, . . . , br }, {c1, c2, . . . , cs} may be empty. In that case,
such the set disappears from the subsequent calculation. Also, for convenience, we let
A = βb1 + βb2 + · · · + βbr + βc1 + βc2 + · · · + βcs . Then by Lemma 2.1, {bα} = {−A}.
Case 1: {b1, b2, . . . , br } is empty. Then A = βc1 +βc2 +· · ·+βcs > β3 +β5 +β7 +· · · =

β3

1−β2 = −β2. Therefore 0 < −A < β2 < 1 and so {bα} = {−A} = −A − �−A� = −A.
Then

{bα} + βn < β2 + βn ≤ β2 + β4 = 4β + 3 < 1.

It remains to show that {bα} + βn > 0. If n is even, then obviously {bα} + βn > 0. So
assume that n is odd. Since {b1, b2, . . . , br } is empty, we see that a1 is odd and −A > −βa1 .
Therefore {bα} + βn > −βa1 + βn ≥ 0, as required.

Case 2: {c1, c2, . . . , cs} is empty. Then A = βb1 +βb2 +· · ·+βbr < β2 +β4 +β6 +· · · =
β2

1−β2 = −β. In addition, a1 is even and A > βa1 . Therefore −βa1 > −A > β > −1 and so

{bα} = {−A} = 1− A. Then {bα}+βn < 1−βa1 +βn ≤ 1, and {bα}+βn > 1+β +βn ≥
1 + β + β3 = 3β + 2 > 0.

Case 3: {b1, b2, . . . , br } and {c1, c2, . . . , cs} are not empty. Then there is some cancellation
in the sum defining A. Similar to Case 1 andCase 2, we have A < βb1 +βb2 +· · ·+βbr < −β

and A > βc1 + βc2 + · · · + βcs > −β2.

Case 3.1: A is positive. Then−1 < β < −A < 0 and {bα}+βn = 1− A+βn . So it suffices
to show thatβn < A < 1+βn . Since A < −β, we obtain A−βn < −β−β3 = −3β−1 < 1,
which implies A < 1+βn . So it remains to show that A > βn . If n is odd, then A > 0 > βn .
So suppose that n is even. Let u be the smallest even number among {b1, b2, . . . , br } and v

the smallest odd number among {c1, c2, . . . , cs}. Since ai − ai−1 ≥ 2 for all i = 2, 3, . . . , �
and a1 = k ≤ n, we obtain u ≤ n and |v − u| ≥ 3. Then

βu < βb1 + βb2 + · · · + βbr < βu + βu+2 + βu+4 + · · · = βu

1 − β2 = −βu−1, (3.1)

βv > βc1 + βc2 + · · · + βcs > βv + βv+2 + βv+4 + · · · = βv

1 − β2 = −βv−1. (3.2)

By (3.1) and (3.2), we obtain βu − βv−1 < A < βv − βu−1. Since |v − u| ≥ 3, we see
that either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction that v − u ≤ −3. Since
v ≤ u − 3 and both v and u − 3 are odd, we have βv ≤ βu−3. So A < βu−3 − βu−1 =
βu−3(1 − β2) = −βu−2 < 0, which contradicts the assumption that A is positive. Hence
v − u ≥ 3. Since v − 1 ≥ u + 2 and both v − 1 and u + 2 are even, βv−1 ≤ βu+2. So
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A > βu − βu+2 = βu(1− β2) = −βu+1. We have u ≤ v − 3 ≤ a1 − 3 ≤ n − 3. Therefore
−βu+1 = |β|u+1 > |β|n = βn . Therefore A > βn , as desired.

Case 3.2: A is negative. Then 0 < −A < β2 < 1 and

{bα} + βn = {−A} + βn = −A + βn < β2 + βn ≤ β2 + β4 = 4β + 3 < 1.

To show that {bα} + βn > 0, it is enough to show that βn > A. If n is even, then obviously
βn > 0 > A. So assume that n is odd. Let u and v be as in Case 3.1. Then we obtain u ≤ n,
|v − u| ≥ 3, the inequalities in (3.1) and (3.2) hold, and βu − βv−1 < A < −βu−1 + βv .
Again, we have either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction that v − u ≥ 3.
Following the argument in Case 3.1, we obtain A > βu − βv−1 ≥ −βu+1 > 0, which
contradicts the assumption that A is negative. Therefore v − u ≤ −3. Then A < −βu−1 +
βv ≤ −βu−1 + βu−3 = −βu−2. Since u − 2 < n, u is even, and n is odd, we obtain
−βu−2 = −|β|u−2 < −|β|n = βn . Therefore A < βn , as desired. Hence the proof is
complete. 	

Corollary 3.4 For each n ≥ 3 and 1 ≤ b ≤ Fn+1, we have

Fn+1 = �(Fn − b) α� + �bα� + 1 − δ and Fn+2 = �(Fn − b) α2� + �bα2� + 1 − δ,

where δ = [n ≡ 1 (mod 2)][b = Fn].
Proof Let n ≥ 3 and 1 ≤ b ≤ Fn+1. If b = Fn , then we obtain by Lemma 2.5 that
�(Fn − b) α� + �bα� + 1− δ = Fn+1 − [n ≡ 0 (mod 2)] + 1− [n ≡ 1 (mod 2)] = Fn+1.
So suppose b �= Fn . Then δ = 0 and we obtain by Lemmas 2.1, 2.2 and Theorem 3.3,
respectively, that �(Fn − b) α� + �bα� + 1 − δ is equal to

�Fnα − bα + �bα� + 1� = �Fn+1 − βn − {bα} + 1� = Fn+1 + �1 − {bα} − βn� = Fn+1.

This proves the first equality. By writing α2 = α + 1 and applying Lemma 2.1, we see that

�(Fn − b) α2� + �bα2� + 1 − δ = �(Fn − b) α� + �bα� + 1 − δ + Fn = Fn+2.

	

Theorem 3.5 Let B(α), B0(α), B(α2), and B0(α

2) be the sets as defined in (1.1). Then we
have

(i) B(α) + B
(
α2

) = N\ {Fn − 1 | n ≥ 3},
(ii) B0(α) + B

(
α2

) = N\ {Fn − 1 | n ≥ 3 and n is odd}, and
(iii) B(α) + B0

(
α2

) = N\ {Fn − 1 | n ≥ 3 and n is even}.
Proof We first show that B(α) + B

(
α2

) ⊆ N\ {Fn − 1 | n ≥ 3}. It is easy to check that
F3−1, F4−1 /∈ B(α)+ B

(
α2

)
. So let n ≥ 5. In order to get a contradiction, suppose Fn −1

is in B(α) + B
(
α2

)
. Then Fn − 1 = �bα� + ⌊

aα2
⌋
for some a, b ∈ N. If b ≥ Fn−1, then

we obtain by Lemma 2.5 that

�bα� + ⌊
aα2⌋ ≥ �Fn−1α� + ⌊

α2⌋ = Fn − [n ≡ 1 (mod 2)] + 2 > Fn − 1,

which is not in case. So b < Fn−1. Replacing n by n − 1 in Corollary 3.4, we have
⌊

aα2
⌋ =

Fn − 1 − �bα� = �(Fn−1 − b)α� ∈ B(α), so
⌊

aα2
⌋ ∈ B(α) ∩ B(α2), which contradicts

Lemma 2.6. Therefore Fn −1 /∈ B(α)+ B(α2) for any n ≥ 3. This shows that B(α)+ B(α2)

is a subset ofN\{Fn −1 | n ≥ 3}. For the other direction, let m ∈ N\ {Fn − 1 | n ≥ 3}. Then
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there exists n ∈ N such that n ≥ 3 and Fn − 1 < m < Fn+1 − 1. Thus m = Fn − 1 + b
where 1 ≤ b < Fn−1. By Corollary 3.4, we obtain m = �(Fn−1 − b) α� + �bα� + b =
�(Fn−1 − b) α�+�bα2� ∈ B(α)+ B

(
α2

)
. This proves (i). Next B0(α)+ B

(
α2

) = (B(α)+
B(α2))∪ B(α2) = N\{Fn −1 | n ≥ 3 and n is odd}, by (i) and Theorem 3.2. Similarly, (iii)
can be obtained by using (i) and Theorem 3.2. This completes the proof. 	

