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Chapter 1

Introduction and Literature Review

An algebra A = 〈A;F 〉 is a structure consisting of a nonempty set A which is

called the universe of A, and a set F of operations defined on A which is called the

set of fundamental operations of A. If A is finite and every fundamental operation

is finitary, A is called a finite algebra. However, we may consider F as {fj}j∈J
for some index set J . For convenience, we may write A = 〈A; f1, f2, ..., ft〉 when

F = {f1, f2, ..., ft} is finite for some positive integers t. A type τ = (nj)j∈J of algebra

is a function which map each j ∈ J to the arity of fj. Groups, rings and fields

are examples of well-known algebras of type (2, 1, 0), (2, 2, 1, 0) and (2, 2, 1, 1, 0, 0),

respectively. Most of algebraist study algebraic properties of algebras through the

concept of subalgebras, product of algebras, homomorphic image of algebras, minimal

algebras and subdirectly irreducible algebras.

A variety is a class of algebras of the same type which is closed under homo-

morphic images, subalgebras and direct products of families of algebras. In [3], G.

Birkhoff proved that K is a variety if and only if every algebra in K satisfies a certain

set of laws. For instance, we know that all groups 〈G; ·,−1 , e〉 satisfy the following

laws:

• associative law : (a · b) · c = a · (b · c),

• identity law : a · e = a = e · a,

• inverse law : a · a−1 = e = a−1 · a

1
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for all a, b, c ∈ A. Therefore, the class of all groups is a variety.

In the resent year, some complicate questions about algebras are not able

studied through those algebraic properties; especially, representing some classes of

algebras. Several algebraist are studying new methods to solve these problems. In

1970, H.A. Priestley [17] represented bounded distributive lattices by ordered Stone

spaces; it is a new branch to use a topology to study an algebra. And also, this concept

was used to describe subdirectly irreducible Ockham algebras by A. Urguhart [22].

In 1983, Davey and Werner [11] developed the method to represent every algebra as

an algebra of continuous functions; this concept is known as natural duality.

For each algebra A, let A := ISP (A) be the category consisting of all iso-

morphic copies of subalgebras of direct powers of A and let X := IScP
+(A˜) be

the category consisting of all isomorphic copies of closed substructures of non-empty

direct powers of A˜ := (A;R,T ) where R ⊆
⋃
n∈N

S(An) and T is the discrete topology

on A. The dual D(B) ∈ X of B ∈ A and E(X˜) ∈ A of X˜ ∈ X are the set of all

homomorphisms from B to A and the set of all morphisms from X˜ to A˜ , respectively.

We say that A˜ (or R) yields a (natural) duality on A or A˜ dualise A if B ∼= ED(B)

for all B ∈ A ; and we say that A is dualisable if there is a structure A˜ which dualise

A. These mean that every algebra in A can be represented as a concrete algebra

of morphisms from the structure D(B) to the structure A˜ ; for further details, see in

[7] or [11]. One of the famous theorem in the natural duality, which is named NU-

duality Theorem [7], implies that the structure A˜ :=
(
A;S(A2),T

)
yields a duality on

ISP (A) whenever A is an algebra admitting a majority term operation; that is, there

is a term operation m : A3 → A satisfying m(x, x, y) = m(x, y, x) = m(y, x, x) = x

for all x, y ∈ A.

A lattice is an algebra 〈A;∨,∧〉 of type (2, 2) satisfying the following laws:

• commutative law : a ∨ b = b ∨ a and a ∧ b = b ∧ a,

• associative law : (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c),

• idempotent law : a ∨ a = a and a ∧ a = a,

• absorption law : a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a
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for all a, b, c ∈ A. By Birkhoff’s theorem [3], the class of all lattices is a variety.

A bounded lattice is a lattice which has elements 0 and 1 satisfying 0 ∧ x = 0 and

1 ∨ x = 1 for all x ∈ A. The elements 0 and 1 are called the least and the greatest

element in A, respectively. If A is a bounded lattice, we write A = 〈A;∨,∧, 0, 1〉.

It is well known that the medean function m : A3 → A on a set A defined by

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is a majority term operation on a lattice

〈A;∨,∧〉. By NU-duality Theorem [7], every lattice is dualisable. A distributive

lattice is a lattice satisfying a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ A. The

power set P(X) of a set X is an example of a well-known bounded distributive

lattice whose ∨ is the union, ∧ is the intersection, 0 is the empty set and 1 is the

set X. However, there are some lattices which are not distributive; for example, the

diamond lattice M3 and the pentagon lattice N5 whose diagrams are shown in Figure

1. In [2], G. Birkhoff gave a characterization of distributive lattices by M3 and N5

which is known as the M3 −N5 Theorem:

〈A;∨,∧〉 is a distributive lattice if and only if it has no M3 and N5 as sublattices.

@
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Figure 1 The lattice N5 and M3.

An algebra 〈A;F 〉 is a reduct of an algebra 〈A;F ∗〉 if F ⊆ F ∗. All distributive

lattices are precisely sublattices of 〈P(B);∨,∧, 0, 1〉 for some sets B. If we consider a

complement of sets as a unary operation ′ : P(X)→P(X) defined by A
′
= X\A for

all A ⊆ X, we will have a new algebra 〈P(X);∨,∧,′ , 0, 1〉 whose 〈P(X);∨,∧, 0, 1〉

is its reduct.

An algebra 〈A;F 〉 is said to be a lattice-based algebra if 〈A;∨,∧〉 is its reduct.

So, NU-duality Theorem [7] implies that every lattice-based algebra is dualisable.

The dualities of lattice-based algebras have been studied by various authors (see [9],
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[11], [18]). If a bounded distributive lattice is a reduct of an algebra 〈A;F 〉, we

call 〈A;F 〉 that a bounded distributive lattice-based algebra; or shortly, BDL-algebra.

For a set X, one can notice that 〈P(X);∨,∧,′ , 0, 1〉 is a BDL-algebra such that the

complement ′ is a dual endomorphism on its lattice-based. Lattice-based algebras are

extensively studied; especially, BDL-algebras whose F \ {∨,∧, 0, 1} contains only a

dual endomorphism on its lattice-based; for instance, Boolean algebras, De Morgan

algebras, Ockham algebras.

A Boolean algebra was introduced by George Boole [6] to be a BDL-algebra

〈A;∨,∧, f, 0, 1〉 whose f is a unary operation on A satisfying for each x, y ∈ A,

• f(x ∨ y) = f(x) ∧ f(y),

• f(x ∧ y) = f(x) ∨ f(y),

• x ∧ f(x) = 0,

• x ∨ f(x) = 1

In [5], G. Birkhoff and M. Ward proved that every finite Boolean algebra is isomorphic

to 〈P(B);∨,∧, 0, 1〉 for some finite sets B.

A De Morgan algebra was introduced by Moisil [16] to be a generalization of

a Boolean algebra. It is a BDL-algebra 〈A;∨,∧, f, 0, 1〉 whose its unary operation f

satisfies for each x, y ∈ A,

• f(x ∨ y) = f(x) ∧ f(y),

• f(x ∧ y) = f(x) ∨ f(y),

• f(0) = 1,

• f 2(x) = x

An Ockham algebra is a BDL-algebra 〈A;∨,∧, f, 0, 1〉 whose f is a dual endo-

morphism on its lattice-based. This algebra is a generalization of Boolean algebras

and De Morgan algebras. It was first introduced by Berman [1]. Later, A. Urguhart

[22] characterized congruences and subdirectly irreducible Ockham algebras. Besides,
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M.S. Goldberg [14] applied the concept of duality to characterize all finite subdirectly

irreducible Ockham algebras.

BDL-algebras not only are popularly studied in mathematics but also can be

applied in computer science; for instance, Boolean algebras have been fundamental

in the development of computer science and digital logic.

We are interested in introducing a new kind of BDL-algebras by considering

conditions on the unary operation f , especially when f is connected.

In the literature, if f is a unary operation on a set A then 〈A; f〉 is called mono-

unary algebra. A unary operation f on a set A is connected if for each a, b ∈ A, there

exist nonnegative integers n,m such that fn(a) = fm(b). If f is connected, 〈A; f〉 is

called a connected mono-unary algebra. In [24], M. Yoeli characterized all subdirectly

irreducible connected mono-unary algebras. Later, G.H. Wenzel [23] extended this

result to any mono-unary algebras. It is well-known fact that every mono-unary alge-

bra is a disjoint union of connected mono-unary algebras. So, we study mono-unary

algebras via connected mono-unary algebras. One direction of studying mono-unary

algebra is the concept of pre-period which is the least nonnegative integer λ(f) satisfy-

ing Imfλ(f) = Imfλ(f)+1 (see e.g.[25]). If λ(f) = |A| − 1 then f is called a long-tailed

function [12]. C. Ratanaprasert and K. Denecke [20] characterized all congruence

relations on 〈A; f〉 whose f is a long-tailed function; besides, C. Ratanaprasert ,

K. Denecke and S.L. Wismath [20],[13] proved that there exists d ∈ A such that

A =
{
d, f(d), ..., fλ(f)(d) = fλ(f)+1(d)

}
. The result from [20] and [13] implies that if

f is a long-tailed function then f is connected. If f is a long-tailed function on a finite

set A, one can define a totally order ≤ on A by d > f(d) > ... > fλ(f)(d) = fλ(f)+1(d)

which implies that f is an endomorphism on 〈A;∨,∧, 0〉 where fλ(f)(d) = 0.

In this thesis, we define a BDLC-algebra to be an algebra A := 〈A;∨,∧, f, 0, 1〉

whose 〈A; f〉 is a connected unary algebra and f is an endomorphism on the bounded

below distributive lattice 〈A;∨,∧, 0〉. For example, A =
{

1, f(1), ..., fλ(f)(1) = 0
}

equipped with {∨,∧, f, 0, 1} and 1 > f(1) > ... > fλ(f)(1) forms a BDLC whose f

is a long-tailed function on A and we prove later that this algebra is contained in

every BDLC algebra. Since the infinite direct product of connected unary algebras
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does not need to be connected, the class M of all BDLC-algebras is not a variety.

But we prove that the subclassMn ofM whose the pre-period is less than or equal

to n is a variety for every positive integer n; in fact,Mn is the variety satisfying the

following laws:

• f(a ∨ b) = f(a) ∨ f(b),

• f(a ∧ b) = f(a) ∧ f(b),

• f(0) = 0,

• fn(1) = 0

for all a, b, c ∈ A.

For a class B of algebras of the same type, the variety generated by B is the

least variety which contains B and denoted by V (B). In [4], G. Birkhoff proved that

K is a variety if and only if K = V (Si(K)) where Si(K) is the set of all subdirectly

irreducible algebras in K. By the result, every subvariety of K can be determined by

a subset of Si(K). Also, the class Λ(K) of all subvarieties of K equipped with the

order ⊆ forms a complete lattice.

B. Jònsson proved in [15] that if K is a congruence-distributive variety gener-

ated by a finite set of finite algebras then Λ(K) is a finite distributive lattice; besides,

B.A. Davey [8] proved that Λ(K) is isomorphic to the lattice O(Si(K)) of all order

ideals of (Si(K);≤Si(K)) where an order on Si(K) is defined by A ≤Si(K) B if and

only if A ∈ HS(B).

It is known that every variety of lattice based-algebras is congruence dis-

tributive; so is Mn for all positive integers n. To describe the lattice Λ(Mn), it is

interesting whether Mn is generated by a finite set of finite subdirectly irreducible

algebras. We will prove the affirmative answer that the set SiF (Mn) of all finite sub-

directly irreducible algebras in Mn is finite (up to isomorphism) and then equipped

with the result in [19] we prove that all subdirectly irreducible algebras in Mn are

finite.

We organize this thesis into six chapters as follow:
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In chapter 2, we summarize some basic concepts from several books which are

useful in the sequel.

In chapter 3, we study general properties of BDLC-algebras and apply them

to find a certain set of laws for varieties of BDLC-algebras; and then we characterize

all their minimal non-identical congruences.

In chapter 4, we characterize all finite subdirectly irreducible BDLC algebras

by using the results in Chapter 3; and then apply some results in [19] to prove that the

varieties of BDLC-algebras has no infinite subdirectly irreducible algebras; moreover,

we show that it is generated by a single subdirectly irreducible algebra.

In chapter 5, we apply the result in [8] to describe the lattice of all subvarieties

of the varieties of BDLC-algebras.

In chapter 6, we summarize our main results in previous chapters for more

insight.

To avoid a confusion in writing the thesis, let N be the set of all natural

numbers, ≤∗ denote the natural order on N ∪ {0} and ≤ denote the order of the

lattice 〈A;∨,∧, 0, 1〉.



