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Chapter 1

Introduction

Let M = (M ;F ) be a finite algebra. An n-ary relation r on M is said to

be algebraic over M if r forms a subalgebra of Mn; or equivalently, the smallest

clone ⟨F ⟩ containing F is a subclone of the clone of all operations preserving r. An

algebraic relation is concerned not only in the concepts of algebra, but also in clone

theory. However for a large n or cardinality of M , the set Mn is very large; so, it

is complicated to study and see some properties of n-ary algebraic relation over an

algebra M. So, it is interesting to find a supportive tool to investigate an algebraic

relation.

A graph M is a structure consisting of a set M of vertices and a set Θ ⊆M×M

of edges. If Θ is tolerance, reflexive and symmetric, then M is called a reflexive graph.

A graph was extensively studied since it can be represented by a picture. A graph

is generalized as a relational set (or briefly, reset), a structure consisting of a set M

and a set of finitary relations on M . Some problems about reset M were solved via

an M-colored reset (H, h), a pair of reset H of the same type of M and a partial

function h from H to M .

A Galois connection is a special connection between two sets of objects (usu-

ally) of different kinds. It is a useful tool to study properties of one kind of objects

via the properties of the other (normally simpler) kind of objects. In [6], Davey,

Haviar and Priestley gave a characterization of algebraic relations over M in terms of

morphisms between two resets. We will formulate a Galois connection between the

set of M-colored resets and the set of algebraic relations from their characterization
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and then apply the Galois connection to solve some problems in both algebra and

clone theory.

In chapter 2, we summarize some basic concepts about clone theory, Galois

connection, duality and relational set which are used in the sequel.

In chapter 3, we show that if M = (M ;F ) is constantive; that is, ⟨F ⟩ contains

all constants, and dualisable of finite type, then there exists an algebraic relation r

such that (M ; r,T ) yields an optimal duality on A = ISP(M).

In chapter 4, we apply the Galois connection together with NU-duality The-

orem [5] to show a duality for a majority tolerance-primal algebra M = (M ;F ); that

is, ⟨F ⟩ contains a majority operation and all operations in ⟨F ⟩ preserve a tolerance

relation; and then we characterize all maximal clones containing ⟨F ⟩.



Chapter 2

Preliminaries

In this thesis, we study a Galois connection between algebraic relations and

colored resets and then we apply it to solve some problems in duality and clone theory.

According to unfamiliar concepts which are used in the sequel, we will introduce and

review them in this chapter.

2.1 Clone Theory

Let M be a finite set and N be the set of all natural numbers. For each n ∈ N,

a function f ∶Mm →M is called an m-ary operation on M and is said to have arity

m. Denote Om(M) the set of all m-ary operations on M and let O(M) ∶= ⋃
n∈N
On(M).

For each m, i ∈ N with i ≤m, the function emi ∶Mm →M defined by

emi (a1, . . . , am) = ai

for all a1, . . . , am ∈M is called a projection function. A subset C of O(M) is called a

clone (on M) if C contains all projection functions and is closed under composition;

that is, if f1, . . . , fn are k-ary functions in C and g is an n-ary function in C for some

k,n ∈ N, then g(f1, . . . , fn) ∈ C where g(f1, . . . , fn) ∶Mk →M is defined by

g(f1, . . . , fn)(a1, . . . , ak) = g(f1(a1, . . . , ak), . . . , fn(a1, . . . , ak))

for all a1, . . . , ak ∈ M . A clone on a 2-elements set is called the Boolean clone. For

clones C1 and C2 on M , C1 is called a subclone of C2 if C1 ⊆ C2. Note that O(M) is

the greatest clone and is called the full clone (on M).

3
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For each h ∈ N, a subset ρ of Mh is called an h-ary relation on M . Denote

Rh(M) the set of all h-ary relations on M and let R(M) ∶= ⋃
n∈N
Rn(M). For each n-ary

operation f and h-ary relation ρ on M , we say that f preserves ρ or ρ is invariant

under f if

(f(x11, . . . , xn1), . . . , f(x1h, . . . , xnh)) ∈ ρ

whenever (x11, . . . , x1h), . . . , (xn1 , . . . , xnh) ∈ ρ.

Example 2.1 Let M = {a0, a1, a2, a3} and

ρ = {(a0, a1), (a1, a2), (a2, a3), (a3, a0)}

⋃{(a1, a0), (a2, a1), (a3, a2), (a0, a3)}⋃{(a0, a0), (a2, a2)} .

Then M and ρ can be shown as a picture such that elements in M are represented

as vertices and each element (x, y) in ρ is represented by a line joining x to y.

s s

s s

m

m

a0

a3

a1

a2

Figure 1. A picture representing the sets M and ρ.

Define functions f1 and f2 from M to M by

f1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 if x = a0,

a1 if x = a1 or a3,

a2 if x = a2

and

f2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a0 if x = a0 or a1,

a2 if x = a2 or a3.
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s s

s s

m

m

a0

a3

a1

a2

s s

s

m

m

a0 = f1(a0) a1 = f1(a1) = f1(a3)

a2 = f1(a2)

-
f1

Figure 2. A picture representing the function f1.

�
�
�
�
�
�

s s

s s

m

m

a0

a3

a1

a2

s

s

m

m

a0 = f2(a0) = f2(a1)

a2 = f2(a2) = f2(a3)

-
f2

Figure 3. A picture representing the function f2.

Then (f1(a0), f1(a0)) = (a0, a0), (f1(a2), f1(a2)) = (a2, a2), (f1(a0), f1(a1)) = (a0, a1),

(f1(a1), f1(a2)) = (a1, a2), (f1(a0), f1(a3)) = (a0, a1) and (f1(a2), f1(a3)) = (a2, a1),

(f1(a1), f1(a0)) = (a1, a0), (f1(a2), f1(a1)) = (a2, a1), (f1(a3), f1(a0)) = (a1, a0) and

(f1(a3), f1(a2)) = (a1, a2); and all belong to ρ; so, f1 preserves ρ. However, f2 does

not preserve ρ since (a1, a2) ∈ ρ but (f2(a1), f2(a2)) = (a0, a2) ∉ ρ.

Nevertheless, if ρ′ = ρ ∪ {(a0, a2), (a2, a0)} ∪ {(a1, a3), (a3, a1)},

�
�
�
�
�
�

@
@
@

@
@
@

s s

s s

m

m

a0

a3

a1

a2

Figure 4. A picture representing the sets M and ρ′.

then f2 preserves ρ′; but, f1 does not preserve ρ′ since (a1, a3) ∈ ρ′ and (f1(a1), f1(a3)) =

(a1, a1) ∉ ρ′.

For each R ⊆ R(M) and F ⊆ O(M), we denote the set of all operations

preserving all elements in R and the set of all relations which are invariant under all

elements in F by Pol (R) and Inv (F ), respectively; that is,

Pol (R) = {f ∈ O(M) ∣ f preserves ρ for all ρ ∈ R}
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and

Inv (F ) = {ρ ∈ R(M) ∣ρ is invariant under f for all f ∈ F} .

One can prove that Pol (R) is a clone and it was proved (e.g. see R. Pöschel and

L. A. Kalužnin in [15]) that C = Pol (Inv (C)) for all clones C. Dually, a set D of

relations is called relational clone if D = Inv (Pol (D)). It is a well-known fact that

the set of all clones on a finite set is an ordered set with respect to inclusion; in

fact, it is a complete lattice which is dually isomorphic to the complete lattice of all

relational clones.

For each F ⊆ O(M), the clone generated by F is the smallest clone containing

F and is denoted by ⟨F ⟩. It is interesting whether a subset F of O(M) generates

O(M); this question is known as the functional completeness problem. The functional

completeness problem can be studied via the maximal clones, the co-atoms of the

lattice of all clones. E. L. Post [16] proved that O(M) is finitely generated which

implies by [13] that every proper subclone of the full clone contains in a maximal

one and there are only finitely many maximal clones. Hence, for each F ⊆ O(M),

⟨F ⟩ = O(M) if and only if F is not contained in one of the maximal clones. Efforts

to determine all maximal clones began more than 50 years. I.G. Rosenberg [20, 21]

was the first one who succeeded in describing all maximal clones; they are just the

clones Pol (ρ) where ρ is a relation in one of six classes of relations defined as follow:

Class(1): The set of all bounded orders. These are reflexive, transitive and anti-

symmetric binary relations ρ ⊆M ×M with (0, x) ∈ ρ and (x,1) ∈ ρ for all x ∈M and

for some 0,1 ∈M .

