

CONSECUTIVE HAPPY NUMBERS AND GENERALIZATIONS

A Thesis Submitted in Partial Fulfillment of the Requirements for Master of Science (MATHEMATICS) Department of MATHEMATICS

Graduate School, Silpakorn University
Academic Year 2020
Copyright of Graduate School, Silpakorn University

จำนวนแฮปปี้ที่ติดกันและกรณีทั่วไป

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรมหาบัณทิต สาขาวิชาคณิตศาสตร์ แผน ก แบบ ก 2 ระดับปริญูญามหาบัมทิต ภาควิชาคณิตศาสตร์ บัณทิตวิทยาลัย มหาวิทยาลัยศิลปากร

ปีการศึกษา 2563
ลิขสิทธิ์ของบัณทิตวิทยาลัย มหาวิทยาลัยศิลปากร

A Thesis Submitted in Partial Fulfillment of the Requirements for Master of Science (MATHEMATICS)

Department of MATHEMATICS
Graduate School, Silpakorn University
Academic Year 2020
Copyright of Graduate School, Silpakorn University

Title	Consecutive happy numbers and generalizations
By	Kittipong SUBWATTANACHAI
Field of Study	(MATHEMATICS)
Advisor	Associate Professor Dr. Prapanpong Pongsriiam

Graduate School Silpakorn University in Partial Fulfillment of the Requirements for the Master of Science

61305201 : Major (MATHEMATICS)
Keyword : Happy number, Happy function, Digit, Dynamic
MR. KITTIPONG SUBWATTANACHAI : CONSECUTIVE HAPPY NUMBERS AND GENERALIZATIONS THESIS ADVISOR : ASSOCIATE PROFESSOR DR. PRAPANPONG PONGSRIIAM

Chase introduced the concept of digit maps generalizing that of happy functions. In this thesis, we extend the investigation further by considering compositions of various dagit maps.

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Associate Professor Dr. Prapanpong Pongsriiam for giving me valuable suggestions and excellent advices throughout the study.

I would like to thank Development and Promotion for Science and Technology Talents Project (DPST) for giving me a scholarship.

I would like to thank Assistant Professor Dr. Tammatada Khemaratchatakumthorn and Assistant Professor Dr. Kantaphon Kuhapatanakul, for their comments and suggestions.

I would like to thank the Department of Mathematics, Faculty of Science Silpakorn University for the facility support.

Finally, I wish to thank my family for understanding and encouragement.

TABLE OF CONTENTS

Page

ABSTRACT D
ACKNOWLEDGEMENTS E
TABLE OF CONTENTS F
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PRELIMINARIES AND LEMMAS 4
CHAPTER 3 MAIN RESULTS. 6
REFERENCES. 14
APPENDIX 17

VITA 28

Chapter 1

Introduction

For integers $e, b \geq 2$, let $S_{e, b}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ be the function that takes a nonnegative integer x to the sum of the e-th powers of its digits in base b, that is,

$$
S_{e, b}(x)=a_{k}^{e}+a_{k-1}^{e}+\cdots+a_{0}^{e}
$$

if $x=\left(a_{k} a_{k-1} \cdot \cdot \cdot a_{0}\right) b=a_{k} b^{k}+a_{k-1} b^{k}-1+\cdots+a_{0}$ is the b-adic expansion of x with $a_{k} \neq 0$ and $a_{i} \in\{0,1, \ldots, b-1\}$ for all $i=0,1, \ldots, k$. We call $S_{e, b}$ an (e, b)-happy function and if there exists $n \in \mathbb{N}$ such that $S_{e, b}^{(n)}(x)=1$, then we call x an (e, b)-happy number. Here and throughout this article, $f^{(0)}$ is the identity function mapping x to x and $f^{(n)}=f^{(n-1)} \circ f$ is the n-fold composition of f. In addition, if we write a number without specifying a base, then it is always written in base 10 .

It is well-known that $[7]$ for any $x \in \mathbb{N}$, the sequence $\left(S_{2,10}^{(n)}(x)\right)_{n \geq 0}$ either converges to 1 or eventually becomes the cycle

$$
(4,16,37,58,89,145,42,20) .
$$

For example, the sequence $\left(S_{2,10}^{(n)}(13)\right)_{n \geq 0}$ is $(13,10,1,1, \ldots)$ and $\left(S_{2,10}^{(n)}(2)\right)_{n \geq 0}$ is $(2,4,16, \ldots, 20,4,16, \ldots)$. Then 13 is $(2,10)$-happy but 2 is not. As usual, $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and any of its cyclic permutation are considered the same cycle.

El-Sedy and Siksek [3] were the first to prove that there exist arbitrarily long strings of consecutive integers which are (2,10)-happy. That is, for each
$m \geq 1$, there exists an integer ℓ_{0} such that every element of the finite sequence $\ell_{0}+1, \ell_{0}+2, \ldots, \ell_{0}+m$ is a happy number. Pan [11] obtained in 2009 that if $e-1$ is not divisible by $p-1$ for any prime divisor p of $b-1$, then there exist arbitrarily long sequences of consecutive (e, b)-happy numbers.

Let P be the product of all prime divisors p of $b-1$ such that $p-1$ divides $e-1$. It is not difficult to verify that $S_{e, b}(n) \equiv n(\bmod P)$ for every n, and so if $P>1$, then (e, b)-happy numbers do not contain consecutive integers. Zhou and Cai [24] extended Pan's result by proving that if $P>1$, then the (e, b) happy numbers contain arbitrarily long arithmetic progressions with common difference P.

About 9 years later, Chase [1] introduced a concept of digit maps generalizing that of happy functions and obtained a theorem extending those by Pan [11] and El-Sedy and Siksek -[3]. Noppakeaw, Phoopha, and Pongsriiam [10] considered compositions of various (e, b)-happy functions. For each $\underline{e}=\left(e_{1}, e_{2}, \ldots, e_{k}\right) \in \mathbb{N}^{k}$ and $\underline{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in \mathbb{N}^{k}$ with $e_{i} \geq 1$ and $b_{i} \geq 2$ for all $i=1,2, \ldots, k$, they [10] defined an (e, $\underline{b})$-happy function $S_{e, \underline{b}}: \mathbb{N} \cup\{0\} \rightarrow$ $\mathbb{N} \cup\{0\}$ by

$$
S_{e, b}(x)=\left(S_{e_{1}, b_{1}} \circ S_{e_{2}, b_{2}} \circ \cdots \cdot S_{e_{k}, b_{k}}\right)(x) \quad \text { for all } x \in \mathbb{N} \cup\{0\} \text {. }
$$

and showed that for each $x \in \mathbb{N}$, the iteration sequence $\left(S_{e, b}^{(n)}(x)\right)_{n \geq 0}$ either converges to a fixed point or eventually enters into a cycle. Moreover, they [10] proved that the number of all such fixed points and cycles is finite. This implies the possibility of obtaining similar results on $(\underline{e}, \underline{b})$-happy numbers.

For other results on happy numbers and happy functions, we refer the reader to $[4,9,20,21]$. For results on long arithmetic progressions in other integer sequences, see $[2,5,6,8,14,22,23]$ for example.

In this thesis, we combine the ideas from Chase [1] and Noppakeaw, Phoopha, and Pongsriiam [10] and study the composition of various digit maps. We show that such a composition also has the same property as $S_{e, \underline{b} \underline{b}}$. For more information, we invite the reader to visit Pongsriiam's ResearchGate website [19] for
some freely downloadable articles $[12,13,14,15,16,17,18]$ in related topics of research.

Chapter 2

Preliminaries and Lemmas

We first recall the definition of digit maps and u-integers from [1].

Definition 2.1. Let $b \geq 2$ be an integer. A digit map with respect to b is a function $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfying $\operatorname{gcd}(b, f(b-1))=1, f(0)=0$, $f(1)=1$, and

$$
f(x)=f\left(a_{k}\right)+f\left(a_{k}-1\right)+\cdots+f\left(a_{0}\right)
$$

if $x=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{b}=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{0}$ is the b-adic expansion of x where $a_{i} \in\{0,1, \ldots, b-1\}$ for all $i=0,1, \ldots, k$ and $a_{k} \neq 0$.