Remark 3.6 It follows immediately from Beatty’s theorem that B0(α) + B0

(
α2

) = N.

Theorem 3.7 Let B(α), B0(α), B(α2), and B0(α
2) be defined as in (1.1). Then the following

statements hold.

(i) B(α) + B
(
α2

) + B
(
α2

) = N\{1, 2, 3, 4, 6, 9}.
(ii) B0(α) + B

(
α2

) + B
(
α2

) = N\{1, 2, 3, 6}.
(iii) B(α) + B

(
α2

) + B0
(
α2

) = N\{1, 2, 4}.
(iv) B(α) + B0

(
α2

) + B0
(
α2

) = N\{2}.
Proof We can write Theorem 3.5 in another form as

B(α) + B(α2) =
∞⋃

n=4

((Fn − 1, Fn+1 − 1) ∩ N) =
∞⋃

n=4

([
Fn, Fn+1 − 2

] ∩ N
)
.

Then B(α) + B(α2) + ⌊
α2

⌋ = ⋃∞
n=4

([
Fn + 2, Fn+1

] ∩ N
) = N\A, where A = {Fn + 1 |

n ≥ 5} ∪ {1, 2, 3, 4}. Similarly, B(α) + B(α2) + ⌊
2α2

⌋ = N\B where B = {Fm + 4 | m ≥
2} ∪ {1, 2, 3, 4}. Therefore N\(A ∩ B) = (N\A) ∪ (N\B) ⊆ B(α) + B(α2) + B(α2). It is
easy to see that

A ∩ B = ({Fn + 1 | n ≥ 5} ∩ {Fm + 4 | m ≥ 2}) ∪ {1, 2, 3, 4}
= ({Fn + 1 | n ≥ 7} ∩ {Fm + 4 | m ≥ 6}) ∪ {1, 2, 3, 4, 6, 9}.

If n ≥ 7, m ≥ 6, and Fn + 1 = Fm + 4, then n > m and 3 = Fn − Fm ≥ Fn − Fn−1 =
Fn−2 ≥ 5, which is a contradiction. So {Fn + 1 | n ≥ 7} ∩ {Fm + 4 | m ≥ 6} = ∅. Therefore
A∩ B = {1, 2, 3, 4, 6, 9} and thusN\{1, 2, 3, 4, 6, 9} ⊆ B(α)+ B(α2)+ B(α2). It is easy to
check that 1, 2, 3, 4, 6, 9 /∈ B(α) + B(α2) + B(α2). This proves (i). The other parts follows
from (i) and a straightforward verification. 	


The structure of B
(
α2

) + B
(
α2

)
seems to be the most complicated among sumsets

associated with B(α) and B(α2). So we first consider a simpler sumset B
(
α2

) + B
(
α2

) +
B

(
α2

)
.

Theorem 3.8 Let B(α2) and B0(α
2) be defined as in (1.1). Then we have

B
(
α2) + B

(
α2) + B

(
α2) = N\{1, 2, 3, 4, 5, 7, 8, 10, 13, 18, 26},

B0
(
α2) + B

(
α2) + B

(
α2) = N\{1, 2, 3, 5, 8, 13},

B0
(
α2) + B0

(
α2) + B

(
α2) = N\{1, 3, 8}.

Proof Let A1 = �4α2� + �6α2� + B
(
α2

)
, A2 = �5α2� + �5α2� + B

(
α2

)
, and A3 =

�3α2� + �8α2� + B
(
α2

)
. We first show that A1 ∪ A2 ∪ A3 = {n ∈ N | n ≥ 27}. Note that

�3α2�, �4α2�, �5α2�, �6α2�, �8α2� are equal to 7, 10, 13, 15, 20, respectively. Then it is easy
to see that every element in A1 ∪ A2 ∪ A3 is larger than or equal to 27. Next, let n ≥ 27.
Then there exists k ∈ N such that

�4α2� + �6α2� + �kα2� ≤ n < �4α2� + �6α2� + �(k + 1)α2�.
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ByLemma 2.8, we have �(k+1)α2�−�kα2� = 2 or 3, and so n = �4α2�+�6α2�+�kα2�+b,
where b = 0, 1 or 2. If b = 0, then n ∈ A1. If b = 1, then n = �4α2�+�6α2�+�kα2�+1 =
�5α2�+�5α2�+�kα2� ∈ A2. Similarly, if b = 2, then n = �3α2�+�8α2�+�kα2� ∈ A3. In
any case, n ∈ A1∪ A2∪ A3, as required. This implies that B

(
α2

)+ B
(
α2

)+ B
(
α2

)
contains

N∩[27,∞). For the integers inN∩[1, 26], we can straightforwardly check whether they are
in B

(
α2

)+ B
(
α2

)+ B
(
α2

)
or not. For the reader’s convenience, we give the integers which

are in B
(
α2

) + B
(
α2

) + B
(
α2

)
as follows: 6 = 2+ 2+ 2, 9 = 5+ 2+ 2, 11 = 7+ 2+ 2,

12 = 5 + 5 + 2, 14 = 10 + 2 + 2, 15 = 5 + 5 + 5, 16 = 7 + 7 + 2, 17 = 7 + 5 + 5,
19 = 15 + 2 + 2, 20 = 10 + 5 + 5, 21 = 7 + 7 + 7, 22 = 18 + 2 + 2, 23 = 13 + 5 + 5,
24 = 20 + 2 + 2, 25 = 15 + 5 + 5. This proves the first part. The other parts follow from
the first part and straightforward verification. 	


In order to prove Theorem 3.10, it is convenient to use the following observation.

Lemma 3.9 Let n ≥ 3, a ∈ Z, and b, c ∈ N. If Fn + a = ⌊
bα2

⌋ + ⌊
cα2

⌋
, then b and c are

less than Fn−2 + a
α2 .

Proof If b or c ≥ Fn−2 + a
α2 , then

⌊
bα2

⌋ + ⌊
cα2

⌋
is larger than or equal to

⌊
Fn−2α

2 + a
⌋ + ⌊

α2⌋ = Fn − [n ≡ 0 (mod 2)] + a + 2 > Fn + a.

	

The positive integers in N\ (

B
(
α2

) + B
(
α2

))
are 1, 2, 3, 5, 6, 8, 11, 13, 16, 19, 21, 24,

29, 32, 34, 37, 42, 45, 50, 53, 55, . . .. From this, we notice the following pattern.

Theorem 3.10 Let n ∈ N and B(α2) the Beatty set as defined in (1.1). Then the following
statements hold.

