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Abstract

Chase [1] introduced the concept of digit maps generalizing that of
happy functions. We extend the investigation further by considering
compositions of various digit maps. We prove that if F is such a com-
position and x is any positive integer, then the sequence (F (n)(x))n≥0

either converges or eventually becomes a cycle. Furthermore, we show
that the number of all possible limits and cycles is finite.

1 Introduction

For integers e, b ≥ 2, let Se,b : N ∪ {0} → N ∪ {0} be the function that takes
a nonnegative integer x to the sum of the e-th powers of its digits in base b,
that is,

Se,b(x) = aek + aek−1 + · · ·+ ae0,

if x = (akak−1 · · · a0)b = akbk + ak−1bk−1 + · · · + a0 is the b-adic expansion
of x with ak ̸= 0 and ai ∈ {0, 1, . . . , b − 1} for all i = 0, 1, . . . , k. We call

Se,b an (e, b)-happy function and if there exists n ∈ N such that S(n)
e,b (x) = 1,

Key words and phrases: Happy number, Happy function, Digit, Dynamic.
AMS (MOS) Subject Classifications: 11A63, 26A18
Prapanpong Pongsriiam is the corresponding author.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net
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then we call x an (e, b)-happy number. Here and throughout this article, f (0)

is the identity function mapping x to x and f (n) = f (n−1) ◦ f is the n-fold
composition of f . In addition, if we write a number without specifying a
base, then it is always written in base 10.

It is well-known that [7, Section E34] for any x ∈ N, the sequence

(S(n)
2,10(x))n≥0 either converges to 1 or eventually becomes the cycle

(4, 16, 37, 58, 89, 145, 42, 20).

For example, the sequence (S(n)
2,10(13))n≥0 is (13, 10, 1, 1, . . .) and (S(n)

2,10(2))n≥0

is (2, 4, 16, . . . , 20, 4, 16, . . .), so 13 is (2, 10)-happy but 2 is not. As usual,
(a1, a2, . . . , ak) and any of its cyclic permutation are considered the same
cycle.

El-Sedy and Siksek [3] were the first to prove that there exist arbitrarily
long strings of consecutive integers which are (2, 10)-happy. That is, for
each m ≥ 1, there exists an integer ℓ0 such that every element of the finite
sequence ℓ0 + 1, ℓ0 + 2, . . . , ℓ0 +m is a happy number. Pan [11] obtained in
2009 that if e−1 is not divisible by p−1 for any prime divisor p of b−1, then
there exist arbitrarily long sequences of consecutive (e, b)-happy numbers.

Let P be the product of all prime divisors p of b−1 such that p−1 divides
e− 1. It is not difficult to verify that Se,b(n) ≡ n (mod P ) for every n, and
so if P > 1, then (e, b)-happy numbers do not contain consecutive integers.
Zhou and Cai [17] extended Pan’s result by proving that if P > 1, then the
(e, b)-happy numbers contain arbitrarily long arithmetic progressions with
common difference P .

About 9 years later, Chase [1] introduced a concept of digit maps gener-
alizing that of happy functions and obtained a theorem extending those by
Pan [11] and El-Sedy and Siksek [3]. Noppakeaw, Phoopha, and Pongsri-
iam [10] consider compositions of various (e, b)-happy functions. For each
e = (e1, e2, . . . , ek) ∈ Nk and b = (b1, b2, . . . , bk) ∈ Nk with ei ≥ 1 and
bi ≥ 2 for all i = 1, 2, . . . , k, they [10] defined an (e, b)-happy function
Se,b : N ∪ {0} → N ∪ {0} by

Se,b(x) = (Se1,b1 ◦ Se2,b2 ◦ · · · ◦ Sek,bk)(x) for all x ∈ N ∪ {0}.

and showed that for each x ∈ N, the iteration sequence
(

S(n)
e,b (x)

)

n≥0
either

converges to a fixed point or eventually enters into a cycle. Moreover, they
[10] proved that the number of all such fixed points and cycles is finite. This
implies the possibility of obtaining similar results on (e, b)-happy numbers.
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For other results on happy numbers and happy functions, we refer the
reader to [4, 9, 13, 14]. For results on long arithmetic progressions in other
integer sequences, see [2, 5, 6, 8, 12, 15, 16] for example.

In this article, we combine the ideas from Chase [1] and Noppakeaw,
Phoopha, and Pongsriiam [10] and study the composition of various digit
maps. We show that such a composition also has the same property as Se,b.

2 Results

We first recall the definition of digit maps and u-integers from [1].