If f is a digit map with respect to a base $b \geq 2$ and $x, u \in \mathbb{N}$, then x is called a u-integer if $f^{(n)}(x)=u$ for some $n \geq 0$. When f is an (e, b)-happy function and $u=1$, the u-integers are the same as (e, b)-happy numbers. So the following theorem extends those of Pan [11] and El-Sedy and Siksek [3].

Theorem 2.2. (Chase [1])Let $b \geq 2$ be an integer. Suppose f is a digit map with respect to b and there is an $m \in\{0,1, \ldots, b-1\}$ such that $\operatorname{gcd}(f(m)-$ $m, f(b-1))=1$. If $u, n \in \mathbb{N}$ and u is a member of a cycle, then there exists $\ell \in \mathbb{N}$ such that $\ell, \ell+1, \ell+2, \ldots, \ell+n-1$ are u-integers.

To extend Theorem 2.2 in the future, it may be useful to have a function g such that, for each $x \in \mathbb{N}$, the iteration sequence $\left(g^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or eventually enters into a cycle. Noppakeaw, Phoopha, and

Pongsriiam [10] obtained such a function g by considering compositions of happy functions. Our purpose is to extend their result [10, Theorem 1.4] further to the compositions of various digit maps. To do this, we consider the following two conditions for a function $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$.
(A) There exists $N_{f} \in \mathbb{N}$ such that $f(x)<x$ for all $x \geq N_{f}$.
(B) For each $x \in \mathbb{N} \cup\{0\}$, the sequence $\left(f^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or eventually enters into a cycle. In addition, the number of all such fixed points and cycles is finite.

We first show that a digit map satisfies the condition (A) and if $f_{1}, f_{2}, \ldots, f_{k}$ satisfy (A), then so does $f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. A proof of a similar result was already done in $[10$, Theorem 1.3] but it was for $f: \mathbb{N} \rightarrow \mathbb{N}$. So we need to adjust it for $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$. Recall also that, for $x \in \mathbb{R},\lfloor x\rfloor$ is the largest integer less than or equal to x and $\lceil x\rceil$ is the smallest integer larger than or equal to x.

Chapter 3

Main Results

In this chapter, we study the composition of various digit maps. We prove that if F is such a composition and x is any nonnegative integer, then the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ either converges or eventually becomes a cycle. Furthermore, the number of such fixed points and cycles is finite. We begin with showing that a digit map with respect to a base $b \geq 2$ satisfies the condition (A).

Theorem 3.1. Let f be a digit map with respect) to $b \geq 2$. Then there exists $M \in \mathbb{N}$ such that

$$
\begin{equation*}
f(x)<x \text { forall } x \geq M \tag{3.1}
\end{equation*}
$$

Proof. Let $M^{\prime}=\max \{f(i) \mid i=0,1, \ldots, b-1\}$. Then $M^{\prime} \geq f(1)=1$. Since $e^{x} / x \rightarrow \infty$ as $x \rightarrow \infty$, there exists $c>1$ such that $e^{c} / c>b M^{\prime} / \log b$. This implies

$$
\begin{equation*}
c-\log c>\log b+\log M^{\prime}-\log \log b . \tag{3.2}
\end{equation*}
$$

Let $M=\left\lceil\frac{c M^{\prime}}{\log b}\right\rceil$ and $x \geq M$. Next, we show that $f(x)<x$. We write $x=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$ where $a_{k} \neq 0$ and $0 \leq a_{i}<b$ for all $i=0,1,2, \ldots, k$. Then $b^{k} \leq a_{k} b^{k} \leq x$, so $k \leq \frac{\log x}{\log b}$ and

$$
\begin{equation*}
f(x)=f\left(a_{k}\right)+f\left(a_{k-1}\right)+\cdots+f\left(a_{0}\right) \leq M^{\prime}(k+1) \leq M^{\prime}\left(\frac{\log x}{\log b}+1\right) \tag{3.3}
\end{equation*}
$$

Let $h(y)=\frac{y}{M^{\prime}}-\frac{\log y}{\log b}-1$ for all $y>0$. Then $h^{\prime}(y)=\frac{1}{M^{\prime}}-\frac{1}{y \log b}>0$ for all $y>\frac{M^{\prime}}{\log b}$. Since $M \geq c M^{\prime} / \log b>M^{\prime} / \log b$ and h is increasing on
$\left[M^{\prime} / \log b, \infty\right)$, we obtain that if $y \geq M$, then

$$
h(y) \geq h(M) \geq h\left(c M^{\prime} / \log b\right)=\frac{c-\log c-\log M^{\prime}+\log \log b-\log b}{\log b}>0
$$

where the last inequality is obtained from (3.2). This shows that $h(y)>0$ for all $y \geq M$. In particular, $h(x)>0$, and so $1+\log x / \log b<x / M^{\prime}$. By (3.3), we obtain $f(x)<x$, as required.

Theorem 3.2. If $f_{1}, f_{2}, \ldots, f_{k}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfy the condition (A), then $f_{1} \circ f_{2} \circ \cdots \circ f_{k}$ also satisfies (A).

Proof. We can prove this by induction on k and it is actually the same as that given by Noppakeaw et al. [10, Theorem 1.3], but for completeness, we give the proof again here. When $k=1$, the result is obvious. Assume that $k \in \mathbb{N}$ and the result holds for k. Suppose $f_{1}, f_{2}, \ldots, f_{k+1}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfy (A). Let $f=f_{1} \circ f_{2} \circ \cdots \circ f_{k+1}$ and $g=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. Then there are m_{1}, $m_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left.\left.g(x)<x \quad \text { for all } x \geq m_{1},\right) \text { and } f_{k+1}(x)<x\right) \text { for all } x \geq m_{2} \text {. } \tag{3.4}
\end{equation*}
$$

Let $m_{3}=\max \left\{g(x)+1 \leq x<m_{1}\right\}$ and $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1$. Let $x \geq m$. We will show that $f(x)<x$. If $f_{k+1}(x) \geq m_{1}$, then we obtain by (3.4) that

$$
f(x)=g\left(f_{k+1}(x)\right)<f_{k+1}(x)<x
$$

On the other hand, if $f_{k+1}(x)<m_{1}$, then $f(x)=g\left(f_{k+1}(x)\right) \leq m_{3}<m \leq x$. This completes the proof.

We already have that a digit map is a function on the set of all nonnegative integers and it satisfies the condition (A). Therefore, by Theorem 3.2, we immediately obtain the following corollary.

Corollary 3.3. A composition of digit maps satisfies the condition (A).
Proof. This follows immediately from Theorem 3.1 and 3.2.

Theorem 3.4. If $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfies (A), then f satisfies (B).
Proof. This is given in [10, Theorem 1.2] for a function $f: \mathbb{N} \rightarrow \mathbb{N}$, and we can use the same method in our proof too. However, directly applying [10, Theorem 1.2] does not lead to our desired result for $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$, so we still used to give the proof here. For convenience, we write N instead of N_{f} and we assert that
for every $y \in \mathbb{N} \cup\{0\}$, there exists $n \in \mathbb{N} \cup\{0\}$ such that $f^{(n)}(y)<N$. (3.5)
If $y<N$, then we can choose $n=0$. If $y \geq N$, then by (A), $f(y)<y$. If $f(y)<N$, then we can choose $n=1$; otherwise, we obtain by (A) that $f^{(2)}(y)<f(y)$. We can repeat this process and obtain a strictly decreasing sequence of positive integers $f(y)=f^{(2)}(y), f^{(3)}(y), \ldots$, and eventually $f^{(n)}(y)<$ N for some n. Hence (3.5) is proyed.

