

PASTING LEMMAS FOR GENERALIZED METRIC-PRESERVING FUNCTIONS

A Thesis Proposal Submitted in Partial Fulfillment of the Requirements for Master of Science (MATHEMATICS)

Department of MATHEMATICS
Graduate School, Silpakorn University
Academic Year 2020
Copyright of Graduate School, Silpakorn University

โครงร่างวิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ แผน ก แบบ ก 2 ระดับปริญญามหาบัณฑิต ภาควิชาคณิตศาสตร์
บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร
ปีการศึกษา 2563
ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

PASTING LEMMAS FOR GENERALIZED METRIC-PRESERVING FUNCTIONS

A Thesis Proposal Submitted in Partial Fulfillment of the Requirements for Master of Science (MATHEMATICS)

Department of MATHEMATICS
Graduate School, Silpakorn University
Academic Year 2020
Copyright of Graduate School, Silpakorn University

Title	Pasting Lemmas for Generalized Metric-Preserving Functions
By	Duangpon SIRIWAN
Field of Study	(MATHEMATICS)
Advisor	Assistant Professor Tammatada Khemaratchatakumthorn

Graduate School Silpakorn University in Partial Fulfillment of the Requirements for the Master of Science

61305202 : MAJOR: MATHEMATICS
KEY WORDS : METRIC, METRIC-PRESERVING FUNCTION, B-METRIC, ULTRAMETRIC

DUANGPON SIRIWAN : PASTING LEMMAS FOR GENERALIZED METRIC-PRESERVING FUNCTIONS. THESIS ADVISOR : ASSISTANT PROFESSOR TAMMATADA KHEMARATCHATAKUMTHORN, Ph.D.

Let $f:[0, \infty) \rightarrow[0, \infty)$. We say that f is metric-preserving if for all metric spaces $(X, d), f \circ d$ is a metric on X. In addition, f is $\left(g_{1}, g_{2}\right)$-metricpreserving if $f \circ d$ is a generalized metric of type g_{2} whenever d is a generalized metric of type g_{1}. In this thesis, we investigate some pasting lemmas for $\left(g_{1}, g_{2}\right)$ -metric-preserving functions for certain types of $\left(g_{1}, g_{2}\right)$.

Acknowledgements

I would like to first say a very big thank you to my advisor Assistant Professor Dr.Tammatada Khemaratchatakumthorn for all the support and encouragement she gave me, Without her guidance and suggestion this thesis would not have been achievable.

Moreover, I would like to thank my thesis committees, Associate Professor Dr. Prapanpong Pongsriiam and Assistant Professor Dr. Nattapong Bosuwan, for their comments and suggestions.

Finally, I would like to thank my parents and friends for the support and encouragement.

Table of contents

Abstract V
Acknowledgements vi
Table of contents

1 Introduction vii
Chapter
2 Preliminaries and Lemmas
610References
(2) C2722Appendixกายากัยดลว12 Preliminaries and Lemmas

3 Main Results
2223
Vita 32

Chapter 1

Introduction

Let X be a nonempty set and $d: X \times X \rightarrow[0, \infty)$. Then d is a metric if d satisfies the following three conditions:
(M1) $\forall x, y \in X, d(x, y)=$
(M2) $\forall x, y \in X, d(x, y)=d(y, x)$, and
(M3) $\forall x, y, z \in X, d(x, y) \leq d(x, z)+d(z, y)$.
In 1944, Krasner [8] introduced ultrametric as follows: The function d is called an ultrametric if d satisfies (M1), (M2), and
(U3) for all $x, y, z \in X, d(x, y) \leq \max \{d(x, z), d(z, y)\}$
In 1989, Bakhtin [1] introduced b-metric as follows: The function d is said to be a b-metric if d satisfies (M1), (M2), and
(B3) there exists $s \geq 1$ such that 7 ส้

$$
d(x, y) \leq s(d(x, z)+d(z, y)) \quad \text { for all } \quad x, y, z \in X
$$

It is easy to see that every ultrametric is a metric and every metric is a b-metric. The function $f:[0, \infty) \rightarrow[0, \infty)$ is said to be metric-preserving if for all metric spaces $(X, d), f \circ d$ is metric on X and let \mathcal{M} be the set of all metric-preserving functions. The concept of metric preserving functions first appears in Wilson's article [11] and is thoroughly by many authors, see example, [2, 3, 4]. In 2014,

Pongsriiam and Termwuttipong [9] introduced and investigated a variation of concept of metric-preserving functions where metrics are replaced by ultrametrics as follows.

Definition 1.1. [9] Let $f:[0, \infty) \rightarrow[0, \infty)$. Then
(i) f is ultrametric-preserving if for all ultrametric spaces $(X, d), f \circ d$ is an ultrametric,
(ii) f is metric-ultrametric-preserving if for all metric spaces $(X, d), f \circ d$ is an ultrametric,
(iii) f is ultrametric-metric-preserving if for all ultrametric spaces $(X, d), f \circ d$ is a metric, and
let \mathcal{U} be the set of all ultrametric-preserving functions, $\mathcal{U M}$ the set of all ultrametric-metric-preserving functions, and $\mathcal{M U}$ the set of all metric-ultrametric-preserving functions.

In 2018, Khemaratchatakumthorn and Pongsriiam [6] also introduced and investigated a variation of concept of metric-preserving functions where metrics are replaced by b-metrics as follows.

Definition 1.2. [6] Let $f:[0, \infty) \rightarrow[0, \infty)$. Then
(i) f is b-metric-preserving if for all b-metric spaces $(X, d), f \circ d$ is a b-metric,
(ii) f is metric-b-metric-preserving if for all metric spaces $(X, d), f \circ d$ is a b-metric,
(iii) f is b-metric-metric-preserving if for all b-metric spaces $(X, d), f \circ d$ is a metric, and let \mathcal{B} the set of all b-metric-preserving functions, $\mathcal{M B}$ the set of all metric-b-metric-preserving functions, and $\mathcal{B M}$ the set of all b-metric-metric-preserving
functions.

In 2020, Samphavat, Khemaratchatakumthorn, and Pongsriiam [10] also introduced and investigated a variation of concept of metric-preserving functions where metrics are replaced by b-metrics and ultrametric as follows.

Definition 1.3. [10] Let $f:[0, \infty) \rightarrow[0, \infty)$. Then
(i) f is ultrametric-b-metric-preserving if for all ultrametric spaces $(X, d), f \circ d$ is a b-metric,
(ii) f is b-metric-ultrametric-preserving if for all b-metric spaces $(X, d), f \circ d$ is a ultrametric, and
let $\mathcal{U B}$ the set of all ultrametric-b-metric-preserving functions and $\mathcal{B U}$ the set of all b-metric-ultrametric-preserving functions.