Chapter 2

Basic Concepts

In this chapter, we provide some basic concepts which will be referred in the

sequel. All theorems here are stated without proofs.

2.1 Ordered Sets

In this section, we introduce and present some basic properties of an ordered

set.

Definition 2.1 Let P be a nonempty set. An order (or partial order) on P is a

binary relation ≤ on P satisfying the following three conditions for all x, y, z ∈ P ,

1. x ≤ x, (reflexivity)

2. x ≤ y and y ≤ x imply x = y, (anti-symmetry)

3. x ≤ y and y ≤ z imply x ≤ z. (transitivity)

A set P equipped with an order relation ≤ is said to be an ordered set (or

partially ordered set) and denoted by (P ;≤). Some authors use the shorthand poset.

An ordered set (Q;≤′) is called a subordered set of (P ;≤) if Q ⊆ P and ≤′ is the

restriction of ≤ to Q×Q, denoted by ≤�Q×Q.

An order relation ≤ on P gives rise to a relation < of strictly inequality : x < y

in P if and only if x ≤ y and x 6= y. For each x, y ∈ P , we say that x is comparable

with y if x ≤ y or y ≤ x.

8
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Definition 2.2 Let P = (P ;≤) be an ordered set.

(i) P is a chain if all pairs of elements of P are comparable.

(ii) P is an antichain if x = y whenever x ≤ y for all x, y ∈ P ; that is, no pairs of

elements in P are comparable.

If P = ({a1, ..., at} ;≤) is a finite chain with a1 < ... < at for some t ∈ N, we

denote P by {a1 < ... < at} or {at > ... > a1}.

Example 2.3 Examples of ordered sets arising in mathematics such as:

1. the set of real numbers equipped with the less than or equal relation (R;≤),

2. the set of subsets of a given set A (power set of A) equipped with the inclusion

(P(A);⊆),

3. the set of natural numbers equipped with the relation of divisibility (N ; |).

Definition 2.4 Let P be an ordered set and let x, y ∈ P . We say that x is covered

by y (or y cover x), and write x ≺ y or y � x, if x < y and z = x for all z ∈ P

with x ≤ z < y. The latter condition means that there is no element z of P with

x < z < y.

Observe that if the universe P of P is finite, x < y if and only if there exists a

finite sequence of covering relations x = x0 ≺ x1 ≺ . . . ≺ xn = y. Thus, in the finite

case, the order relation determines, and is determined by, the covering relation.

Definition 2.5 Let P and Q be ordered sets and ϕ : P −→ Q be a function.

1. ϕ is called an order-preserving (or monotone) if x ≤ y in P implies ϕ(x) ≤ ϕ(y)

in Q.

2. ϕ is called an order-embedding if x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in Q.

3. ϕ is called an order-isomorphism if it is an order-embedding mapping P onto

Q.
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Whenever ϕ : P −→ Q is an order-embedding we will write ϕ : P ↪→ Q. If

there exists an order-isomorphism from P to Q, we say that P is isomorphic to Q

and denoted by P ∼= Q

Definition 2.6 Let P be an ordered set and Q ⊆ P .

(i) Q is a down-set (alternative terms include decreasing set or order ideal) if y ∈ Q

whenever x ∈ Q, y ∈ P and y ≤ x.

(ii) Dually, Q is an up-set (alternative terms are increasing set or order filter) if

y ∈ Q whenever x ∈ Q, y ∈ P and y ≥ x.

Given an arbitrary subset Q of P and x ∈ P , we define

↓ Q = {y ∈ P : (∃x ∈ Q)y ≤ x} and ↑ Q = {y ∈ P : (∃x ∈ Q)y ≥ x}.

These are read “ down Q ”and “ up Q ”, respectively. It is easily checked that ↓ Q is

the smallest down-set containing Q and that Q is a down-set if and only if Q =↓ Q,

and dually for ↑ Q. If Q = {x} then we denote ↓ Q and ↑ Q by ↓ x and ↑ x,

respectively; that is, ↓ x = {y ∈ P : y ≤ x} and ↑ x = {y ∈ P : y ≥ x}.

The family of all down-sets of P is denoted by O(P). It is proved that if P is

finite then every nonempty set in O(P) can be written in the form ↓ B where B is a

finite antichain in P .

Definition 2.7 Let P be an ordered set and Q ⊆ P .

1. a ∈ Q is called a maximal element of Q if a ≤ x ∈ Q implies a = x for all

x ∈ Q.

2. a ∈ Q is called a minimal element of Q if a ≥ x ∈ Q implies a = x for all

x ∈ Q.

3. a ∈ Q is called the greatest (or maximum) element of Q if a ≥ x for every

x ∈ Q, and in that case we write a = maxQ.

4. a ∈ Q is called the least (or minimum) element of Q if a ≤ x for every x ∈ Q,

and in that case we write a = minQ.
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5. P is said to be bounded if P has maximum and minimum elements; otherwise,

P is said to be unbounded.

Example 2.8 Let X be a set. The powerset P(X), consisting of all subsets of X,

is ordered by the set inclusion: for A,B ∈ P(X), we define A ≤ B if and only

if A ⊆ B. Moreover, X is the maximum element of P(X) and ∅ is the minimum

element of P(X).

2.2 Algebras

Definition 2.9 Let A be a set. For n ∈ N, a function f : An → A is called an n-ary

operation defined on A and is said to have arity n. An operation of arities one or

two are often said to be unary or binary, respectively.

Definition 2.10 An algebra is a pair A = 〈A;F 〉 consisting of

• a nonempty set A which is called the universe of A, and

• a set F of operations defined on A which is called the set of the fundamental

operations of A.

Sometimes, we may consider F as {fj}j∈J for some index sets J . If F =

{f1, f2, ..., ft} is finite for some positive integers t, we write A = 〈A; f1, f2, ..., ft〉.

A type τ = (nj)j∈J of algebra is the sequence of all the arities of fj. Avoiding of

confusion, we denote fA
j for nj-ary operation of algebra A for all j ∈ J . If all elements

in F are unary operations, A = 〈A;F 〉 is called a unary algebra. In particular, if F is

a singleton set of a unary operation then A is a mono-unary algebra and we denote

〈A;F 〉 by 〈A; f〉.

Groups and rings are examples of algebras of type (2) and (2, 2). For a group,

we may consider its identity e as a nullary operation of arity 0 which means a function

from {∅} to e. And also, a function −1 ,which map each element to its inverse, is a

unary operation. In this case, a group is an algebra of type (2, 1, 0).

Definition 2.11 Let A =

〈
A;
{
fA
j

}
j∈J

〉
and B =

〈
B;
{
fB
j

}
j∈J

〉
be algebras of

the same type. B is called a subalgebra of A, if the following conditions are satisfied:
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1. B ⊆ A,

2. fB
j is the restriction of the operation fA

j to the set B, denoted by fA
j �B, for all

j ∈ J .

Lemma 2.12 (Subalgebra Criterion)[13] Let A =

〈
A;
{
fA
j

}
j∈J

〉
be an algebra of

type τ and let B ⊆ A and fB
j = fA

j �B for all j ∈ J . Then B =

〈
B;
{
fB
j

}
j∈J

〉
is a

subalgebra of A if and only if fA
j (Bnj) ⊆ B for all j ∈ J .

Definition 2.13 A binary relation θ on a set A is called an equivalence relation on

A if the following three conditions hold for all a, b, c ∈ A:

1. (a, a) ∈ θ, (reflexivity)

2. (a, b) ∈ θ implies (b, a) ∈ θ, (symmetry)

3. (a, b) ∈ θ and (b, c) ∈ θ imply (a, c) ∈ θ. (transitivity)

Definition 2.14 Let A be a set, let θ ⊆ A × A be an equivalence relation on A,

and let f be an n-ary operation on A. Then f is said to be compatible with θ, or to

preserve θ or θ is invariant with respect to f , if for all a1, . . . , an, b1, . . . , bn ∈ A,

(a1, b1) ∈ θ, . . . , (an, bn) ∈ θ implies (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

Definition 2.15 Let A be an algebra. An equivalence relation θ on A is called a

congruence relation on A if all its fundamental operations are compatible with θ.

We denote by Con A the set of all congruence relations of the algebra A. In facts,

(Con A;⊆) is an ordered set.

For every algebra A, the equivalence relations

∆A := {(a, a) | a ∈ A} and ∇A := A× A

are congruence relations which are called the identity relation and the full relation,

respectively.
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Theorem 2.16 [13] Let {θi : i ∈ I} ⊆ Con A. Then
⋂
i∈I

θi is a congruence relation

on A.

Remark 2.17 [13] In general, the union of two congruence relations of an algebra

is not necessary a congruence relation since this does not hold even for equivalence

relations; for example, let A = {1, 2, 3} and define

θ1 := {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} and θ2 := {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}.

Then θ1 and θ2 are equivalence relations; but

θ1 ∪ θ2 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}

is not an equivalence relation on A since it is not transitive:

(1, 2) ∈ θ1 ∪ θ2 and (2, 3) ∈ θ1 ∪ θ2 but (1, 3) /∈ θ1 ∪ θ2.

As in the subalgebra case, we can define a smallest congruence generated by the

union. This motivates the following definition.

Definition 2.18 Let A be an algebra and let θ be a binary relation on A. We define

the congruence relation 〈θ〉Con A on A generated by θ to be the intersection of all

congruence relations θ′ on A which contain θ:

〈θ〉Con A := ∩{θ′ : θ′ ∈ Con A and θ ⊆ θ′}.

Definition 2.19 Let A =

〈
A;
{
fA
j

}
j∈J

〉
and B =

〈
B;
{
fB
j

}
j∈J

〉
be algebras of

the same type. A function h : A→ B is called a homomorphism from A into B if for

all j ∈ J ,

h(fA
j (a1, ..., anj)) = fB

j (h(a1), ..., h(anj))

for all a1, ..., anj ∈ A. A homomorphism from A into itself is called an endomorphism.

A surjective homomorphism is called an epimorphism. An injective homomorphism

is called a monomorphism or an embedding. A bijective homomorphism is called an

isomorphism.
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Definition 2.20 Let
{

Ai : i ∈ I
}

be a family of algebras of type τ . The direct

product of the family
{

Ai : i ∈ I
}

is defined as an algebra of type τ with the carrier

set

A := {(ai)i∈I : ai ∈ Ai for all i ∈ I}

and for each j ∈ J the corresponding operations is defined by

fAj ((a1i)i∈I , ..., (anji)i∈I) = (f
Ai

j (a1i, ..., anji))i∈I

We denote the direct product

〈
A;
{
fAj

}
j∈J

〉
by
∏
i∈I

Ai. If J = {1, ..., n} then∏
i∈I

Ai can be written as A1 × · · · × An.

Definition 2.21 An algebra A of type τ is called subdirectly irreducible if
⋂
i∈I

θi 6= ∆A

for all θi ∈ Con(A) \ {∆A} and i ∈ I.

Remark 2.22 [13] It is easy to see that an algebra A is subdirectly irreducible if

and only if ∆A has exactly one cover in the ordered set (ConA;⊆) of all congruence

relations on A. Then the ordered set (ConA;⊆) has the form shown in the following

figure. '

&

$

%r
r

r

⋂
{Con(A) \ {∆A}}

∆A

∇A

Figure 2 The ordered set (Con A;⊆).

2.3 Terms and Term Operations

For each positive integer n, an n-element set Xn = {x1, ..., xn} is called an

alphabet and its elements are called variables. To every operation symbol fj, we

assign an integer nj ≥∗ 0, the arity of fj. Let τ = (nj)j∈J be a type such that the set

of operation symbols {fj}j∈J is disjoint with Xn. Now we define the terms of type τ .
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Definition 2.23 For each positive integer n, the n-ary terms of type τ are defined

in the following inductive way:

1. every variable xj ∈ Xn is an n-ary term,

2. for nj ∈ τ , if t1, ..., tnj are n-ary terms and fj is an nj-ary operation symbol,

then fj(t1, ..., tnj) is an n-ary term.