(i) Fn /∈ B(α2) + B(α2).
(ii) If n ≥ 5, then Fn − 1 ∈ B(α2) + B(α2).
(iii) If n �= 1, 2, 3, 5, then Fn + 1 ∈ B(α2) + B(α2).
(iv) Fn − 2 /∈ B(α2) + B(α2).
(v) If n �= 1, 2, 4, then Fn + 2 ∈ B(α2) + B(α2).
(vi) If n ≥ 7, then Fn − 3 ∈ B(α2) + B(α2).
(vii) If n ≥ 3, then Fn + 3 /∈ B(α2) + B(α2).

Proof For n ≤ 6, the result is easily checked. So we assume throughout that n ≥ 7. For (i),
suppose for a contradiction that Fn ∈ B(α2) + B(α2). Then Fn = ⌊

bα2
⌋ + ⌊

cα2
⌋
for some

a, b ∈ N. By Lemma 3.9, b and c are less than Fn−2. By Corollary 3.4,
⌊

cα2⌋ − ⌊
(Fn−2 − b)α2⌋ = Fn − ⌊

bα2⌋ − ⌊
(Fn−2 − b)α2⌋ = 1.

But by Lemma 2.8, we know that the difference between the elements in B(α2) is at least
two. So we obtain a contradiction. This proves (i). The statements (ii), (iii), (v), and (vi) also
follow from applications of Corollary 3.4 as follows:

Fn − 1 = ⌊
(Fn−2 − 1)α2⌋ + ⌊

α2⌋ ∈ B(α2) + B(α2),

Fn + 1 = ⌊
(Fn−2 − 2)α2⌋ + ⌊

2α2⌋ + 2

= ⌊
(Fn−2 − 2)α2⌋ + ⌊

3α2⌋ ∈ B(α2) + B(α2),

Fn + 2 = ⌊
(Fn−2 − 1)α2⌋ + ⌊

α2⌋ + 3
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= ⌊
(Fn−2 − 1)α2⌋ + ⌊

2α2⌋ ∈ B(α2) + B(α2),

Fn − 3 = ⌊
(Fn−2 − 3)α2⌋ + ⌊

3α2⌋ − 2

= ⌊
(Fn−2 − 3)α2⌋ + ⌊

2α2⌋ ∈ B(α2) + B(α2).

So it remains to prove (iv) and (vii). Similar to the proof of (i), if Fn − 2 = ⌊
bα2

⌋ + ⌊
cα2

⌋
,

then we have b, c < Fn−2− 2
α2 , Fn = ⌊

(Fn−2 − b)α2
⌋+⌊

bα2
⌋+1, and

⌊
(Fn−2 − b)α2

⌋−
⌊

cα2
⌋ = ⌊

(Fn−2 − b)α2
⌋− (Fn −2−⌊

bα2
⌋
) = 1, which contradicts Lemma 2.8. For (vii),

suppose that Fn + 3 = ⌊
bα2

⌋ + ⌊
cα2

⌋
for some b, c ∈ N. Then by Lemma 3.9, b and c

< Fn−2 + 3
α2 < Fn−1. If b and c = Fn−2, then Fn + 3 = ⌊

bα2
⌋ + ⌊

cα2
⌋ = 2Fn − 2[n ≡ 0

(mod 2)], which leads to F7 ≤ Fn = 3 + 2[n ≡ 0 (mod 2)] ≤ 5, a contradiction. So
one of b, c is not equal to Fn−2. Without loss of generality, assume that b �= Fn−2. So we
can apply Corollary 3.4 and follow the same idea to obtain

⌊
cα2

⌋ − ⌊
(Fn−2 − b)α2

⌋ = 4.
By Lemma 2.8(i), the difference between consecutive terms in B(α2) is either 2 or 3. So
there are k, r ∈ N ∪ {0} such that 4 = 2k + 3r . If r ≥ 2, then 2k + 3r > 4. If r = 1,
then 2k + 3r = 2k + 3 �= 4. So r = 0 and k = 2. This implies that c = Fn−2 − b + 2,⌊

cα2
⌋−⌊

(c − 1)α2
⌋ = ⌊

(c − 1)α2
⌋−⌊

(c − 2)α2
⌋ = 2, which contradicts Lemma 2.8(ii).

So the proof is complete. 	

Our next goal is to determine completely the integers a such that Fn + a ∈ B(α2) + B(α2).
The readerwill see that there is a recurrence and fractal-like behavior involving those integers.

Lemma 3.11 Let n ≥ 5, a ∈ Z, and Fn + a /∈ B(α2) + B(α2) where B(α2) is the set as
defined in (1.1). Then the following statements hold.

(i) For every integer d ∈ [−Fn−3, 0) ∪ (0, Fn−2), we have a + 1 + ⌊
dα2

⌋
/∈ B(α2).

(ii) a + 1 − [n ≡ 1 (mod 2)] /∈ B(α2).

Proof Let 1 ≤ b ≤ Fn−1 and δb = [n ≡ 1 (mod 2)][b = Fn−2]. By Corollary 3.4, we have
Fn + a = ⌊

(Fn−2 − b)α2
⌋ + a + 1 − δb + ⌊

bα2
⌋
. Since Fn + a /∈ B(α2) + B(α2) and⌊

bα2
⌋ ∈ B(α2), we see that

⌊
(Fn−2 − b)α2⌋ + a + 1 − δb /∈ B(α2). (3.3)

Since (3.3) holds for all b ≤ Fn−1, we can substitute b = Fn−2 in (3.3) to obtain (ii).
Similarly, by running b over the integers in [1, Fn−2) ∪ (Fn−2, Fn−1], we obtain (i). 	

Suppose n ≥ 5 and the integers in [Fn, Fn+1] ∩ (B(α2) + B(α2)) are given. Then the next
theorem gives us some integers in [Fn+1, Fn+2] ∩ (B(α2) + B(α2)).

Theorem 3.12 Let B(α2) be the set as defined in (1.1). Let n ≥ 5, a ∈ Z, and 1 ≤ a < Fn −2.
If Fn + a ∈ B(α2) + B(α2), then Fn+1 + a ∈ B(α2) + B(α2).

Proof If n = 5, the result is easily checked. So assume that n ≥ 6. Suppose for a contradiction
that Fn + a ∈ B(α2) + B(α2) but Fn+1 + a /∈ B(α2) + B(α2). By applying Lemma 3.11 to
Fn+1 + a, we obtain that

a + 1 + ⌊
dα2⌋ /∈ B(α2) for 0 < d < Fn−1. (3.4)

Since Fn +a ∈ B(α2)+ B(α2), there are b, c ∈ N such that Fn +a = ⌊
bα2

⌋+⌊
cα2

⌋
. If b <

Fn−2, then by Corollary 3.4, a +1+⌊
(Fn−2 − b)α2

⌋ = Fn +a −⌊
bα2

⌋ = ⌊
cα2

⌋ ∈ B(α2),
which contradicts (3.4). Therefore b ≥ Fn−2. Similarly, by applying the same argument to
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c, we obtain c ≥ Fn−2. Then Fn + a = ⌊
bα2

⌋ + ⌊
cα2

⌋ ≥ 2
⌊

Fn−2α
2
⌋ = 2(Fn − [n ≡ 0

(mod 2)]), which implies a ≥ Fn − 2[n ≡ 0 (mod 2)] contradicting the assumption that
a < Fn − 2. Hence the proof is complete. 	

Remark 3.13 Let n ≥ 4. By Lemma 2.5, we have Fn−3α

2 = Fn−1 − βn−3. So for a ∈ Z,
the condition a ≤ Fn−1 − [n ≡ 1 (mod 2)] is equivalent to a ≤ Fn−3α

2. We will use this
observation later.

To obtain the converse of Theorem 3.12, we first prove the following lemma.