Class(2): The set of all prime permutations. These are permutations on M which

all of whose cycles have the same prime length.

Class(3): The class of all prime affine relations. A 4-ary relation ρ ⊆M4 is affine if

we can define an abelian group operation, +, on M so that (a, b, c, d) ∈ ρ if and only

if a + b = c + d. An affine relation ρ is prime if ⟨M ;+⟩ is an abelian group of prime

power order. This class is empty unless ∣M ∣ is a prime power.

Class(4): The class of all non-trivial equivalence relations. These are reflexive,

symmetric and transitive binary relations ρ ⊆M ×M which are neither the diagonal

relation △M ∶= {(a, a) ∣a ∈M} nor the universal relation ∇M ∶=M ×M .
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Class(5): The class of all relations which are k-regularly generated for some 3 ≤ k ≤

∣M ∣. For 3 ≤ k ≤ ∣M ∣, a set T = {Θ1,Θ2, . . . ,Θm} (m ≥ 1) of equivalence relations

on M is k-regular if each Θi, (1 ≤ i ≤ m) has exactly k equivalence classes and the

intersection ∩mi=1εi of arbitrary equivalence classes εi of Θi is nonempty. A k-ary

relation ρ = {(a1, . . . , ak)∣ai ∈ A for all i = 1, . . . , k} is k-regularly generated by T if for

each i ∈ {1, . . . ,m}, at least two of the elements a1, . . . , ak are equivalent modulo Θi.

Class(6): The class of all central relations. A k-ary relation ρ ⊆ Mk for some

k ≥ 1 is totally reflexive if {(a1, . . . , ak)∣ai = aj for some i ≠ j} ⊆ ρ; and is totally

symmetric if for any permutation α on {1, . . . , k} we have (a1, . . . , ak) ∈ ρ if and

only if (aα(1), aα(2), . . . , aα(k)) ∈ ρ. The center Cρ of ρ is the set of all a ∈ M such

that (a, a2, . . . , ak) ∈ ρ for all a2, . . . , ak ∈ M . We say that ρ is central if it is totally

reflexive, totally symmetric and ∅ ≠ Cρ ⊊M .

Describing the lattice of all clones is still well known open problems. Up to

now, it is only possible to describe all clones on a finite set is only the set of cardinality

2. The work was first described by E. L. Post [16] in 1941. The lattice of all Boolean

clones is also called Post’s lattice. It is countably infinite and all Boolean clones are

finitely generated. The Post’s lattice is shown in Figure 5.
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Figure 5. Post’s lattice.

However in 1959, Ju. I. Janov and A. A. Muchnik [14] proved that lattice of

all clones over a finite set whose cardinality more than 2 is an uncountably infinite;

much of the lattice are unknown. Describing of some parts of these lattices is still

interesting for studying clone theory; for instance, the clone Pol(≤) on a set P is

the set of all finitary order-preservings with respect to an order ≤ on P ; and we call

Pol(≤) the monotone clone of P = (P ;≤). The monotone clone of a finite ordered set

is maximal if and only if the order is bounded. Davey et al. proved in [9] that if a

finite ordered set P is disconnected, then the nontrivial equivalence relation Θ whose

blocks are connected components of P will give a maximal clone Pol(Θ) containing

the monotone clone of the ordered set P. C. Ratanaprasert [18] has shown that
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the monotone clone of a finite unbounded connected ordered set is a subclone of a

maximal clone preserving only either a k-regularly generated relation or a central

relation with arity more than 1 and also proved that if the monotone clone of the

ordered set contains in a maximal clone preserving a k-regularly generated relation,

then the monotone clone contains no near-unanimity functions, a function f ∶ P n → P

(n ≥ 3) satisfying

f(x,x, . . . , x, y) = f(x,x, . . . , x, y, x) = . . . = f(y, x, x, . . . , x) = x

for all x, y ∈ P . If n = 3, a near-unanimity function is called a majority function.

Such function was discovered by K. Baker and A. Pixley [1] in 1975 and then it is

extensively studied in many fields of mathematics.

2.2 Galois Connection

In 1811-1832, Évariste Galois mentioned a connection between subgroups of

the Galois group of an extension E/F and intermediate fields between E and F (see

e.g. in [12]). By this connection, properties of permutation groups are applied to

study in field theory; so, some problems in field theory can be reduced to simpler

problems in group theory. Such connection is generalized to a connection, a so-called

Galois connection, between two sets of objects (usually) of different kinds. Galois

connection can provide a useful tool for studying properties of one kind of objects

via the properties of the other (normally simpler) kind of objects.

A Galois connection between the sets A and B is a pair (σ, τ) of functions

between the power sets P(A) and P(B),

σ ∶ P(A)→ P(B) and τ ∶ P(B)→ P(A),

such that for all X,X ′ ⊆ A and all Y,Y ′ ⊆ B the following conditions are satisfied:

1. X ⊆X ′⇒ σ(X) ⊇ σ(X ′), and Y ⊆ Y ′⇒ τ(Y ) ⊇ τ(Y ′);

2. X ⊆ τσ(X), and Y ⊆ στ(Y ).

One of well-known Galois connections is the connection between clones and relational

clones.
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�
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�

L(O(M)) L(R(M))

O(M) R(M)

F R

Inv (F )Pol (R)

C = Pol (Inv (C)) Inv (C)

Pol (D) D = Inv (Pol (D))

Figure 6. A Galois connection between L(O(M)) and L(R(M)).

In [4], V. G. Bodnarchuk, L. A. Kalužnin, V. N. Kotov and B. A. Romov proved

that the function Pol from the lattice L(R(M)) of all relational clones to the lattice

L(O(M)) of all clones which maps a relational clone D to the clone Pol (D) and the

function Inv from L(O(M)) to L(R(M)) which maps a clone C to the relational

clone Inv (C) are bijective reserving the order ⊆; i.e.,

1. for each clones C and C ′, C ⊆ C ′⇒ Inv (C) ⊇ Inv (C ′);

2. for each relational clones D and D′, D ⊆D′⇒ Pol (D) ⊇ Pol (D′).

This is an important tool to understand any clone and so is any algebra M =

(M ;F ), a structure consists of a set M and a set F of operations on M , since M

corresponds to the clone ⟨F ⟩, the set all term operations of M. A Galois connection

is useful in not only algebras but also many fields of Mathematics; for instance, a

Galois connection between subgroups of fundamental groups and covering spaces in

field of algebraic topologies. By this connection, algebraic properties about finding

all subgroups are used to solve topological problems.
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2.3 Duality

An algebra is a structure M consisting of a nonempty set M , is called the

universe of M and a set {fMi }i∈I of operations defined on the universe, are called the

set of fundamental operations of M. The sequence (ni)i∈I of all arities is called the

type of the algebra M. Some algebraic properties which are commonly studied in

general algebras (groups, rings, lattices, etc.) are subalgebras, homomorphisms and

direct products.

Let M = (M ;{fMi }i∈I) and N = (N ;{fNi }i∈I) be algebras of the same type. N

is called a subalgebra of M if the following conditions are satisfied:

1. N ⊆M ;

2. fNi is the restriction of the operation fMi to the set N , denoted by fMi ⇂N , for

all i ∈ I.

A function h from M to N is called a homomorphism, written by h ∶ M→ N if

h(fMi (a1, . . . , ani)) = fNi (h(a1), . . . , h(ani))

for all i ∈ I. If a homomorphism h is bijective (injective and surjective), then h is

called an isomorphism from M onto N.

For each class {Mj}
j∈J

of algebras of the same type, the direct product Πj∈JMj

of {Mj}
j∈J

is defined as an algebra consisting of the universe

P ∶= Πj∈JMj = {a ∶ J → ⋃
j∈J
Mj ∣a(j) ∈Mj for all j ∈ J}

and each fundamental operation fPi defined by

(fPi (a1, . . . , ani))(j) = f
Mj

i (a1(j), . . . , ani(j)),

for all a1, . . . , ani ∈ P , j ∈ J and i ∈ I. If Mj = M for all j ∈ J , then we usually write

MJ instead of Πj∈JMj.