It follows immediately from the definition that every n-ary term is also k-ary

if k > n; and we may write the n-ary term t in full by t(x1, x2, ..., xn). The set

Wτ (Xn) = Wτ (x1, x2, ..., xn) of all n-ary terms is the smallest set which contains

x1, x2, ..., xn and is closed under finite application of (2). The set of all terms of type

τ over the alphabet X := {x1, x2, ...} is defined as the union

Wτ (X) =
∞⋃
n=1

Wτ (Xn);

that is, Wτ (X) is the set of all terms of type τ over the countably infinite alphabet

X. Let A be an algebra of type τ and let t be an n-ary term of type τ over X. Then

the n-ary operation tA on A, which is called the term operation on A, is induced by

t via the following steps:

1. if t = xi then tA is an n-ary projection on A,

2. if t = fj(t1, ..., tnj) is n-ary term of type τ and tA1 , ..., t
A
nj

are term operations

which are induced by t1, ..., tnj then tA = fA
j (tA1 , ..., t

A
nj

)

Theorem 2.24 [13] Let A =

〈
A;
{
fA
j

}
j∈J

〉
and B =

〈
B;
{
fB
j

}
j∈J

〉
be algebras of

type τ and let n be a positive integer.

1. If t ∈ Wτ (Xn) and α : A→ B is a homomorphism then

α(tA(a1, a2, ..., an)) = tB(α(a1), α(a2), ..., α(an))

for all a1, a2, ..., an ∈ A.

2. If S ⊆ A then

〈S〉A =
{
tA(a1, a2, ..., an) : t ∈ Wτ (Xn), n is a positive integer and a1, a2, ..., an ∈ S

}
.
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2.4 Identities and Varieties

In this section, we will introduce a popular class of algebras which is called a

variety.

Definition 2.25 An equation of type τ is a pair of terms (p, q) ∈ (Wτ (X))2. Those

such pairs are more commonly written as p ≈ q.

Definition 2.26 An equation p ≈ q is said to be an identity of the algebra A of type

τ if pA = qA; that is, if the term operations induced by p and q on the algebra A are

equal. In this case we also say that the equation p ≈ q is satisfied by the algebra A,

and we write A |= p ≈ q.

If pA = qA then we say that A satisfies the law pA = qA. For instance, we know

that a group G is an algebra satisfying the associative identity a · (b · c) ≈ (a · b) · c;

that is, G satisfies the associative law: x · (y · z) = (x · y) · z for all x, y, z ∈ G.

Let Alg(τ) be the class of all algebras of type τ . For any subset Σ ⊆ (Wτ (X))2

and any subclass K ⊆ Alg(τ), let defined:

ModΣ := {A ∈ Alg(τ) : ∀p ≈ q ∈ Σ,A |= p ≈ q} ,

IdK :=
{
p ≈ q ∈ (Wτ (X))2 : ∀A ∈ Alg(τ),A |= p ≈ q

}
,

S(K) is the class of all subalgebras of algebras from K,

H(K) is the class of all homomorphic images of algebras from K,

P (K) is the class of all direct products of families of algebras from K.

Definition 2.27 A class K ⊆ Alg(τ) is called a variety if K is closed under the

operators H,S and P ; that is, if H(K) ⊆ K;S(K) ⊆ K and P (K) ⊆ K.

Theorem 2.28 [13] For any class K of algebras of type τ , the class HSP (K) is the

least (with respect to set inclusion) variety which contains K.

For any class K of algebras of the same type, the variety HSP (K) from Theo-

rem 2.28 is called the variety generated by K, it often denoted by V (K). If K consists

of a single algebra A, we usually write V (A) for the variety generated by A.
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Corollary 2.29 [13] A class K of algebras of type τ is a variety if and only if

HSP (K) = K.

Theorem 2.30 [3] A class K of algebras of type τ is a variety if and only if K =

Mod(Σ) for some Σ ⊆ (Wτ (X))2.

Theorem 2.31 [4] A class K of algebras of type τ is a variety if and only if K =

V (Si(K)) where Si(K) is the set of all subdirectly irreducible algebras in K.

Definition 2.32 A variety K is locally finite if every finitely generated algebra in K

is finite

2.5 Lattices

In this section, we give a definition and some properties of lattice.

Definition 2.33 Let L be an ordered set and let S ⊆ L. An element x ∈ L is an

upper bound of S if s ≤ x for all s ∈ S. A lower bound is defined dually. The set of

all upper bounds of S is denoted by Su(read as ‘S upper’) and the set of all lower

bounds of S is denoted by Sl(read as ‘S lower’); that is,

Su = {x ∈ L : (∀s ∈ S) s ≤ x} and Sl = {x ∈ L : (∀s ∈ S) s ≥ x}.

If Su has the least element x then x is called the least upper bound of S or the

supremum of S and is denoted by supS. Equivalently, x is the least upper bound of

S if

1. x is an upper bound of S and

2. x ≤ y for all upper bound y of S.

Dually, if Sl has the greatest element x then x is called the greatest lower bound of

S or the infimum of S and is denoted by infS.

Notation: We write ∨S instead of supS whenever supS exists; for special case

S = {x, y}, we write x∨ y (read as ‘x joins y’). Similarly we write ∧S or x∧ y (read

as ‘x meets y’) instead of infS whenever infS exists.
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Definition 2.34 Let L be a non-empty ordered set.

1. If x ∨ y and x ∧ y exist for all x, y ∈ L then L is called a lattice.

2. If ∨S and ∧S exist for all S ⊆ L then L is called a complete lattice.

If L is a lattice then ∨ and ∧ can be considered as binary operations on its

universe; so, 〈L;∨,∧〉 is an algebra. It is proved that 〈L;∨,∧〉 satisfies the following

identities:

• commutative : x ∨ y ≈ y ∨ x and x ∧ y ≈ y ∧ x,

• associative : (x ∨ y) ∨ z ≈ x ∨ (y ∨ z) and (x ∧ y) ∧ z ≈ x ∧ (y ∧ z),

• idempotent : x ∨ x ≈ x and x ∧ x ≈ x,

• absorption : x ∨ (x ∧ y) ≈ x and x ∧ (x ∨ y) ≈ x.

Conversely, if 〈L;∨,∧〉 is an algebra satisfies those above four identities then

L equipped with the order ≤ defined by

x ≤ y ⇔ x = x ∧ y for all x, y ∈ L

⇔ y = x ∨ y for all x, y ∈ L

is a lattice.

By subalgebra criterion, if L = 〈L;∨,∧〉 is a lattice and ∅ 6= M ⊆ L then M

is a sublattice of L if and only if a ∨ b ∈M and a ∧ b ∈M for all a, b ∈M .

Definition 2.35 Let L be a lattice.

(i) L is said to be distributive if it satisfies the distributive identity

a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c).

(ii) L is said to be modular if it satisfies the following condition:

a ∧ (b ∨ c) = (a ∧ b) ∨ c whenever a ≥ c for all a, b, c ∈ L

which is equivalent to satisfying the modular identity x∧(y∨(x∧z)) ≈ (x∧y)∨(x∧z).
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Theorem 2.36 [10]The M3 −N5 Theorem:

Let L be a lattice. Then

(i) L is distributive if and only if L has no sublattices isomorphic to both N5 and M3.

(ii) L is modular if and only if L has no sublattices isomorphic to N5.

Theorem 2.37 [10] If L is a distributive lattice then L is a modular lattice.

Note that every chain is distributive.

Proposition 2.38 [13] For every algebra A, the structure (Con A; ∧,∨) with

∧ : Con A× Con A −→ Con A define by (θ1, θ2) 7−→ θ1 ∩ θ2,

∨ : Con A× Con A −→ Con A define by (θ1, θ2) 7−→ 〈θ1 ∪ θ2〉Con A

is a complete lattice, called the congruence lattice Con(A) of A.

The structure (Con A; ∧,∨) is called the congruence lattice of A and denote

it by Con(A).

Definition 2.39 Let A be an algebra.

(i) A is congruence-distributive if Con(A) is distributive.

(ii) A is congruence-modular if Con(A) is modular.

Definition 2.40 A variety K is congruence distributive if every algebra A ∈ K is

congruence distributive.



Chapter 3

Algebraic Properties of

BDLC-algebras

We begin this work with studying algebraic properties of BDLC-algebras such

as general properties, subalgebras, product of algebras, homomorphic image of alge-

bras and minimal algebras which are useful in the sequel. Then, we apply those

results to show that the class Mn of all BDLC whose λ(f) ≤∗ n is a variety for

all n ∈ N; moreover, it can be described by identities. Besides in this chapter, we

characterize all minimal (non-identical) congruences in Con (A) for A ∈ Mn having

no infinite chains.

3.1 Identities for Varieties of BDLC-algebras

In this section, we include general properties of BDLC-algebras and apply

them to study algebraic properties of BDLC-algebras.

Proposition 3.1 Let A := 〈A;∨,∧, f, 0, 1〉 be BDLC.

1. If x ≤ y, then f(x) ≤ f(y) for all x, y ∈ A,

2. λ(f) is finite and fλ(f)(A) = {0},

3. λ(f) is the least nonnegative integer such that fλ(f)(1) = 0,

4. f t(1) ≤ fk(1) for all 1 ≤∗ k ≤∗ t ≤∗ λ(f),

20
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5. for each x ∈ A and j ∈ N, f j(x) = x if and only if x = 0,

6. λ(fA) = λ(fB) for all subalgebras B of A,

7. λ(fB) ≤∗ λ(fA) for all homomorphic images B of A.

Proof. (1 ) Let x, y ∈ A with x ≤ y. Then x = x ∧ y which implies that f(x) =

f(x) ∧ f(y) ≤ f(y).

(2 ) Since f is connected, there are n,m ∈ N ∪ {0} such that fn(1) = fm(0) = 0;

and the result from (1 ) implies that Imfn = Imfn+1 = {0}; so, λ(f) ≤∗ n. By

the property of λ(f), we get Imfλ(f)= Imf t for all t ≥∗ λ(f); and so, fλ(f)(A) =

Imfλ(f)= Imfn = {0}.

(3 ) Let m ∈ N∪{0} such that fm(1) = 0. By (1 ), we have Imfm=fm(A) = {0} which

implies that Imfm = Imfm+1; so, λ(f) ≤∗ m; that is, λ(f) is the least nonnegative

integer such that fλ(f)(1) = 0.

(4 ) Since 1 is the greatest element with respect to ≤, we have f t(1) = fk(f t−k(1)) ≤

fk(1) for all k, t ∈ N ∪ {0} with k ≤∗ t.

(5 ) Let x ∈ A and j ∈ N. Since f preserves 0, if x = 0 then f j(x) = x. Conversely,

assume that f j(x) = x. Since jλ(f) ≥∗ λ(f) and by (4 ), we have x = f jλ(f)(x) ≤

f jλ(f)(1) ≤ fλ(f)(1) = 0 which implies that x = 0.

(6 ) Let B be a subalgebra of A. Then 1A = 1B; and so, fλ(fA)(1B) = fλ(fA)(1A) = 0.

By (3), we get λ(fB) ≤∗ λ(fA). Similarly, λ(fA) ≤∗ λ(fB). Hence, λ(fA) = λ(fB).

(7 ) Let B = h(A) where h : A→ B is a homomorphism. Since 1B = h(1A), we have

fλ(fA)(1B) = h(fλ(fA)(1A)) = h(0A) = 0B which implies that λ(fB) ≤∗ λ(fA).

For a BDLC-algebra A, the chain
{

1 > f(1) > ... > fλ(f)(1) = 0
}

forms a sub-

algebra and is contained in every subalgebras of A. Hence, it is the smallest subal-

gebra of A; so, we denote it by CA and call it the core BDLC-subalgebra of A. If

A = CA; we call A, the core BDLC-algebra.

� � �

I

u r r ru u u u����0 fλ(f)−1(1) f2(1) f(1) 1

< < <

Figure 3 The core BDLC-algebra.
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The following proposition shows some basic properties of BDLC-algebras

which can be proved directly from properties of a homomorphism.

Proposition 3.2 Let A and B be BDLC-algebras and φ : A → B be a homomor-

phism.

1. φ(0) = 0, φ(1) = 1 and φ(f t(1)) = f t(1) for all t ≥∗ 1,

2. φ(H) is a subalgebra of B for all subalgebras H of A,

3. φ−1(K) is a subalgebra of A for all subalgebras K of B,

4. φ(CA) = CB.

Corollary 3.3 If A and B are BDLC with |CA| <∗ |CB| then there are no homo-

morphisms between A and B.

Recall that an algebra A is minimal if A ∼= B whenever B can be embedded

in A for all algebras B; or equivalently, A has no proper subalgebras. Since CA is

a subalgebra of A for all BDLC-algebras A, it is obvious that A = CA whenever A

is minimal; and Proposition 3.2 implies the converse that A is minimal whenever

A = CA.

Proposition 3.4 All core BDLC-algebras are precisely minimal BDLC-algebras.

Proof. Let B be a BDLC-algebra which can be embedded in a core BDLC A.