Definition 2.1. Let b ≥ 2 be an integer. A digit map with respect to b is a
function f : N ∪ {0} → N ∪ {0} satisfying gcd(b, f(b − 1)) = 1, f(0) = 0,
f(1) = 1, and

f(x) = f(ak) + f(ak−1) + · · ·+ f(a0)

if x = (akak−1 · · · a0)b = akbk + ak−1bk−1 + · · ·+ a0 is the b-adic expansion of
x where ai ∈ {0, 1, . . . , b− 1} for all i = 0, 1, . . . , k and ak ̸= 0.

If f is a digit map with respect to a base b ≥ 2 and x, u ∈ N, then x is
called a u-integer if f (n)(x) = u for some n ≥ 0. When f is an (e, b)-happy
function and u = 1, the u-integers are the same as (e, b)-happy numbers. So
the following theorem extends those of Pan [11] and El-Sedy and Siksek [3].

Theorem 2.2. (Chase [1])Let b ≥ 2 be an integer. Suppose f is a digit map
with respect to b and there is an m ∈ {0, 1, . . . , b− 1} such that gcd(f(m)−
m, f(b− 1)) = 1. If u, n ∈ N and u is a member of a cycle, then there exists
ℓ ∈ N such that ℓ, ℓ+ 1, ℓ+ 2, . . . , ℓ+ n− 1 are u-integers.

To extend Theorem 2.2 in the future, it may be useful to have a function
g such that, for each x ∈ N, the iteration sequence (g(n)(x))n≥0 converges to
a fixed point or eventually enters into a cycle. Noppakeaw, Phoopha, and
Pongsriiam [10] obtained such a function g by considering compositions of
happy functions. Our purpose is to extend their result [10, Theorem 1.4]
further to the compositions of various digit maps. To do this, consider the
following two conditions for a function f : N ∪ {0} → N ∪ {0}.

(A) There exists Nf ∈ N such that f(x) < x for all x ≥ Nf .

(B) For each x ∈ N ∪ {0}, the sequence (f (n)(x))n≥0 converges to a fixed
point or eventually enters into a cycle. In addition, the number of all
such fixed points and cycles is finite.
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We first show that a digit map satisfies the condition (A) and if f1, f2, . . . , fk
satisfy (A), then so does f1 ◦ f2 ◦ · · · ◦ fk. A proof of a similar result was
already done in [10, Theorem 1.3] but it was for f : N → N. So we need to
adjust it for f : N ∪ {0} → N ∪ {0}. Recall also that, for x ∈ R, ⌊x⌋ is the
largest integer less than or equal to x and ⌈x⌉ is the smallest integer larger
than or equal to x.

Theorem 2.3. Let f be a digit map with respect to b ≥ 2. Then there exists
M ∈ N such that

f(x) < x for all x ≥ M. (2.1)

Proof. Let M ′ = max{f(i) | i = 0, 1, . . . , b− 1}. Then M ′ ≥ f(1) = 1. Since
ex/x → ∞ as x → ∞, there exists c > 1 such that ec/c > bM ′/ log b. This
implies

c− log c > log b+ logM ′ − log log b. (2.2)

Let M =
⌈
cM ′

log b

⌉

and x ≥ M . Next, we show that f(x) < x. We write
x = (akak−1 · · · a1a0)b where ak ̸= 0 and 0 ≤ ai < b for all i = 0, 1, 2, . . . , k.
Then bk ≤ akbk ≤ x. So k ≤ logx

log b and

f(x) = f(ak) + f(ak−1) + · · ·+ f(a0) ≤ M ′(k + 1) ≤ M ′
( log x

log b
+ 1

)

. (2.3)

Let h(y) = y
M ′ −

log y
log b − 1 for all y > 0. Then h′(y) = 1

M ′ −
1

y log b > 0

for all y > M ′

log b . Since M ≥ cM ′/ log b > M ′/ log b and h is increasing on
[M ′/ log b,∞), we obtain that if y ≥ M , then

h(y) ≥ h
(

M
)

≥ h
(

cM ′/ log b
)

=
c− log c− logM ′ + log log b− log b

log b
> 0,

where the last inequality is obtained from (2.2). This shows that h(y) > 0
for all y ≥ M . In particular, h(x) > 0, and so 1 + log x/ log b < x/M ′. By
(2.3), we obtain f(x) < x, as required.

Theorem 2.4. If f1, f2, . . . , fk : N ∪ {0} → N ∪ {0} satisfy the condition
(A), then f1 ◦ f2 ◦ · · · ◦ fk also satisfies (A).