For each class M of algebras of the same type, we define:

1. S(M) is the set of all subalgebras of algebras in M,
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2. H(M) is the set of all homomorphic images of algebras in M,

3. I(M) is the set of all isomorphic copies of algebras in M,

4. P(M) is the set of all direct products of algebras in M.

One of well-known studying classes of algebras is variety, a class of algebras

of the same type which is closed under all homomorphic images, subalgebras and

products. A. Tarski proved in [24] that every variety is the class HSP(M) for some

class M of algebras. G. Birkhoff [3] showed a classical result that every variety can

be determined by its subdirectly irreducible algebras. For some algebras having the

large universes, they are complicated to study their algebraic properties. In 1970,

H.A. Priestley [17] represented bounded distributive lattices by ordered Stone spaces.

It is a new branch to use a topology to study an algebra. Moreover, this concept was

used to describe homomorphism, congruences and subdirectly irreducible Ockham

algebras by A. Urguhart [25]. In 1983, Davey and Werner [10] developed the method

to represent every algebra as an algebra of continuous functions. This concept is

known as natural duality.

Let M be a finite algebra. An m-ary relation on M is said to be algebraic over

M if it forms a subalgebra of Mm. Let B = ⋃∞
n=1 S(Mn) be the set of all algebraic

relations over M. A topological structure M
̃

= (M ;R,T ) is called an alter ego of

M if R ⊆ B and T is the discrete topology on M . This definition of alter ego is

defined in [7, 8]. But in some works, the set of relations R is separated to a set

of relations, set of operations and set of partial operations. Let A = ISP(M) be

the category consisting of all isomorphic copies of subalgebras of direct powers of M

and let X = IScP+(M̃
) be the category consisting of all isomorphic copies of closed

substructures of non-empty direct powers of M
̃

. For each A ∈ A and X
̃
∈ X , we

denote

D(A) = {f ∶ A→M ∣ f is a homomorphism from A to M}

and

E(X
̃
) = {f ∶X →M ∣ f is a morphism from X

̃
to M

̃
} ;

and call them the dual of A and the dual of X
̃

, respectively. It was shown in [10]
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that D(A) ∈ X and E(X
̃
) ∈ A . For a homomorphism u ∶ A→ B, define a morphism

D(u) ∶D(B)→D(A) by D(u)(x) = x ○ u

for all x ∈D(B). Similarly, for a morphism ϕ ∶ X
̃
→ Y

̃
, define

E(ϕ) ∶ E(Y
̃
)→ E(X

̃
) by E(ϕ)(α) = α ○ ϕ

for all α ∈ E(Y
̃
). For each A ∈ A and X

̃
∈ X , we define the evaluation functions

eA ∶ A→ ED(A) by eA(a)(x) = x(a)

for all a ∈ A and x ∈D(A) and

εX
̃
∶ X
̃
→DE(X

̃
) by εX

̃
(x)(α) = α(x)

for all x ∈ X
̃

and α ∈ E(X
̃
). We say that M

̃
(or R) yields a duality on A or M

̃
dualise M if eA is an isomorphism for all A ∈ A . We say that M is dualisable if

there is a structure M
̃

which dualise M. These mean that every algebra in A can

be represented as a concrete algebra of morphisms from the structure D(A) to the

structure M
̃

. For further details, see in [5] or [10]. If R is finite, M
̃

is said to be finite

type. One of well-known dualisable algebras is an algebra M = (M ;F ) admitting

an m-ary near-unanimity function f ; that is, f ∈ ⟨F ⟩. Moreover, S(Mm−1) yields a

duality on A .

We say that M
̃

(or R) yields an optimal duality on A if R yields a duality

on A but there are no proper subsets of R which yields a duality on A . Optimal

dualities are developed by B.A. Davey and H.A. Priestley [7, 8] using the following

concepts of entailment.

For each m-ary relation rM on a set M and index set A and Z ⊆MA, let rM
A

be defined componentwise; that is,

(x1, . . . , xm) ∈ rMA ⇔ (x1(a), . . . , xm(a)) ∈ rM

for all a ∈ A and rZ = rMA ∩Zm. A function α ∶ Z →M is said to preserve rM if

(x1, . . . , xm) ∈ rZ ⇒ (α(x1), . . . , α(xm)) ∈ rM .
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For each A ∈ A and s ∈ B, we say that R entails s on D(A) if

α preserves all elements in R⇒ α also preserves s

for all continuous functions α from D(A) to M . We say that R entails s, briefly

R ⊢ s, if

R entails s on D(A) for all A ∈ A .

For each R′ ⊆ B, we say that R entails R′, briefly R ⊢ R′, if

R entails s for all s ∈ R′.

Note by Soundness Theorem [5] that a set {r} of an m-ary algebraic relation entails

{rσ ∣σ ∈ Sm} where

rσ = {(aσ(1), . . . , aσ(m)) ∣ (a1, . . . , am) ∈ r}

for all σ in the set Sm of all permutations on {1, . . . ,m}. One can refine an alter ego

via M
̃

-Shift Duality Lemma [5] which is stated that if R entails R′ and R′ yields a

duality on A , then R yields a duality on A .

2.4 Relational Set

A binary relation ≤ on a set M is an order if it satisfies the following conditions

for all x, y, z ∈M ,

1. x ≤ x, (reflexivity)

2. x ≤ y and y ≤ x imply x = y, (anti-symmetry)

3. x ≤ y and y ≤ z imply x ≤ z. (transitivity)

A set M equipped with an order relation ≤ is said to be an ordered set (or partially

ordered set) and denoted by (M ;≤). Some authors use the shorthand poset. A poset

permeates mathematics. One of the most attraction of posets is that they are pictural

structures. The picture representing a poset is known as a Hasse diagram; or shortly

diagram.
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Another well-known pictural structure is a graph. An (undirected) graph

M = (M ; Θ) is a structure consisting of a finite set M and a symmetric binary

relation Θ on M . An element in M and in Θ is called a vertex and an edge of M,

respectively. A graph M = (M ; Θ) can be shown as a picture such that elements

in M are represented as vertices and elements (x, y) in Θ are represented as lines

from x to y. An example of representing a graph as a picture was shown in Example

2.1. If Θ is tolerance; that is, Θ is reflexive and symmetric, then (M ; Θ) is called

a reflexive (undirected) graph. A reflexive graph M = (M ; Θ) is called a majority

reflexive graph if Pol (Θ) contains a majority operation. H. Bandelt [2] characterized

a majority reflexive graph by considering bipartite graphs.

Both ordered sets and graphs are structures consisting of a set and a relation

on the carrier set. These structures can be generalized to arbitrary relational sets.

A relational set M is a structure consisting of a set M and a set {rMi }i∈I of finitary

relations on M ; for brevity, a relational set is called reset. The sequence (ni)i∈I of all

arities is called the type of the reset M. In fact, if all relations in {rMi }i∈I are functions

on M , then a reset is an algebra. The concepts in algebras can be investigated in a

class of resets.

In 1981, Duffus and Rival [11] defined the notions of an order variety, a rep-

resentation of a poset and an irreducible poset. In 1992, L. Zádori [26] studied order

varieties and in the recent years, he [27] generalized this concept to arbitrary rela-

tional set. Let H = (H;{rHi }i∈I) and M = (M ;{rMi }i∈I) be resets of the same type.

H is called a subreset of M if the following condition are satisfied:

1. H ⊆M ;

2. rHi is the restriction of relation rMi to H (denoted by rMi ⇂H) for all i ∈ I.

A function f̃ from H to M is called a morphism, written by f̃ ∶ H →M if f̃

preserves all relations of H; that is,

(a1, . . . , ani) ∈ rHi ⇒ (f̃(a1), . . . , f̃(ani)) ∈ rMi

for all i ∈ I.
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For a set {Mj ∣ j ∈ J} of resets of the same type, the product Πj∈JMj is a reset

with the base set

Πj∈JMj = {a ∶ J → ⋃
j∈J
Mj ∣a(j) ∈Mj for all j ∈ J}

and the relations defined componentwise; that is,

(a1, . . . , ani) ∈ r
Πj∈JMj

i ⇔ (a1(j), . . . , ani(j)) ∈ r
Mj

i

for all j ∈ J and i ∈ I. For each class of resets K, denote the set of all products of

resets in K by P(K).

For resets P and R of the same type, we say that R is a retract of P if there

are morphisms r ∶ P → R and e ∶ R → P such that r ○ e = idR. The functions r and

e are called retraction and coretraction, respectively. For a class of resets K, denote

the set of all retracts of resets in K by R(K).

A class of resets of the same type is called a relation variety if it is closed

under product and retract; or equivalently, a relation variety is the class RP(K) for

some class K of resets. Some important properties of relation varieties are studied

via a colored reset.