Then there is a monomorphism φ : B → A; so, by Proposition 3.2, A = CA =

φ(CB) ⊆ φ(B) ⊆ A. Hence, φ is surjective.

It is well known that the infinite direct product of connected unary algebras

does not need to be connected; so, the class of all BDLC-algebras is not closed under

the product. However, Proposition 3.1(2) implies that a direct product of BDLC-

algebras whose λ(f) ≤∗ n for some fixed n ∈ N is BDLC.

Proposition 3.5 Let n ∈ N and
{

Ai : i ∈ I
}

be a family of BDLC-algebras whose

λ(fAi) ≤∗ n for all i ∈ I. Then A =
∏
i∈I

Ai is a BDLC-algebra whose λ(fA) ≤∗ n;

moreover, there exists j ∈ I such that λ(fAj) = max
{
λ(fAi) ∈ N : i ∈ I

}
and CAj

∼=

CA.
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Proof. To show that the product A is BDLC, it is left to prove that fA is con-

nected. By Proposition 3.1(2), we have (fA)n(a)(i) = (fAi)n(a(i)) = 0 = (fAi)n(b(i)) =

(fA)n(b)(i) for all a, b ∈ A and i ∈ I.

Note that
{
λ(fAi) ∈ N : i ∈ I

}
is bounded above by n; so, it is finite. Let

λ(fAj) = max
{
λ(fAi) ∈ N : i ∈ I

}
for some j ∈ I. Then, (fA)λ(fA)(1A) = 0A implies

that (fAj)λ(fA)(1Aj
) = 0Aj

; so, λ(fAj) ≤∗ λ(fA) Since λ(fAj) ≥∗ λ(fAi) for all i ∈ I,

we have (fAi)λ(f
Aj )(1Ai

) = 0Ai
for all i ∈ I; so, (fA)λ(f

Aj )(1A) = 0A which also implies

that λ(fA) ≤∗ λ(fAj). Altogether, λ(fA) = λ(fAj). Therefore, CAj
∼= CA.

From now on, let n ∈ N and Mn be the class of all BDLC whose λ(f) ≤∗ n.

By Proposition 3.5, we have P (Mn) ⊆Mn. It is clear that a homomorphic image B

of a BDLC A is BDLC and Proposition 3.1 implies that λ(fB) ≤∗ λ(fA). Similarly,

a subalgebra B of a BDLC A is BDLC whose λ(fB) = λ(fA).

Theorem 3.6 Mn is a variety.

Notice that
∞⋃
i=1

Mi is the class of all BDLC-algebras and Mi ⊆ Mj for all

j ≥∗ i. Since the pre-period of the unary operation f of all algebras inMn is less than

or equal to n and by Proposition 3.1(2), we have fn(1) = 0. And also, if 〈A;∨,∧, 0, 1〉

is a bounded distributive lattice and f is an endomorphism on 〈A;∨,∧, 0〉 with

fn(1) = 0 then fn(a) = 0 for all a ∈ A which implies that f is connected; so,

〈A;∨,∧, f, 0, 1〉 belongs to Mn. We have the following characterization.

Proposition 3.7 An algebra A := 〈A;∨,∧, f, 0, 1〉 is inMn if and only if 〈A;∨,∧, 0, 1〉

is a bounded distributive lattice and f is an endomorphism on 〈A;∨,∧, 0〉 with fn(1) =

0.

We conclude the section by showing identities for the varieties of BDLC-

algebras.

Theorem 3.8 The variety Mn of BDLC-algebras is a class of BDL-algebras satis-

fying the following identities:

f(x ∨ y) ≈ f(x) ∨ f(y), f(x ∧ y) ≈ f(x) ∧ f(y), f(0) ≈ 0 and fn(1) ≈ 0
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3.2 The Congruence Lattice

It is well-known that a variety of BDL-algebras is congruence distributive;

hence, also is Mn. In this section, we will show a natural way of defining a unary

operation on Con (A) for A ∈Mn so that Con (A) ∈Mn and we show a relationship

between CA and CCon(A).

Recall that for an algebra A, Con (A) is a complete lattice having 4A and

A×A as the least and the greatest element, θ1 ∧ θ2 = θ1 ∩ θ2 and θ1 ∨ θ2 = 〈θ1 ∪ θ2〉;

besides, 〈θ1 ∪ θ2〉 =
⋃
t∈N

θ1 ◦ θ2 ◦ · · · ◦ θ1︸ ︷︷ ︸
t

and if (a, b) ∈ 〈θ1 ∪ θ2〉, there is t ∈ N such

that (a, b) ∈ θ1 ◦ θ2 ◦ · · · ◦ θ1︸ ︷︷ ︸
t

; that is, (a, c1) ∈ θ1, (c1, c2) ∈ θ2, ..., (ct−1, b) ∈ θ1 for

some c1, ..., ct−1 ∈ A.

Lemma 3.9 Let A ∈Mn.

1. If θ ∈ Con (A) then θ̄ := {(f(a), f(b)) : (a, b) ∈ θ} ∪ 4A belongs to Con (A),

2. θ1 ∧ θ2 = θ̄1 ∧ θ̄2 and θ1 ∨ θ2 = θ̄1 ∨ θ̄2 for all θ1, θ2 ∈ Con (A).

Proof. (1 ) Let θ ∈ Con (A). Then θ̄ is an equivalence relation. To show that θ̄

preserves ∨,∧ and f , let a1, a2, b1, b2 ∈ A with (f(a1), f(b1)), (f(a2), f(b2)) ∈ θ̄. Since

θ is a congruence relation and f preserves ∨ and ∧, we have

(f(a1) ∨ f(a2), f(b1) ∨ f(b2)) = (f(a1 ∨ a2), f(b1 ∨ b2)) ∈ θ̄,

(f(a1) ∧ f(a2), f(b1) ∧ f(b2)) = (f(a1 ∧ a2), f(b1 ∧ b2)) ∈ θ̄

and

(f(f(a1)), f(f(a2))) ∈ θ̄.

Therefore, θ̄ is a congruence relation.

(2 ) Let θ1, θ2 ∈ Con (A). It can be proved directly that θ1 ∧ θ2 = θ̄1∧ θ̄2. Let (x, y) ∈

θ1 ∨ θ2. Then (x, y) = (f(a), f(b)) for some (a, b) ∈ θ1∨θ2; so, there exists t ∈ N such

that (a, b) ∈ θ1 ◦ θ2 ◦ · · · ◦ θ1︸ ︷︷ ︸
t

;that is, (a, c1) ∈ θ1, (c1, c2) ∈ θ2, ..., (ct−1, b) ∈ θ1 for

some c1, ..., ct−1 ∈ A. So, (f(a), f(c1)) ∈ θ̄1, (f(c1), f(c2)) ∈ θ̄2, ..., (f(ct−1), f(b)) ∈ θ̄1

which implies that (x, y) = (f(a), f(b)) ∈ θ̄1 ∨ θ̄2. It follows that θ1 ∨ θ2 ⊆ θ̄1 ∨ θ̄2.

Similarly, we can prove that θ̄1 ∨ θ̄2 ⊆ θ1 ∨ θ2. Therefore, θ1 ∨ θ2 = θ̄1 ∨ θ̄2.
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By the above results and Proposition 3.7, if we define g ⊆ (Con (A))2 by

g(θ) = θ̄ for all θ ∈ Con (A) then Con (A) := 〈Con (A) ;∨,∧, g,4A,A× A〉 ∈ Mn.

Applying the proof in [21], one can see that Con
(
CA

)
= {θ(0, c) : c ∈ CA} for

all A ∈ Mn where CA × CA = θ(0, 1) and 4CA
= θ(0, 0). We will show that the

map α : CA → Con
(
CA

)
, which is defined by α(c) = θ(0, c) for all c ∈ CA, is an

isomorphism via the following proposition.

Proposition 3.10 Let A ∈Mn.

1. For each θ ∈ Con (A)\{4A}, if (x, y) ∈ θ for some x < y in CA then (a, b) ∈ θ

for all a, b ∈ A with a ≤ y and b ≤ y,

2. θ(0, c) = 4A ∪ {(x ∨ a, x ∨ b) : x ∈ A and 0 ≤ a, b ≤ c} for all c ∈ CA,

3. g(θ(0, c)) = θ(0, f(c)) for all c ∈ CA where g : Con (A) → Con (A) is defined

by g(θ) = θ̄ for all θ ∈ Con (A).

Proof. (1 ) Let θ ∈ Con (A) \ {4A} and (x, y) ∈ θ for some x, y ∈ CA with x < y.

Assume that a, b ∈ A with a ≤ y and b ≤ y and let ky = min {j ∈ N ∪ {0} : f j(a) = 0}.

Since x ≤ f(y), we get (f(y), y) = (f(y) ∨ x, f(y) ∨ y) ∈ θ. Since θ preserves f and

θ is transitive, (0, y) ∈ θ which implies that (a, y), (b, y) ∈ θ. Hence, (a, b) ∈ θ.

(2 ) Let c ∈ CA and β := 4A ∪ {(x ∨ a, x ∨ b) : x ∈ A and 0 ≤ a, b ≤ c}. It is

clear that β ∈ Con (A) and θ(0, c) ⊆ β. Now, let (u, v) ∈ β. If u 6= v then

(u, v) = (x ∨ a, x ∨ b) for some x ∈ A and 0 ≤ a, b ≤ c. So, (a, b) ∈ θ(0, c) which

implies that (u, v) ∈ θ(0, c).

(3 ) Since (0, c) ∈ θ(0, c) and the definition of g, we have (0, f(c)) ∈ g(θ(0, c)) which

implies that θ(0, f(c)) ⊆ g(θ(0, c)). Let (f(s), f(t)) ∈ g(θ(0, c)) for some s, t ∈ A with

(s, t) ∈ θ(0, c). If s = t, we are done. If s 6= t, we get by (2) that (s, t) = (x∨a, x∨ b)

for some x ∈ A and 0 ≤ a, b ≤ c. So, (s, t) = (x ∨ a, x ∨ b) ∈ θ(0, c) which implies

that (f(s), f(t)) ∈ θ(0, f(c)). Hence, g(θ(0, c)) = θ(0, f(c)).

Theorem 3.11 CA
∼= Con

(
CA

)
for all A ∈Mn.
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Proof. Let A ∈ Mn and let α : CA → Con
(
CA

)
be defined by α(c) = θ(0, c) for

all c ∈ CA. Then α is a function which preserves 0 and 1 and α is onto. To show that

α is one to one, let c1, c2 ∈ CA such that θ(0, c1) = θ(0, c2). Since (0, c1) ∈ θ(0, c2) and

Proposition 3.10 (2), we get (0, c1) = (x∨ a, x∨ b) for some x ∈ A and 0 ≤ a, b ≤ c2;

so, x = 0 which implies that c1 = b ≤ c2. Similarly, we can prove that c2 ≤ c1. Hence,

α is one to one. It can be proved directly from Proposition 3.10 (2) that α preserves

∨ and ∧. By Proposition 3.10 (3), α(f(c)) = θ(0, f(c)) = g(θ(0, c)) = g(α(c)); so, α

preserves f . Therefore, α is an isomorphism.

By the definition of a core BDLC algebra and Proposition 3.10 (3), CCon(A) =

{θ(0, c) : c ∈ CA}. One can see that the map β : Con
(
CA

)
→ CCon(A) , which is

defined by β(θ(0, c)) = θ(0, c) for all c ∈ CA, is an isomorphism. Notice that the map

β is not an identity because the greatest element in CCon(A) is A×A but the greatest

element in Con
(
CA

)
is CA × CA. By Theorem 3.11, we have CA

∼= CCon(A).

3.3 Minimal Congruences

In this section, we characterize all minimal (non-identical) congruences in

Con (A) for A ∈ Mn having no infinite chains. We begin with a summarization of

some facts from lattice theory in Lemma 3.12 and Lemma 3.13 (one can see e.g. [10])

which are useful in the sequel.

Lemma 3.12 Let 〈A;∨,∧〉 be a distributive lattice and a, b, c, d ∈ A.

1. For each t ∈ A, if a ∨ t = b ∨ t and a ∧ t = b ∧ t then a = b.

2. If a ≺ b, c > a and c � b then b < b ∨ c and c ≺ b ∨ c.

3. For each z ∈ A, if a ≺ b and a ∨ z � b then a ∨ z ≺ b ∨ z.

Lemma 3.13 An ordered set 〈A;≤〉 no contains infinite chains if and only if every

non-empty subset T of A contains a maximal element and a minimal element.
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The following proposition shows a necessary condition of all minimal congru-

ences on an algebra A ∈Mn having no infinite chain. It is also a sufficient condition

which will be shown in Theorem 3.16 via Lemma 3.15.