Now let $x \in \mathbb{N} \cup\{0\}$ and suppose that $\left(f^{(n)}(x)\right)_{n \geq 0}$ does not converge to a fixed point of f. By (3.5), there exists $n_{1} \in \mathbb{N}$ such that $f^{\left(n_{1}\right)}(x)<N$. Again by (3.5), there exists $n_{2} \in \mathbb{N}$ such that $f^{\left(n_{2}\right)}\left(f^{\left(n_{1}\right)}(x)\right)<N$. Repeating this process $N+1$ times, we obtain the set of nonnegative integers

$$
f^{\left(n_{1}\right)}(x), f^{\left(n_{1}+n_{2}\right)}(x) \ldots, f^{\left(n_{1}+n_{2}+\ldots+n_{N+1}\right)}(x),
$$

which are less than N. By the pigeonhole principle, some of them are the same, say

$$
f^{\left(n_{1}+n_{2}+\cdots+n_{j}\right)}(x)=f^{\left(n_{1}+n_{2}+\cdots+n_{j}+\cdots+n_{\ell}\right)}(x) \quad \text { for some } \ell>j \geq 1 .
$$

Let $y=f^{\left(n_{1}+n_{2}+\cdots+n_{j}\right)}(x)$. Then the tail of the sequence $\left(f^{(n)}(x)\right)_{n \geq 0}$ eventually becomes

$$
\left(y, f(y), f^{(2)}(y), \ldots, f^{\left(n_{j+1}+n_{j+2}+\cdots+n_{\ell}-1\right)}(y), y, \ldots\right)
$$

which is a cycle. This proves the first part of (B). Next we show that the set U_{f} of fixed points and cycles is finite. More precisely, we will show that

$$
\begin{equation*}
U_{f}:=\left\{x \in \mathbb{N} \cup\{0\} \mid \exists n \in \mathbb{N}, f^{(n)}(x)=x\right\} \subseteq[0, M], \tag{3.6}
\end{equation*}
$$

where $M=\max \{N, f(0), f(1), f(2), \ldots, f(N)\}$. First of all, by (A), if x is a fixed point of f, then $x<N$ and so $x \in[0, M]$. Suppose that x is an element in a cycle arising from the iteration $\left(f^{(n)}(y)\right)_{n \geq 0}$ for some $y \in \mathbb{N} \cup\{0\}$. If $x<N$, then $x \in[0, M]$ and we are done. So suppose $x \geq N$. By (3.5), there exists $n \in \mathbb{N}$ such that $f^{(n)}(x)<N$. Since x is in a cycle, after some iterations, it must come back to x. That is, there exists $k \in \mathbb{N}$ such that $f^{(k)}\left(f^{(n)}(x)\right)=x$. If $k=1$ or $f^{(n+k-1)}(x) \leq N$, then $x=f\left(f^{(n+k-1)}(x)\right) \leq M$ and we are done. So suppose $k \geq 2$ and $f^{(n+k-1)}(x)>N$. Let ℓ be the smallest positive integer such that $f^{(n+k-\ell)}(x)<N$. Then $1<\ell \leq k$ and for each $1 \leq i<\ell, f^{(n+k}-(-i)(x) \geq N$. So

$$
f^{(n+k-\ell+1)}(x)>f^{(n+k-\ell+2)}(x)>\cdots>f^{(n+k-1)}(x)>f^{(n+k)}(x)=x .
$$

So $x<f^{(n+k-\ell+1)}(x)=f\left(f^{(n+k=\ell)}(x)\right) \leq M$. Therefore (3.6) is verified and the proof is complete.

Recall that a composition of digit maps satisfies the condition (A). Then, by Theorem 3.4, it satisfies the condition (B). So we obtain our main result as in the following corollary.

Corollary 3.5. Let $f_{1}, f_{2}, \ldots, f_{k}$ be digit maps with respect to $b_{1}, b_{2}, \ldots, b_{k}$ respectively, where $b_{i} \geq 2$ for every i. Let $F: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ be given by $F=f_{1} \circ f_{2} \circ \cdots \circ f_{k \cdot}$ Then F satisfies (B).

Proof. This follows immediately from Corollary 3.3 and Theorem 3.4.
Suppose that $f_{1}, f_{2}, \ldots, f_{k}$ are digit maps with respect to bases $b_{1}, b_{2}, \ldots, b_{k}$, respectively, and $F=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. By Corollary 3.3, there is $N \in \mathbb{N}$ such that $F(x)<x$ for all $x \geq N$. Then all fixed points and cycles can be found by considering the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ where $0 \leq x<N$. We show some explicit calculations for such N in the following example.

Example 3.6. Consider $F=f_{1} \circ f_{2} \circ f_{3}$, where f_{1}, f_{2}, f_{3} are digit maps with respect to $b_{1}=6, b_{2}=5, b_{3}=4$, respectively, and for $0 \leq x<b_{i}$, they are defined by $f_{1}(x)=x^{4}, f_{2}(x)=x^{2}, f_{3}(x)=x^{3}$.

First, we show that there exists an integer m such that $\left(f_{1} \circ f_{2}\right)(x)<x$ for all $x>m$. By following the proof of Theorem 3.1, we consider $M_{1}^{\prime}=$ $\max \left\{f_{1}(i) \mid i=0,1, \ldots, 5\right\}=5^{4}$ and $M_{2}^{\prime}=\max \left\{f_{2}(i) \mid i=0,1,2,3,4\right\}=4^{2}$. Since $\frac{e^{10}}{10}>\frac{6(5)^{4}}{\log 6}, \frac{e^{6}}{6}>\frac{5(4)^{2}}{\log 5}$, we let $c_{1}=10$ and $c_{2}=6$. The corresponding M_{1} for f_{1} and M_{2} for f_{2} are $M_{1}=3489$ and $M_{2}=60$. Therefore

$$
f_{1}(x)<x \quad \text { for all } \quad x \geq 3489 \text { and } f_{2}(x)<x \text { for all } x \geq 60
$$

Let $m_{1}=3489, m_{2}=60$, and $m_{3}=\max \left\{f_{1}(x) \mid 1 \leq x<3489\right\}$. Since $3489=(24053)_{6}$, we see that $m_{3}=f_{1}\left((15555)_{6}\right)=2501$.

Let $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1=3490$. By the proof of Theorem 3.2, we have that

$$
\left(f_{1} \circ f_{2}\right)(x)<x \text { for all } x \geq 3490 \text {. }
$$

Next, we consider f_{1} of $f_{2} \circ f_{3}$. Similarly, $M_{3}^{\prime}=3^{3}$ and $\frac{e^{7}}{7}>\frac{4(3)^{3}}{\log 4}$, so we let $c_{3}=7$, and $M_{3}=\left\lceil\frac{7(3)^{3}}{\log 4}\right\rceil=137$ and obtain

$$
f_{3}(x)<x \text { for all } x \geq 137 \text {. }
$$

We let $m_{1}=3490, m_{2}=137, m_{3}=\max \left\{\left(f_{1} \circ f_{2}\right)(x) \mid 1 \leq x<3490\right\}$. Then

$$
m_{3}=\max \left\{f_{1}\left(f_{2}(x)\right)+1 \leq x<(102430)_{5}\right\}
$$

$$
=\max \left\{f_{1}(x) \mid 1 \leq x<80\right\}
$$

$$
=\max \left\{f_{1}(x) \mid 1 \leq x<(212)_{6}\right\}=1251
$$

Let $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1=3491$. So

$$
\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<x \quad \text { for all } \quad x \geq 3491
$$

The lower bound 3491 may not be best possible but it is not difficult to search for the best one by using a computer. We can check whether $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<x$ for $x=1,2,3, \ldots, 3490$. If $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<x$ for $x=N, N+1, \ldots, 3490$ and $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x) \geq x$ for $x=N-1$, then such the integer N is the optimal lower bound. In fact, by using a computer, we obtain $N=831$.

We give two more examples to illustrate alternative calculations.
Example 3.7. Let $b_{1}=b_{2}=10$ and let f_{1}, f_{2} be digit maps with respect to b_{1}, b_{2} such that $f_{1}(x)=2 x^{2}-x$ and $f_{2}(x)=3 x^{3}-x^{2}-x$ for $0 \leq x<10$. Let $F=f_{1} \circ f_{2}$. Then, for each $x \in \mathbb{N}$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ either converges to 1 or eventually becomes the cycle $(6,132,240,154,166,23,211)$.