Lemma 3.14 Let B(α2) be the Beatty set as defined in (1.1), n ≥ 5, a, b, c ∈ N, and
1 ≤ a ≤ Fn−3α

2. Suppose Fn + a /∈ B(α2)+ B(α2) and Fn+1 + a = ⌊
bα2

⌋+ ⌊
cα2

⌋
. Then

one of b, c is equal to Fn−1 and the other, say c, satisfying
⌊

cα2
⌋ = a + [n ≡ 1 (mod 2)].

Proof Suppose for a contradiction that both b and c are not equal to Fn−1. Since Fn+1 +a =⌊
bα2

⌋ + ⌊
cα2

⌋
, we obtain by Lemma 3.9 that both b and c are less than Fn−1 + a

α2 ≤ Fn .
So we can apply Corollary 3.4 to write

Fn+1 + a = ⌊
(Fn−1 − b)α2⌋ + ⌊

bα2⌋ + 1 + a,

Fn+1 + a = ⌊
(Fn−1 − c)α2⌋ + ⌊

cα2⌋ + 1 + a.

Since Fn + a /∈ B(α2) + B(α2) and a + 1 + ⌊
(Fn−1 − b)α2

⌋ = Fn+1 + a − ⌊
bα2

⌋ =⌊
cα2

⌋ ∈ B(α2), we obtain byLemma3.11 that Fn−1−b /∈ [−Fn−3, 0)∪(0, Fn−2). Therefore
Fn−1−b ≥ Fn−2, Fn−1−b = 0, or Fn−1−b < −Fn−3. Then b ≤ Fn−3 or b > Fn−1+Fn−3.
Applying the above argument to a + 1 + ⌊

(Fn−1 − c)α2
⌋ = ⌊

bα2
⌋ ∈ B(α2), we also

obtain c ≤ Fn−3 or c > Fn−1 + Fn−3. Recall that b and c < Fn−1 + a
α2 . So if b or

c > Fn−1 + Fn+3, then we would obtain Fn−1 + a
α2 > Fn−1 + Fn−3, which contradicts the

assumption that a ≤ Fn−3α
2. Hence b and c ≤ Fn−3. Then Fn+1 + a = ⌊

bα2
⌋ + ⌊

cα2
⌋ ≤

2
⌊

Fn−3α
2
⌋ ≤ 2Fn−1 < Fn+1 + a, which is a contradiction. Thus b or c is equal to Fn−1.

If b = Fn−1, then Fn+1 + a = ⌊
Fn−1α

2
⌋ + ⌊

cα2
⌋ = Fn+1 − [n ≡ 1 (mod 2)] + ⌊

cα2
⌋
,

and so
⌊

cα2
⌋ = a + [n ≡ 1 (mod 2)]. Similarly, if c = Fn−1, then

⌊
bα2

⌋ = a + [n ≡ 1
(mod 2)]. This completes the proof. 	

Lemma 3.15 Let B(α2) be the set as defined in (1.1), n ≥ 6 and 1 ≤ a ≤ Fn−3α

2. If Fn−1+a
and Fn + a are not in B(α2) + B(α2), then Fn+1 + a /∈ B(α2) + B(α2).

Proof Suppose for a contradiction that Fn−1 + a and Fn + a are not in B(α2) + B(α2) but
Fn+1 + a ∈ B(α2) + B(α2). Then there are b, c ∈ N such that Fn+1 + a = ⌊

bα2
⌋ + ⌊

cα2
⌋
.

By Lemma 3.14, we can assume that b = Fn−1 and
⌊

cα2⌋ = a + [n ≡ 1 (mod 2)]. (3.5)

But by applying Lemma 3.11 to the case Fn−1 + a /∈ B(α2) + B(α2), we obtain that

a + 1 − [n − 1 ≡ 1 (mod 2)] /∈ B(α2), or equivalently,

a + [n ≡ 1 (mod 2)] /∈ B(α2),

which contradicts (3.5). So the proof is complete. 	

Suppose n ≥ 6 and the integers in [Fn, Fn+1] ∩ (B(α2) + B(α2)) are given. Then the next
theorem gives us more than a half of the integers in and outside the set

[Fn+1, Fn+2] ∩ (B(α2) + B(α2)). (3.6)
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Theorem 3.16 Let B(α2) be the Beatty set as defined in (1.1), n ≥ 6, a ∈ Z, and 0 ≤ a <

Fn−1 − 2. Then

Fn + a ∈ B(α2) + B(α2) if and only if Fn+1 + a ∈ B(α2) + B(α2).

Proof If a = 0, the result follows from Theorem 3.10. So assume that a ≥ 1. By The-
orem 3.12, we only need to prove the converse. Assume that Fn + a /∈ B(α2) + B(α2).
Then we obtain by Theorem 3.12 that Fn−1 + a /∈ B(α2) + B(α2). Then by Lemma 3.15,
Fn+1 /∈ B(α2) + B(α2). So the proof is complete. 	

The next theorem gives the remaining integers in (3.6).

Theorem 3.17 Let B(α2) be the set as defined in (1.1), n ≥ 6, a ∈ Z, and 0 ≤ a ≤ Fn−1 −
[n ≡ 1 (mod 2)]. Then Fn +a ∈ B(α2)+B(α2) if and only if Fn+1−2−a ∈ B(α2)+B(α2).

Proof If a = 0, the result follows from Theorem 3.10. So assume that a ≥ 1. Suppose
Fn + a ∈ B(α2) + B(α2) but Fn+1 − 2− a /∈ B(α2) + B(α2). By applying Lemma 3.11 to
Fn+1 − 2 − a, we obtain that

− a − 1 + ⌊
dα2⌋ /∈ B(α2) for d ∈ [−Fn−2, 0) ∪ (0, Fn−1). (3.7)

Since Fn + a ∈ B(α2) + B(α2), there are b, c ∈ N such that Fn + a = ⌊
bα2

⌋ + ⌊
cα2

⌋
.

Then by Lemma 3.9, b and c < Fn−2 + a
α2 . Recall also from Remark 3.13 that a ≤ Fn−3α

2.
If b < Fn−2, then by Corollary 3.4 and the fact given in (3.7), we obtain, respectively,
−a − 1 + ⌊

cα2
⌋ = Fn − 1 − ⌊

bα2
⌋ = ⌊

(Fn−2 − b)α2
⌋ ∈ B(α2), and c ≥ Fn−1, which

contradicts the fact that c < Fn−2 + a
α2 . So b ≥ Fn−2. Similarly, applying the above

argument to c, we have c ≥ Fn−2. Then Fn + a = ⌊
bα2

⌋ + ⌊
bα2

⌋ ≥ 2
⌊

Fn−2α
2
⌋ ≥

2Fn − 2 > Fn + a, which is a contradiction. Hence the first part of this theorem is proved.
For the converse, we also suppose for a contradiction that Fn+1 −2−a ∈ B(α2)+ B(α2)

but Fn+a /∈ B(α2)+B(α2). Then there are b, c ∈ N such that Fn+1−2−a = ⌊
bα2

⌋+⌊
cα2

⌋

and by Lemma 3.11,

a + 1 + ⌊
dα2⌋ /∈ B(α2) for d ∈ [−Fn−3, 0) ∪ (0, Fn−2). (3.8)

By Lemma 3.9, b and c < Fn−1 − a+2
α2 < Fn−1. Then by Corollary 3.4, we obtain

Fn+1 − 2 − a = ⌊
(Fn−1 − b)α2⌋ + ⌊

bα2⌋ − a − 1,

which impliesa+1+⌊
cα2

⌋ = ⌊
(Fn−1 − b)α2

⌋ ∈ B(α2). So by (3.8), c ≥ Fn−2.By the same
argument, b ≥ Fn−2. Therefore Fn+1 − 2− a = ⌊

bα2
⌋+ ⌊

cα2
⌋ ≥ 2

⌊
Fn−2α

2
⌋ ≥ 2Fn − 2,

which implies a ≤ Fn−1 − Fn < 0, a contradiction. Hence the proof is complete. 	