Proof. We can prove this by induction on k and it is actually the same as
that given by Noppakeaw et al. [10, Theorem 1.3], but for completeness, we
give the proof again here. When k = 1, the result is obvious. Assume that
k ∈ N and the result holds for k. Suppose f1, f2, . . . , fk+1 : N∪{0} → N∪{0}
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satisfy (A). Let f = f1 ◦ f2 ◦ · · · ◦ fk+1 and g = f1 ◦ f2 ◦ · · · ◦ fk. Then there
are m1, m2 ∈ N such that

g(x) < x for all x ≥ m1, and fk+1(x) < x for all x ≥ m2. (2.4)

Let m3 = max{g(x) | 1 ≤ x < m1} and m = max{m1, m2, m3} + 1. Let
x ≥ m. We will show that f(x) < x. If fk+1(x) ≥ m1, then we obtain by
(2.4) that

f(x) = g(fk+1(x)) < fk+1(x) < x.

On the other hand, if fk+1(x) < m1, then f(x) = g(fk+1(x)) ≤ m3 < m ≤ x.
This completes the proof.

Corollary 2.5. A composition of digit maps satisfies the condition (A).

Proof. This follows immediately from Theorems 2.3 and 2.4.

Theorem 2.6. If f : N ∪ {0} → N ∪ {0} satisfies (A), then f satisfies (B).

Proof. This is given in [10, Theorem 1.2] for a function f : N → N, and we
can use the same method in our proof too. However, directly applying [10,
Theorem 1.2] does not lead to our desired result for f : N ∪ {0} → N ∪ {0},
so we still used to give the proof here. For convenience, we write N instead
of Nf and we assert that

for every y ∈ N ∪ {0}, there exists n ∈ N ∪ {0} such that f (n)(y) < N.
(2.5)

If y < N , then we can choose n = 0. If y ≥ N , then by (A), f(y) < y.
If f(y) < N , then we can choose n = 1; otherwise, we obtain by (A)
that f (2)(y) < f(y). We can repeat this process and obtain a strictly de-
creasing sequence of positive integers f(y), f (2)(y), f (3)(y), . . ., and eventually
f (n)(y) < N for some n. Hence (2.5) is proved.

Now let x ∈ N∪{0} and suppose that (f (n)(x))n≥0 does not converge to a
fixed point of f . By (2.5), there exists n1 ∈ N such that f (n1)(x) < N . Again
by (2.5), there exists n2 ∈ N such that f (n2)(f (n1)(x)) < N . Repeating this
process N + 1 times, we obtain the set of nonnegative integers

f (n1)(x), f (n1+n2)(x), . . . , f (n1+n2+···+nN+1)(x),

which are less than N . By the pigeonhole principle, some of them are the
same, say

f (n1+n2+···+nj)(x) = f (n1+n2+···+nj+···+nℓ)(x) for some ℓ > j ≥ 1.
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Let y = f (n1+n2+···+nj)(x). Then the tail of the sequence (f (n)(x))n≥0 eventu-
ally becomes

(y, f(y), f (2)(y), . . . , f (nj+1+nj+2+···+nℓ−1)(y), y, . . .),

which is a cycle. This proves the first part of (B). Next we show that the set
Uf of fixed points and cycles is finite. More precisely, we will show that

Uf := {x ∈ N ∪ {0} | ∃n ∈ N, f (n)(x) = x} ⊆ [0,M ], (2.6)

where M = max{N, f(0), f(1), f(2), . . . , f(N)}. First of all, by (A), if x is a
fixed point of f , then x < N and so x ∈ [0,M ]. Suppose that x is an element
in a cycle arising from the iteration (f (n)(y))n≥0 for some y ∈ N ∪ {0}. If
x < N , then x ∈ [0,M ] and we are done. So suppose x ≥ N . By (2.5),
there exists n ∈ N such that f (n)(x) < N . Since x is in a cycle, after some
iterations, it must come back to x. That is, there exists k ∈ N such that
f (k)(f (n)(x)) = x. If k = 1 or f (n+k−1)(x) ≤ N , then x = f(f (n+k−1)(x)) ≤ M
and we are done. So suppose k ≥ 2 and f (n+k−1)(x) > N . Let ℓ be the
smallest positive integer such that f (n+k−ℓ)(x) < N . Then 1 < ℓ ≤ k and for
each 1 ≤ i < ℓ, f (n+k−i)(x) ≥ N . So

f (n+k−ℓ+1)(x) > f (n+k−ℓ+2)(x) > · · · > f (n+k−1)(x) > f (n+k)(x) = x.