The relations between $\mathcal{M}, \mathcal{B}, \mathcal{M B}, \mathcal{B} \mathcal{M}, \mathcal{U}, \mathcal{U} \mathcal{M}, \mathcal{M U}, \mathcal{B U}, \mathcal{U B}$ are given as follows.

Proposition 1.4. [6, 7, 9, 10] The following statements hold.
(i) $\mathcal{M U}=\mathcal{B U} \subseteq \mathcal{B} \mathcal{M} \subseteq \mathcal{M} \subseteq \mathcal{B}=\mathcal{M B} \subseteq \mathcal{U B}$.
(ii) $\mathcal{B U}=\mathcal{M} \mathcal{U} \subseteq \mathcal{U} \subseteq \mathcal{U} \mathcal{M} \subseteq \mathcal{U B}$.
(iii) $\mathcal{M} \subseteq \mathcal{U} \mathcal{M}$.

They also summarized the subset relations in the following diagram (Figure 1.1). Note that $f \in A \Rightarrow f \in B$ means $f \in A$ implies $f \in B$. In addition, if there is no arrow from $f \in A$ to $f \in B$, it means that $A \nsubseteq B$.

Figure 1.1: Subset Relations

It is well known that if $g:\{\overline{a,}, \bar{f} \rightarrow \mathbb{R}$ and $h:[b, c] \rightarrow \mathbb{R}$ are continuous and $g(b)=h(b)$, then the function $f:[\overline{\bar{a}}, c] \rightarrow \mathbb{R}$ defined by

$$
\begin{cases}g(x), & \text { if } x \in[a, b) ; \\ h(x), & \text { if } x \in[b, c)\end{cases}
$$

is also continuous. This is usually called a pasting lemma. A version of a pasting lemma for metric-preserving functions is given by Doboš [5] but there is no pasting lemma for b-metric-preserving and other related functions in the literature.

Theorem 1.5. [5, p.26] Let g, h be metric preserving. Let $r>0$ be such that $g(r)=h(r)$. Define $f_{g, h, r}:[0, \infty) \rightarrow[0, \infty)$ as follows

$$
f_{g, h, r}(x)=\left\{\begin{array}{l}
g(x), \text { if } x \in[0, r) \\
h(x), \text { if } x \in[r, \infty)
\end{array}\right.
$$

Suppose that g is increasing and concave. Then $f_{g, h, r}$ is metric preserving iff

$$
\forall x, y \in[r, \infty):|x-y| \leq r \rightarrow|h(x)-h(y)| \leq g(|x-y|) .
$$

In this thesis, we investigate pasting lemma by substituting continuous function or metric-preserving functions by generalized metric-preserving functions. This thesis is organized as follows: In Chapter 2, we recall some basic definitions and results concerning $\mathcal{M}, \mathcal{B}, \mathcal{M B}, \mathcal{B} \mathcal{M}, \mathcal{U}, \mathcal{U} \mathcal{M}, \mathcal{M} \mathcal{U}, \mathcal{B U}, \mathcal{U B}$. In Chapter 3, we show pasting lemmas for functions in $\mathcal{B}, \mathcal{B} \mathcal{M}, \mathcal{M U}, \mathcal{U}, \mathcal{U} \mathcal{M}$, and $\mathcal{U B}$.

Chapter 2

Preliminaries and Lemmas

In this chapter, we recall some basic definitions and results concerning $\mathcal{M}, \mathcal{B}, \mathcal{M B}$, $\mathcal{B M}, \mathcal{U}, \mathcal{U} \mathcal{M}, \mathcal{M} \mathcal{U}, \mathcal{B U}, \mathcal{U B}$. Throughout this thesis let $f:[0, \infty) \rightarrow[0, \infty)$.

Definition 2.1. Let $I \subseteq[0, \infty)$. Then f is said to be increasing on I if $f(x) \leq f(y)$ for all $x, y \in I$ satisfying $x<y$, and f is said to be strictly increasing on I if $f(x)<f(y)$ for all $x, y \in I$ satisfying $x<y$.

Definition 2.2. The function f is said to be amenable if $f^{-1}(\{0\})=0$.

Definition 2.3. The function f is said to be tightly bounded on $(0, \infty)$ if there is $v>0$ such that $f(x) \in[v, 2 v]$ for all $x>0$.

Definition 2.4. We say that f is subadditive if $f(a+b) \leq f(a)+f(b)$ for all $a, b \in[0, \infty)$ and f is quasi-subadditive if there exists $s \geq 1$ such that $f(a+b) \leq$ $s(f(a)+f(b))$ for all $a, b \in[0, \infty)$.

Definition 2.5. The function f is concave if

$$
f\left((1-t) x_{1}+t x_{2}\right) \geq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in[0, \infty)$ and $t \in[0,1]$.

Definition 2.6. A triangle triplet is a triple (a, b, c) of nonnegative real numbers for which

$$
a \leq b+c, \quad b \leq a+c, \quad \text { and } \quad c \leq a+b,
$$

or equivalently,

$$
|a-b| \leq c \leq a+b .
$$

Let $s \geq 1$ and $a, b, c \geq 0$. A triple (a, b, c) is a s-triangle triplet if

$$
a \leq s(b+c) \quad b \leq s(a+c), \quad \text { and } \quad c \leq s(a+b) \text {. }
$$

A triple (a, b, c) of nonnegative real numbers is an ultra-triangle triplet if

$$
a \leq \max \{a, b\} \quad b \leq \max \{c, a\} \quad \text { and } c \leq \max \{b, c\} .
$$

We let \triangle, \triangle_{s}, and \triangle_{∞} be the sets of all triangle triplets, s-triangle triplets and ultra-triangle triplets, respectively.

Next, we recall some results concerning metric-preserving functions.

Lemma 2.7. $[2,3,5]$ If f is amenable, subadditive and increasing on $[0, \infty)$, then $f \in \mathcal{M}$.

Lemma 2.8. $[2,3,5]$ If f is amenable and tightly bounded, then $f \in \mathcal{M}$.

Lemma 2.9. $[2,3,5]$ If $f \in \mathcal{M}$, then f is amenable and subadditive.

Lemma 2.10. $[2,3,5]$ Let f be amenable. Then the following statements are equivalent.
(i) $f \in \mathcal{M}$.
(ii) For each $(a, b, c) \in \triangle,(f(a), f(b), f(c)) \in \triangle$.

Next, we recall some results concerning b-metric and metric-preserving functions.