A pair (H, h) is called an M-colored reset if h is a partially defined function

from H to M . The domain of h is denoted by C(H, h) and an element in C(H, h) is

called a colored element. Denote C(M) be the set of all M-colored resets. If h can

be extended to a fully defined morphism h̄ ∶ H → M on H then (H, h) is called an

M-extendable reset ; otherwise, (H, h) is called an M-nonextendable reset. A finite

M-nonextendable reset is called an M-obstruction if it is minimal under an order

defined by (H1, h1) ⊆ (H2, h2) if and only if the following conditions hold:

1. H1 ⊆H2 and h1 ⊆ h2;

2. rH1
i ⊆ rH2

i ⇂H1 for all i ∈ I.

Example 2.2 Suppose that M and H are graphs as shown in Figure 7 and Figure

8, respectively.
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s s

s s

a0

a3

a1

a2

Figure 7. The graph M.

s s s
v0 v1 v2

Figure 8. The graph H.

Define functions h1 ∶ {v0, v1} →M and h2 ∶ {v0, v2} →M by h1(v0) = a0, h1(v1) = a2,

h2(v0) = a0 and h2(v2) = a2. The colored resets (H, h1) and (H, h2) can be represented

as shown in Figure 9 and Figure 10.

s s s�� �� �� ��
v0 v1 v2

Figure 9. The M-colored reset (H, h1).

s s s�� �� �� ��
v0 v1 v2

Figure 10. The M-colored reset (H, h2).

Then (H, h2) is an M-extendable reset since we can define a morphism h̄2 ∶ H→M by

h̄2(vi) = ai for all i = 1,2,3. In contrast, (H, h1) is an M-nonextendable reset since it

has no lines from a0 to a2. However, (H, h1) is not minimal since there is a subgraph

H1 = ({v0, v1},{(v0, v1), (v1, v0)}) of H such that (H1, h1) is an M-nonextendable

reset and (H1, h1) ⊆ (H, h1). In fact, (H1, h1) is an M-obstruction.

s s�� �� �� ��
v0 v1

Figure 11. The M-obstruction (H1, h1).
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If both M and H are ordered sets, an M-obstruction (H, h) is called a zigzag. The

concept of zigzag is used to solve many problems about ordered set; for instance,

G. Tardos showed a remark in [23] that a finite poset (M ;≤) admits an n-ary near

unanimity function f (that is, f ∶ Mn →M is a morphism) if and only if the number

of colored elements of every M-zigzag is at most n− 1. L. Zádori [27] generalized G.

Tardos’s remark by proving that M admits an n-ary near unanimity function f if

and only if the number of colored elements in every M-obstruction is at most n − 1

for all n ≥ 3 and all finite resets M.



Chapter 3

Algebraic Relations and Colored

Resets

Let M be a finite algebra. An m-ary relation on M is said to be algebraic over

M if it forms a subalgebra of Mm. Let B = ⋃∞
n=1 S(Mn) be the set of all algebraic

relations over M. For each reset M, an M-colored reset (H, h) is a reset H of the

same type equipped with a partial operation h from H to M . Let C(M) be the set

of all M-colored resets. In this chapter, we show a connection between the set of

algebraic relations over M and the set M-colored resets.

3.1 A Galois Connection

One can see that B = Inv (Clo (M)). It is well known that Clo (M) = Pol ({rMi }i∈I)

for some sets {rMi }i∈I of relations on M . Hence, r is algebraic over M if and only if

r ∈ Inv (Pol ({rMi }i∈I)). Recall for a non-empty set r that M r is the set of all func-

tions from r to M . If ∣r∣ =m, we substitute M r by Mm. We denote the i-projection

from Mm to M by emi for all 1 ≤ i ≤m. The following lemma was proved in [6] by B.

A. Davey, M. Haviar and H. A. Priestley.

Lemma 3.1 [6] An m-ary relation r is algebraic over M if and only if

r = {(h̃(a1), . . . , h̃(am)) ∣ h̃ ∶M r →M preserves rMi for all i ∈ I}

where aj = emj ⇂r for all 1 ≤ j ≤m.

19
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R. Srithus and U. Chotwattakawanit [22] definedm-ary relations overM which

were used to construct an alter ego dualising an algebra admitted a near-unanimity

operation as follows: for a reset M = (M ;{rMi }i∈I),

ρM(a1,...,am) = {(h̃(a1), . . . , h̃(am)) ∣ h̃ ∶ H→M is a morphism} (∗)

for all M-color resets (H, h) with C(H, h) = {a1, . . . , am}. We are now showing that

those relations in (∗) are algebraic over M; and then by Lemma 3.1, all algebraic

relations can be represented by these relations as we state in the following theorem.

Theorem 3.2 An m-ary relation r is algebraic over M if and only if r = ρM(a1,...,am)
for some (H, h) ∈ C(M) with C(H, h) = {a1, . . . , am}. Moreover, H = Mn for some

natural number n.

Proof. If r is algebraic over M, Lemma 3.1 implies that r = ρM(a1,...,am) where

{a1, . . . , am} = C(Mr, h). Conversely, suppose that r = ρM(a1,...,am) for some (H, h) ∈

C(M) with C(H, h) = {a1, . . . , am} and M = (M ;{fj}i∈J). Let j ∈ J and h̃1, . . . , h̃nj

be morphisms from H to M. Since fj ∈ Clo (M) = Pol ({rMi }i∈I), we have that

fj ∶ Mnj →M is a morphism. To show that fj(h̃1, . . . , h̃nj) ∶ H →M is a morphism,

let i ∈ I and (x1, . . . , xni) ∈ rHi . Then

(hk(x1), . . . , hk(xni)) ∈ rMi for all 1 ≤ k ≤ nj.

Hence,

(fj(h̃1, . . . , h̃nj)(x1), . . . , fj(h̃1, . . . , h̃nj)(xni)) ∈ rMi

which implies that fj(h̃1, . . . , h̃nj) ∶ H→M is a morphism. Therefore,

(fj(h̃1, . . . , h̃nj)(a1), . . . , fj(h̃1, . . . , h̃nj)(am)) ∈ r

which implies that r is algebraic over M.

Example 3.3 Suppose that M is a graph as in Figure 12 and (H, h) is an M-colored

reset as in Figure 13, respectively.
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s s

s s

a0

a3

a1

a2m

Figure 12. The graph M.

s s s�� �� �� ��m
v0 v1 v2

Figure 13. The M-colored reset (H, h).

Since there is a loop at v2, every morphism h̃ ∶ H → M maps v2 to a2. Theerefore,

ρM(v0,v2) = {(a0, a2), (a1, a2), (a2, a2), (a3, a2)} =M × {a2} and ρM(v2,v0) = {a2} ×M .

Observe that the algebraic relations ρM(a1,...,am) and ρM(am,...,a1) may be different

for all M-colored resets (H, h) with C(H, h) = {a1, . . . , am}. In fact, if we rearrange

the m-tuple, then there are many algebraic relations corresponding to (H, h). We

will combine these algebraic relations into a class of an equivalence relation on B.

For each r ∈ B and σ in the set Sm of all permutations on {1, . . . ,m}, let define

rσ = {(aσ(1), . . . , aσ(m)) ∣ (a1, . . . , am) ∈ r}.

Proposition 3.4 Let ∼ be a binary relation on B defined by

r1 ∼ r2 if and only if r2 = rσ1

for some σ ∈ Sm for all r1, r2 ∈ B. Then ∼ is an equivalence relation on B.

Proof. Observe that rid = r for all r ∈ B where id denote the identity function on

{1, . . . ,m}. Hence, ∼ is reflexive. We will first show that (rσ)ς = rς○σ for all r ∈ B and

σ, ς ∈ Sm. Let a1, . . . , am ∈M . Then

(a1, . . . , am) ∈ (rσ)ς ⇔ (a1, . . . , am) = (bς(1), . . . , bς(m))

for some (b1, . . . , bm) ∈ rσ

⇔ (a1, . . . , am) = (cς(σ(1)), . . . , cς(σ(m)))

for some (c1, . . . , cm) ∈ r.



22

If r1, r2 ∈ B with r1 ∼ r2, then r2 = rσ1 for some σ ∈ Sm; hence,

rσ
−1

2 = (rσ1 )σ
−1 = rσ−1○σ1 = rid1 = r1

which implies that r2 ∼ r1. If r1, r2, r3 ∈ B with r1 ∼ r2 and r2 ∼ r3, then r2 = rσ1 and

r3 = rς2 for some σ, ς ∈ Sm; hence, r3 = rς2 = (rσ1 )ς = rς○σ1 which implies that r1 ∼ r3.