Proposition 3.14 Let θ ∈ Con (A) \ {4A} be minimal. Then

1. θ = θ(c, d) for some c, d ∈ A with c ≺ d and f(c) = f(d),

2. there are a ≺ b ∈ A such that θ = θ(a, b),f(a) = f(b) and a ∧ x = b ∧ x for all

x � b.

Proof. (1 ) Let (p, q) ∈ θ for some p < q ∈ A. Since fn(p) = fn(q) = 0,

we let t = min {j ∈ N : f j(p) = f j(q)} which implies that f t−1(p) < f t−1(q). Let

c, d ∈ A with c = f t−1(p) ≺ d ≤ f t−1(q). Then f(d) = f t(p) = f(c) and

(c, d) = (f t−1(p) ∧ d, f t−1(q) ∧ d) ∈ θ. Minimality of θ implies that θ = θ(c, d).

(2 ) By (1 ), let c, d ∈ A with c ≺ d and f(c) = f(d). Let T = {t ∈ A : t < d and t � c}.

If T = ∅, we choose a = c and b = d. If T 6= ∅, let b be a minimal element of T .

Then b < d and b � c. Let a = c∧ b. Then f(a) = f(b). If a ≺ s < b for some s ∈ A,

then b ∨ c = d = s ∨ c and b ∧ c = a = s ∧ c which proves b = s , a contradiction;

hence, a ≺ b. Let x � b. Then b ∧ x < b and the minimality of b implies that

b ∧ x /∈ T . Therefore, either b ∧ x ≮ d or b ∧ x ≤ c; but, b ∧ x < b < d and c ≺ d

imply b ∧ x ≤ c. Hence, a ∧ x = b ∧ x. So, (a, b) = (c ∧ b, d ∧ b) ∈ θ(c, d) and

(c, d) = (a ∨ c, b ∨ d) ∈ θ(a, b) imply θ(c, d) = θ(a, b).

Lemma 3.15 Let a, b ∈ A be those in Proposition 3.14 (2) and

γ = {(a ∨ x, b ∨ x) : x ∈ A}

where γ^ is the inverse of γ. Then

1. if (p, q), (q, t) ∈ γ ( or γ^) then q = t (or p = q) for all p, q, t ∈ A,

2. γ ∪ γ^ ∪4A is an equivalence relation,

3. γ ∪ γ^ ∪4A is a congruence relation,



28

4. θ(a, b) = γ ∪ γ^ ∪4A.

Proof. (1 ) Let (p, q), (q, t) ∈ γ. Then (p, q) = (a ∨ x1, b ∨ x1) and (q, t) =

(a ∨ x2, b ∨ x2) for some x1, x2 ∈ A; so, a ∨ x2 = b ∨ x1 ≥ b which implies that

b ∨ x2 ≥ a ∨ x2 ≥ b ∨ x2. Hence, q = t. Similarly, if (p, q), (q, t) ∈ γ^ then p = q.

(2 ) It is easily seen that R := γ ∪ γ^ ∪ 4A is reflexive and symmetric. To show

that R is transitive, let (p, q), (q, t) ∈ R. If (p, q), (q, t) ∈ γ or (p, q), (q, t) ∈ γ^ then

(p, t) ∈ R by (1). Assume that (p, q) ∈ γ and (q, t) ∈ γ^. Then (p, q) = (a∨x1, b∨x1)

and (q, t) = (b ∨ x2, a ∨ x2) for some x1, x2 ∈ A; so, b ∨ x1 = b ∨ x2. If x1 ≥ b or

x2 ≥ b then p = q or q = t, respectively; so, (p, t) ∈ R. Assume that x1, x2 � b.

Then b ∨ (a ∨ x1) = b ∨ x1 = b ∨ x2 = b ∨ (a ∨ x2) and b ∧ (a ∨ x1) = a ∨ (b ∧ x1) =

a∨ (a∧x1) = a = a∨ (a∧x2) = a∨ (b∧x2) = b∧ (a∨x2). Distributivity of A implies

that a ∨ x1 = a ∨ x2; that is, (p, t) ∈ 4A ⊆ R. In the case of (p, q), (q, t) ∈ 4A and

(p, q) ∈ γ, (q, t) ∈ 4A are clear. Hence, R is transitive.

(3 ) It is left to show thatR := γ∪γ^∪4A preserves ∨, ∧ and f . If (p, q) ∈ γ∪γ^∪4A

then (f(p), f(q)) ∈ 4A ⊆ R. It is clear that γ and γ^ preserve ∨ and ∧.

Let (p, q) ∈ γ ( or γ^) and (s, t) ∈ 4A. Then s = t and (p, q) = (a∨ x, b∨ x)

for some x ∈ A ; and so, (p ∨ s, q ∨ t) ∈ γ. Note that (p ∧ s, q ∧ t) = ((a ∧ s) ∨ (x ∧

s), (b∧ t)∨ (x∧ t)). If s ≥ b, then (p∧ s, q ∧ t) ∈ γ. If s � b, then (p∧ s, q ∧ t) ∈ 4A.

Let (p, q) ∈ γ and (s, t) ∈ γ^. Then (p, q) = (a ∨ x, b ∨ x) and (s, t) =

(b∨x′ , a∨x′) for some x, x
′ ∈ A. So, (p∨s, q∨ t) ∈ 4A. Since p∧s = (a∨x)∧(b∨x′)

and a < b, we have a ∨ (x ∧ x′) ≤ (a ∨ x) ∧ (b ∨ x′) ≤ b ∨ (x ∧ x′). If a ∨ (x ∧ x′) ≥ b

then p ∧ s = a ∨ (x ∧ x′). Suppose that a ∨ (x ∧ x′) � b. Then Lemma 3.12(3)

implies that a ∨ (x ∧ x′) ≺ b ∨ (x ∧ x′) and (a ∨ x) ∧ (b ∨ x′) = a ∨ (x ∧ x′) or

(a∨x)∧ (b∨x′) = b∨ (x∧x′). If (a∨x)∧ (b∨x′) = b∨ (x∧x′) then a∨x = b∨x, a

contradiction. Hence, p ∧ s = a ∨ (x ∧ x′). Similarly, q ∧ t = a ∨ (x ∧ x′). Therefore,

(p ∧ s, q ∧ t) ∈ 4A. In any cases, R ∈ Con (A).

(4 ) By the definition of γ, we have (a, b) ∈ γ∪γ^∪4A. If S ∈ Con (A) contains (a, b)

then (a∨x, b∨x) ∈ S for all x ∈ A; so, γ∪γ^∪4A ⊆ S. Hence, θ(a, b) = γ∪γ^∪4A.
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Theorem 3.16 A non-identical congruence θ on A is minimal if and only if θ =

θ(c, d) for some c, d ∈ A with c ≺ d and f(c) = f(d).

Proof. By Proposition 3.14, it is left to prove the converse. Let a, b ∈ A be those

in Proposition 3.14(2) whose θ = θ(c, d) = θ(a, b). Assume that β ∈ Con (A) \ {4A}

is contained in θ(a, b). There are s, t ∈ A such that s 6= t and (s, t) ∈ β ⊆ θ(a, b).

So, (s, t) = (a ∨ x, b ∨ x) ∈ β for some x ∈ A. But s 6= t implies x � b; so

((a ∨ x) ∧ b, (b ∨ x) ∧ b) = ((a ∧ b) ∨ (x ∧ b), b) = (a ∨ (x ∧ a), b) = (a, b) ∈ β which

implies that β = θ(a, b). Therefore, θ(a, b) is minimal.



Chapter 4

All Subdirectly irreducible

BDLC-algebras

By Birkhoff’s theorem [4], every algebra can be represented by subdirectly

irreducible algebras. In this chapter, we apply the results from Chapter 3 to charac-

terize all finite subdirectly irreducible BDLC-algebras; and then apply some results

in [19] to prove that the varietiesMn has no infinite subdirectly irreducible algebras

for all n ∈ N. Moreover, we can show that Mn is generated by a single subdirectly

irreducible algebra.

4.1 Finite Subdirectly irreducible BDLC-algebras

Recall that an algebra 〈A;F 〉 is a reduct of an algebra 〈A;F ∗〉 if F ⊆ F ∗. We

note that 〈A; f〉 is the reduct of A for all BDLC-algebras A; so, Con (A) is a sublattice

of Con (〈A, f〉). By the fact in [21], if A is a core BDLC then Con (〈A, f〉) is a chain;

and also is Con (A). Hence, every core BDLC-algebra is subdirectly irreducible. But,

the converse is not always true; for instance, if A := 〈{0, f(1), x, 1} ;∨,∧, f, 0, 1〉

where x ∨ f(1) = 1, x ∧ f(1) = 0, f(x) = f(1) and f 2(1) = 0, then A ∈ M2 whose

picture is shown in Figure 4. So, A is not a core BDLC; but, it is subdirectly

irreducible since Con (A) = {4A, θ(0, f(1)),A× A} is a chain.

30
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Figure 4 A subdirectly irreducible algebra A.

However, one can notice that Con (A) of all above subdirectly irreducible algebras

A are chains. It is interesting whether Con (A) is a chain for all finite subdirectly

irreducible BDLC-algebras A. In this section, we prove an affirmative answer and

characterize all finite subdirectly irreducible algebras in M.

Lemma 4.1 Let A be a BDLC-algebra with f(c) ≺ c for all c ∈ CA \ {0}.

1. f(a) = 0 if and only if either a = 0 or a = fλ(f)−1(1) for all a ∈ A,

2. If x /∈ CA and f t(x) ∈ CA for some 1 ≤∗ t ≤∗ λ(f) − 1 then there exists

z ∈ CA ∩ f−t({f t(x)}) such that x < z and x is not comparable with f(z) and

f t+1(z) = 0 whenever x ∧ f(z) ∈ CA.

Proof. (1 ) Let a ∈ A \ {0} with f(a) = 0 and we consider the case a < 1.

Suppose that a 6= b = fλ(f)−1(1). Then a∨b is not comparable with f−1(b) ∈ CA and

f(a∨b) = f(b). By continuation this process in finite steps, there exists a
′
/∈ CA such

that f(a
′
) = f 3(1) and a

′
is not comparable with f(1). Since f(1) < a

′ ∨ f(1) ≤ 1

and f(1) ≺ 1, we get a
′ ∨ f(1) = 1; so, f 2(1) = f(1) which implies that f(1) = 0.

Hence, f(1) = 0 < a < 1, a contradiction. Therefore a = b = fλ(f)−1(1). The

converse follows directly from the properties of f .

(2 ) We prove by induction on t. If x /∈ CA and 1 6= f(x) ∈ CA, we choose z ∈ CA ∩

f−1({f(x)}). If x ≮ z, we follow the proof of (1) to get f(1) = 0. So, f(x) ≤ f(1) = 0

which implies that f(x) = 0. By (1 ), we have x = 0 or x = fλ(f)−1(1) ∈ CA,

a contradiction. Therefore, x < z. Follows from f(z) ≺ z, we get x ≯ f(z). If

x < f(z), then f(z) = f(x) ≤ f 2(z) < f(z), a contradiction. So, x is not comparable

with f(z).
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Let 1 <∗ t ≤∗ λ(f)−1. Suppose that the lemma is true for t−1. Assume that

x /∈ CA and f t(x) ∈ CA. If f(x) /∈ CA then f t−1(f(x)) ∈ CA implies that f(x) < z
′

and f(x) is not comparable with f(z
′
) for some z

′ ∈ CA ∩ f−(t−1)(
{
f (t−1)(f(x))

}
);

and together with f(x) ≤ f(1), we have z
′ 6= 1. Choose z ∈ CA with f(z) = z

′
. Let

u = min {c ∈ CA : x < c}. Then x < u. If u < z then x < u ≤ f(z); so, f(x) ≤ f(z
′
),

a contradiction. Also, if u > z then f 2(u) = f(x) ∨ f 2(u) = f(x ∨ f(u)) = f(u); so,

f(x) ≤ f(u) = 0, a contradiction. Totally ordered of CA implies u = z and x is not

comparable with f(z). Also, the results implies the last statement.

Corollary 4.2 If x /∈ CA and f(x) ∈ CA then x∧fλ(f)−1(1) = 0 and x∨fλ(f)−1(1) =

z for some z ∈ CA with f(x) = f(z).

Proposition 4.3 If A is BDLC with f(c) ≺ c for all c ∈ CA \ {0} then⋂
{θ : θ ∈ Con (A) \ {4A}} = θ(0, fλ(f)−1(1)).