Lemma 2.11. [7] Let f be amenable. Then the following statements are equivalent.
(i) $f \in \mathcal{B}$.
(ii) $f \in \mathcal{M B}$.
(iii) There exists $s \geq 1$ such that $(f(a), f(b), f(c)) \in \triangle_{s}$ for all $(a, b, c) \in \triangle$.

Lemma 2.12. [6] If $f \in \mathcal{B}$, then f is amenable and quasi-subadditive.

Lemma 2.13. [6] If $f \in \mathcal{B M}$ if and only if f is amenable and tightly bounded.

Next, we recall some results concerning ultrametric and metric-preserving functions.

Lemma 2.14. [9] If $f \in \mathcal{M U}$ if and only if f is amenable and constant on $(0, \infty)$.

Lemma 2.15. [9] If $f \in \mathcal{U}$ if and only if f is amenable and increasing.

Lemma 2.16. [9] Let f be amenable. Then the following statements are equivalent.
(i) $f \in \mathcal{U} \mathcal{M}$.
(ii) For each $(a, b, c) \in \triangle_{\infty},(f(a), f(b), f(c)) \in \triangle$.
(iii) For each $0 \leq a \leq b, f(a) \leq 2 f(b)$.

Next, we recall some results concerning b-metric, ultrametric and metricpreserving functions.

Lemma 2.17. [10] If $f \in \mathcal{U B}$, then f is amenable.

Lemma 2.18. [10] Let f be amenable. Then the following statements are equivalent.
(i) $f \in \mathcal{U B}$.
(ii) There exists $s \geq 1$ such that $(f(a), f(b), f(c)) \in \triangle_{s}$ for all $(a, b, c) \in \triangle_{\infty}$.
(iii) There exists $s^{\prime} \geq 1$ such that $f(a) \leq s^{\prime} f(b)$ whenever $0 \leq a \leq b$.

Lemma 2.19. [5] Let f be amenable. Then f is concave if and only if

Chapter 3

Main Results

In this chapter, we give pasting lemmas for functions in $\mathcal{B}, \mathcal{B} \mathcal{M}, \mathcal{M} \mathcal{U}, \mathcal{U}, \mathcal{U} \mathcal{M}$, and $\mathcal{U B}$.

Theorem 3.1. (A pasting lemma for functions in \mathcal{B} and $\mathcal{M B})$ Let $g, h:[0, \infty) \rightarrow$ $[0, \infty), g, h \in \mathcal{B}, r>0$ and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

Suppose that g is increasing, concave, and

Then $f \in \mathcal{B}$.

Proof. Since $g, h \in \mathcal{B}$, we obtain by Lemmas 2.11 and 2.12 that g is amenable,

$$
\begin{aligned}
& \exists s_{1} \geq 0 \forall(a, b, c) \in \triangle, \quad(g(a), g(b), g(c)) \in \triangle_{s_{1}} \text { and } \\
& \exists s_{2} \geq 0 \forall(a, b, c) \in \triangle, \quad(h(a), h(b), h(c)) \in \triangle_{s_{2}} .
\end{aligned}
$$

Let $s=\max \left\{s_{1}, s_{2}\right\} \geq 0$ and let $(a, b, c) \in \triangle$. Without loss of generality, we can assume that $0 \leq a \leq b \leq c \leq a+b$.

Case 1. $a, b, c \in[0, r)$. Then

$$
(f(a), f(b), f(c))=(g(a), g(b), g(c)) \in \triangle_{s_{1}} \subseteq \triangle_{s}
$$

Case 2. $a, b, c \in[r, \infty)$. Then

$$
(f(a), f(b), f(c))=(h(a), h(b), h(c)) \in \triangle_{s_{2}} \subseteq \triangle_{s}
$$

Case 3. $a, b \in[0, r)$ and $c \in[r, \infty)$. Then

$$
\begin{equation*}
f(a)=g(a) \leq g(b)=f(b) \leq f(b)+f(c) \leq s(f(b)+f(c)) . \tag{3.1}
\end{equation*}
$$

Since $|r-c|=c-r \leq a+b-r<r+r-r=r$,

Then

$$
|g(r)-h(c)| \neq|h(r)-h(c)| \leq g(|r-c|)=g(c-r) .
$$

Then $g(r)-g(c-r) \leq h(c)$. Since $c \leq a+b$, we obtain $c-r \leq a+b-r \leq a$.
Since g is increasing, $g(c-r) \leq g(a)$. So $g(a)-g(c-r) \geq 0$. Then

$$
\begin{align*}
f(b)=g(b) \leq g(r) & \leq g(r)+g(a)-g(c-r)=g(r)-g(c-r)+g(a) \\
& \leq h(c)+g(a)=f(c)+f(a) \leq s(f(c)+f(a)) . \tag{3.3}
\end{align*}
$$

Since g is concave, we can substitute $t=r, x=a+b-r, y=a, z=b$ in
Lemma 2.19 to obtain $g(r)+g(a+b-r) \leq g(a)+g(b)$. By (3.2), we know that $h(c) \leq g(r)+g(c-r)$. Therefore

$$
\begin{align*}
f(c)=h(c) & \leq g(r)+g(c-r) \leq g(r)+g(a+b-r) \\
& \leq g(a)+g(b)=f(a)+f(b) \leq s(f(a)+f(b)) . \tag{3.4}
\end{align*}
$$

From (3.1), (3.3), and (3.4), we conclude that $(f(a), f(b), f(c)) \in \triangle_{s}$.
Case 4. $a \in[0, r)$ and $b, c \in[r, \infty)$. Since $r \leq b+c, b \leq c \leq c+r$, and
$c \leq a+b \leq r+b$, we see that $(r, b, c) \in \triangle$. Since $h \in \mathcal{B},(h(r), h(b), h(c)) \in \triangle_{s_{2}}$. Therefore

$$
\begin{equation*}
f(a)=g(a) \leq g(r)=h(r) \leq s_{2}(h(b)+h(c)) \leq s(h(b)+h(c))=s(f(b)+f(c)) . \tag{3.5}
\end{equation*}
$$

Since $|b-c|=c-b \leq r$, we obtain $|h(b)-h(c)| \leq g(|b-c|)=g(c-b)$. Then $-g(c-b) \leq h(b)-h(c) \leq g(c-b)$. Therefore

$$
\begin{equation*}
f(b)=h(b) \leq g(c-b)+h(c) \leq g(a)+h(c)=f(a)+f(c) \leq s(f(a)+f(c)) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(c)=h(c) \leq g(c-b)+h(b) \leq g(a)+h(b)=f(a)+f(b) \leq s(f(a)+f(b)) . \tag{3.7}
\end{equation*}
$$

From (3.5), (3.6), and (3.7), we obtain $(f(a), f(b), f(c)) \in \triangle_{s}$. In any case, $(f(a), f(b), f(c)) \in \Delta_{s}$, as required. Therefore $f \in \mathcal{B}$ and the proof is complete.