For each (H, h) ∈ C(M) with C(H, h) = {a1, . . . , am}, let ρM(H,h) be the equiv-

alence class [ρM(a1,...,am)]∼ of algebraic relations containing ρM(a1,...,am). Let ρM be the

function from C(M) to the set B/∼ of all equivalence classes under ∼ which maps

(H, h) to ρM(H,h).

Proposition 3.5 The function ρM ∶ C(M)→ B/∼ is surjective.

Proof. Let r ∈ B. By Theorem 3.2, r = ρM(a1,...,am) for some (H, h) ∈ C(M) with

C(H, h) = {a1, . . . , am}. Hence, [r]∼ = [ρM(a1,...,am)]∼ = ρ
M
(H,h)

Example 3.6 Suppose that M is a graph as in Figure 14 and assume that (H, h)

and (H′, h′) are M-colored resets as in Figure 15 and Figure 16, respectively.

s s

s s

a0

a3

a1

a2m

Figure 14. The graph M.

s s s�� �� �� ��m
v0 v1 v2

Figure 15. The M-colored reset (H, h).

s s
s
s�� �� �� ��m

w0 w1

w3

w2

Figure 16. The M-colored reset (H′, h′).
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We knew from Example 3.3 that ρM(v0,v2) =M ×{a2}. By the same argrument, we have

ρM(w0,w2) =M × {a2} = ρM(v0,v2). So, ρM(H,h) = ρM(H′,h′).

Therefore, ρM is not injective. We are now showing a condition of all M-

colored resets corresponding to the same equivalence class in B/∼. Note for each

function f ∶ A → B that the relation ker f = {(x1, x2) ∈ A2 ∣ f(x1) = f(x2)} is an

equivalence relation. Let [H, h] denote the equivalence class in C(M)/kerρM contain-

ing (H, h). We will identify each equivalence class in the following theorem.

Theorem 3.7 For each (H, h), (G, g) ∈ C(M), [H, h] = [G, g] if and only if there is

a bijection ε ∶ C(H, h) → C(G, g) such that the diagrams in the following Figure 17

and Figure 18 commute for all morphisms h̃ ∶ H→M and g̃ ∶ G→M.

C(H, h) � � //H
h̃

  
M

C(G, g) � � //
OO

ε−1

OOOO

(=)

G

α

>>

Figure 17. h̃ ○ ε−1 can be extended to a morphism α.

C(G, g) � � //G
g̃

  
M

C(H, h) � � //
OO

ε

OOOO

(=)

H
β

>>

Figure 18. g̃ ○ ε can be extended to a morphism β.

Proof. Let C(H, h) = {a11, . . . , a1m1
} and C(G, g) = {a21, . . . , a2m2

}. If [H, h] =

[G, g], then m1 =m2 ∶=m. Let σ1, σ2 ∈ Sm with

ρM(a1
σ1(1),...,a

1
σ1(m))

= ρM(a2
σ2(1),...,a

2
σ2(m))

.
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So, a function ε ∶ a1
σ1(k) ↦ a2

σ2(k) is a bijection from C(H, h) to C(G, g). To show

that the diagram in Figure 17 commutes, let h̃ ∶ H→M be a morphism. Then

(h̃(a1σ1(1)), . . . , g1(a
1
σ1(m))) ∈ ρ

M
(a1
σ1(1),...,a

1
σ1(m))

= ρM(a2
σ2(1),...,a

2
σ2(m))

.

So, there is a morphism α ∶ G→M such that

α(a2σ2(k)) = h̃(a
1
σ1(k)) = h̃(ε

−1(a2σ2(k))

for all 1 ≤ k ≤ m. Similarly, the diagram in Figure 18 commutes for all morphisms

g̃ ∶ G→H. Conversely, if ε is a bijection, then m1 =m2 ∶=m. Define φ1 ∶ {1, . . . ,m}→

C(H, h) and φ2 ∶ {1, . . . ,m} → C(G, g) by φi(k) = aik for all 1 ≤ k ≤m and i ∈ {1,2}.

We will show that ρM(H,h) = ρM(G,g). Let σ1 ∈ Sm and

σ2 = φ−12 ○ ε ○ φ1 ○ σ1.

Then ε(a1
σ1(k)) = a

2
σ2(k) for all 1 ≤ k ≤m. By the assumption,

(x1, . . . , xm) ∈ ρM(a2
σ2(1),...,a

2
σ2(m))

⇔ there is g̃ ∶ G→M with for each 1 ≤ k ≤m,

g̃ ○ ε(a1
σ1(k)) = g̃(a

2
σ2(k)) = xk

⇔ there is h̃ ∶ H→M with for each 1 ≤ k ≤m,

h̃(a1
σ1(k)) = g̃ ○ ε(a

1
σ1(k)) = xk

⇔ (x1, . . . , xm) ∈ ρM(a1
σ1(1),...,a

1
σ1(m))

which implies that ρM(a2
σ2(1),...,a

2
σ2(m))

= ρM(a1
σ1(1),...,a

1
σ1(m))

. Hence, ρM(H,h) = ρM(G,g); that is,

[H, h] = [G, g].

Naturally, we can map an M-colored reset (H, h) to the equivalence class

[H, h] in C(M)/kerρM via the natural map η. One can see by the following theorem

that ∣C(M)/kerρM ∣ = ∣B/∼∣.

Theorem 3.8 Let ϕ ∶ C(M)/kerρM → B/∼ be defined by ϕ([H, h]) = ρM(H,h) for all

(H, h) ∈ C(M). Then ϕ is the unique bijection with ϕ ○ η = ρM .

Proof. Since ρM is surjective, so is ϕ. One can see for each (H, h), (G, g) ∈ C(M)

that if ρM(H,h) = ρM(G,g), then [H, h] = [G, g] which implies that ρM is injective. Suppose

that ϕ′ ∶ C(M)/kerρM → B/∼ with ϕ′ ○ η = ρM . Then ϕ ○ η = ϕ′ ○ η. Hence,

ϕ([H, h]) = ϕ ○ η((H, h)) = ϕ′ ○ η((H, h)) = ϕ′([H, h])

for all [H, h] ∈ C(M)/kerρM .
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One can see that ϕ is a Galois connection of the equivalence classes of M-

colored resets and the equivalence classes of algebraic relations over M under the

equivalence relations kerρMand ∼, respectively. We may apply this result to solve

some problems about algebraic relations over M via M-colored resets; for instance,

a problem of refining an alter ego of some algebras or a problem about clone theory.

We will define an order on C(M)/kerρM analogously to the definition of the

retract of resets. Recall that for resets P and R of the same type, we say that R is

a retract of P if there are morphisms r ∶ P → R and e ∶ R → P such that r ○ e = idR.

The functions r and e are called retraction and coretraction, respectively.

Let define a binary relation ≤ on C(M)/kerρM as follows:

[H1, h1] ≤ [H2, h2] ⇔ either 1. [H1, h1] = [H2, h2] or

2. there are morphisms r ∶ H2 →H1 and e ∶ H1 →H2

such that both r and e preserve colored elements

and r ○ e ⇂C(H1,h1)= idC(H1,h1). (∗∗)

For each i ∈ {1,2}, we may write C(Hi, hi) = {ai1, . . . , aimi} with e(a1k) = a2k and

r(a2k) = a1k for all 1 ≤ k ≤m1. We have the following theorem.

Theorem 3.9 The relation ≤ defined in (∗∗) is an order on C(M)/kerρM . Further-

more, if [H1, h1] ≤ [H2, h2] and ∣C(H1, h1)∣ = ∣C(H2, h2)∣, then [H1, h1] = [H2, h2].

Proof. It is clear by the definition that ≤ is reflexive and transitive. Observe that

if [H1, h1] ≤ [H2, h2] and ∣C(H1, h1)∣ = ∣C(H2, h2)∣, then ε ∶= e ⇂C(H1,h1)∶ C(H1, h1)→

C(H2, h2) is a bijection such that h̃2 ○ e and h̃1 ○ r are morphisms extending h̃2 ○ ε

and h̃1 ○ ε−1, respectively for all morphisms h̃1 ∶ H1 → M and h̃2 ∶ H2 → M; so,

[H1, h1] = [H2, h2] follows from Theorem 3.7. Hence, if [H1, h1] ≤ [H2, h2] and

[H2, h2] ≤ [H1, h1], then ∣C(H1, h1)∣ = ∣C(H2, h2)∣ which implies that ≤ is anti-

symmetric.