Proof. We first show that

$$
\begin{equation*}
F(x)=\left(f_{1} \circ f_{2}\right)(x)<x \quad \text { for all } x \geq 10930 \tag{3.7}
\end{equation*}
$$

If $x \in[10930,99999]$, then $\left.x=\left(a_{4} a_{3} a_{2} a_{1} a_{0}\right)\right)_{10}$ where $0 \leq a_{i} \leq 9$, and so

$$
f_{2}(x)=f_{2}\left(a_{4}\right)+f_{2}\left(a_{3}\right)+f_{2}\left(a_{0}\right) \leq 5 f_{2}(9)=10485
$$

and thus

$$
F(x) \leq \max \left\{f_{1}(x) \mid 1 \leq x \leq 10485\right\}=f_{1}(9999)=4(153)=612<x
$$

Next, suppose that $x \geq 10^{5}$ and write $x=\left(a_{k} a_{k}-1 \cdots a_{1} a_{0}\right)_{10}$ where $k \geq 5$ and $a_{k} \neq 0$.

It is easy to prove by induction on k that $2097(k+1)<10^{k}$ for all $k \geq 5$. Then,

$$
f_{2}\left(a_{k}\right)+f_{2}\left(a_{k-1}\right)+j y+f_{2}\left(a_{0}\right) \leq(k+1) f_{2}(9)=2097(k+1)<10^{k}
$$

Therefore,

$$
F(x) \leq \max \left\{f_{1}(x) \mid 0 \leq x \leq 10^{k}\right\}=f_{1}(\underbrace{9 \cdots \cdots 9}_{k \text { digits }})=153 k<10^{k} \leq a_{k} 10^{k} \leq x .
$$

So (3.7) is verified. It only remains to check that, for each $x<10930$, whether the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or becomes a cycle. This can be done using a computer. We find that for each positive integer $x<10930$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to 1 or becomes the cycle $(6,132,240,154,166,23,211)$.

The next example is slightly different from Example 3.7 because b_{1} and b_{2} are different.

Example 3.8. Let $b_{1}=7, b_{2}=5, f_{1}$ and f_{2} digit maps with respect to b_{1} and b_{2}, respectively, $f_{1}(x)=2 x^{2}-x$ for $0 \leq x \leq 6$, and $f_{2}(x)=3 x^{3}-2 x$ for $0 \leq x \leq 4$. Let $F=f_{1} \circ f_{2}$. Then, for each $x \in \mathbb{N}$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ contains $1,6,43,56$, or 61 . Moreover, 1,6 , and 43 are the only fixed points of F and if the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ does not contain 1,6 , or 43 , then it eventually enters into the cycles $(56,16,82,112)$ or $(61,111,35,15)$.

Proof. We first show that $F(x)<x$ for all $x \geq 1030$. Let $x \geq 1030$. Since $x>5^{4}$, we write $x=\left(a_{k} a_{k-1} \ldots a_{0}\right)_{5}$, where $k \geq 4,0 \leq a_{i} \leq 4$ for every i, and $a_{k} \neq 0$. Then $f_{2}(x) \leq(k+1) f_{2}(4)=184(k+1)$ and it is easy to prove by induction on k that $184(k+1)<7^{k}$ for all $k \geq 4$. Then

$$
F(x) \leq \max \left\{f_{1}(x) \mid 0 \leq x<7^{k}\right\}=f_{1}((\underbrace{66 \cdots 6}_{k \text { digits }})_{7})=66 k .
$$

Since $5^{k} \leq a_{k} 5^{k} \leq x$, it follows that $k \leq \frac{\log x}{\log 5}$. Since the function $y \rightarrow \frac{\log y}{y}$ is decreasing on $[3, \infty)$ and $x \geq 1030$, we obtain

$$
F(x) \leq 66 k \leq 66\left(\frac{\log x}{\log 5}\right) \leq \frac{66}{\log 5}\left(\frac{\log x}{x}\right) x \leq \frac{66}{\log 5}\left(\frac{\log 1030}{1030}\right) x<x
$$

Similar to Example 3.7, the rest can be verified using a computer.
Other examples of compositions of digit maps and their fixed points and cycles are shown in Table 3.1. For instance, Line 6 of Table 3.1 means that if f_{1}, f_{2}, f_{3} are digit maps such that $f_{1}(x)=2 x^{2}-x$ for $0 \leq x \leq 3, f_{2}(x)=$ $3 x^{3}-x^{2}-x$ for $0 \leq x \leq 4$, and $f_{3}(x)=3 x^{4}+2 x^{2}-4 x$ for $0 \leq x \leq 6$, then the fixed points of $F=f_{1} \circ f_{2} \circ f_{3}$ are 1,7 , and 53 , and for any $x \in \mathbb{N},\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to 1,7 , or 53 . Note that zero is also a fixed point of F but we are not interested in this fixed point since in our example $\left(F^{(n)}(x)\right)_{n \geq 0}$ does not converge to zero for any $x \in \mathbb{N}$.

f_{1}	f_{2}	f_{3}	\underline{b}	Fixed points of F or cycles in $\left(F^{(n)}(x)\right)_{n \geq 0}$
$3 x^{3}-x^{2}-x$	$2 x^{2}-x$		$(10,10)$	1, (20,606,88,190,518,1213,87)
$3 x^{3}-x^{2}-x$	$2 x^{2}-x$		$(8,8)$	$1,70,173,(71,242,992,974,1060,1579)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$		$=(10,10)$	$1,(6,132,240,154,166,23,211)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$	5	$(7,5)$	$1,6,43,(16,82,112,56),(15,61,111,35)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$	$3 x^{4}+2 x^{2}-4 x$	$(4,5,7)$	$1,7,53$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$	$3 x^{4}+2 x^{2}-4 x$	$(5,4,7)$	$\text { 1) } \times \text { जि (ri)Re830 }$
$2^{x}-1$	$4^{x}-3^{x}$		$(10,6)$	1, 321, 581, 638, $(41,385)$
$\left\lfloor e^{x}\right\rfloor-1$		5	8	$\text { 1, } 1103,(20,59,1114,32,53,549,201,21,153,26,25),(462,1498,1126)$
$\left\lfloor e^{x}\right\rfloor-1$	x^{2}		$(8,10)$	1,(59,154,153,72,549,1102,402)
$\left\lfloor e^{x}\right\rfloor-1$	x^{2}	$2^{x}-1$	$(8,10,10)$	1,2