So x < f (n+k−ℓ+1)(x) = f(f (n+k−ℓ)(x)) ≤ M . Therefore (2.6) is verified and
the proof is complete.

Corollary 2.7. Let f1, f2, . . . , fk be digit maps with respect to b1, b2, . . . , bk
respectively, where bi ≥ 2 for every i. Let F : N∪ {0} → N∪ {0} be given by
F = f1 ◦ f2 ◦ · · · ◦ fk. Then F satisfies (B).

Proof. This follows immediately from Corollary 2.5 and Theorem 2.6.

Suppose that f1, f2, . . . , fk are digit maps with respect to bases b1, b2, . . .,
bk, respectively, and F = f1 ◦ f2 ◦ · · · ◦ fk. By Corollary 2.5, there is N ∈ N

such that F (x) < x for all x ≥ N . Then all fixed points and cycles can be
found by considering the sequence (F (n)(x))n≥0 where 0 ≤ x < N . We show
some explicit calculations for such N in the following example.

Example 2.8. Consider F = f1 ◦ f2 ◦ f3, where f1, f2, f3 are digit maps
with respect to b1 = 6, b2 = 5, b3 = 4, respectively, and for 0 ≤ x < bi, they
are defined by f1(x) = x4, f2(x) = x2, f3(x) = x3.

First, we show that there exists an integer m such that (f1 ◦ f2)(x) < x
for all x > m. By following the proof of Theorem 2.3, we consider M ′

1 =
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max{f1(i) | i = 0, 1, . . . , 5} = 54 and M ′
2 = max{f2(i) | i = 0, 1, 2, 3, 4} = 42.

Since e10

10 > 6(5)4

log 6 ,
e6

6 > 5(4)2

log 5 , we let c1 = 10 and c2 = 6. The corresponding
M1 for f1 and M2 for f2 are M1 = 3489 and M2 = 60. Therefore

f1(x) < x for all x ≥ 3489 and f2(x) < x for all x ≥ 60.

Let m1 = 3489, m2 = 60, and m3 = max{f1(x) | 1 ≤ x < 3489}. Since
3489 = (24053)6, we see that m3 = f1((15555)6) = 2501.

Let m = max{m1, m2, m3} + 1 = 3490. By the proof of Theorem 2.4, we
have that

(

f1 ◦ f2
)

(x) < x for all x ≥ 3490.

Next, we consider f1 ◦ f2 ◦ f3. Similarly, M ′
3 = 33 and e7

7 > 4(3)3

log 4 , so we let

c3 = 7, and M3 =
⌈7(3)3

log 4

⌉

= 137 and obtain

f3(x) < x for all x ≥ 137.

We let m1 = 3490, m2 = 137, m3 = max{(f1 ◦ f2)(x) | 1 ≤ x < 3490}. Then

m3 = max{f1(f2(x)) | 1 ≤ x < (102430)5} = max{f1(x) | 1 ≤ x < 80}

= max{f1(x) | 1 ≤ x < (212)6} = 1251.

Let m = max{m1, m2, m3}+ 1 = 3491. So

(

f1 ◦ f2 ◦ f3
)

(x) < x for all x ≥ 3491.

The lower bound 3491 may not be best possible but it is not difficult to search
for the best one by using a computer. We can check whether (f1◦f2◦f3)(x) <
x for x = 1, 2, 3, . . . , 3490. If (f1 ◦ f2 ◦ f3)(x) < x for x = N,N +1, . . . , 3490
and (f1◦f2◦f3)(x) ≥ x for x = N−1, then such the integer N is the optimal
lower bound. In fact, by using a computer, we obtain N = 831.

We give two more examples to illustrate alternative calculations.

Example 2.9. Let b1 = b2 = 10 and let f1, f2 be digit maps with respect to
b1, b2 such that f1(x) = 2x2 − x and f2(x) = 3x3 − x2 − x for 0 ≤ x < 10.
Let F = f1 ◦ f2. Then, for each x ∈ N, the sequence (F (n)(x))n≥0 either
converges to 1 or eventually becomes the cycle (6, 132, 240, 154, 166, 23, 211).