Theorems 3.10, 3.16, and 3.17 give a complete description of B(α2)+B(α2).We illustrate

this in Example 3.18 and Theorem 3.20 as follows.

Example 3.18 For convenience, if A ⊆ N, we write Ac to denote the complement of A in N.
That is Ac = N\A. By direct calculation, the elements in (B(α2) + B(α2))c ∩ [1, F9] are
1, 2, 3, 5, 6, 8, 11, 13, 16, 19, 21, 24, 29, 32, 34. To determine the elements in [F9, F10] ∩
(B(α2) + B(α2))c, we first observe that for 0 ≤ a ≤ F7,

F8 + a /∈ B(α2) + B(α2) if and only if a ∈ {0, 3, 8, 11, 13}.
Applying Theorem 3.16 for n = 8, we obtain that for 0 ≤ a < F7 − 2,

F9 + a /∈ B(α2) + B(α2) if and only if a ∈ {0, 3, 8}.
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Applying Theorem 3.17 for n = 9, we obtain that for 0 ≤ a < F7 − 2,

F10 − 2 − a /∈ B(α2) + B(α2) if and only if a ∈ {0, 3, 8}.
In addition, F10 /∈ B(α2) + B(α2) by Theorem 3.10. The length of the interval [F9, F10] is
F10 − F9 = F8 which is less than 2(F7 − 2). Therefore the elements in (B(α2) + B(α2))c ∩
[F9, F10] are completely determined. They are F9, F9 + 3, F9 + 8, F10 − 10, F10 − 5, F10 −
2, F10, which are 34, 37, 42, 45, 50, 53, 55. By doing this process repeatedly, we obtain
(B(α2) + B(α2))c ∩ A where A = [F10, F11], [F11, F12], [F12, F13], and so on. Thus we
can find (B(α2) + B(α2)) ∩ [1, Fn] for any given n.

Remark 3.19 In the abstract and introduction, we mention that the structure of the set X =:
B(α2) + B(α2) has some kinds of fractal and palindromic patterns. This is not intended
to be a precise or mathematically rigorous statement. What we (vaguely) means is that the
distribution of the elements of X in the interval [Fn, Fn+1] looks like fractal for all n ≥ 6.
Suppose we display the points of X ∩[Fn+1, Fn+2] on the real line and zoom in for a smaller
scale, namely, X ∩ [Fn+1, Fn+1 + Fn−1 − 3]. Then, by Theorem 3.16, the picture (in a
smaller scale) is the same as that of X ∩[Fn, Fn+1]. Then by Theorem 3.16 again, the picture
(in a smaller scale) of X ∩ [Fn+2, Fn+3] is the same as that of X ∩ [Fn+1, Fn+2]. Since
Theorem 3.16 holds for all n ≥ 6, we can continue this process and see the distribution of the
elements of X on [Fn, Fn+1], [Fn+1, Fn+2], [Fn+2, Fn+3], and so on, as fractal-like pattern.
See the figure shown below for an illustration.

For the palindromicity, recall that a positive integer n can be written uniquely in the
decimal expansion as

n = (akak−1 . . . a0)10 = ak10
k + ak−110

k−1 + · · · + a0,

where ak �= 0 and 0 ≤ ai ≤ 9 for all i , and n is called a palindrome or a palindromic number
if ak−i = ai for 0 ≤ i ≤ �k/2�. So if n is a palindrome and we know the values of ak−i only
for 0 ≤ i ≤ �k/2�, then we can completely find all the decimal digits of n. Now suppose
n ≥ 6 and the elements of X ∩ [Fn, Fn+1] are known. We can divide [Fn+1, Fn+2] into two
overlapped intervals:

the left-hand interval L =: [Fn+1, Fn+1 + Fn−1 − 3]
the right-hand interval R =: [Fn+2 − Fn−1 − 1, Fn+2].

By Theorem 3.16, X ∩ L is completely determined by X ∩ [Fn, Fn+1]. Theorem 3.17 gives
us the palindromic pattern which helps us obtain all elements in R from L . Hence we can
basically says that for all n ≥ 6, the distribution of points in X ∩[Fn+1, Fn+2] are completely
determined by that of X ∩ [Fn, Fn+1] by the fractal-like and palindromic patterns.

In general, we have the following result.

Theorem 3.20 Let B(α2) be the set as defined in (1.1). For each n ∈ N, let An = {a ∈
Z | 0 ≤ a ≤ Fn−1 and Fn + a /∈ B(α2) + B(α2)}. Then A1 = {0}, A2 = A3 = {0, 1},
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A4 = {0, 2}, A5 = {0, 1, 3}, A6 = {0, 3, 5}, A7 = {0, 3, 6, 8}, and for n ≥ 8, the set An is
the disjoint union

An = (An−1\{Fn−2, Fn−2 − 2})
∪ {Fn−1 − 2 − a | a ∈ An−1 and 0 ≤ a ≤ Fn−3} ∪ {Fn−1}.

Proof The set A1, A2, . . . , A7 can be obtained by direct calculation. So assume that n ≥ 8.
Since Fn+Fn−1 = Fn+1 /∈ B(α2)+B(α2), Fn−1 ∈ An . Thenwewrite An = C∪B∪{Fn−1},
where C = An ∩ [0, Fn−2 − 2) and B = An ∩ [Fn−2 − 2, Fn−1). Obviously, the sets C , B,
and {Fn−1} are disjoint. So it remains to show that

C = An−1\{Fn−2, Fn−2 − 2} and (3.9)

B = {Fn−1 − 2 − a | a ∈ An−1 and 0 ≤ a ≤ Fn−3}. (3.10)

To prove (3.9), let a ∈ C . Then 0 ≤ a < Fn−2 − 2 and Fn + a /∈ B(α2) + B(α2). Applying
Theorem 3.16, we obtain Fn−1 + a /∈ B(α2) + B(α2). So a ∈ An−1\{Fn−2, Fn−2 − 2}.
Conversely, suppose that a ∈ An−1\{Fn−2, Fn−2 −2}. Then a ∈ [0, Fn−2 −2)∪{Fn−2 −1}
and Fn−1 + a /∈ B(α2) + B(α2). If a = Fn−2 − 1, then we obtain by Theorem 3.10 that
Fn−1 + a = Fn − 1 ∈ B(α2) + B(α2), which is not the case. So 0 ≤ a < Fn−2 − 2. In
addition, by Theorem 3.16, Fn + a /∈ B(α2) + B(α2). Hence a ∈ An ∩ [0, Fn−2 − 2) = C .
This proves (3.9).

Next, let b ∈ B. Then Fn−2−2 ≤ b < Fn−1 and Fn+b /∈ B(α2)+B(α2). If b = Fn−1−1,
then we obtain by Theorem 3.10 that Fn + b = Fn+1 − 1 ∈ B(α2)+ B(α2), which is not the
case. So b ≤ Fn−1−2. Let a = Fn−1−2−b. Then b = Fn−1−2−a and 0 ≤ a ≤ Fn−3. So it
remains to show that a ∈ An−1. Since Fn +b /∈ B(α2)+ B(α2), we obtain by Theorem 3.17
that Fn + a = Fn+1 − 2 − (Fn−1 − 2 − a) = Fn+1 − 2 − b /∈ B(α2) + B(α2). Since
Fn + a /∈ B(α2) + B(α2), we obtain by Theorem 3.16 that Fn−1 + a /∈ B(α2) + B(α2). So
a ∈ An−1, as required.