Table 3.1: Fixed points of F or cycles in $\left(F^{(n)}(x)\right)_{n \geq 0}$

References

[1] Z. Chase, On the iterates of digit maps, Integers 18 (2018), Paper No. A86, 1-7.
[2] Y. G. Chen and C. H. Lei, Arithmetic progressions in the least positive reduced residue systems, J. Number Theory 190 (2018), 303-310.
[3] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
[4] J. Gilmer, On the density of happy numbers, Integers 13 (2013), Paper No. A48, 1-25.
[5] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167 (2008), 481-547.
[6] H. G. Grundman and E. A. Teeple, Iterated sums of fifth powers of digits, Rocky Mountain J. Math. 38 (2008), 1139-1146.
[7] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Third Edition, 1981.
[8] L. Hajdu, M. Szikszai, and V. Ziegler, On arithmetic progressions in Lucas sequences, J. Integer Seq. 20 (2017), Article 17.8.6.
[9] K. Hargreaves and S. Siksek, Cycles and fixed points of happy functions, J. Comb. Number Theory 3 (2010), 217-229.
[10] P. Noppakeaw, N. Phoopha, and P. Pongsriiam, Composition of happy functions, Notes Number Theory Discrete Math. 25 (2019), 13-20.
[11] H. Pan, On consecutive happy numbers, J. Number Theory 128 (2008), 1646-1654.
[12] P. Phunphayap and P. Pongsriiam, Reciprocal sum of palindromes, J. Integer Seq., 22 (2019), Article 19.8.6
[13] P. Pongsriiam, Local behaviors of the number of relatively prime sets, Int. J. Number Theory 12 (2016), 1575-1593.
[14] P. Pongsriiam, Longest arithmetic progressions in reduced residue systems, J. Number Theory 183 (2018), 309-325.
[15] P. Pongsriiam, Relatively prime sets, divisor sums, and partial sums, J. Integer Seq. 16 (2013), Article 13.9.1.
[16] P. Pongsriiam and K. Subwattanachai, Exact formulas for the number of palindromes up to a given positive integer, Int. J. Math. Comput. Sci., $14(1)(2019), 27-46$.
[17] P. Pongsriiam and R. C. Vaughan, The divisor function on residue classes I, Acta Arith. 168 (2015), 369-381.
[18] P. Pongsriiam and R. C. Vaughan, The divisor function on residue classes II, Acta Arith. 182 (2018), 133-181.
[19] P. Pongsriiam's ResearchGate profile, available online at https://www.researchgate.net/profile/Prapanpong_Pongsriiam.
[20] R. Styer, Smallest examples of strings of consecutive happy numbers, J. Integer Seq. 13 (2010), Article 10.6.3
[21] B. B. Swart, K. A. Beck, S. Crook, C. E. Turner, H. G. Grundman, M. Mei, and L. Zack, Augmented generalized happy functions, Rocky Mountain J. Math. 47 (2017), 403-417.
[22] M. Szikszai and V. Ziegler, On arithmetic progressions in Lucas sequences - II, J. Number Theory 201 (2019) 354-376.
[23] A. Walker and A. Walker, Arithmetic progressions with restricted digits, Amer. Math. Monthly 127 (2020), 140-150.
[24] X. Zhou and T. Cai, On e-power b-happy numbers, Rocky Mountain J. Math. 39 (2009), 2073-2081.

Appendix

Composition of Happy Functions and Digit Maps

Kittipong Subwattanachai, Prapanpong Pongsriiam
Department of Mathematics
Faculty of Science
Silpakorn University
Nakhon Pathom, 73000 , Thailand
email: subwattanachai.k@gmail.com, prapanpong@gmail.com, pongsriiam_p@silpakorn.edu
(Received June 7, 2020, Accepted July 2, 2020)

Abstract

Chase [1] introduced the concept of digit maps generalizing that of happy functions. We extend the investigation further by considering compositions of various digit maps. We prove that if F is such a composition and x is any positive integer, then the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ either converges or eventually becomes a cycle. Furthermore, we show that the number of all possible limits and cycles is finite.

1 Introduction

For integers $e, b \geq 2$, let $S_{e, b}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ be the function that takes a nonnegative integer x to the sum of the e-th powers of its digits in base b, that is,

$$
S_{e, b}(x)=a_{k}^{e}+a_{k-1}^{e}+\cdots+a_{0}^{e},
$$

if $x=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{b}=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{0}$ is the b-adic expansion of x with $a_{k} \neq 0$ and $a_{i} \in\{0,1, \ldots, b-1\}$ for all $i=0,1, \ldots, k$. We call $S_{e, b}$ an (e, b)-happy function and if there exists $n \in \mathbb{N}$ such that $S_{e, b}^{(n)}(x)=1$,

Key words and phrases: Happy number, Happy function, Digit, Dynamic.
AMS (MOS) Subject Classifications: 11A63, 26A18
Prapanpong Pongsriiam is the corresponding author.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net
then we call x an (e, b)-happy number. Here and throughout this article, $f^{(0)}$ is the identity function mapping x to x and $f^{(n)}=f^{(n-1)} \circ f$ is the n-fold composition of f. In addition, if we write a number without specifying a base, then it is always written in base 10 .

It is well-known that [7, Section E34] for any $x \in \mathbb{N}$, the sequence $\left(S_{2,10}^{(n)}(x)\right)_{n \geq 0}$ either converges to 1 or eventually becomes the cycle

$$
(4,16,37,58,89,145,42,20) .
$$

For example, the sequence $\left(S_{2,10}^{(n)}(13)\right)_{n \geq 0}$ is $(13,10,1,1, \ldots)$ and $\left(S_{2,10}^{(n)}(2)\right)_{n \geq 0}$ is $(2,4,16, \ldots, 20,4,16, \ldots)$, so 13 is (2,10)-happy but 2 is not. As usual, $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and any of its cyclic permutation are considered the same cycle.

El-Sedy and Siksek [3] were-the first to prove that there exist arbitrarily long strings of consecutive integers which are $(2,10)$-happy. That is, for each $m \geq 1$, there exists an integer ℓ_{0} such that every element of the finite sequence $\ell_{0}+1, \ell_{0}+2, \ldots, \ell_{0}+m$ is happy number. Pan [11] obtained in 2009 that if $e-1$ is not divisible by $p-1$ for any prime divisor p of $b-1$, then there exist arbitrarily long sequences of consecutive ($e, b)$-happy numbers.

Let P be the product of all prime divisors p of $b-1$ such that $p-1$ divides $e-1$. It is not difficult to verify that $S_{e, b}(n)=n(\bmod P)$ for every n, and so if $P>1$, then (e, b)-happy numbers do not contain consecutive integers. Zhou and Cai [17] extended Pan's result by proving that if $P>1$, then the (e, b)-happy numbers contain arbitrarily long arithmetic progressions with common difference P.

About 9 years later, Chase [1] introduced a concept of digit maps generalizing that of happy functions and obtained a theorem extending those by Pan [11] and El-Sedy and Siksek [3]. Noppakeaw, Phoopha, and Pongsriiam [10] consider compositions of various (e, b)-happy functions. For each $\underline{e}=\left(e_{1}, e_{2}, \ldots, e_{k}\right) \in \mathbb{N}^{k}$ and $\underline{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in \mathbb{N}^{k}$ with $e_{i} \geq 1$ and $b_{i} \geq 2$ for all $i=1,2, \ldots, k$, they [10] defined an ($\underline{e}, \underline{b}$)-happy function $S_{e, \underline{b}}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ by

$$
S_{e, b}(x)=\left(S_{e_{1}, b_{1}} \circ S_{e_{2}, b_{2}} \circ \cdots \circ S_{e_{k}, b_{k}}\right)(x) \quad \text { for all } x \in \mathbb{N} \cup\{0\} .
$$

and showed that for each $x \in \mathbb{N}$, the iteration sequence $\left(S_{e, b}^{(n)}(x)\right)_{n \geq 0}$ either converges to a fixed point or eventually enters into a cycle. Moreover, they [10] proved that the number of all such fixed points and cycles is finite. This implies the possibility of obtaining similar results on ($\underline{e}, \underline{b}$)-happy numbers.

For other results on happy numbers and happy functions, we refer the reader to $[4,9,13,14]$. For results on long arithmetic progressions in other integer sequences, see $[2,5,6,8,12,15,16]$ for example.

In this article, we combine the ideas from Chase [1] and Noppakeaw, Phoopha, and Pongsriiam [10] and study the composition of various digit maps. We show that such a composition also has the same property as $S_{e, \underline{b}}$.

2 Results

We first recall the definition of digit maps and u-integers from [1].
Definition 2.1. Let $b \geq 2$ be an integer. A digit map with respect to b is a function $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfying $\operatorname{gcd}(b, f(b-1))=1, f(0)=0$, $f(1)=1$, and

$$
f(x)=f\left(a_{k}\right)+f\left(a_{k-1}\right)+\cdots+f\left(a_{0}\right)
$$

if $x=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{b}=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{0}$ is the b-adic expansion of x where $a_{i} \in\{0,1, \ldots, b-1\}$ for all $i=0,1, \ldots, k$ and $a_{k} \neq 0$.

If f is a digit map with respect to a base $b \geq 2$ and $x, u \in \mathbb{N}$, then x is called a u-integer if $f^{(n)}(x)=u$ for some $n \geq 0$. When f is an (e, b)-happy function and $u=1$, the u-integers are the same as (e, b)-happy numbers. So the following theorem extends those of Pan [11] and El-Sedy and Siksek [3].