Since the order ≤ on C(M)/kerρM is defined analogously to the definition of

the retract of resets, we will show a relationship between the order and the retract

in the next theorem which can be proved directly.
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Theorem 3.10 Let H1 be a retract of H2 with a retraction r. If C(H1, h1) =

r(C(H2, h2)), then [H1, h1] ≤ [H2, h2].

Example 3.11 Suppose that M, (H, h) and (H′, h′) are defined in Example 3.6.

Then H is a retract of H′ with the retraction r ∶H ′ →H defined by

r(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vi if x = wi for some i ∈ {0,1,2},

v2 if x = w3.

Moreover, C(H, h) = r(C(H′, h′)). By Theorem 3.9 and Theorem 3.10, [H, h] =

[H′, h′] which implies that ρM(H,h) = ρM(H′,h′).

3.2 One Type Duality for a Constantive Algebra

For each m-ary relation rM on a set M and index set A and Z ⊆MA, let rM
A

be defined componentwise and rZ = rMA ∩ Zm; and for a set SM of finitary relation

on M , let denote SZ = {rZ ∣ rM ∈ SM}. A function α ∶ Z →M is said to preserve rM if

(α(x1), . . . , α(xm)) ∈ rM for all (x1, . . . , xm) ∈ rZ . It is easy to prove that the concept

of preserving is precisely a morphism between two resets which we will state in the

following proposition.

Proposition 3.12 For each set SM of relations on M and index set A and Z ⊆MA,

α ∶ Z → M preserves all elements in SM if and only if α ∶ (Z;SZ) → (M ;SM) is a

morphism.

For each A ∈ A = ISP(M) and for a set R of algebraic relations and algebraic

relation s, we say that R entails s on D(A) if every continuous function α from

D(A) to M which preserves all elements in R also preserves s; and say that R entails

s, briefly R ⊢ s, if R entails s on D(A) for all A ∈ A . For each set R′ of algebraic

relations, we say that R entails R′, briefly R ⊢ R′, if R entails s for all s ∈ R′.

Theorem 3.13 R entails R′ if and only if α ∶ (D(A);R′D(A)) → (M ;R′M) is a

morphism whenever α ∶ (D(A);RD(A))→ (M ;RM) is a continuous morphism for all

A ∈ A .
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Proof. Suppose that R entails R′, A ∈ A and α ∶ (D(A);RD(A)) → (M ;RM) is

a continuous morphism. By Proposition 3.12, α preserves all elements in RM which

implies that α preserves all elements in R′M . So, α ∶ (D(A);R′D(A))→ (M ;R′M) is a

morphism. Conversely, suppose that α ∶ D(A) →M is a continuous which preserves

all elements in R. By Proposition 3.12, α ∶ (D(A);RD(A))→ (M ;RM) is a morphism

which implies by the assumption that α ∶ (D(A);R′D(A))→ (M ;R′M) is a morphism.

So, α preserves all elements in R′.

Let M
̃
= (M ;R, τ) be an alter ego of M. Then R ⊆ B; so, M

̃
corresponds to

the subset BM
̃
= {[r]∼ ∣ r ∈ R} of B/∼. By the Galois connection, we can study M

̃
via

the subset ϕ−1 (BM
̃
) of C(M)/kerρM . We are going to refine an alter ego via the order

on C(M)/kerρM .

Lemma 3.14 Let A be an index set. If rM = ρM(a1,...,am) for some (H, h) ∈ C(M)

with C(H, h) = {a1, . . . , am}, then rM
A = ρMA

(a1,...,am) where {a1, . . . , am} = C(H, h′) and

C(H, h′) ∈ C(MA) such that h′(aj)(a) = h(aj) for all a ∈ A and 1 ≤ j ≤m. Moreover,

if Z ⊆MA, then rZ = ρMA

(a1,...,am) ∩Z
m.

Proof.

(x1, . . . , xm) ∈ rMA ⇔ for each a ∈ A, (x1(a), . . . , xm(a)) ∈ rM

⇔ for each a ∈ A, there is a morphism h̃a ∶ H→M such that

h̃a(aj) = xj(a) for all 1 ≤ j ≤m

⇔ there is ĥ ∶ H→MA (defined by ĥ(x)(a) = ha(x), x ∈H)

such that ĥ(aj) = xj for all 1 ≤ j ≤m

⇔ (x1, . . . , xm) ∈ ρMA

(a1,...,am)

Theorem 3.15 If [H1, h1] ≤ [H2, h2], then ϕ([H2, h2]) entails ϕ([H1, h1]).

Proof. Suppose that (H1, h1), (H2, h2) ∈ C(M) with [H1, h1] ≤ [H2, h2] and

C(Hi, hi) = {ai1, . . . , aimi} for all i ∈ {1,2}. We may assume that there are morphisms

e ∶ H1 →H2 and r ∶ H2 →H1 such that r(C(H2, h2)) = C(H1, h1),

e(a1k) = a2k and r(a2k) = a1k
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for all 1 ≤ k ≤m1. It is left to show that

{ρM(a21,...,a2m2
)} entails ρM(a11,...,a1m1

).

Let A ∈ A and α ∶D(A)→M be a function which preserves ρM(a21,...,a2m2
) and

(x1, . . . , xm1) ∈ ρM
A

(a11,...,a1m1
) ∩ (D(A))m1 .

Then there is a morphism g1 ∶ H1 →MA with g1(a1k) = xk ∈ D(A) for all 1 ≤ k ≤ m1.

From r(C(H2, h2)) = C(H1, h1), we have

(g1 ○ r(a21), . . . , g1 ○ r(a2m2
)) ∈ ρMA

(a21,...,a2m2
) ∩ (D(A))m2 .

Since α preserves ρM(a21,...,a2m2
), we have

(α(g1 ○ r(a21)), . . . , α(g1 ○ r(a2m2
))) ∈ ρM(a21,...,a2m2

).

Hence, there is a morphism g2 ∶ H2 →M such that

g2(a2k) = α ○ g1 ○ r(a2k)

for all 1 ≤ k ≤m2. Therefore, g2 ○ e ∶ H1 →M is a morphism with

g2(e(a1k)) = α ○ g1 ○ r(e(a1k)) = α ○ g1 ○ (a1k) = α(xk)

for all 1 ≤ k ≤m1. Thus, (α(x1), . . . , α(xm1)) ∈ ρM(a11,...,a1m1
).

By applying Theorem 3.15, one can improve an alter ego of an algebra; es-

pecially for a constantive algebra. We are showing that if M is constantive and M
̃

yields a duality of finite type on A , then there exists an algebraic relation r such that

(M ; r, τ) yields a duality on A . Let Clo (M) = Pol ({rMi }i∈I) for some set {rMi }i∈I of

relations on M . Then M is constantive if and only if (a, . . . , a) ∈ rMi for all a ∈M and

i ∈ I. Firstly, if M is constantive we will show that each finite subset of C(M)/kerρM

has an upper bound where M = (M ;{rMi }i∈I).

Example 3.16 Let M be a graph and let (H1, h1), (H2, h2) and (H3, h3) be M-

colored resets as in Figure 19, Figure 20 and Figure 21, respectively.
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Figure 19. The M-colored reset (H1, h1).
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Figure 20. The M-colored reset (H2, h2).
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Figure 21. The M-colored reset (H3, h3).

Then [H1, h1] ≤ [H3, h3] and [H2, h2] ≤ [H3, h3] via the morphisms r1 ∶ H3 → H1,

e1 ∶ H1 →H3, r2 ∶ H3 →H2 and e2 ∶ H2 →H3 defined by

r1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ai if x = ai for some i ∈ {0,1,2,3},

a0 if x = bi for some i ∈ {0,1,2},

e1(ai) = ai for all i ∈ {0,1,2,3},

r2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b0 if x = ai for some i ∈ {0,1,2,3},

bi if x = bi for some i ∈ {0,1,2},

and

e2(bi) = bi for all i ∈ {0,1,2}.

In fact, H3 is the sum of the graphs H1 and H2 and h3 = h1 ∪ h2.
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Recall that a disjoin union H1⊍H2 is the union of

H ′
1 = {(x,1) ∣x ∈H1}

and

H ′
2 = {(x,2) ∣x ∈H2} .