Proof. Assume that θ ∈ Con (A) \ {4A} and (x, y) ∈ θ for some x < y. If

x, y ∈ CA, it follows by Proposition 3.10(1) that (0, fλ(f)−1(1)) ∈ θ.

Denote za = min {c ∈ CA : a ≤ c} for a ∈ A. If x ∈ CA and y /∈ CA then

(f(zy), zy) ∈ θ and by Proposition 3.10(1) we have (0, fλ(f)−1(1)) ∈ θ. Assume that

y ∈ CA and x /∈ CA. Let m = min {t ∈ N : f t(x) ∈ CA}. Then fm−1(x) < fm−1(y)

and Corollary 4.2 imply that

(0, fλ(f)−1(1)) = (fm−1(x) ∧ fλ(f)−1(1), fm−1(y) ∧ fλ(f)−1(1)) ∈ θ.

Assume that x, y /∈ CA. If zx < zy then x < zx ≤ f(zy); so, (f(zy), zy) ∈ θ

which implies that (0, fλ(f)−1(1)) ∈ θ. We will show that if zx = zy, there exists

t ∈ CA such that t < zx and t satisfies either {x ∧ t, y ∧ t}∩CA 6= ∅ or {x ∧ t, y ∧ t}∩

CA = ∅ with zx∧t < zy∧t. Assume that zx = zy. Let x1 = x∧ f(zx) and y1 = zy∧f(zx).

If f(zx) satisfies {x1, y1} ∩ CA 6= ∅ or {x1, y1} ∩ CA = ∅ with zx1 < zy1 then we

choose t = f(zx). If {x1, y1} ∩ CA = ∅ with zx1 = zy1 , we let x2 = x1 ∧ f(zx1) and

y2 = y1 ∧ f(zx1). If f(zx1) satisfies {x2, y2} ∩ CA 6= ∅ or {x2, y2} ∩ CA = ∅ with

zx2 < zy2 then we choose t = f(zx1).
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This process will stop before zxi = zyi = fλ(f)−2(1) for some i ∈ N because if

zxi = zyi = fλ(f)−2(1) for some i ∈ N then
{
xi, yi, zxi , f

λ(f)−1(1), 0
}

forms a subal-

gebra of A which contradicts to 〈A;∨,∧, 0, 1〉 being a bounded distributive lattice.

So, if zx = zy then there exists t ∈ CA such that t < zx and t satisfies either

{x ∧ t, y ∧ t} ∩ CA 6= ∅ or {x ∧ t, y ∧ t} ∩ CA = ∅ with zx∧t < zy∧t. In any cases,

(0, fλ(f)−1(1)) ∈ θ. Therefore, θ(0, fλ(f)−1(1)) ⊆
⋂
{θ : θ ∈ Con (A) \ {4A}}.

From now on, we consider only finite BDLC-algebras.

Theorem 4.4 The following statements are equivalent :

1. A is subdirectly irreducible,

2. f(c) ≺ c for all c ∈ CA \ {0},

3. θ(0, fλ(f)−1(1)) =
⋃
{θ(a, b) : a ≺ b and f(a) = f(b)}.

Proof. (1)⇒ (2) Suppose that there exists t ≥∗ 2 such that 0 ≺ x1 ≺ x2 ≺ ... ≺

xt = fλ(f)−1(1). It follows by Theorem 3.16 that θ(0, x1) and θ(x1, x2) are minimal.

Therefore, θ(0, x1) = θ(x1, x2) which implies by Lemma 3.15 and (x1, x2) ∈ θ(0, x1)

that (x1, x2) = (y, x1 ∨ y) for some y ∈ A; so, x1 = y. Hence, x2 = x1 ∨ y = x1, a

contradiction. Therefore, t = 1; and so, 0 ≺ fλ(f)−1(1).

Let c ∈ CA \ {0} and assume that f(j) ≺ j for all j ∈ CA \ {0} with j <

c. Suppose that there exists t ≥∗ 2 such that f(c) ≺ x1 ≺ x2 ≺ ... ≺ xt = c.

Then f 2(c) ≤ f(x1) ≤ f(c). Since f 2(c) ≺ f(c), either f(x1) = f(c) or f(x1) =

f 2(c). If f(x1) = f(c) then a similarly proof implies x1 = x2, a contradiction. So,

f(x1) = f 2(c). Theorem 3.16 implies that θ(f(c), x1) is minimal; so, θ(f(c), x1) =

θ(0, fλ(f)−1(1)). Hence, there exists y ∈ A such that (f(c), x1) = (y, fλ(f)−1(1) ∨ y)

which implies that y = f(c) and x1 = fλ(f)−1(1) ∨ f(c) = f(c), a contradiction.

Therefore, mathematical induction yields (2).

(2)⇒ (3) follows by Proposition 4.3 and θ(a, b) is minimal; and (3)⇒ (1) is proved

directly from the definition of subdirectly irreducible.

Proposition 4.5 A is simple if and only if |A| = 2.
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Proof. Assume that A is simple. Then Theorem 4.4 implies that f(c) ≺ c for all

c ∈ CA \ {0}. Suppose that λ(f) > 1. Then θ(0, fλ(f)−1(1)) 6= 4A; so, simplicity

of A implies θ(0, fλ(f)−1(1)) = A × A. So, (1, f(1)) ∈ θ(0, fλ(f)−1(1)) which implies

that (1, f(1)) = (x, x ∨ fλ(f)−1(1)) for some x ∈ A; i.e., f(1) = 1 ∨ fλ(f)−1(1), a

contradiction. Hence, λ(f) = 1.

We showed in Section 3.2 that for each n ∈ N and A ∈ Mn, Con (A) =

〈Con (A) ;∨,∧, g,4A,A× A〉 ∈ Mn where g is defined in Section 3.2. We now prove

that A is subdirectly irreducible if and only if Con (A) = CCon(A).

Theorem 4.6 A is a subdirectly irreducible BDLC-algebra if and only if Con (A) is

the chain
{
θ(0, fλ(f)(1)) ≺ θ(0, fλ(f)−1(1)) ≺ ... ≺ θ(0, f(1)) ≺ θ(0, 1)

}
.

Proof. Let θ ∈ Con (A) and z = max {c ∈ CA : (0, c) ∈ θ}. Then θ(0, z) ⊆ θ. For

each a ∈ A, let za = min {c ∈ CA : a ≤ c}. Let u, v ∈ A with (u, v) ∈ θ. Then zu ≤ zv

or zv ≤ zu. If zu < zv then u ≤ zu ≤ f(zv); so, (f(zv), zv) = (u∨ f(zv), v ∨ f(zv)) ∈ θ

and Proposition 3.10(1) implies that (u, v) ∈ θ(0, z). Similarly, (u, v) ∈ θ(0, z) if

zv < zu. If zu = zv < z then by Proposition 3.10(1), we have (u, v) ∈ θ(0, z).

Suppose that zu = zv ≥ z. Note by Proposition 3.10(1) that if zu = zv = z

then (u, v) ∈ θ(0, z). We will prove by the strong induction that for each t ∈ N∪{0},

if (a, b) ∈ θ with za = zb ≥ z and f t(za) = z then (a, b) ∈ θ(0, z). Let 1 ≤∗ t ≤∗ λ(f)

and suppose that the statement is true for any 1 ≤∗ p ≤∗ t. Let (a, b) ∈ θ, za = zb

and f t+1(za) = z. Assume that a
′

= a ∧ f(za) and b
′

= b ∧ f(za). If za′ < zb′ or

zb′ < za′ then (a
′
, b
′
) ∈ θ(0, z). The absorbtion law and transitivity of θ(0, z) imply

(a, b) ∈ θ(0, z). If za′ = zb′ ≤ f(za) then f t(zb′ ) ≤ f t+1(za) = z and by the induction

hypothesis implies that (a
′
, b
′
) ∈ θ(0, z); so, (a, b) ∈ θ(0, z). By the fact above, if

zu = zv ≥ z then (u, v) ∈ θ(0, z).

In any cases, θ ⊆ θ(0, z). The converse is clear.
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4.2 All Subdirectly irreducible BDLC-algebras

Recall that 〈X〉A is the smallest subalgebra of an algebra A containing X ⊆ A;

and 〈X〉A =
∞⋃
k=0

Ek(X) where

E0(X) := X,

E(X) := X ∪
{
fAi (a1, ..., ani) : i ∈ I, a1, ..., ani ∈ X

}
,

and Ek+1(X) := E(Ek(X)) where k ∈ N.

A variety V is locally finite if for each A ∈ V , 〈X〉A is finite for all finite

subset X of A. In [19], R.W. Quackenbush proved that if V is a locally finite variety

and the set SiF (V) of all finite subdirectly irreducible algebras in V is finite (up to

isomorphism) then V has no infinite subdirectly irreducible algebras. In this section,

we apply the result in [19] to prove that Mn has no infinite subdirectly irreducible

algebras for all n ∈ N ; especially, we show that it is generated by a single subdirectly

irreducible.

It is well known that the variety of distributive lattice is locally finite. One

can prove directly that for each n ∈ N and A ∈ Mn, if A = 〈{a1, ..., at}〉A for some

ai ∈ A, 1 ≤∗ i ≤∗ t and t ∈ N then A =

〈
n⋃
i=0

f i({a1, ..., at, 0, 1})

〉
〈A;∨,∧〉

is finite.

Theorem 4.7 Mn is locally finite for all n ∈ N.

Proof. Let n ∈ N and A ∈ Mn such that A = 〈{a1, ..., at}〉A for some ai ∈

A, 1 ≤∗ i ≤∗ t and t ∈ N. We will show that Ek({a1, ..., at}) is a subset of〈
n⋃
i=0

f i({a1, ..., at, 0, 1})

〉
〈A;∨,∧〉

for all k ∈ N ∪ {0} by induction on k.

Let B =

〈
n⋃
i=0

f i({a1, ..., at, 0, 1})

〉
〈A;∨,∧〉

. It is clear that {a1, ..., at} ⊆ B.

Let k ∈ N and suppose that Ek({a1, ..., at}) ⊆ B. Note that Ek+1({a1, ..., at}) =

Ek({a1, ..., at})∪
{
x ∨ y, x ∧ y, f(x), 0, 1 : x, y ∈ Ek({a1, ..., at})

}
. By the assumption

and the properties of B, it is left to prove that f(x) ∈ B for all x ∈ Ek({a1, ..., at}).

Let x ∈ Ek({a1, ..., at}) ⊆ B. Then x = t(A;∨,∧)(b1, ..., bl) for some b1, ..., bl ∈
n⋃
i=0

f i({a1, ..., at, 0, 1}) where t〈A;∨,∧〉 is a term operation on 〈A;∨,∧〉. So, f(x) =
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f(t(A;∨,∧)(b1, ..., bl)) = t(A;∨,∧)(f(b1), ..., f(bl)). Since b1, ..., bl ∈
n⋃
i=0

f i({a1, ..., at, 0, 1}),

we have f(x) ∈ B; and so, A ⊆ B which implies that A is finite. Hence,Mn is locally

finite. Moreover in the similar proof,

〈
n⋃
i=0

f i({a1, ..., at, 0, 1})

〉
〈A;∨,∧〉

is a subset of

A.

We are now describing all finite subdirectly irreducible BDLC-algebras which

show that the set SiF (Mn) is finite for all n ∈ N.

Let n ∈ N, define A∗n := 〈An;∨,∧, f,0,1〉 whose 〈An;∨,∧,0,1〉 is the usual

direct product of a BDL-algebra 〈A;∨,∧, 0, 1〉 and f : An → An is defined by

f(a1, a2, ..., an) = (a2, ..., an, 0) for all ai ∈ A and 1 ≤∗ i ≤∗ n. Denote 0 := (0, ..., 0︸ ︷︷ ︸
n

),

1 := (1, ..., 1︸ ︷︷ ︸
n

) and A∗0 to be the trivial BDLC-algebra. One can see that f is an

endomorphism on 〈An;∨,∧,0〉 with fn(1) = 0; it follows by Proposition 3.7 that

A∗n is BDLC whose λ(f) = n if A 6= {0}. In particular, when A = {0, 1} we call it

that an n-cube BDLC-algebra and denote by 2∗n.

Recall that C2∗n = {1 > f(1) > ... > fn(1) = 0}; so, the definition of f on

2∗n implies that f(c) ≺ c for all c ∈ C2∗n \ {0}; hence, it follows by Theorem 4.4 that

2∗n is a subdirectly irreducible algebra in Mn. We will now prove that all algebras

in IS(2∗n) are subdirectly irreducible.