Finally, suppose b = Fn−1−2−a where a ∈ An−1 and 0 ≤ a ≤ Fn−3. Then Fn−2−2 ≤
b < Fn−1. Since a ∈ An−1, Fn−1 + a /∈ B(α2) + B(α2). Then by Theorem 3.16, Fn + a /∈
B(α2)+B(α2). Applying Theorem 3.17, we obtain Fn +b = Fn+1−2−a /∈ B(α2)+B(α2).
So b ∈ An ∩ [Fn−2 − 2, Fn−1) = B, as desired. This completes the proof. 	


Some possible questions for future research are as follows.

Questions Q1 Let ( fn) be a kth order linear recurrence sequence defined by

fn = fn−1 + fn−2 + · · · + fn−k for n ≥ 2

with the initial values f−(k−2), f−(k−3), . . . , f0, f1 ∈ Z. Let α be the root of the charac-
teristic polynomial xk − xk−1 − xk−2 − · · · − 1 with maximal absolute value. Can we
described the structure of the sumsets associated with B(α), B(α2), . . . , B(αk)? Is the
structure best described in terms of the k-step Fibonacci sequence (F (k)

n ) defined by the
same recurrence as ( fn) but with the initial values

F (k)
−(k−2) = F (k)

−(k−3) = · · · = F (k)
−1 = F (k)

0 = 0 and F (k)
1 = 1?

Q2 Let α = (1+√
5)/2. Since α2−α−1 = 0, the set {α2, α, 1} is not linearly independent

over Q. Suppose {αk, αk−1, . . . , α, 1} is linearly independent over Q, for example, α is
an algebraic number of degree larger than k, α = e, or α = π , can we describe the
structure of the sumsets associated with B(αk), B(αk−1), . . . , B(α)?
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Q3 Let a, b ∈ Z, (a, b) = 1, b �= 0, and let (un) be the Lucas sequence of the first kind
defined by un = aun−1 + bun−2 for n ≥ 2 with u0 = 0 and u1 = 1. Let α be the root
of the characteristic polynomial x2 − ax − b. Is the structure of the sumsets associated
with B(α) and B(α2) connected to (un)?
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Abstract

Let α be the golden ratio and βα = −1. In the study of sumsets

associated with Wythoff sequences, it is important to prove the in-

equality 0 < {bα}+ βn < 1 for integers b and n in a certain range. In

this article, we continue the investigation by replacing {bα} + βn by√
5βn−1 − {bα}.

1 Introduction

Wythoff sequences arise very often in combinatorics and combinatorial game
theory. As a result, many of their combinatorial properties have been ex-
tensively studied (see, for example, the works of Fraenkel [1, 2], Kimberling
[5], Pitman [8], and Wythoff [10]). However, as far as we know, there are
only a few number theoretic results concerning the sumsets associated with
Wythoff sequences. In order to describe the structure of such sumsets, it is
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important to prove the inequality [4, Theorem 3.3]:

0 < {bα}+ βn < 1 for all integers n ≥ 5 and 1 ≤ b ≤ Fn+1 with b 6= Fn.
(1.1)

Here and throughout this article, α = (1 +
√
5)/2 is the golden ratio, βα =

−1, x is a real number, a, b, m, n are integers, ⌊x⌋ is the largest integer
less than or equal to x, {x} = x − ⌊x⌋, Fn and Ln are the nth Fibonacci
number and the nth Lucas number which are defined by Fn = Fn−1 + Fn−2,
Ln = Ln−1 + Ln−2 for n ≥ 2 with the initial values F0 = 0, F1 = 1, L0 = 2,
and L1 = 1. Moreover, if P is a mathematical statement, then the Iverson
notation [P ] is defined by

[P ] =

{

1, if P holds;

0, otherwise.

In this article, we replace {bα} + βn in (1.1) by
√
5βn−1 − {bα}. Our

interest is that we have an application in mind. Indeed, it is useful in the
study of sumsets associated with Wythoff sequences and Lucas numbers.
For a short discussion on the sumsets associated with some Beatty sequences
generated by a real number x > 1 with x2 − ax− b = 0 for some a, b ∈ Z see
the last section of [4].

2 Preliminaries and Lemmas

We often use the following facts:
Let −1 < β < 0 and (|βn|)n≥1 is strictly decreasing. If a1 > a2 > · · · > ar are
even positive integers, then 0 < βa1 < βa2 < · · · < βar . If b1 > b2 > · · · > br
are odd positive integers, then 0 > βb1 > βb2 > · · · > βbr .
In addition, let α and β are roots of the equation x2 − x − 1 = 0. So, for
instance, αβ = −1, β2 = β + 1,

√
5β + β = −2,

√
5β2 + 1 = −3β, and

βn +
√
5βn−1 + βn−2 = 0 for all n ≥ 2.

Moreover, it is useful to have the following numerical approximations:
−0.619 < β < −0.618, −0.237 < β3 < −0.236, 0.854 <

√
5β2 < 0.855,

−0.528 <
√
5β3 < −0.527, 0.326 <

√
5β4 < 0.327.

The following results are also applied throughout this article sometimes with-
out reference.

Lemma 2.1. For n ∈ Z and x, y ∈ R, the following statements hold:

(i) ⌊n+ x⌋ = n + ⌊x⌋.
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(ii) {n+ x} = {x}.

(iii) 0 ≤ {x} < 1.

(iv) ⌊x+ y⌋ =
{

⌊x⌋ + ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋ + ⌊y⌋+ 1, if {x}+ {y} ≥ 1.

Proof. These are well-known and can be proved easily. For more details, see
[3, Chapter 3]. We also refer the reader to [7] and [9, Proof of Lemma 2.6]
for a nice application of these properties.

Lemma 2.2. The following statements hold for all n ∈ N ∪ {0} :

(i) (Binet’s formula) Ln = αn + βn.

(ii) βLn+1 + Ln = −
√
5βn+1.

(iii) Lnα = Ln+1 +
√
5βn.

Proof. The formula (i) is well-known. Multiplying (ii) by α, we obtain (iii).
The formula (ii) follows a straightforward calculation:
βLn+1 + Ln is equal to

βαn+1 + βn+2 + αn + βn = βn+2 + βn = βn(−
√
5β) = −

√
5βn+1.

Lemma 2.3. (Zeckendorf’s theorem [11]) For each n ∈ N, n = Fa1
+ Fa2

+
· · ·+Faℓ

where Fa1
is the largest Fibonacci number not exceeding n, ai−1−ai ≥

2 for every i = 2, 3, . . . , ℓ, and aℓ ≥ 2.

Proof. This is well-known and can be proved by using the greedy algorithm.
See also [6] for a more general result.

Lemma 2.4. [4, Lemma 2.4] If x1, x2, . . . , xn ∈ R, then

{x1 + x2 + · · ·+ xn} = {{x1}+ {x2}+ · · ·+ {xn}}.

Lemma 2.5. Let n ≥ 2. Then the following statements hold:

(i) ⌊Fnα⌋ = Fn+1 − [n ≡ 0 (mod 2)].

(ii) ⌊Fnα
2⌋ = Fn+2 − [n ≡ 0 (mod 2)].