Theorem 3.2. (A pasting lemma for functions in $\mathcal{B M}$) Let $g, h:[0, \infty) \rightarrow[0, \infty)$, $g, h \in \mathcal{B M}, r>0$, and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[0, r) \\ h(x), & \text { if } x \in[r, \infty)\end{cases}
$$

Let $A=\sup _{x \in(0, \infty)} f(x)$ and $B=\inf _{x \in(0, \infty)} f(x)$. Then
(i) $A=\max \left\{\sup _{x \in(0, r)} g(x), \sup _{x \in[r, \infty)} h(x)\right\}$ and

$$
B=\min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)\right\},
$$

and the following statements are equivalent
(ii) $f \in \mathcal{B M}$
(iii) $A \leq 2 B$
(iv) $\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$ and $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in(0, r)} g(x)$.

Proof. By Lemma 2.13, we see that $\inf _{x \in(0, r)} g(x), \sup _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)$, and $\sup _{x \in[r, \infty)} h(x)$ exist. Then $\sup _{x \in(0, \infty)} f(x)$ and $\inf _{x \in(0, \infty)} f(x)$ exist, and the statement (i) is obvious. Next assume hat (ii) holds. By Lemma 2.13, there exists $v>0$ such that $v \leq f(x)(2 v$ for all $x \in(0, \infty)$. Then $v \leq B \leq A \leq 2 v$. Therefore $2 B \geq 2 v \geq A$, which proves(iii). Next, suppose (iii) holds. Then for each $x \in(0, \infty)$, we have

$$
B=\inf _{x \in(0, \infty)} f(x) \leq f(x) \leq \sup _{x \in(0, \infty)} f(x)=A \leq 2 B
$$

So f is tightly bounded. By Lemma 2.13, g and h are amenable. So f is also amenable. Applying Lemma 2.13 again, we obtain $f \in \mathcal{B M}$, as required. Hence (ii) and (iii) are equivalent. Next, we prove (iii) implies (iv). We have

$$
\begin{aligned}
\sup _{x \in(0, r)} g(x) & \leq \max \left\{\sup _{x \in(0, r)} g(x), \sup _{x \in[r, \infty)} h(x)\right\}=A \leq 2 B \\
& =2 \min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)\right\} \leq 2 \inf _{x \in[r, \infty)} h(x),
\end{aligned}
$$

and similarly

$$
\sup _{x \in[r, \infty)} h(x) \leq A \leq 2 B \leq 2 \inf _{x \in(0, r)} g(x),
$$

which proves (iv). Finally, assume that (iv) holds.
Case $1 \sup _{x \in(0, r)} g(x) \geq \sup _{x \in[r, \infty)} h(x)$. Then $A=\sup _{x \in(0, r)} g(x)$.
Since $g \in \mathcal{B M}$, we can use an argument similar to the prove of (ii) \Rightarrow (iii) to
obtain that

$$
\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in(0, r)} g(x) .
$$

By (iv),

$$
\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x) .
$$

Therefore

$$
A \leq \min \left\{2 \inf _{x \in(0, r)} g(x), 2 \inf _{x \in[r, \infty)} h(x)\right\}=2 \min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)\right\}=2 B
$$

Case $2 \sup _{x \in(0, r)} g(x)<\sup _{x \in[r, \infty)} h(x)$. Then $A=\sup _{x \in[r, \infty)} h(x)$. Similar to
Case 1, since $h \in \mathcal{B M}$, we have $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$. By (iv), $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in(0, r)} g(x)$. These imply $A \leq 2 B$.

In any case, $A \leq 2 B$, which proves (iii). So the proof is complete.

Theorem 3.3. (A pasting lemma for functions in $\mathcal{M U}$ and $\mathcal{B U}$) Let $g, h:[0, \infty) \rightarrow$ $[0, \infty), g, h \in \mathcal{M} \mathcal{U}, r>0$ and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

Then $f \in \mathcal{M} \mathcal{U}$.

Proof. Since $g, h \in \mathcal{M} \mathcal{U}$, by Lemma 2.14, g and h are amenable and constant on $(0, \infty)$. Since $g(r)=h(r)$ for all $r>0$, we have $g(x)=g(r)=h(r)=h(x)$ for all $x>0$. Then f is amenable and constant on $(0, \infty)$. Therefore $f \in \mathcal{M} \mathcal{U}$.

Theorem 3.4. (A pasting lemma for functions in \mathcal{U}) Let $g, h:[0, \infty) \rightarrow[0, \infty)$, $g, h \in \mathcal{U}, r>0$ and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[0, r) \\ h(x), & \text { if } x \in[r, \infty)\end{cases}
$$

Then $f \in \mathcal{U}$.

Proof. Since $g, h \in \mathcal{U}$, by Lemma 2.15, g and h are amenable and increasing. Since $g(r)=h(r)$ and h is increasing, we have $h(x) \geq g(r)$ for all $x \geq r$. Then f is increasing. Since g is amenable, so is f. Therefore $f \in \mathcal{U}$.

Theorem 3.5. (A pasting lemma for functions in $\mathcal{U} \mathcal{M}$) Let $g, h:[0, \infty) \rightarrow[0, \infty)$, $g, h \in \mathcal{U M}, r>0$ and $g(r)=h(r)$. Define $f:(0, \infty) \nrightarrow[0, \infty)$ by

Then $f \in \mathcal{U} \mathcal{M}$ if and only if $\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$.

Proof. We use Lemma 2.16 throughout the proof without further reference.
Assume $f \in \mathcal{U} \mathcal{M}$. Since $g(a) \leq 2 g(r)$ for every $a \in(0, r), \sup _{x \in(0, r)} g(x)$ exists. Since $h(b) \geq \frac{1}{2} h(r)$ for every $b \in[r, \infty), \inf _{x \in[r, \infty)} h(x)$ exists. Let $x \in(0, r)$ and $y \in[r, \infty)$. Then $x \leq y$ and

$$
g(x)=f(x) \leq 2 f(y)=2 h(y) .
$$

Then $g(x) \leq 2 h(y)$ for all $x \in(0, r)$. Hence $\sup _{x \in(0, r)} g(x) \leq 2 h(y)$. Since $\sup _{x \in(0, r)} g(x) \leq 2 h(y)$ for all $y \in[r, \infty)$, we have

$$
\sup _{x \in(0, r)} g(x) \leq \inf _{y \in[r, \infty)} 2 h(y)=2 \inf _{y \in[r, \infty)} h(y)
$$

For the converse, assume that $\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$. Let $0 \leq a \leq b$. If $a, b<r$, then $f(a)=g(a) \leq 2 g(b)=2 f(b)$. If $a, b \geq r$, then $f(a)=h(a) \leq$ $2 h(b)=2 f(b)$. So suppose that $a<r \leq b$. Then

$$
f(a)=g(a) \leq \sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x) \leq 2 h(b)=2 f(b) .
$$

In any case, $f(a) \leq 2 f(b)$. Hence $f \in \mathcal{U} \mathcal{M}$. This completes the proof.