Proposition 4.8 For A ∈ Mn and B ∈ SiF (Mn), if A can be embeded in B then

A ∈ SiF (Mn).

Proof. Let ψ : A → B be an embedding and let c ∈ CA \ {0}. To show that

f(c) ≺ c, let x ∈ A such that f(c) ≤ x < c. Then ψ(f(c)) ≤ ψ(x) < ψ(c). Since

ψ(CA) = CB and B ∈ SiF (Mn), we have ψ(f(c)) ≺ ψ(c); and so, ψ(x) = ψ(f(c))

which implies that x = f(c).

Corollary 4.9 IS(2∗m) ⊆ SiF (Mn) for all m ≤∗ n.

Proof. Let m ∈ N with m ≤∗ n and A ∈ IS(2∗m). Then there is an embedding

ψ : A → 2∗m. Since 2∗m ∈ SiF (Mm) and Proposition 4.8, we get A ∈ SiF (Mm).



37

Note that Mm ⊆Mn; so, SiF (Mm) ⊆ SiF (Mn) which implies that A ∈ SiF (Mn).

We are now giving another characterization of all finite subdirectly irreducible

algebras in Mn by showing all elements in SiF (Mn).

For A ∈ Mn and a ∈ A, let define za := min {c ∈ CA : a ≤ c} and ka :=

min {j ∈ N ∪ {0} : f j(a) = 0}.

Lemma 4.10 Let A ∈ SiF (Mn). Then

1. ka = kza for all a ∈ A,

2. for each 0 ≤∗ j ≤∗ λ(f)−1, the map χj from 〈A;∨,∧, 0, 1〉 to 〈{0, 1} ;∨,∧, 0, 1〉

defined by

χj(x) =

1 if x ∈ f−j(↑ fλ(f)−1(1)),

0 if x /∈ f−j(↑ fλ(f)−1(1)).

is a homomorphism. Moreover, χj(f(x)) = χj+1(x) for all x ∈ A.

Proof. (1 ) Let a ∈ A. If a ∈ CA, we are done. Assume that a /∈ CA and t is

the least positive integer such that f t(a) ∈ CA. By Lemma 4.1, f t(za) = f t(a); so,

0 = fka−t(f t(a)) = fka−t(f t(za)) = fka(za) which implies that kza ≤∗ ka. Similarly,

ka ≤∗ kza . Hence, ka = kza .

(2 ) Let x, y ∈ A and 0 ≤ j ≤ λ(f)− 1. Note that

χj(x ∧ y) = 1⇐⇒ f j(x ∧ y) ∈↑ fλ(f)−1(1)

⇐⇒ f j(x) ∈↑ fλ(f)−1(1) and f j(y) ∈↑ fλ(f)−1(1)

⇐⇒ χj(x) = 1 and χj(y) = 1

⇐⇒ χj(x) ∧ χj(y) = 1.

Next, we will show that f j(x ∨ y) ∈↑ fλ(f)−1(1) if and only if f j(x) ∈↑ fλ(f)−1(1) or

f j(y) ∈↑ fλ(f)−1(1). It is clear that if f j(x) ∈↑ fλ(f)−1(1) or f j(y) ∈↑ fλ(f)−1(1) then

f j(x ∨ y) ∈↑ fλ(f)−1(1). Suppose that f j(x ∨ y) ∈↑ fλ(f)−1(1) and f j(x), f j(y) /∈↑

fλ(f)−1(1). Then f j(x) ∨ f j(y) = (f j(x) ∨ fλ(f)−1(1)) ∨ f j(y) and f j(x) ∧ f j(y) =
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(f j(x)∨ fλ(f)−1(1))∧ f j(y) which imply that f j(x) = f j(x)∨ fλ(f)−1(1), a contradic-

tion. So, f j(x) ∈↑ fλ(f)−1(1) or f j(y) ∈↑ fλ(f)−1(1). Therefore,

χj(x ∨ y) = 1⇐⇒ f j(x ∨ y) ∈↑ fλ(f)−1(1)

⇐⇒ f j(x) ∈↑ fλ(f)−1(1) or f j(y) ∈↑ fλ(f)−1(1)

⇐⇒ χj(x) ∨ χj(y) = 1.

It is easy to see that χj(1) = 1 and χj(0) = 0. Hence, χj is a homomorphism.

By the definition of χj, we have

χj(f(x)) = 1⇐⇒ f(x) ∈ f−j(↑ fλ(f)−1(1))

⇐⇒ x ∈ f−(j+1)(↑ fλ(f)−1(1))

⇐⇒ χj+1(x) = 1.

Hence, χj(f(x)) = χj+1(x).

Theorem 4.11 A ∈ SiF (Mn) if and only if A ∈ IS(2∗λ(f)).

Proof. Let A be a finite subdirectly irreducible algebra. Define a function φ : A→

2∗λ(f) by φ(x) = (χ0(x), χ1(x), ..., χλ(f)−1(x)) for all x ∈ A where χj is defined as in

Lemma 4.10 for all 0 ≤∗ j ≤∗ λ(f)−1. By Lemma 4.10, φ is a homomorphism. Next,

we will show that φ is one to one. For each t ∈ N∪{0}, let P(t) be the statement that

for each x, y ∈ A, if φ(x) = φ(y) and |
{

0 ≤∗ j ≤∗ λ(f)− 1 : f j(x) ≥ fλ(f)−1(1)
}
| ≤∗

t then x = y. To show that P(0) is true, let x, y ∈ A. Assume that φ(x) = φ(y) and

f j(x), f j(y) � fλ(f)−1(1) for all 0 ≤∗ j ≤∗ λ(f)−1. If x 6= 0 or y 6= 0 then Lemma 4.1

implies that fkx−1(x) = fλ(f)−1(1) or fky−1(y) = fλ(f)−1(1), a contradiction. Hence,

x = 0 = y.

Let t ∈ N ∪ {0} and assume that P(t) is true. Let x, y ∈ A such that

φ(x) = φ(y) and |
{

0 ≤∗ j ≤∗ λ(f)− 1 : f j(x) ≥ fλ(f)−1(1)
}
| ≤∗ t + 1. We may

assume that x, y 6= 0. We will show that there exists z ∈ A such that x ∨ z = y ∨ z

and x ∧ z = y ∧ z. Let z = f(zx). Since φ(x) = φ(y) and the definition of φ, we

have f j(x) ∈↑ fλ(f)−1(1) if and only if f j(y) ∈↑ fλ(f)−1(1) for all 0 ≤∗ j ≤∗ λ(f)− 1.
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If kx <∗ ky then fky−1(x) = 0 < fλ(f)−1(1) ; and so, fky−1(y) � fλ(f)−1(1), a

contradiction. Hence, kx = ky which implies that kzx = kzy . It follows that zx = zy;

and so, x ∨ f(zx) = y ∨ f(zy) = y ∨ f(zx).

In fact, if f j(x∧ f(zx)) ≥ fλ(f)−1(1) then f j(x) ≥ fλ(f)−1(1) for all 0 ≤∗ j ≤∗

λ(f) − 1. So, |
{

0 ≤∗ j ≤∗ λ(f)− 1 : f j(x ∧ f(zx)) ≥ fλ(f)−1(1)
}
| ≤∗ t + 1. Since

fkx−1(x ∧ f(zx)) = 0, we get |
{

0 ≤∗ j ≤∗ λ(f)− 1 : f j(x ∧ f(zx)) ≥ fλ(f)−1(1)
}
| ≤∗

t. It is easy to see that for each χj(x∧f(zx)) = χj(y∧f(zx)) for all 0 ≤∗ j ≤∗ λ(f)−1

which implies that φ(x∧f(zx)) = φ(y∧f(zx)). By induction hypothesis, x∧f(zx) =

y∧f(zx). Distributivity of A implies that x = y. Therefore, A is isomorphic to φ(A);

that is, A ∈ IS(2∗λ(f)). The converse follows by Corollary 4.9.

Corollary 4.12 SiF (Mn) =
⋃
m≤∗n

IS(2∗m)

Note that there are finite subalgebras of an m-cube BDLC-algebra for all

m ≤∗ n. By Corollary 4.12, SiF (Mn) is finite (up to isomorphism). Since Mn is

locally finite and the fact in [19], Mn contains no infinite subdirectly irreducible

algebras; so, Si(Mn) =
⋃
m≤∗n

IS(2∗m) where Si(Mn) is the set of all subdirectly ir-

reducible algebras in Mn. By Birkhoff’s Theorem, Mn = V (
⋃
m≤∗n

IS(2∗m)). Since⋃
m≤n

IS(2∗m) = IS(
⋃
m≤n

{2∗m}), we get Mn = V (
⋃
m≤n

IS(2∗m)) = V (
⋃
m≤∗n

{2∗m}). Fur-

thermore for each m ≤∗ n, it is well-known that a map h : 2∗n → 2∗m defined by

h(a1, a2, ..., an) = (an−m+1, an−m+2, ..., an)

for all aj ∈ {0, 1} and 1 ≤∗ j ≤∗ n is a homomorphism. Hence, one can prove that

Mn = V (
⋃
m≤∗n

{2∗m}) = V (H(2∗n)) = V (2∗n).

Corollary 4.13 Mn = V (2∗n).



Chapter 5

The lattice of all subvarieties of

Mn

In [8], B.A. Davey applied Jónsson’s Lemma [15] to prove that if K = V (A)

is a congruence distributive variety generated by a finite set A of finite algebras

then the lattice Λ(K) of all subvarieties of K is a finite distributive lattice and it

is isomorphic to the lattice O(Si(K)) of all order ideals of (Si(K);≤Si(K)) where an

order on Si(K) is defined by A ≤Si(K) B if and only if A ∈ HS(B). It is well-known

that a variety of lattice based-algebras is a congruence distributive variety; so isMn

for all n ∈ N. Hence, the fact in [8] implies that for each n ∈ N, Λ(Mn) ∼= O(P
′
n)

where P
′
n = (Si(Mn);≤P ′n) and the order on Si(Mn) is defined by A ≤P ′n B if and

only if A ∈ HS(B).

In this chapter, we show a method of drawing the diagram of the ordered set

P
′
n which is a useful tool to describe the lattice Λ(Mn) for all n ∈ N. For specification

n = 3, we describe the diagram of Λ(M3) via the diagram of the lattice O(Si(M3))

and this idea can be extended to the lattice Λ(Mn) for all n ∈ N.

5.1 The lattice of subvarieties of Mn

Let n ∈ N. We know from Chapter 4 that Si(Mn) =
⋃
m≤∗n

IS(2∗m) which

is infinite; so, its diagram is so complicated. However, the ordered set P
′
n can be

40
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considered as an ordered set Pn = (
⋃
m≤∗n

S(2∗m);≤Pn) where A ≤Pn B if and only if

A ∈ HS(B) which is shown in the following proposition.

Proposition 5.1 P
′
n
∼= Pn.

Proof. Define a function α : P
′
n → Pn by α(A

′
) = A for all A

′ ∈ P
′
n where

A ∈ S(2∗m) with A
′ ∼= A. It is easy to see that α is onto. We will show that

α is an order-embedding; that is, for each A
′
,B
′ ∈ P

′
n, A

′ ≤P ′n B
′

if and only if

α(A
′
) ≤Pn α(B

′
). Let A

′
,B
′ ∈ P

′
n. Assume that A

′ ≤P ′n B
′
. We will prove that

A ≤Pn B where A,B ∈ S(2∗m) with A
′ ∼= A and B

′ ∼= B. Since A
′ ≤P ′n B

′
, there

exists a homomorphism h
′

: C
′ → A

′
such that A

′
= h

′
(C
′
) for some subalgebras C

′

of B
′
. Let h = α ◦ h′ ◦ φ−1 �φ(C

′
) where φ : B

′ → B is an isomorphism. Then h is a

homomorphism; and so, h(φ(C
′
)) = α ◦h′ ◦φ−1 �φ(C

′
) (φ(C

′
)) = α ◦h′(C′) = α(A

′
) =

A. Hence, A ≤Pn B.

Conversely, assume that A ≤Pn B. Then there exists a homomorphism h :

C→ A such that A = h(C) for some subalgebras C of B. Let h
′
= ϕ−1 ◦ h ◦φ �φ−1(C)

where ϕ : A
′ → A and φ : B

′ → B are isomorphisms. Then h
′

is a homomorphism;

and so, h
′
(φ−1(C)) = ϕ−1 ◦h ◦φ �φ−1(C) (φ−1(C)) = ϕ−1 ◦h(C) = ϕ−1(A) = A

′
which

implies that A
′ ≤P ′n B

′
. Therefore, α : P

′
n → Pn is an isomorphism.