(iii) {Fnα} = −βn + [n ≡ 0 (mod 2)].
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(iv) {Fnα
2} = {Fnα}.

(v) ⌊Lnα⌋ = Ln+1 − [n ≡ 1 (mod 2)].

(vi) {Lnα} =
√
5βn + [n ≡ 1 (mod 2)].

(vii) ⌊Lnα
2⌋ = Ln+2 − [n ≡ 1 (mod 2)].

(viii) {Lnα
2} = {Lnα}.

Proof. The proofs of (i) to (iv) can be found in [4, Lemma 2.5]. By Lemma
2.2(iii), we obtain ⌊Lnα⌋ = Ln+1 + ⌊

√
5βn⌋. If n is even, then 0 <

√
5βn ≤√

5β2 < 1, and so ⌊
√
5βn⌋ = 0. If n is odd, then −1 <

√
5β3 ≤

√
5βn < 0

and thus ⌊
√
5βn⌋ = −1. This implies (v). Then (vi) is a consequence of (v)

and Lemma 2.2(iii). By writing α2 = α + 1, we obtain (vii) from (v), and
(viii) from Lemma 2.1(ii). This completes the proof.

3 Main results

The proof of the following theorem is similar to that of [4, Theroem 3.3].
In fact, applying Theorem 3.3 of [4] leads to our main theorem but with a
smaller range of b, which is not enough in our application. Therefore, we still
need to adjust the proof from [4] to obtain the following theorem:

Theorem 3.1. Let n ≥ 5 and 1 ≤ b ≤ Fn+1. Then the following statements

hold:

(i) If b = Ln−1, then
√
5βn−1 − {bα} = −[n ≡ 0 (mod 2)].

(ii) If b ∈ {Fn−2, Fn}, then 0 <
√
5βn−1 − {bα}+ 2[n ≡ 0 (mod 2)] < 1.

(iii) If b /∈ {Fn−2, Fn, Ln−1}, then −1 <
√
5βn−1 − {bα} < 0.

Proof. The statement (i) follows immediately from Lemma 2.5(vi). For (ii),
let b ∈ {Fn−2, Fn} and A =

√
5βn−1 − {bα} + 2[n ≡ 0 (mod 2)]. Since

βn +
√
5βn−1 + βn−2 = 0, we obtain by Lemma 2.5(iii) that if b = Fn, then

A =
√
5βn−1 + βn + [n ≡ 0 (mod 2)] = −βn−2 + [n ≡ 0 (mod 2)],

if b = Fn−2, then

A =
√
5βn−1 + βn−2 + [n ≡ 0 (mod 2)] = −βn + [n ≡ 0 (mod 2)].
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By calculating A according to the parity of n, it is not difficult to see that
0 < A < 1. This proves (ii). For (iii), if b = Fn+1, then we apply Lemma
2.5(iii) to obtain

√
5βn−1 − {bα} =

√
5βn−1 + βn+1 − [n ≡ 1 (mod 2)]

= βn−3 − [n ≡ 1 (mod 2)],

which is in the interval (−1, 0). Next, let B =
√
5βn−1−{bα}+1, where b is

not equal to any of Fn−2, Fn, Ln−1, Fn+1. We need to show that 0 < B < 1.
Case 1 b = Fk where 2 ≤ k ≤ n− 3 or k = n− 1.
Case 1.1 b = F2. Then by Lemma 2.5, B =

√
5βn−1 + β2. Therefore,

B ≤
√
5β4 + β2 = β2(−3β) = −3β3 < 1. If n is odd, then it is obvious that

B > 0. If n is even, then n ≥ 6, and B ≥
√
5β5 + β2 = β2(

√
5β3 + 1) > 0.

Case 1.2 b = Fn−1. Then by Lemma 2.5,

B =
√
5βn−1 + βn−1 − [n ≡ 1 (mod 2)] + 1.

If n is even, then B < 1 and B ≥ 1 + β5 +
√
5β5 = 1− 2β4 > 0. If n is odd,

then B > 0 and B ≤
√
5β4 + β4 = −2β3 < 1.

Case 1.3 b = Fk and 3 ≤ k ≤ n− 3. This case occurs only when n ≥ 6. By
Lemma 2.5,

B =
√
5βn−1 + βk − [k ≡ 0 (mod 2)] + 1.

We first consider the case that k is even. Then B =
√
5βn−1 + βk. If n

is odd, then B > 0 and B ≤
√
5β4 + β4 = −2β3 < 1. If n is even, then

B < βk ≤ β4 < 1, k ≤ n−4, and B ≥
√
5βn−1+βn−4 = βn−4(

√
5β3+1) > 0.

Next, suppose k is odd. Then B =
√
5βn−1+βk+1. If n is even, then B < 1

and B ≥
√
5β5 + β3 + 1 = 1 − 3β4 > 0. If n is odd, then k ≤ n − 4,

B >
√
5βn−1 > 0 and B ≤

√
5βn−1 + βn−4 + 1 < 1.

Case 2 Fk < b < Fk+1 for some k ∈ {4, 5, . . . , n}. We apply Lemma 2.5
without further reference. By Zeckendorf’s theorem, we can write

b = Fa1
+ Fa2

+ · · ·+ Faℓ
,

where ℓ ≥ 2, k = a1 > a2 > · · · > aℓ ≥ 2 and ai−1 − ai ≥ 2 for every
i = 2, 3, . . . , ℓ. Then by Lemma 2.4, we obtain

{bα} = {{Fa1
α}+ {Fa2

α}+ · · ·+ {Faℓ
α}},

which is equal to

{(1− βb1 + 1− βb2 + · · ·+ 1− βbr) + (−βc1 − βc2 − · · · − βcs)},
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where {b1, b2, . . . , br} ∪ {c1, c2, . . . , cs} = {a1, a2, . . . , aℓ}, b1 > b2 > · · · > br
are even numbers, and c1 > c2 > · · · > cs are odd numbers. Notice that one
of the sets {b1, b2, . . . , br} and {c1, c2, . . . , cs}may be empty. In this case, such
a set disappears from the subsequence calculation. Also, for convenience, we
let A = βb1 + βb2 + · · ·+ βbr + βc1 + βc2 + · · ·+ βcs. Then. by Lemma 2.1,
{bα} = {−A}. To show that 0 < B < 1, it is enough to prove

√
5βn−1 < {bα} < 1 +

√
5βn−1.

Case 2.1 {b1, b2, . . . , br} is empty. Then

A = βc1 + βc2 + · · ·+ βcs > β3 + β5 + · · · = β3

1− β2
= −β2.

Therefore 0 < −A < β2 < 1 and so {bα} = {−A} = −A. If n is even,
then obviously {bα} > 0 >

√
5βn−1 and {bα} = −A < β2 < 1 +

√
5β3 <

1+
√
5βn−1. So assume that n is odd. Then {bα} = −A < β2 < 1+

√
5βn−1,

and {bα} = −A = |β|c1 + |β|c2 + · · ·+ |β|cs. If ℓ ≥ 3, then s ≥ 3, and so

{bα} ≥ |β|c1 + |β|c2+ |β|c3 ≥ |β|n+ |β|n−2+ |β|n−4 > |β|n+ |β|n−2 =
√
5βn−1.

Suppose ℓ = 2. Then s = 2 and {bα} = |β|c1 + |β|c2. If c1 6= n, then

|β|c1 + |β|c2 ≥ |β|n−2 + |β|n−4 > |β|n−2 + |β|n = −(βn + βn−2) =
√
5βn−1.