Theorem 3.6. (A pasting lemma for functions in $\mathcal{U B})$ Let $g, h:[0, \infty) \rightarrow[0, \infty)$, $g, h \in \mathcal{U B}, r>0$ and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

Then $f \in \mathcal{U B}$.

Proof. Since $g, h \in \mathcal{U B}$, by Lemma 2.18, we have

$$
\exists s_{1} \geq 1 \forall 0 \leq a \leq b, g(a) \leq s_{1} g(b) \text { and }
$$

$$
\exists s_{2} \geq 1 \forall 0 \leq a \leq b, h(a) \leq s_{2} h(b) .
$$

Since $g(a) \leq s_{1} g(r)$ for every $a \in(0, r), \sup _{x \in(0, r)} g(x)$ exists. Since $h(b) \geq \frac{1}{s_{2}} h(r)$ for every $b \in[r, \infty), \inf _{x \in[r, \infty)} h(x)$ exists and is positive. Then there exists $s_{3} \geq 1$ such that

$$
\sup _{x \in(0, r)} g(x) \leq s_{3} \inf _{x \in[r, \infty)} h(x) .
$$

To show that $f \in \mathcal{U B}$, we choose $s=\max \left\{s_{1}, s_{2}, s_{3}\right\}$. Let $0 \leq a \leq b$. If $a, b<r$, then $f(a)=g(a) \leq s_{1} g(b) \leq s g(b)=s f(b)$. If $a, b \geq r$, then $f(a)=h(a) \leq$
$s_{2} h(b) \leq \operatorname{sh}(b)=s f(b)$. So suppose that $a<r \leq b$. Then

$$
f(a)=g(a) \leq \sup _{x \in(0, r)} g(x) \leq s_{3} \inf _{x \in[r, \infty)} h(x) \leq s \inf _{x \in[r, \infty)} h(x) \leq s h(b)=s f(b) .
$$

In any case, we have $f(a) \leq s f(b)$. Therefore $f \in \mathcal{U B}$, as desired, so the proof is complete.

From the subset properties in Proposition 1.4, we immediately obtain the following theorems.

Theorem 3.7. Let $g, h:[0, \infty) \leadsto[0, \infty), r>0$ and $g(r)=h(r)$. Define $f:$ $[0, \infty) \rightarrow[0, \infty)$ by

Then
(i) If $g, h \in \mathcal{M U}$, then $f \in \mathcal{B M}$.
(ii) If $g, h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{M}$.
(iii) If g, $h \in \mathcal{M U}$, then $f \in \mathcal{B}$.
(iv) If $g, h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{U}$.

(v) If $g, h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{U} \mathcal{M}$.
(vi) If $g, h \in \mathcal{M U}$, then $f \in \mathcal{U B}$.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.3.

Theorem 3.8. Let $g, h:[0, \infty) \rightarrow[0, \infty), r>0$ and $g(r)=h(r)$. Define $f:$
$[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[0, r) \\ h(x), & \text { if } x \in[r, \infty)\end{cases}
$$

Then
(i) If $g, h \in \mathcal{U}$, then $f \in \mathcal{U M}$.
(ii) If $g, h \in \mathcal{U}$, then $f \in \mathcal{U B}$.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.4.

Theorem 3.9. Let $g, h:[0, \infty) \rightarrow[0, \infty), r>0$ and $g(r)=h(r)$. Define $f:$
$[0, \infty) \rightarrow[0, \infty)$ by

Then
(i) If $g, h \in \mathcal{M U}$, then $f \in \mathcal{U}$.
(ii) If $g, h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{U M}$.
(iii) If $g, h \in \mathcal{M U}$, then $f \in \mathcal{U B}$.
(iv) If $g \in \mathcal{M U}$ and $h \in \mathcal{U}$, then $f \in \mathcal{U}$.
(v) If $g \in \mathcal{M} \mathcal{U}$ and $h \in \mathcal{U}$, then $f \in \mathcal{U M}$.
(vi) If $g \in \mathcal{M U}$ and $h \in \mathcal{U}$, then $f \in \mathcal{U B}$.
(vii) If $g \in \mathcal{U}$ and $h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{U}$.
(viii) If $g \in \mathcal{U}$ and $h \in \mathcal{M} \mathcal{U}$, then $f \in \mathcal{U} \mathcal{M}$.
(ix) If $g \in \mathcal{U}$ and $h \in \mathcal{M U}$, then $f \in \mathcal{U B}$.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.4.

Theorem 3.10. Let $g, h:[0, \infty) \rightarrow[0, \infty), r>0$ and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[0, r) \\ h(x), & \text { if } x \in[r, \infty)\end{cases}
$$

Let A be one of the following sets: $\mathcal{M U}, \mathcal{B} \mathcal{M}, \mathcal{M}, \mathcal{B}, \mathcal{U}, \mathcal{U} \mathcal{M}$. Then if $g, h \in A$, then $f \in \mathcal{U B}$.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.6.

Next, we give some examples to show that
(i) $g \in \mathcal{B} \mathcal{M}, h \in \mathcal{B} \mathcal{M}$ but $f \notin \mathcal{B M}$,
(ii) $g \in \mathcal{M}, h \in \mathcal{B}$ but $f \notin \mathcal{M}$,
(iii) $g \in \mathcal{B}, h \in \mathcal{B}$ but $f \notin \mathcal{M}$,
(iv) $g \in \mathcal{M U}, h \in \mathcal{U} \mathcal{M}$ but $f \notin \mathcal{M} \mathcal{U}$, and
(v) $g \in \mathcal{U}, h \in \mathcal{M} \mathcal{U}$ but $f \notin \mathcal{M} \mathcal{U}$.