Theorem 2.2. (Chase [1])Let $b \geq 2$ be an integer. Suppose f is a digit map with respect to b and there is an $m \in\{0,1, \ldots, b-1\}$ such that $\operatorname{gcd}(f(m)-$ $m, f(b-1))=1$. If $u, n \in \mathbb{N}$ and u is a member of a cycle, then there exists $\ell \in \mathbb{N}$ such that $\ell, \ell+1, \ell+2, \ldots, \ell+n-1$ are u-integers.

To extend Theorem 2.2 in the future, it may be useful to have a function g such that, for each $x \in \mathbb{N}$, the iteration sequence $\left(g^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or eventually enters into a cycle. Noppakeaw, Phoopha, and Pongsriiam [10] obtained such a function g by considering compositions of happy functions. Our purpose is to extend their result [10, Theorem 1.4] further to the compositions of various digit maps. To do this, consider the following two conditions for a function $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$.
(A) There exists $N_{f} \in \mathbb{N}$ such that $f(x)<x$ for all $x \geq N_{f}$.
(B) For each $x \in \mathbb{N} \cup\{0\}$, the sequence $\left(f^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or eventually enters into a cycle. In addition, the number of all such fixed points and cycles is finite.

We first show that a digit map satisfies the condition (A) and if $f_{1}, f_{2}, \ldots, f_{k}$ satisfy (A), then so does $f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. A proof of a similar result was already done in [10, Theorem 1.3] but it was for $f: \mathbb{N} \rightarrow \mathbb{N}$. So we need to adjust it for $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$. Recall also that, for $x \in \mathbb{R},\lfloor x\rfloor$ is the largest integer less than or equal to x and $\lceil x\rceil$ is the smallest integer larger than or equal to x.

Theorem 2.3. Let f be a digit map with respect to $b \geq 2$. Then there exists $M \in \mathbb{N}$ such that

$$
\begin{equation*}
f(x)<x \text { for all } x \geq M \tag{2.1}
\end{equation*}
$$

Proof. Let $M^{\prime}=\max \{f(i) \mid i=0,1, \ldots, b-1\}$. Then $M^{\prime} \geq f(1)=1$. Since $e^{x} / x \rightarrow \infty$ as $x \rightarrow \infty$, there exists $c>1$ such that $e^{c} / c>b M^{\prime} / \log b$. This implies

$$
\begin{equation*}
c-\log c>\log b+\log M^{\prime}-\log \log b . \tag{2.2}
\end{equation*}
$$

Let $M=\left\lceil\frac{c M^{\prime}}{\log b}\right\rceil$ and $x \geq M$. Next, we show that $f(x)<x$. We write $x=\left(a_{k} a_{k-1} \because a_{1} a_{0}\right)_{b}$ where $a_{k} \neq 0$ and $0 \leq a_{i}<b$ for all $i=0,1,2, \ldots, k$. Then $b^{k} \leq a_{k} b^{k} \leq x$, So $k \leq \frac{\log x}{\log b}$ and

$$
\begin{equation*}
\left.f(x)=f\left(a_{k}\right)+f\left(a_{k-1}\right)+1\right)+f\left(a_{0}\right) \leq M^{\prime}(k+1) \leq M^{\prime}\left(\frac{\log x}{\log b}+1\right) \tag{2.3}
\end{equation*}
$$

Let $h(y)=\frac{y}{M^{\prime}}-\frac{\log y}{\log b}-1$ for all $y>0$. Then $h^{\prime}(y)=\frac{1}{M^{\prime}}-\frac{1}{y \log b}>0$ for all $y>\frac{M^{\prime}}{\log b}$. Since $M \geq c M^{\prime} / \log b>M^{\prime} / \log b$ and h is increasing on $\left[M^{\prime} / \log b, \infty\right)$, we obtain that if $y \geq M$, then

$$
h(y) \geq h(M) \geq h\left(c M^{\prime} / \log b\right)=\frac{c-\log c-\log M^{\prime}+\log \log b-\log b}{\log b}>0
$$

where the last inequality is obtained from (2.2). This shows that $h(y)>0$ for all $y \geq M$. In particular, $h(x)>0$, and so $1+\log x / \log b<x / M^{\prime}$. By (2.3), we obtain $f(x)<x$, as required.

Theorem 2.4. If $f_{1}, f_{2}, \ldots, f_{k}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfy the condition (A), then $f_{1} \circ f_{2} \circ \cdots \circ f_{k}$ also satisfies (A).

Proof. We can prove this by induction on k and it is actually the same as that given by Noppakeaw et al. [10, Theorem 1.3], but for completeness, we give the proof again here. When $k=1$, the result is obvious. Assume that $k \in \mathbb{N}$ and the result holds for k. Suppose $f_{1}, f_{2}, \ldots, f_{k+1}: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$
satisfy (A). Let $f=f_{1} \circ f_{2} \circ \cdots \circ f_{k+1}$ and $g=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. Then there are $m_{1}, m_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
g(x)<x \quad \text { for all } x \geq m_{1}, \quad \text { and } \quad f_{k+1}(x)<x \quad \text { for all } x \geq m_{2} . \tag{2.4}
\end{equation*}
$$

Let $m_{3}=\max \left\{g(x) \mid 1 \leq x<m_{1}\right\}$ and $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1$. Let $x \geq m$. We will show that $f(x)<x$. If $f_{k+1}(x) \geq m_{1}$, then we obtain by (2.4) that

$$
f(x)=g\left(f_{k+1}(x)\right)<f_{k+1}(x)<x
$$

On the other hand, if $f_{k+1}(x)<m_{1}$, then $f(x)=g\left(f_{k+1}(x)\right) \leq m_{3}<m \leq x$. This completes the proof.

Corollary 2.5. A composition of digit māps satisfies the condition (A).
Proof. This follows immediately from Theorems 2.3 and 2.4.
Theorem 2.6. If $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ satisfies (A), then f satisfies (B).
Proof. This is given in $[10$, Theorem 1.2] for a function $f: \mathbb{N} \rightarrow \mathbb{N}$, and we can use the same method in our proof too. However, directly applying [10, Theorem 1.2] does not lead to our desired result for $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$, so we still used to give the proof here. For convenience, we write N instead of N_{f} and we assert that
for every $y \in \mathbb{N} \cup\{0\}$, there exists $n \in \mathbb{N} \cup\{0\}$ such that $f^{(n)}(y)<N$.
If $y<N$, then we can choose $n=0$. If $y \geq N$, then by (A), $f(y)<y$. If $f(y)<N$, then we can choose $n=1$; otherwise, we obtain by (A) that $f^{(2)}(y)<f(y)$. We can repeat this process and obtain a strictly decreasing sequence of positive integers $f(y), f^{(2)}(y), f^{(3)}(y), \ldots$, and eventually $f^{(n)}(y)<N$ for some n. Hence (2.5) is proved.