Proof. We first show that

F (x) = (f1 ◦ f2)(x) < x for all x ≥ 10930. (2.7)
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f1 f2 f3 b Fixed points of F or cycles in (F (n)(x))n≥0

3x3 − x2 − x 2x2 − x (10,10) 1, (606,88,190,518,1213,87,20)
2x2 − x 3x3 − x2 − x (10,10) 1,(6,132,240,154,166,23,211)
2x2 − x 3x3 − x2 − x (7,5) 1,6,43,(56,16,82,112),(61,111,35,15)
2x2 − x 3x3 − x2 − x 3x4 + 2x2 − 4x (4,5,7) 1,7,53
2x2 − x 3x3 − x2 − x 3x4 + 2x2 − 4x (5,4,7) 1
⌊ex⌋ − 1 8 1,(1114,32,53,549,201,21,153,26,25,

20,59),1103,(462,1498,1126)
⌊ex⌋ − 1 x2 (8,10) 1,(59,154,153,72,549,1102,402)

Table 1: Fixed points of F (except zero) or cycles in (F (n)(x))n≥0

If x ∈ [10930, 99999], then x = (a4a3a2a1a0)10 where 0 ≤ ai ≤ 9, and so

f2(x) = f2(a4) + f2(a3) + · · ·+ f2(a0) ≤ 5f2(9) = 10485,

and thus

F (x) ≤ max{f1(x) | 1 ≤ x ≤ 10485} = f1(9999) = 4(153) = 612 < x.

Next, suppose that x ≥ 105 and write x = (akak−1 · · · a1a0)10 where k ≥ 5
and ak ̸= 0.

It is easy to prove by induction on k that 2097(k+1) < 10k for all k ≥ 5.
Then,

f2(ak) + f2(ak−1) + · · ·+ f2(a0) ≤ (k + 1)f2(9) = 2097(k + 1) < 10k.

Then, F (x) ≤ max{f1(x) | 0 ≤ x ≤ 10k} = f1(99 · · ·9︸ ︷︷ ︸

k digits

) = 153k < 10k ≤

ak10k ≤ x. So (2.7) is verified. It only remains to check that, for each
x < 10930, whether the sequence (F (n)(x))n≥0 converges to a fixed point
or becomes a cycle. This can be done using a computer. We find that for
each positive integer x < 10930, the sequence (F (n)(x))n≥0 converges to 1 or
becomes the cycle (6, 132, 240, 154, 166, 23, 211).

The next example is slightly different from Example 2.9 because b1 and
b2 are different.

Example 2.10. Let b1 = 7, b2 = 5, f1 and f2 digit maps with respect to b1
and b2, respectively, f1(x) = 2x2−x for 0 ≤ x ≤ 6, and f2(x) = 3x3− 2x for
0 ≤ x ≤ 4. Let F = f1 ◦ f2. Then, for each x ∈ N, the sequence (F (n)(x))n≥0

contains 1, 6, 43, 56, or 61. Moreover, 1, 6, and 43 are the only fixed points
of F and if the sequence (F (n)(x))n≥0 does not contain 1, 6, or 43, then it
eventually enters into the cycles (56, 16, 82, 112) or (61, 111, 35, 15).
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Proof. We first show that F (x) < x for all x ≥ 1030. Let x ≥ 1030. Since
x > 54, we write x = (akak−1 · · ·a0)5, where k ≥ 4, 0 ≤ ai ≤ 4 for every i,
and ak ̸= 0. Then f2(x) ≤ (k + 1)f2(4) = 184(k + 1) and it is easy to prove
by induction on k that 184(k + 1) < 7k for all k ≥ 4. Then

F (x) ≤ max{f1(x) | 0 ≤ x < 7k} = f1((66 · · ·6︸ ︷︷ ︸

k digits

)7) = 66k.

Since 5k ≤ ak5k ≤ x, it follows that k ≤ log x
log 5 . Since the function y → log y

y
is

decreasing on [3,∞) and x ≥ 1030, we obtain

F (x) ≤ 66k ≤ 66
( log x

log 5

)

≤
66

log 5

( log x

x

)

x ≤
66

log 5

( log 1030

1030

)

x < x.

Similar to Example 2.9, the rest can be verified using a computer.

Other examples of compositions of digit maps and their fixed points and
cycles are shown in Table 1. For instance, Line 5 of Table 1 means that
if f1, f2, f3 are digit maps such that f1(x) = 2x2 − x for 0 ≤ x ≤ 3,
f2(x) = 3x3−x2−x for 0 ≤ x ≤ 4, and f3(x) = 3x4+2x2−4x for 0 ≤ x ≤ 6,
then the fixed points of F = f1 ◦ f2 ◦ f3 are 1, 7, and 53, and for any x ∈ N,
(F (n)(x))n≥0 converges to 1, 7, or 53. Note that zero is also a fixed point of F
but we are not interested in this fixed point since in our example (F (n)(x))n≥0

does not converge to zero for any x ∈ N.
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