Example 3.11. Let $g(x)=\left\{\begin{array}{ll}0, & \text { if } x=0, \\ 1, & \text { if } x \in(0,2), \\ 2, & \text { if } x \in[2, \infty)\end{array}\right.$ and $h(x)= \begin{cases}0, & \text { if } x=0, \\ 2, & \text { if } x \in(0,2], \\ 3, & \text { if } x \in(2, \infty) .\end{cases}$
Since g and h are amenable and tightly bounded, we have $g, h \in \mathcal{B M}$.
We will show that $f(x)=\left\{\begin{array}{ll}g(x), & \text { if } x \in[0,2), \\ h(x), & \text { if } x \in[2, \infty)\end{array}\right.$ is not tightly bounded.

We have $f(x)= \begin{cases}0, & \text { if } x=0, \\ 1, & \text { if } x \in(0,2), \\ 2, & \text { if } x=2, \\ 3, & \text { if } x \in(2, \infty) .\end{cases}$
To show that f is not tightly bounded, let $a>0$. Then $a \leq 1$ or $a>1$.
Case 1. $a \leq 1$. Then $2 a \leq 2$. Choose $x=3$. So $f(x)=3>2 a$. Then $f(x) \notin[a, 2 a]$.

Case 2. $a>1$. Choose $x=1$. Then $f(x)=1<a$, so $f(x) \notin[a, 2 a]$.
In any case, $f(x) \notin[a, 2 a]$, so f is not tightly bounded. This example show that $g, h \in \mathcal{B M}$ but $f \notin \mathcal{B} \mathcal{M}$.

Example 3.12. Let $g(x)=x$ and $h(x)=x^{2}$ Then $g \in \mathcal{M}$ and $h \in \mathcal{B}$. We will show that $f(x)= \begin{cases}g(x), & \text { if } x \in[0,1), \\ h(x), & \text { if } x \in[1, \infty) \\ \text { is not metric-preserving function. }\end{cases}$
We have $f(x)= \begin{cases}x, & \text { if } x \in[0,1), \\ x^{2}, & \text { if } x \in[1, \infty) .\end{cases}$
Let $a=3, b=1$, and $c=2$. We see that $(3,1,2) \in \triangle$. Then $f(3)=9$ and $f(1)+f(2)=5$. So $(f(3), f(1), f(2)) \notin \triangle$. Then $f \notin \mathcal{M}$. This example show that $g \in \mathcal{M}$ and $h \in \mathcal{B}$ but $f \notin \mathcal{M}$.

Since $\mathcal{M} \subseteq \mathcal{B}$, we also obtain example of $g \in \mathcal{B}, h \in \mathcal{B}$ but $f \notin \mathcal{M}$.
Example 3.13. Let $g(x)=\left\{\begin{array}{ll}0, & \text { if } x=0, \\ 1, & \text { if } x>0\end{array}\right.$ and $h(x)= \begin{cases}x, & \text { if } x \leq 1, \\ \frac{1}{2}, & \text { if } x>1 .\end{cases}$

Since g is amenable and constant on $(0, \infty), g \in \mathcal{M} \mathcal{U}$.
By [9, Example 22], we have $h \in \mathcal{U} \mathcal{M}$. We will show that $f(x)= \begin{cases}g(x), & \text { if } x \in[0,1), \\ h(x), & \text { if } x \in[1, \infty)\end{cases}$
is not ultrametric-metric-preserving function. We have $f(x)= \begin{cases}0, & \text { if } x=0, \\ 1, & \text { if } x \in(0,1], \\ \frac{1}{2}, & \text { if } x \in(1, \infty) .\end{cases}$
Since f is not constant on $(0, \infty), f \notin \mathcal{M} \mathcal{U}$. This example show that $g \in \mathcal{M} \mathcal{U}$ and $h \in \mathcal{U M}$ but $f \notin \mathcal{M U}$.

Example 3.14. Let $g(x)=x$ and $h(\bar{x})= \begin{cases}0, & \text { if } x=0, \\ 2, & \text { if } x>0 .\end{cases}$
We see that $g \in \mathcal{U}$.

Since h is amenable and constant on $(0, \infty), h \in \mathcal{M U}$. We will show that $f(x)=\left\{\begin{array}{ll}g(x), & \text { if } x \in[0,2), \\ h(x), & \text { if } x \in[2, \infty)]\end{array}\right)$ is not metric-ultrametric-preserving function. We
have $f(x)= \begin{cases}x, & \text { if } x \in[0,2), \\ 2, & \text { if } x \in[2, \infty) .\end{cases}$
example show that $g \in \mathcal{U}$ and $h \in \mathcal{M} \mathcal{U}$ but $f \notin \mathcal{M} \mathcal{U}$.

References

[1] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, 30 (1989), 26-37.
[2] J. Borsík and J. Doboš, Functions whose composition with every metric is metric, Mathematica Slovaca, 31 (1981), 3-12.
[3] P. Corazza, Introduction to metric-preserving functions, The American Mathematical Monthly, 106 (1999), 309-323.
[4] P. P. Das, Metricity preserving transforms, Pattern Recognition Letters, 10 (1989), 73-76.
[5] J. Doboš, Metric preserving functions, http://web.science.upjs.sk/jozefdobos/wpcontent/uploads/2012/03/mpf1.pdf, (1989), 26.
[6] T. Khemaratchatakumthorn and P. Pongsriiam, Remark on b-metric and metric preserving functions, Mathematica Slovaca, 68 (2018), 1009-1016.
[7] T. Khemaratchatakumthorn, P. Pôgsriiam, and S. Samphavat, Further Remarks on b-Metrics, Metric-Preserüing Functions, and other Related Metrics, International Journal of Mathematics and Computer Science, 14 (2019), 473480.
[8] M. Krasner, Nombres semi-réel et espaces ultramétriques, Comptes rendus de l'Académie des Sciences, 219 (1944), 433.
[9] P. Pongsriiam and I. Termwuttipong, Remarks on Ultrametrics and MeticPreserving Functions, Abstract and Applied Analysis, (2014).
[10] S. Samphavat, T. Khemaratchatakumthorn, and P. Pongsriiam, Remarks on b-Metrics, Ultrametrics, and Metric-Preserving Functions, Mathematica Slovaca, 70 (2020), 1-10.
[11] W. A. Wilson, On certain type of continuous transformations of metric space, American Journal of Mathematics, 57 (1935), 62-68.