For each resets H1 = (H1;{rH1
i }

i∈I) and H2 = (H2;{rH2
i }

i∈I) having the same type,

we define a sum H1 +H2 of resets analogously to the sum of graphs by

(H1⊍H2;{rH1⊍H2
i }

i∈I)

where for each i ∈ I and j ∈ {1,2},

rH1⊍H2
i = rH

′
1

i ∪ rH
′
2

i

and

r
H′
j

i = {((x1, j), . . . , (xni , j)) ∣ (x1, . . . , xni) ∈ r
Hj
i } .

For each j ∈ {1,2} and (Hj, hj) ∈ C(M), let define H′
j = (H ′

j;{r
H′
j

i }
i∈I

) and h′j ∶

{(x, j) ∣x ∈ C(Hj, hj)}→M by

h′j(x, j) = hj(x) for all x ∈ C(Hj, hj).

So, (H′
j, h

′
j) ∈ C(M). Therefore, Theorem 3.7 and the function ε ∶ C(Hj, hj) →

C(H′
j, h

′
j) defined by

ε(x) = (x, j) for all x ∈ C(Hj, hj)

imply that [Hj, hj] = [H′
j, h

′
j]. Now, we define a binary operation + on C(M)/kerρM

by

[H1, h1] + [H2, h2] = [H1 +H2, h1 ⊔ h2]

where

h1 ⊔ h2 = h′1 ∪ h′2.

We will show that [Hj, hj] ≤ [H1, h1] + [H2, h2] for all j ∈ {1,2} via the following

lemma.

Lemma 3.17 Let M be constantive. For each (H, h) ∈ C(M), there exists (G, g) ∈

C(M) such that [H, h] = [G, g] and (a, . . . , a) ∈ rGi for all a ∈ G.
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Proof. Let (H, h) ∈ C(M). The consequence of Theorem 3.2 implies that ρM(H,h) is

a set of algebraic relations over M; it follows that ρM(H,h) = ρM(G,g) for some reset (G, g).

Therefore, G = Mn for some natural number n which implies that (a, . . . , a) ∈ rGi for

all a ∈ G.

Theorem 3.18 Let M be constantive and (H1, h1), (H2, h2) ∈ C(M). Then [Hj, hj] ≤

[H1, h1] + [H2, h2] for all j ∈ {1,2}.

Proof. Let {j, k} = {1,2}. By Lemma 3.17, we may assume that (a, . . . , a) ∈ rHji
for all a ∈Hj and i ∈ I. Let b ∈ C(Hj, hj). Define e ∶Hj →H ′

1∪H ′
2 and r ∶H ′

1∪H ′
2 →Hj

by

e(x) = (x, j) for all x ∈Hj

and

r(x, j) = x and r(y, k) = b

for all x ∈Hj and y ∈Hk. Since (a, . . . , a) ∈ rHji for all a ∈Hj and i ∈ I, the both e and

r are morphisms which preserve all colored elements and r ○ e ⇂C(Hj,hj)= idC(Hj,hj).

Hence, [Hj, hj] ≤ [H1, h1] + [H2, h2].

Corollary 3.19 If M is constantive, every finite subset of C(M)/kerρM has an upper

bound.

We will apply these facts to solve a duality-problem. If M is a constantive

algebra and M
̃

= (M ;R, τ) yields a duality of finite type on A = ISP(M), then by

the Galois connection of M-colored resets and algebraic relations over M implies that

there is a finite subset of C(M)/kerρM corresponding to M
̃

; hence, it is bounded by a

class [H, h] of M-colored reset (H, h). It follows by Theorem 3.9 that ρM(H,h) entails

R. Let r ∈ ρM(H,h) be fixed. By Soundness Theorem [5], {r} entails ρM(H,h) which implies

by M
̃

-Shift Duality Lemma [5] that (M ; r, τ) yields a duality on A . We conclude the

results into the following theorem.

Theorem 3.20 If M is constantive and dualisable of finite type, then there exists an

algebraic relation r such that (M ; r, τ) yields a duality on A .



Chapter 4

All Maximal Clones of a Majority

Reflexive Graph

Recall from Section 2.4 that a binary relation Θ on a finite set M is called

a tolerance relation if Θ is reflexive and symmetric; and the structure M = (M ; Θ)

is called a reflexive graph. If Pol (Θ) contains a majority operation, M is called a

majority reflexive graph.

Let Θ be a tolerance relation on a finite set M and M = (M ; Θ) be a ma-

jority reflexive graph. If M = (M ;F ) is an algebra whose ⟨F ⟩ = Pol (Θ), so-called

a tolerance primal-algebra, then S(M2) is precisely the set of all binary relations ρ

such that Pol (ρ) ⊇ Pol (Θ); moreover, NU-duality Theorem [5] implies that S(M2)

yields a duality on ISP(M). In this chapter, we will begin with an application of

the Galois connection between the set of algebraic relations over M and the set of

M-colored resets to describe all elements in S(M2); and then we apply these results

to characterize all maximal clones of a majority reflexive graph.

4.1 A Duality for a Tolerance-primal Algebra Ad-

mitting a Majority Operation

For convenience through out this section, we assume that every graph is re-

flexive and we recall the basic definitions from graph theory. A (reflexive) walk from

32



33

v0 to vn is a graph (V,E) where

V = {v0, . . . , vn}

and

E = {(vi, vi+1) ∣0 ≤ i ≤ n − 1}⋃{(vi+1, vi) ∣0 ≤ i ≤ n − 1}⋃{(vi, vi) ∣0 ≤ i ≤ n}

for some n ∈ N ∪ {0}. If v1, . . . , vn are all distinct, a walk is called a (reflexive)

path from v0 to vn with length n; usually, we denote a path with length n by Pn or

v0v1 . . . vn−1vn. An example of a path is shown in Figure 22.

s s s q q q s sm m m m m
v0 v1 v2 vn−1 vn

Figure 22. The path Pn.

We denote a graph ({v0, v∞} ;{(v0, v0), (v∞, v∞)}) by P∞ whose the diagram

is shown in Figure 23.

s sm m
v0 v∞

Figure 23. The graph P∞.

Let G = (G;V ) be a graph. Recall that if H ⊆ G, then (H;V ′) is a subgraph of G

whenever V ′ ⊆ V ⇂H ; but, (H;V ⇂H) is called an induced subgraph of G (by the set

H). A graph G is called a connected graph if there is a subgraph which is a path

from a to b for all two vertices a and b in G. A maximal connected subgraph of G

is called a component of G. The distant between two vertices a and b in G is the

length of the shortest path from a to b and is denoted by d(a, b). We denote

d(G) = max{d(a, b) ∣a, b ∈ G and d(a, b) exists}.

Example 4.1 Suppose that G is a graph which is shown in Figure 24.



34

s s

s s

m m

m m

a0

a3

a1

a2

s s

s

�
�
�
�
�
�

A
A
A
A
A
A

m

m

m
b0

b2

b1

Figure 24. The graph G.

Then {a0, a1, a2, a3} and {b0, b1, b2} induce subgraphs of G which are components of

G. Observe that both a0a1 and a0a3a2a1 are paths from a0 to a1; however, a0a1 is the

shortest path. So, d(a0, a1) = 1. Moreover, d(G) = 2 = d(a0, a2).

C. Ratanaprasert and U. Chotwattakawanit [19] described all elements in

S(P2) using the concept of distant function in order-primal algebras P. We will

apply these concepts to describe all elements in S(M2). By the Galois connection,

the set S(M2) corresponds to the set of M-colored resets (H, h) with ∣C(H, h)∣ = 2.

For each 0 ≤ n ≤∞, let (Pn, pn) be the M-colored reset with C(Pn, pn) = {v0, vn}.

Theorem 4.2 For each (H, h) ∈ C(M) with ∣C(H, h)∣ = 2, [H, h] = [Pn, pn] for

some 0 ≤ n ≤ d(M) or n =∞.

Proof. Let H = (H;E) be a reflexive graph and (H, h) ∈ C(M) with C(H, h) =

{a, b} and a ≠ b.

Case 1: a and b are in the same component of H. Then there exists a shortest path

Pn ∶= v0v1 . . . vn from a to b for some n ∈ N. To show that [Pn, pn] ≤ [H, h], define

functions e ∶ Pn →H and r ∶H → Pn by

e(x) = x for all x ∈ Pn

and

r(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vi if x ∈H with i = d(a, x) ≤ n,

vn otherwise.