Now let $x \in \mathbb{N} \cup\{0\}$ and suppose that $\left(f^{(n)}(x)\right)_{n \geq 0}$ does not converge to a fixed point of f. By (2.5), there exists $n_{1} \in \mathbb{N}$ such that $f^{\left(n_{1}\right)}(x)<N$. Again by (2.5), there exists $n_{2} \in \mathbb{N}$ such that $f^{\left(n_{2}\right)}\left(f^{\left(n_{1}\right)}(x)\right)<N$. Repeating this process $N+1$ times, we obtain the set of nonnegative integers

$$
f^{\left(n_{1}\right)}(x), f^{\left(n_{1}+n_{2}\right)}(x), \ldots, f^{\left(n_{1}+n_{2}+\cdots+n_{N+1}\right)}(x),
$$

which are less than N. By the pigeonhole principle, some of them are the same, say

$$
f^{\left(n_{1}+n_{2}+\cdots+n_{j}\right)}(x)=f^{\left(n_{1}+n_{2}+\cdots+n_{j}+\cdots+n_{\ell}\right)}(x) \quad \text { for some } \ell>j \geq 1 .
$$

Let $y=f^{\left(n_{1}+n_{2}+\cdots+n_{j}\right)}(x)$. Then the tail of the sequence $\left(f^{(n)}(x)\right)_{n \geq 0}$ eventually becomes

$$
\left(y, f(y), f^{(2)}(y), \ldots, f^{\left(n_{j+1}+n_{j+2}+\cdots+n_{\ell}-1\right)}(y), y, \ldots\right)
$$

which is a cycle. This proves the first part of (B). Next we show that the set U_{f} of fixed points and cycles is finite. More precisely, we will show that

$$
\begin{equation*}
U_{f}:=\left\{x \in \mathbb{N} \cup\{0\} \nexists n \in \mathbb{N}, f^{(n)}(x)=x\right\} \subseteq[0, M], \tag{2.6}
\end{equation*}
$$

where $M=\max \{N, f(0), f(1), f(2), \ldots f(N)\}$. First of all, by (A), if x is a fixed point of f, then $x<N$ and so $x \in[0, M]$. Suppose that x is an element in a cycle arising from the iteration $\left(f^{(n)}(y)\right)_{n \geq 0}$ for some $y \in \mathbb{N} \cup\{0\}$. If $x<N$, then $x \in[0, M]$ and we are done. So suppose $x \geq N$. By (2.5), there exists $n \in \mathbb{N}$ such that $f^{(n)}(x)<N$. Since x is in a cycle, after some iterations, it must come back to x. That is, there exists $k \in \mathbb{N}$ such that $f^{(k)}\left(f^{(n)}(x)\right)=x$ If $k=1$ or $f^{(n+k-1)}(x) \leq N$, then $x=f\left(f^{(n+k-1)}(x)\right) \leq M$ and we are done. So suppose $k \geq 2$ and $f(n+k-1)(x)>N$. Let ℓ be the smallest positive integer such that $f^{(n+k-\ell)}(x)<N$. Then $1<\ell \leq k$ and for each $1 \leq i<\ell, f^{(n+k-i)}(x) \geq N$. So

$$
f^{(n+k-\ell+1)}(x)>f^{(n+k-\ell+2)}(x)>\cdots>f^{(n+k-1)}(x)>f^{(n+k)}(x)=x .
$$

So $x<f^{(n+k-\ell+1)}(x)=f\left(f_{(1+k-\ell)}^{(x)) \leq M \text {. Therefore (2.6) is verified and }}\right.$ the proof is complete

Corollary 2.7. Let $f_{1}, f_{2}, \ldots, f_{k}$ be digit maps with respect to $b_{1}, b_{2}, \ldots, b_{k}$ respectively, where $b_{i} \geq 2$ for every i. Let $F: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ be given by $F=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. Then F satisfies (B).

Proof. This follows immediately from Corollary 2.5 and Theorem 2.6.
Suppose that $f_{1}, f_{2}, \ldots, f_{k}$ are digit maps with respect to bases b_{1}, b_{2}, \ldots, b_{k}, respectively, and $F=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$. By Corollary 2.5, there is $N \in \mathbb{N}$ such that $F(x)<x$ for all $x \geq N$. Then all fixed points and cycles can be found by considering the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ where $0 \leq x<N$. We show some explicit calculations for such N in the following example.

Example 2.8. Consider $F=f_{1} \circ f_{2} \circ f_{3}$, where f_{1}, f_{2}, f_{3} are digit maps with respect to $b_{1}=6, b_{2}=5, b_{3}=4$, respectively, and for $0 \leq x<b_{i}$, they are defined by $f_{1}(x)=x^{4}, f_{2}(x)=x^{2}, f_{3}(x)=x^{3}$.

First, we show that there exists an integer m such that $\left(f_{1} \circ f_{2}\right)(x)<x$ for all $x>m$. By following the proof of Theorem 2.3, we consider $M_{1}^{\prime}=$
$\max \left\{f_{1}(i) \mid i=0,1, \ldots, 5\right\}=5^{4}$ and $M_{2}^{\prime}=\max \left\{f_{2}(i) \mid i=0,1,2,3,4\right\}=4^{2}$. Since $\frac{e^{10}}{10}>\frac{6(5)^{4}}{\log 6}, \frac{e^{6}}{6}>\frac{5(4)^{2}}{\log 5}$, we let $c_{1}=10$ and $c_{2}=6$. The corresponding M_{1} for f_{1} and M_{2} for f_{2} are $M_{1}=3489$ and $M_{2}=60$. Therefore

$$
f_{1}(x)<x \quad \text { for all } x \geq 3489 \quad \text { and } \quad f_{2}(x)<x \quad \text { for all } x \geq 60 \text {. }
$$

Let $m_{1}=3489, m_{2}=60$, and $m_{3}=\max \left\{f_{1}(x) \mid 1 \leq x<3489\right\}$. Since $3489=(24053)_{6}$, we see that $\left.m_{3}\right)=f_{1}\left((15555)_{6}\right)=2501$.

Let $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1=3490$. By the proof of Theorem 2.4, we have that

$$
\left(f_{1} \circ f_{2}\right)(x)<x \text { for all } x \geq 3490 .
$$

Next, we consider $f_{1} \circ f_{2} \circ f_{3}$. Similarly, $M_{3}^{\prime}=3^{3}$ and $\frac{e^{\top}}{7}>\frac{4(3)^{3}}{\log 4}$, so we let $c_{3}=7$, and $M_{3}=\left\lceil\frac{7(3)^{3}}{\log 4}\right\rceil=137$ and obtain

$$
f_{3}(x)<x \text { for all } x \geq 137
$$

We let $m_{1}=3490, m_{2}=137, m_{3}=\max \left\{\left(f_{1} \circ f_{2}\right)(x)+1 \leq x<3490\right\}$. Then

$$
\begin{aligned}
m_{3} & =\max \left\{f_{1}\left(f_{2}(x)\right)+1 \leq x<(102430)_{5}\right\}=\max \left\{f_{1}(x) \mid 1 \leq x<80\right\} \\
& \left.=\max \left\{f_{1}(x) \mid 1 \leq x<(212)_{6}\right\}\right)=1251 .
\end{aligned}
$$

Let $m=\max \left\{m_{1}, m_{2}, m_{3}\right\}+1=3491$. So

$$
\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<x \quad \text { for all } x \geq 3491 .
$$

The lower bound 3491 may not be best possible but it is not difficult to search for the best one by using a computer. We can check whether $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<$ x for $x=1,2,3, \ldots, 3490$. If $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x)<x$ for $x=N, N+1, \ldots, 3490$ and $\left(f_{1} \circ f_{2} \circ f_{3}\right)(x) \geq x$ for $x=N-1$, then such the integer N is the optimal lower bound. In fact, by using a computer, we obtain $N=831$.

We give two more examples to illustrate alternative calculations.
Example 2.9. Let $b_{1}=b_{2}=10$ and let f_{1}, f_{2} be digit maps with respect to b_{1}, b_{2} such that $f_{1}(x)=2 x^{2}-x$ and $f_{2}(x)=3 x^{3}-x^{2}-x$ for $0 \leq x<10$. Let $F=f_{1} \circ f_{2}$. Then, for each $x \in \mathbb{N}$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ either converges to 1 or eventually becomes the cycle ($6,132,240,154,166,23,211$).