Pasting Lemmas for b-Metric Preserving and Related Functions

Tammatada Khemaratchatakumthorn, Duangpon Siriwan

Department of Mathematics
Faculty of Science
Silpakorn University
Nakhon Pathom, 73000, Thailand
email: tammatada@gmail.com, khemāratchataku_t@silpakorn.edu
duangpon.siriwan@gmail.com
(Received May 5, 2021, Accepted June 7, 2021)

Abstract

Previously $([7],[8])$, we established some relations between $b-$ metrics and metric-preserving functions. In this article, we give pasting lemmas for those functions

1 Introduction

It is well known that if $g:[a, b] \rightarrow \mathbb{R}$ and $h:[b, c] \rightarrow \mathbb{R}$ are continuous and $g(b)=h(b)$, then the function $f:[a, c] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[a, b) ; \\ h(x), & \text { if } x \in[b, c]\end{cases}
$$

is also continuous. This is usually called a pasting lemma. A version of a pasting lemma for metric-preserving functions is given by Doboš [6, p. 26] but there is no pasting lemma for b-metric-preserving and other related functions in the literature. So we provide such a lemma in this article. Let us recall the definitions and useful results on b-metrics and metric-preserving functions which were previously given in $[7,8]$ as follows:

Key words and phrases: Metric, b-metric, metric-preserving function, pasting lemma.
AMS (MOS) Subject Classifications: 26A21, 26A30.
Tammatada Khemaratchatakumthorn is the corresponding author.
ISSN 1814-0432, 2021, http://ijmcs.future-in-tech.net

Definition 1.1. Let X be a nonempty set. A function $d: X \times X \rightarrow[0, \infty)$ is called a b-metric if it satisfies the following three conditions:
(B1) for all $x, y \in X, d(x, y)=0$ if and only if $x=y$,
(B2) for all $x, y \in X, d(x, y)=d(y, x)$,
(B3) there exists $s \geq 1$ such that

$$
d(x, y) \leq s(d(x, z) \pm d(z, y)) \quad \text { for all } x, y, z \in X \text {. }
$$

Definition 1.2. The function $f:=0, \infty) \rightarrow[0, \infty)$ is called metric preserving if for all metric spaces $(X, d), f \circ-d$ is al metric on X.

The concept of b-metrics appears in many articles (for example in [3, $5,7,11]$). We also refer the reader to $[1,2,4,6,10]$ for more information on metric-preserving functions and to [9] for applications in fixed point theory. In connection with metric-preserving functions and b-metrics, Khemaratchatakumthorn and Pongsriiam [7] define the following notions:

Definition 1.3. Let $f:[0, \infty) \rightarrow[0, \infty)$. We say that
(i) f is b-metric-preserving if for all b-metric spaces $(X, d), f \circ d$ is a $b-$ metric on X,
(ii) f is metric-b-metric-preserving if for all metric spaces $(X, d), f \circ d$ is a b-metric on X, and
(iii) f is b-metric-metric-preserving if for all b-metric spaces $(X, d), f \circ d$ is a metric on X.

We let \mathcal{M} be the set of all metric-preserving functions, \mathcal{B} the set of all $b-$ metric-preserving functions, $\mathcal{M B}$ the set of all metric-b-metric-preserving functions, and $\mathcal{B M}$ the set of all b-metric-metric-preserving functions.

From [7, Theorem 15 and Example 16] and [8, Theorem 3.1], we have the following theorem.

Theorem 1.4. [7, 8] We have $\mathcal{B M} \subseteq \mathcal{M} \subseteq \mathcal{B}=\mathcal{M B}, \mathcal{M} \nsubseteq \mathcal{B M}$, and $\mathcal{B} \nsubseteq \mathcal{M}$.

2 Preliminaries and Lemmas

In order to prove our main theorem, we need to recall some basic definitions and results in [7].

Let $f:[0, \infty) \rightarrow[0, \infty)$ and let $I \subseteq[0, \infty)$. Then f is said to be increasing on I if $f(x) \leq f(y)$ for all $x, y \in I$ satisfying $x<y$, and f is said to be strictly increasing on I if $f(x)<f(y)$ for all $x, y \in I$ satisfying $x<y$. The notion of decreasing or strictly decreasing functions is defined similarly.

The function f is said to be amenable if $f^{-1}(0)=\{0\}$, and f is said to be tightly bounded on $(0, \infty)$ if there is $v \geq 0$ such that $f(x) \in[v, 2 v]$ for all $x>0$. We say that f is concave if $f\left((1-t) x_{1}+t x_{2}\right) \geq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in[0, \infty)$ and $t \in[0,1]$. In addition, we say that f is quasisubadditive if there exists $s \geq 1$ such that $f(a+b) \leq s(f(a)+f(b))$ for all $a, b \in[0, \infty)$.

Definition 2.1. A triangle triplet is a triple (a, b, c) of nonnegative real numbers for which

or, equivalently,

$$
|a-b| \leq c \leq a+b
$$

Let $s \geq 1$ and $a, b, c \geq 0$. A triple (a, b, c) is an s-triangle triplet if

$$
a \leq s(b+c), b \leq s(a+c) \text {,and } c \leq s(a+b)
$$

Let Δ and Δ_{s} be the sets of all triangle triplets and s-triangle triplets, respectively.

Next, we recall results concerning b-metrics and metric-preserving functions. Again, we let $f:[0, \infty) \rightarrow[0, \infty)$ throughout.

Lemma 2.2. [7] $f \in \mathcal{B M}$ if and only if f is amenable and tightly bounded.
Lemma 2.3. [7] If $f \in \mathcal{B}$, then f is amenable and quasi-subadditive.
Lemma 2.4. [7, 8] Suppose f is amenable. Then $f \in \mathcal{B}$ if and only if there exists $s \geq 1$ such that $(f(a), f(b), f(c)) \in \Delta_{s}$ for all $(a, b, c) \in \Delta$.

Lemma 2.5. [6, p. 12] Let f be amenable. Then f is concave if and only if for all $t \geq 0$ and $x, y, z \in[0, t]$ if $x+t=y+z$, then $f(x)+f(t) \leq f(y)+f(z)$.

3 Main Results

We begin with a pasting lemma for functions in \mathcal{B}. We see that a slight modification from those in \mathcal{M} is enough. In addition, by Theorem 1.4, this also gives a pasting lemma for functions in $\mathcal{M B}$ as follows.