Since Ln−1 = Fn + Fn−2 and b 6= Ln−1, we see that {c1, c2} 6= {n, n − 2}.
Therefore, if c1 = n, then c2 6= n− 2, and so c2 ≤ n− 4

|β|c1 + |β|c2 ≥ |β|n + |β|n−4 > |β|n + |β|n−2 =
√
5βn−1.

In any case, {bα} >
√
5βn−1, as required.

Case 2.2 {c1, c2, . . . , cs} is empty. Then

A = βb1 + βb2 + · · ·+ βbr < β2 + β4 + · · · = β2

1− β2
= −β.

Therefore −1 < β < −A < 0 and {bα} = {−A} = 1−A. Suppose n is even.
Then {bα} > 0 >

√
5βn−1 and {bα} = 1−A = 1− βb1 − βb2 − · · · − βbr . As

in the proof of Case 2.1, if ℓ ≥ 3, then r ≥ 3 and

{bα} ≤ 1−βb1−βb2−βb3 ≤ 1−βn−βn−2−βn−4 < 1−βn−βn−2 = 1+
√
5βn−1.
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If ℓ = 2 and b1 6= n, then

{bα} = 1− βb1 − βb2 ≤ 1− βn−2 − βn−4 < 1− βn−2 − βn = 1 +
√
5βn−1.

If ℓ = 2 and b1 = n, then b2 ≤ n− 4 and

{bα} = 1− βb1 − βb2 ≤ 1− βn − βn−4 < 1− βn − βn−2 = 1 +
√
5βn−1.

If n is odd, then {bα} < 1 < 1 +
√
5βn−1 and {bα} = 1−A > 1 + β = β2 ≥

βn−3 ≥
√
5βn−1.

Case 2.3 {b1, b2, . . . , br} and {c1, c2, . . . , cs} are not empty. Then there is
some cancellation in the sum defining A. As in Cases 2.1 and 2.2, we have
A < βb1 + βb2 + · · ·+ βbr < −β and A > βc1 + βc2 + · · ·+ βcs > −β2.
Case 2.3.1 A is positive. Then −1 < β < −A < 0, and so {bα} = {−A} =
1− A. If n is odd, then {bα} < 1 +

√
5βn−1 and

{bα} = 1− A > 1 + β >
√
5β4 ≥

√
5βn−1.

Assume that n is even. Then {bα} > 0 >
√
5βn−1. It remains to show that

{bα} < 1 +
√
5βn−1. Let u = min{b1, b2, . . . , br} and v = min{c1, c2, . . . , cs}.

Since ai−1 − ai ≥ 2 for all i = 2, 3, . . . , ℓ and a1 = k ≤ n, we obtain that
u ≤ n and |v − u| ≥ 3. Then

βu ≤ βb1 + βb2 + · · ·+ βbr < βu + βu+2 + βu+4 + · · · = βu

1− β2
= −βu−1,

(3.2)

βv ≥ βc1 + βc2 + · · ·+ βcs > βv + βv+2 + βv+4 + · · · = βv

1− β2
= −βv−1.

(3.3)

By (3.2) and (3.3), we obtain βu − βv−1 < A < βv − βu−1. Since |v− u| ≥ 3,
we see that either v − u ≥ 3 or v − u ≤ −3. Suppose for a contradiction
that v − u ≤ −3. Since v ≤ u − 3 and both v and u − 3 are odd, we have
βv ≤ βu−3. Thus A < βv−βu−1 ≤ βu−3−βu−1 = βu−3(1−β2) = −βu−2 < 0,
which contradicts the assumption that A is positive. Hence v − u ≥ 3.
Since v − 1 ≥ u + 2 and both v − 1 and u + 2 are even, βv−1 ≤ βu+2. So
A > βu − βu+2 = βu(1 − β2) = −βu+1. We have u ≤ v − 3 ≤ n − 3. Thus
u+ 1 ≤ n− 2. Since n− 2 is even and u+ 1 is odd, we have u+ 1 ≤ n− 3.
Then {bα} = 1 − A < 1 + βu+1 ≤ 1 + βn−3. Since

√
5β2 < 1 and n − 3 is

odd,
√
5βn−1 > βn−3. Therefore {bα} < 1+βn−3 < 1+

√
5βn−1, as required.

Case 2.3.2 A is negative. Then 0 < −A < β2 < 1. Then {bα} = {−A} =
−A. We first show that {bα} < 1+

√
5βn−1. If n is odd, then {bα} < 1 < 1+
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√
5βn−1. If n is even, then {bα} = −A < β2 < 1+

√
5β3 < 1+

√
5βn−1. Next,

we show that {bα} >
√
5βn−1. If n is even, then

√
5βn−1 < 0 < {bα}. So

assume that n is odd. Let u = min{b1, b2, . . . , br} and v = min{c1, c2, . . . , cs}.
As in Case 2.3.1, we have u ≤ n, |v − u| ≥ 3, the equalities (3.2) and (3.3)
hold, and βu − βv−1 < A < βv − βu−1. Since |v − u| ≥ 3, we see that either
v−u ≥ 3 or v−u ≤ −3. If v−u ≥ 3, then βv−1 ≤ βu+2 and A > βu−βv−1 ≥
βu−βu+2 = −βu+1 > 0, which contradicts the assumption that A < 0. Thus
v − u ≤ −3, and so A < βu−3 − βu−1 = −βu−2. Since u ≤ n, u is even
and n is odd, we have u − 2 ≤ n − 3. Then −A > βu−2 ≥ βn−3 >

√
5βn−1.

Therefore {bα} = −A >
√
5βn−1 as desired. This completes the proof.

Theorem 3.1 leads to a short proof of [4, Theorem 3.3].

Corollary 3.2. [4, Theorem 3.3] Let n ≥ 5, 1 ≤ b ≤ Fn+1, and b 6= Fn.

Then 0 < {bα}+ βn < 1.

Proof. If b = Fn−2 or b = Ln−1, we can apply Lemma 2.5 to obtain the
desired result. So suppose that b 6= Fn−2 and b 6= Ln−1. We first consider the
case n is odd. Then it is obvious that {bα}+βn < 1. For the other inequality,
we apply Theorem 3.1 to obtain {bα} >

√
5βn−1 > −βn. Similarly, if n is

even, then it is immediate that {bα}+βn > 0 and by using Theorem 3.1, we
obtain {bα} < 1 +

√
5βn−1 < 1− βn. This completes the proof.

It is possible to extend the range of b in Theorem 3.1 and Corollary
3.2 but the results are not nice and we do not need them in our application.
Therefore, we only give some special cases in an example and leave the general
case to the interested readers.

Example 3.3. Let n ≥ 5, k ≥ n+2, b = Fk, and B = {bα}+ βn. Then the

following statements hold.

(i) If k and n are odd, then −1 < B < 0.

(ii) If k 6≡ n (mod 2), then 0 < B < 1.

(iii) If k and n are even, then 1 < B < 2.

Proof. By Lemma 2.5, B = βn − βk + [k ≡ 0 (mod 2)].
Case 1 k is odd. Then B = βn − βk. If n is odd, then −1 < βn <
βn+2 ≤ βk < 0, and so −1 < B < 0. If n is even, then k ≥ n + 3, and
0 < B ≤ βn − βn+3 = −2βn+1 < 1.
Case 2 k is even. Then B = βn − βk + 1. If n is odd, then B < 1,
k ≥ n + 3, and B ≥ 1 + βn − βn+3 = 1 − 2βn+1 > 0. If n is even, then
0 < βk ≤ βn+2 < βn < 1, and so 1 < B < 2. This completes the proof.
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