Proof. We first show that

$$
\begin{equation*}
F(x)=\left(f_{1} \circ f_{2}\right)(x)<x \quad \text { for all } x \geq 10930 . \tag{2.7}
\end{equation*}
$$

f_{1}	f_{2}	f_{3}	\underline{b}	Fixed points of F or cycles in $\left(F^{(n)}(x)\right)_{n \geq 0}$
$3 x^{3}-x^{2}-x$	$2 x^{2}-x$		$(10,10)$	$1,(606,88,190,518,1213,87,20)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$		$(10,10)$	$1,(6,132,240,154,166,23,211)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$		$(7,5)$	$1,6,43,(56,16,82,112),(61,111,35,15)$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$	$3 x^{4}+2 x^{2}-4 x$	$(4,5,7)$	$1,7,53$
$2 x^{2}-x$	$3 x^{3}-x^{2}-x$	$3 x^{4}+2 x^{2}-4 x$	$(5,4,7)$	1
$\left\lfloor e^{x}\right\rfloor-1$			8	$1,(1114,32,53,549,201,21,153,26,25$,
				$20,59), 1103,(462,1498,1126)$
$\left\lfloor e^{x}\right\rfloor-1$	x^{2}		$(8,10)$	$1,(59,154,153,72,549,1102,402)$

Table 1: Fixed points of F (except zero) or cycles in $\left(F^{(n)}(x)\right)_{n \geq 0}$
If $x \in[10930,99999]$, then $x=\left(a_{4} a_{3} a_{2} a_{1} a_{0}\right)_{10}$ where $0 \leq a_{i} \leq 9$, and so

$$
f_{2}(x)=f_{2}\left(a_{4}\right)+f_{2}\left(a_{3}\right)+\cdots+f_{2}\left(\bar{a}_{0}\right) \leq 5 f_{2}(9)=10485
$$

and thus

$$
F(x) \leq \max \left\{f_{1}(x)-1 \leq x \leq 10485\right\}=f_{1}(9999)=4(153)=612<x .
$$

Next, suppose that $x \geq 10^{5}$ and write $\left.x=\left(a_{k} a_{k-1}\right) \cdot a_{1} a_{0}\right)_{10}$ where $k \geq 5$ and $a_{k} \neq 0$.

It is easy to prove by induction on k that $2097(k+1)<10^{k}$ for all $k \geq 5$. Then,

$$
f_{2}\left(a_{k}\right)+f_{2}\left(a_{k-1}\right)+\cdots+f_{2}\left(a_{0}\right) \leq(k+1) f_{2}(9)=2097(k+1)<10^{k} .
$$

Then, $F(x) \leq \max \left\{f_{1}(x) d 0 \leq x \leq 10^{k}\right\}=f_{1}(\underbrace{99 \cdots 9}_{k \text { digits }})=153 k<10^{k} \leq$ $a_{k} 10^{k} \leq x$. So (2.7) is verified. It only remains to check that, for each $x<10930$, whether the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to a fixed point or becomes a cycle. This can be done using a computer. We find that for each positive integer $x<10930$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to 1 or becomes the cycle $(6,132,240,154,166,23,211)$.

The next example is slightly different from Example 2.9 because b_{1} and b_{2} are different.

Example 2.10. Let $b_{1}=7, b_{2}=5, f_{1}$ and f_{2} digit maps with respect to b_{1} and b_{2}, respectively, $f_{1}(x)=2 x^{2}-x$ for $0 \leq x \leq 6$, and $f_{2}(x)=3 x^{3}-2 x$ for $0 \leq x \leq 4$. Let $F=f_{1} \circ f_{2}$. Then, for each $x \in \mathbb{N}$, the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ contains 1, 6, 43, 56, or 61. Moreover, 1, 6, and 43 are the only fixed points of F and if the sequence $\left(F^{(n)}(x)\right)_{n \geq 0}$ does not contain 1,6 , or 43 , then it eventually enters into the cycles $(56,16,82,112)$ or $(61,111,35,15)$.

Proof. We first show that $F(x)<x$ for all $x \geq 1030$. Let $x \geq 1030$. Since $x>5^{4}$, we write $x=\left(a_{k} a_{k-1} \cdots a_{0}\right)_{5}$, where $k \geq 4,0 \leq a_{i} \leq 4$ for every i, and $a_{k} \neq 0$. Then $f_{2}(x) \leq(k+1) f_{2}(4)=184(k+1)$ and it is easy to prove by induction on k that $184(k+1)<7^{k}$ for all $k \geq 4$. Then

$$
F(x) \leq \max \left\{f_{1}(x) \mid 0 \leq x<7^{k}\right\}=f_{1}((\underbrace{66 \cdots 6}_{k \text { digits }})_{7})=66 k .
$$

Since $5^{k} \leq a_{k} 5^{k} \leq x$, it follows that $k \leq \frac{\log x}{\log 5}$. Since the function $y \rightarrow \frac{\log y}{y}$ is decreasing on $[3, \infty)$ and $x \geq 1030$, we obtain

$$
F(x) \leq 66 k \leq 66\left(\frac{\log x}{\log 5}\right) \leq \frac{66}{\log 5}\left(\frac{\log x}{x}\right) x \leq \frac{66}{\log 5}\left(\frac{\log 1030}{1030}\right) x<x .
$$

Similar to Example 2.9, the rest can be verified using a computer.
Other examples of compositions of digit maps and their fixed points and cycles are shown in Table 1. For instance, Line 5 of Table 1 means that if f_{1}, f_{2}, f_{3} are digit maps such that $f_{1}(x)=2 x^{2}-x$ for $0 \leq x \leq 3$, $f_{2}(x)=3 x^{3}-x^{2}-x$ for $0 \leq x \leq 4$, and $f_{3}(x)=3 x^{4}+2 x^{2}-4 x$ for $0 \leq x \leq 6$, then the fixed points of $F=f_{1} \circ f_{2} \circ f_{3}$ are 1, 7, and 53, and for any $x \in \mathbb{N}$, $\left(F^{(n)}(x)\right)_{n \geq 0}$ converges to 1,7 , or 53 . Note that zero is also a fixed point of F but we are not interested in this fixed point since in our example $\left(F^{(n)}(x)\right)_{n \geq 0}$ does not converge to zero for any $x \in \mathbb{N}$.

Acknowledgment. Prapanpong Pongsriiam received financial support jointly from the Thailand Research Fund and Faculty of Science Silpakorn University, grant number RSA5980040. Kittipong Subwattanachai received a scholarship from Development and Promotion for Science and Technology Talents Project (DPST), Thailand.

References

[1] Z. Chase, On the iterates of digit maps, Integers 18 (2018), Paper No. A86, 1-7.
[2] Y. G. Chen and C. H. Lei, Arithmetic progressions in the least positive reduced residue systems, J. Number Theory 190 (2018), 303-310.
[3] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
[4] J. Gilmer, On the density of happy numbers, Integers 13 (2013), Paper No. A48, 1-25.
[5] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167 (2008), 481-547.
[6] H. G. Grundman and E. A. Teeple, Iterated sums of fifth powers of digits, Rocky Mountain J. Math. 38 (2008), 1139-1146.
[7] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Third Edition, 1981.
[8] L. Hajdu, M. Szikszai, and V. Ziegler, On arithmetic progressions in Lucas sequences, J. Integer Seq. 20 (2017), Article 17.8.6.
[9] K. Hargreaves and S. Siksek, Cycles and fixed points of happy functions, J. Comb. Number Theory 3 (2010), 217-229.
[10] P. Noppakeaw, N. Phoopha, and P. Pongsriam, Composition of happy functions, (Notes Number Theory Discrete Math. 25 (2019), 13-20.
[11] H. Pan, On consecutive happy numbers, J. Number Theory 128 (2008), 1646-1654.
[12] P. Pongsriiam, Longest arithmetic progressions in reduced residue systems, J. Number Theory, 183 (2018), 309-325.
[13] R. Styer, Smallest examples of strings of consecutive happy numbers, J. Integer Seq. 13 (2010), Article 10.6.3
[14] B. B. Swart, K. A. Beck, S. Crook, C. E. Turner, H. G. Grundman, M. Mei, and L. Zack, Augmented generalized happy functions, Rocky Mountain J. Math. 47 (2017), 403-417.
[15] M. Szikszai and V. Ziegler, On arithmetic progressions in Lucas sequences - II, J. Number Theory 201 (2019) 354-376.
[16] A. Walker and A. Walker, Arithmetic progressions with restricted digits, Amer. Math. Monthly 127 (2020), 140-150.
[17] X. Zhou and T. Cai, On e-power b-happy numbers, Rocky Mountain J. Math. 39 (2009), 2073-2081.

VITA