One can see that it is not easy to check directly that A ∈ HS(B); that is,

A ≤Pn B for all A,B ∈
⋃
m≤∗n

S(2∗m). So, we are interested in simplifying the condition

of the order ≤Pn .

Proposition 5.2 For l,m ∈ N with l ≤∗ m, if A is a subalgebra of 2∗m then there

exists a unique homomorphism hmm−l from A to 2∗l.

Proof. Let l,m ∈ N with l ≤∗ m. Assume that A is a subalgebra of 2∗m and let

i = m − l. Define hmi : A → 2∗m−i by hmi (a1, a2, ..., am) = (ai+1, ai+2, ..., am) for all

aj ∈ {0, 1} and 1 ≤∗ j ≤∗ m. It is clear that hmi (0) = 0, hmi (1) = 1 and hmi preserves

∨ and ∧; besides, hmi preserves f since hmi (f(a1, a2, ..., am)) = hmi (a2, ..., am, 0) =

(ai+2, ..., am, 0) = f(ai+1, ..., am) = f(hmi (a1, a2, ..., am)) for all (a1, a2, ..., am) ∈ A.

Hence, hmi is a homomorphism.
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Now we are proving the uniqueness of hmi . Assume that α : A → 2∗m−i

is a homomorphism. We first show that for each a ∈ {0, 1} and 1 ≤∗ j ≤∗

m, α(0, ..., 0︸ ︷︷ ︸
j

, a, 0, ..., 0) = (0, ..., 0︸ ︷︷ ︸
j−i

, a, 0, ..., 0) if j >∗ i and α(0, ..., 0︸ ︷︷ ︸
j

, a, 0, ..., 0) =

(0, 0, ..., 0) if j ≤∗ i. Let 1 ≤∗ j ≤∗ m. If a = 0, then we are done. If a = 1,

we let x = α(0, ..., 0︸ ︷︷ ︸
j

, 1, 0, ..., 0) and y = (0, ..., 0︸ ︷︷ ︸
j−i

, 1, 0, ..., 0). If j >∗ i then

x ∨ α(fm−j(1)) = α(0, ..., 0︸ ︷︷ ︸
j

, 1, 0, ..., 0) ∨ α(1, ..., 1︸ ︷︷ ︸
j

, 0, ..., 0︸ ︷︷ ︸
m−j

)

= α(1, 1, ..., 1︸ ︷︷ ︸
j+1

, 0, ..., 0︸ ︷︷ ︸
m−j−1

)

= α(fm−j−1(1))

= fm−j−1(α(1))

= (1, 1, ..., 1︸ ︷︷ ︸
j−i+1

, 0, ..., 0︸ ︷︷ ︸
m−j−1

)

= (0, ..., 0︸ ︷︷ ︸
j−i

, 1, 0, ..., 0) ∨ (1, ..., 1︸ ︷︷ ︸
j−i

, 0, ..., 0︸ ︷︷ ︸
m−j

)

= y ∨ α(fm−j(1))

and x ∧ α(fm−j(1)) = α(0, ..., 0︸ ︷︷ ︸
j

, 1, 0, ..., 0) ∧ α(1, ..., 1︸ ︷︷ ︸
j

, 0, ..., 0︸ ︷︷ ︸
m−j

)

= α(0)

= (0, ..., 0︸ ︷︷ ︸
j−i

, 1, 0, ..., 0) ∧ (1, ..., 1︸ ︷︷ ︸
j−i

, 0, ..., 0︸ ︷︷ ︸
m−j

)

= y ∧ α(fm−j(1)).

Distributivity of the lattice 2∗m−i implies that x = y. Similarly, x = y if j ≤∗ i. Since

α preserves ∨, it follows that α(a1, a2, ..., am) = (ai+1, ai+2, ..., am) = hmi (a1, a2, ..., am)

for all (a1, a2, ..., am) ∈ A.

The following theorem can be proved directly by Proposition 5.2.

Theorem 5.3 For l,m ≤∗ n and A ∈ S(2∗l) and B ∈ S(2∗m), A ≤Pn B if and only

if

1. l ≤∗ m, and

2. there is a subalgebra C of B such that A = hmm−l(C).
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Proof. Let A,B ∈
⋃
m≤∗n

S(2∗m) such that A ≤Pn B. Since A,B ∈
⋃
m≤∗n

S(2∗m),

there exist l,m ∈ N such that A ∈ S(2∗l) and B ∈ S(2∗m). Since A ≤Pn B, there

is a homomorphism h : C → A such that h(C) = A for some subalgebras C of B.

By Corollary 3.3, we have |CC| ≥∗ |CA| which implies that λ(fC) ≥∗ λ(fA); and so,

m ≥∗ l. By Proposition 5.2, we get A = h(C) = hmm−l(C). The converse is clear by

the definition of the order ≤Pn .

We are now going to show the picture of the ordered set Pn. Since Pn =⋃
m≤∗n

S(2∗m), we first focus on its subordered set (S(2∗m);≤Pn�S(2∗m)) for all m ≤∗ n.

By Theorem 5.3, the order ≤Pn�S(2∗m) is the inclusion ⊆ on S(2∗m) for all m ≤∗ n.

Proposition 5.4 S(2∗m) = hnn−m(S(2∗n)) for all m ≤∗ n.

Proof. Let m ≤∗ n. It is clear that hnn−m(S(2∗n)) ⊆ S(2∗m). Conversely, let A be

a subalgebra of 2∗m. Then

B := {(x1, ..., xn−m, a1, a2, ..., am) : x1, ..., xn−m ∈ {0, 1} and (a1, a2, ..., am) ∈ A}

is a subalgebra of 2∗n ; hence, Proposition 5.2 implies that there exists a homomor-

phism hnn−m from B to 2∗m; so, hnn−m(B) = A. Therefore, S(2∗m) ⊆ hnn−m(S(2∗n)).

Next, we consider a condition of covering of all elements in Pn =
⋃
m≤n

S(2∗m)

which is shown in the following theorem.

Theorem 5.5 A ≺Pn B in
⋃
m≤∗n

S(2∗m) if and only if there exists m ∈ N such that

either

1. A ≺S(2∗m) B, or

2. A ∈ S(2∗m−1) and B ∈ S(2∗m) where B is a minimal of {D ∈ S(2∗m) : hm1 (D) = A}.

Proof. Let A,B ∈
⋃
m≤∗n

S(2∗m) with A ≺Pn B. Then there exist l,m ≤∗ n such

that A ∈ S(2∗l) and B ∈ S(2∗m). By Theorem 5.3, we get l ≤∗ m and there is a
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subalgebra C of B such that A = hmm−l(C). If m − l >∗ 1 then A = hmm−l(C) =

hm−1
m−l−1(hm1 (C)) <Pn h

m
1 (C) <Pn C which contradicts to A ≺Pn B. So, m− l ≤∗ 1.

If l = m then A ≺S(2∗m) B. If l = m − 1 then A ∈ S(2∗m−1). Let D be a

proper subalgebra of B such that hm1 (D) = A. Then A = hm1 (D) <Pn h
m
1 (B) <Pn B,

a contradiction. Hence, B is minimal.

Conversely, if A ≺S(2∗m) B then A ≺Pn B. Assume that A ∈ S(2∗m−1) and

B ∈ S(2∗m) where B is a minimal of {D ∈ S(2∗m) : hm1 (D) = A}. Let C ∈
⋃
m≤∗n

S(2∗m)

such that A ≤Pn C <Pn B. Then C ∈ S(2∗t) for some t ≤∗ n; hence, Theorem 5.3

implies that t = m− 1 or t = m.

If t = m, the minimality of B implies that C = B, a contradiction. So,

t = m − 1 which implies that A ⊆ C. By Theorem 5.3 and C <Pn B, we have

C = hm1 (D) for some subalgebra D of B; so, C is a subalgebra of A. Therefore, A = C

which implies that A ≺P B.

5.2 The lattice of subvarieties of M3

In this section, we will follow the concepts in Section 5.1 to show all elements

in O(P3) where P3 = (
⋃
m≤3

S(2∗m);≤P3). By the fact in [8], one can see that O(P3)

is isomorphic to the lattice Λ(M3). Firstly, we find all elements in S(2∗3).

We see that A1 = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} ,

A2 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} ,

A3 = {(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)} ,

A4 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

and A5 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

are all subalgebras of 2∗3 and the diagram of the lattice (S(2∗3);⊆) is shown in Figure

5.

�
�
@
@

@
@

�
�r r
r r
rA2

A5

A4 A3

A1

Figure 5 The lattice (S(2∗3);⊆).
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By Proposition 5.4, we have S(2∗2) = h3
1(S(2∗3)). So, h3

1(A1) = h3
1(A2) =

h3
1(A4) = {(0, 0), (1, 0), (1, 1)} and h3

1(A3) = h3
1(A5) = {(0, 0), (0, 1), (1, 0), (1, 1)} are

all subalgebras of 2∗2.

Let A6 = {(0, 0), (1, 0), (1, 1)} and A7 = {(0, 0), (0, 1), (1, 0), (1, 1)}. The dia-

gram of the lattice (S(2∗2);⊆) is shown in Figure 6.

t
t
A7

A6

Figure 6 The lattice (S(2∗2);⊆).

Similarly, S(2∗1) = h2
1(S(2∗2)); so, h2

1(A6) = h2
1(A7) = {0, 1} is the only

subalgebra of 2∗1 and let denote it by A8. And the trivial A9 = {0} is the only

subalgebra of 2∗0.

By Theorem 5.5, we have A6 ≺P3 A1, A7 ≺P3 A3 and A8 ≺P3 A6.

The following figure shows the ordered set P3 = (
⋃
m≤3

S(2∗m),≤P3).

�
��
@

@@

@
@@

�
��

@
@@

r
r
r
r
r
r
r
r
r

A2

A5

A4 A3

A1

A7

A6

A8

A9

Figure 7 The ordered set P3 = (
⋃
m≤3

S(2∗m);≤P3).

Since every nonempty set in O(P3) is in the form ↓ B where B is a finite

antichain in
⋃
m≤3

S(2∗m); so, we can find all elements in O(P3) as follows: ↓ {A1},

↓ {A2}, ↓ {A3}, ↓ {A4}, ↓ {A5}, ↓ {A6}, ↓ {A7}, ↓ {A8}, ↓ {A9}, ↓ {A1, A7},

↓ {A2, A7}, ↓ {A3, A4} and ↓ {A4, A7}.

In facts, for each order set (Q;≤Q) and X, Y ⊆ Q, ↓ X ⊆↓ Y if and only if

for each x ∈ X there exists y ∈ Y such that x ≤Q y. So, the diagram of the order
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ideal O(P3) is shown in the following Figure 8.

@
@@
�
��

@
@@
�
��

@
@@

�
��

@
@@
�
��

�
��

@
@@

r
r
r
r
r
r r
r r
r r
r
r

↓ {A9}

↓ {A8}

↓ {A6}

↓ {A7}

↓ {A1}

↓ {A2} ↓ {A1, A7}

↓ {A4} ↓ {A2, A7}

↓ {A4, A7} ↓ {A3}

↓ {A3, A4}

↓ {A5}

Figure 8 The order ideal O(P3).



Chapter 6

Conclusion

For each n ∈ N, the class Mn of all BDLC-algebras whose λ(f) ≤∗ n is a

variety determined by identities; in addition, it can be generated by a single algebra.

Theorem 6.1 For each n ∈ N, the variety Mn is a class of BDL-algebras satisfying

the following identities:

f(x ∨ y) ≈ f(x) ∨ f(y), f(x ∧ y) ≈ f(x) ∧ f(y), f(0) ≈ 0

and fn(1) ≈ 0.

Theorem 6.2 Mn = V (2∗n) for all n ∈ N.

Moreover, 2∗n is a subdirectly irreducible algebra in Mn for all n ∈ N and

every subdirectly irreducible algebra is an isomorphic copy of a subalgebra of 2∗m for

some m ≤∗ n.

Theorem 6.3 Si(Mn) =
⋃
m≤∗n

IS(2∗m) for all n ∈ N.

Applying Theorem 6.2 together with the result in [8], we obtain a tool for

drawing the diagram of the lattice Λ(Mn) of all subvarieties of Mn for all n ∈ N.

If n = 3, the lattice Λ(M3) is shown in the following figure.

47
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@
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r r
r r
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Figure 9 The lattice Λ(M3).

In fact, all BDLC are dualisable. For a future work, it is interesting to find

duality for BDLC-algebras by applying NU-duality theorem.
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