We will show that r is a morphism. Let (x, y) ∈ E. Then x and y are in the same

component and d(x, y) ≤ 1. If a is not in the same component of x and y, then

r(x) = vn = r(y).
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If a is in the same component of x and y, the triangle inequality property of

d implies that

d(a, x) ≤ d(a, y) + d(y, x) ≤ d(a, y) + 1

and

d(a, y) ≤ d(a, x) + d(x, y) ≤ d(a, x) + 1

which also implies that

d(a, x) − 1 ≤ d(a, y) ≤ d(a, x) + 1.

If d(a, x) = i < n, then r(x) = vi and r(y) ∈ {vi−1, vi, vi+1}; and if d(a, x) = i ≥ n, then

r(x) = vn and r(y) ∈ {vn−1, vn}.

In either cases, (r(x), r(y)) is an edge of Pn. So, Pn is a retract of H.

Moreover, r(C(H, h)) = {a, b} = C(Pn, pn). By Theorem 3.10, [Pn, pn] ≤ [H, h]

which implies by Theorem 3.9 that [Pn, pn] = [H, h].

Case 2: a ∈ C and b ∉ C for some component C of H. Let P∞ be an induced

subgraph of H by P∞ = {a = v0, b = v∞}. To show that [P∞, p∞] ≤ [H, h], define

functions e ∶ Pn →H and r ∶H → P∞ by

e(x) = x for all x ∈ P∞

and

r(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if x ∈ C,

b otherwise.

We will show that r is a morphism. For each x, y ∈ H, if (x, y) ∈ E, then either

x, y ∈ C or x, y ∉ C which implies r(x) = r(y). By the reflexivity of E, (r(x), r(y))

is an edge of P∞. So, P∞ is a retract of H. By the same argument as in Case 1,

[P∞, p∞] = [H, h].

It is left to show that [Pd(M), pd(M)] = [Pn, pn] for all n ≥ d(M). By applying

Theorem 3.7, let d(M) = m and let Pm = {v0, . . . , vm} and Pn = {v′0, . . . , v′n}. Define

ε ∶ C(Pm, pm) → C(Pn, pn) by ε(v0) = v′0 and ε(vm) = v′n. Let h̃ ∶ Pm → M be a

morphism. Define α ∶ Pn →M by

α(v′i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h̃(vi) if 1 ≤ i ≤m,

h̃(vm) if i ≥m.
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Then α is a morphism which extends h̃ ○ ε−1.

Let g̃ ∶ Pn →M be a morphism. Then g̃(Pn) is a connected subgraph of M.

Hence, there is a path P = v′′0 v′′1 . . . v′′k from g̃(v′0) to g̃(v′n) for some k ≤ d(M) = m.

Define β ∶ Pm →M by

β(vi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v′′i if 1 ≤ i ≤ k,

v′′k if i ≥ k.

It is easy to see that β is a morphism which extends g̃ ○ ε. By Theorem 3.7,

[Pd(M), pd(M)] = [Pn, pn] for all n ≥ d(M).

Now, let Θ0 ∶=△M and Θk = Θ ○ . . . ○Θ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

for all natural numbers k.

Corollary 4.3 The set of all binary relations whose clones containing Pol (Θ) is

precisely {Θ0, . . . ,Θd(M),M ×M}. Moreover, S(M2) = {Θ0, . . . ,Θd(M),M ×M}.

Proof. By Theorem 3.2, a binary algebraic relation r is ρM(a1,a2) for some (H, h) ∈

M with C(H, h) = {a1, a2} which implies by Theorem 4.2 that ρM(a1,a2) = ρ
M
(v0,vn) for

some (Pn, pn) ∈ M with C(Pn, pn) = {v0, vn} and some 0 ≤ n ≤ d(M) or n = ∞. If

0 ≤ n ≤ d(M), then

(x, y) ∈ ρM(v0,vn) ⇔ there is a morphism h̃ ∶ Pn →M such that

x = h̃(v0)Θh̃(v1)Θ . . .Θh̃(vn) = y

⇔ (x, y) ∈ Θn.

Therefore, ρM(v0,v∞) =M ×M .

NU-duality Theorem [5] and Theorem 4.3 imply the following corollary.

Corollary 4.4 If M is a majority reflexive graph, M
̃
= (M ;{Θk ∣1 ≤ k ≤ d(M)} ,T )

yields a duality on ISP(M).

4.2 All Maximal Clones of a Majority Reflexive

Graph

In Section 4.1, we described all binary relations whose clones contain the clone

preserving a tolerance relation. It is interesting whether some of them are maximal
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and the converse is also true. In this section, we study some conditions which prove

the questions.

We refer all definitions and notations from Section 4.1. For a set M and

Θ ⊆M ×M , Pol (Θ) is the full clone if and only if Θ ∈ {△M ,M ×M}. And also, the

lattice of all clones on a singleton set has exactly one element. In this section, we

will consider a set M with ∣M ∣ ≥ 2 and △M ⊂ Θ ⊂M ×M . Then Pol (Θ) is a subclone

of a maximal clone preserving a relation from one of the six classes described by I.G.

Rosenberg [20, 21]. If Θ is a tolerance relation on M , the following theorem shows all

possible classes of relations whose the clones are a maximal clone containing Pol (Θ).

Theorem 4.5 Let Θ be a tolerance relation on M . Then Pol (Θ) is a subclone of

a maximal clone Pol (ρ) whose ρ is a non-trivial equivalence relation, a k-regularly

generated relation or a central relation.

Proof. If ρ is in the classes (1) or (2), then ρ is binary which implies by Theorem

4.3 that ρ =M×M or ρ = Θk for some 0 ≤ k ≤ d(M). But, reflexivity and symmetricity

of Θk for all k ≥ 0 imply that Θk is an order or a permutation if and only if k = 0.

Hence, Pol (ρ) is the full clone, a contradiction.

Suppose that ρ is an affine relation corresponding to a group (M ;+,−,0). Let

(a, b) ∈ Θ with a ≠ b. We may assume that a ≠ 0. Define f ∶M ×M →M by

f(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if x = y = a,

b otherwise

for all x, y ∈M . Since Imf = {a, b}, we have f ∈ Pol (Θ) ⊆ Pol (ρ); that is, f preserves

ρ. So, (a,0, a,0), (a,−a,0,0) ∈ ρ implies that

(a, b, b, b) = (f(a, a), f(0,−a), f(a,0), f(0,0)) ∈ ρ;

thus, a + b = b + b which implies a = b, a contradiction.

Corollary 4.6 If Θ is a tolerance relation on M and Pol (Θ) contains a majority

operation, it is a subclone of a maximal clone Pol (ρ) whose ρ is only either a non-

trivial equivalence relation or a central relation. Moreover, if ρ is a central relation,

then ρ is binary.



38

Proof. By the result in [19], if ρ is a central relation, then ρ is at most binary.

Reflexivity of Θ implies that all constants are in Pol (Θ) ⊆ Pol (ρ); so, ρ is not unary.

From now, we consider Θ is a tolerance relation on M whose Pol (Θ) contains

a majority operation. Theorem 4.3 and Corollary 4.6 imply that all relations ρ,

whose Pol (ρ) is a maximal clone containing Pol (Θ), are of the forms Θk for some

1 ≤ k ≤ d(M). For each a, b ∈ M with d(a, b) = d(M) and 1 ≤ k ≤ d(M), if Θk is

transitive, then (a, b) ∈ Θk; so, d(M) = d(a, b) ≤ k ≤ d(M).

Remark 4.7 For each 1 ≤ k ≤ d(M), Θk is an equivalence relation if and only if

k = d(M).

Theorem 4.8 Suppose that Pol (ρ) is a maximal clone containing Pol (Θ).

1. If the graph M is connected, then ρ is precisely central relations of the form Θk

for some ⌈d(M)/2⌉ ≤ k < d(M).

2. If the graph M is disconnected, then ρ is the non-trivial equivalence relation

Θd(M) = ∪1≤i≤mCi ×Ci where C1 . . . ,Cm are all components of M.

Proof. (1). Connectedness of (M ; Θ) implies that Θd(M) = M ×M . By Remark

4.7, ρ is not non-trivial equivalence relations. So, ρ is a central relation. One can see

that Θk is central if and only if ⌈d(M)/2⌉ ≤ k < d(M).

(2). It is easily shown that Θd(M) = ∪1≤i≤mCi × Ci. If ρ is central, the center

elements will be related to all elements of M ; so, one can conclude by Corollary 2.3

that ρ = M ×M which is impossible. Hence, ρ is a non-trivial equivalence relation

which implies that ρ = Θd(M).
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