Theorem 3.1. (A pasting lemma for functions in \mathcal{B} and $\mathcal{M B})$ Let $g, h \in \mathcal{B}$, $r>0$, and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)=\left\{\begin{array}{l}
g(x), \\
h(x), \\
\text { if } x \in[0, r), \\
x \in(r, \infty) .
\end{array}\right.
$$

Suppose that g is increasing, concave, and

$$
\forall x, y \in[r, \infty),|x-y| \leq r \Rightarrow|h(x)-h(y)| \leq g(|x-y|) .
$$

Then $f \in \mathcal{B}$.
Proof. Since $g, h \in \mathcal{B}$, by Lemmas 2.3 and 2.4 there are $s_{1}, s_{2} \geq 1$ such that

$$
(g(a), g(b), g(c)) \in \Delta_{s_{1}} \text { and }(h(a), h(b), h(c)) \in \Delta_{s_{2}} \text { for every }(a, b, c) \in \Delta .
$$

Let $s=\max \left\{s_{1}, s_{2}\right\}$ and let $(a, b, c) \in \Delta$. Without loss of generality, assume $0 \leq a \leq b \leq c \leq a+b$. If $a, b, c \in[0, r)$, then $(f(a), f(b), f(c))=$ $(g(a), g(b), g(c)) \in \Delta_{s_{1}} \subseteq \Delta_{s}$. If $a, b, c \in[r, \infty)$, then $(f(a), f(b), f(c))=$ $(h(a), h(b), h(c)) \in \Delta_{s_{2}} \subseteq \Delta_{s}$. So it remains to consider the cases where a, b, c are not in the same interval. If $c \in[0, r)$, then $a, b \in[0, r)$ too. So there are two cases left to consider as follows.

Case 1. $a, b \in[0, r)$ and $c \in[r, \infty)$. Then

$$
\begin{equation*}
f(a)=g(a) \leq g(b)=f(b) \leq f(b)+f(c) \leq s(f(b)+f(c)) . \tag{3.1}
\end{equation*}
$$

Since $|r-c|=c-r \leq a+b-r<r+r-r=r$,

$$
|g(r)-h(c)|=|h(r)-h(c)| \leq g(|r-c|)=g(c-r) .
$$

Then

$$
\begin{equation*}
-g(c-r) \leq g(r)-h(c) \leq g(c-r) . \tag{3.2}
\end{equation*}
$$

Then $g(r)-g(c-r) \leq h(c)$. Since $c \leq a+b, c-r \leq a+b-r \leq a$. Since g is increasing, $g(c-r) \leq g(a)$ and therefore

$$
\begin{align*}
f(b)=g(b) \leq g(r) & \leq g(r)+g(a)-g(c-r)=(g(r)-g(c-r))+g(a) \\
& \leq h(c)+g(a)=f(c)+f(a) \\
& \leq s(f(c)+f(a)) . \tag{3.3}
\end{align*}
$$

Since g is concave, we can substitute $t=r, x=a+b-r, y=a, z=b$ in Lemma 2.5 to obtain $g(a+b-r)+g(r) \leq g(a)+g(b)$. By (3.2), h(c) \leq $g(r)+g(c-r)$. Therefore

$$
\begin{align*}
f(c)=h(c) \leq g(r)+g(c-r) & \leq g(r)+g(a+b-r) \\
& \leq g(a)+g(b)=f(a)+f(b) \\
& \leq s(f(a)+f(b)) . \tag{3.4}
\end{align*}
$$

From (3.1), (3.3), and (3.4), we conclude that $(f(a), f(b), f(c)) \in \Delta_{s}$.
Case 2. $a \in[0, r)$ and $b, c \in[r, \infty)$. Since $r \leq b+c, b \leq c \leq c+r$, and $c \leq a+b \leq r+b$, we see that $(r, b, c) \in \Delta$. Then $(h(r), h(b), h(c)) \in \Delta_{s_{2}}$. Therefore

$$
\begin{align*}
f(a)=g(a) & \leq g(r)=h(r) \leq s_{2}(h(b)+h(c)) \\
& \leq s(h(b)+h(c))=s(f(b)+f(c)) . \tag{3.5}
\end{align*}
$$

Since $|b-c|=c-b \leq r,|h(b)-h(c)| \leq g(|b-c|)=g(c-b)$. Then $-g(c-b) \leq h(b)-h(c) \leq g(c-b)$ and therefore

$$
\begin{align*}
f(b)=h(b) & \leq g(c-b)+h(c) \leq g(a)+h(c) \\
& =f(a)+f(c) \leq s(f(a)+f(c)), \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
f(c)=h(c) & \leq g(c-b)+h(b) \leq g(a)+h(b) \\
& =f(a)+f(b) \leq s(f(a)+f(b)) . \tag{3.7}
\end{align*}
$$

From (3.5), (3.6), and (3.7), we obtain $(f(a), f(b), f(c)) \in \Delta_{s}$. In all cases, $(f(a), f(b), f(c))$ is in Δ_{s}, as required. Consequently, $f \in \mathcal{B}$ and the proof is complete.

It remains to consider functions in $\mathcal{B M}$.
Theorem 3.2. (A pasting lemma for functions in $\mathcal{B M}$) Let $g, h \in \mathcal{B} \mathcal{M}$, $r>0$, and $g(r)=h(r)$. Define $f:[0, \infty) \rightarrow[0, \infty)$ by

$$
f(x)= \begin{cases}g(x), & \text { if } x \in[0, r), \\ h(x), & \text { if } x \in[r, \infty)\end{cases}
$$

Let $A=\sup _{x \in(0, \infty)} f(x)$ and $B=\inf _{x \in(0, \infty)} f(x)$. Then
(i) $A=\max \left\{\sup _{x \in(0, r)} g(x), \sup _{x \in[r, \infty)} h(x)\right\}$ and
$B=\min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)\right\}$,
and the following statements are equivalent
(ii) $f \in \mathcal{B M}$
(iii) $A \leq 2 B$
(iv) $\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$ and $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in(0, r)} g(x)$.

Proof. By Lemma 2.2, it follows that inf $x \in(0, r) g(x), \sup _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)$, and $\sup _{x \in[r, \infty)} h(x)$ exist. Then $\sup _{x \in(0, \infty)} f(x)$ and $\inf _{x \in(0, \infty)} f(x)$ exist, and the statement (i) is obvious. Next, assume that (ii) holds. By Lemma 2.2, there exists $v>0$ such that $v \leq f(x) \leq 2 v$ for all $x \in(0, \infty)$. Then $v \leq B \leq A \leq 2 v$. Therefore $2 B \geq 2 v \geq A$, which proves (iii). Now, suppose (iii) holds. Then for each $x \in(0, \infty)$, we have

$$
B=\inf _{x \in(0, \infty)} f(x) \leq f(x) \leq \sup _{x \in(0, \infty)} f(x)=A \leq 2 B .
$$

So f is tightly bounded. By Lemma 2.2, g and h are amenable. So f is also amenable. Applying Lemma 2.2 again, we obtain $f \in \mathcal{B} \mathcal{M}$, as required. Hence (ii) and (iii) are equivalent. Next, we prove (iii) implies (iv). We have

$$
\begin{aligned}
\sup _{x \in(0, r)} g(x) & \leq \max \left\{\sup _{x \in(0, r)} g(x), \sup _{x \in[r, \infty)} h(x)\right\}=A \leq 2 B \\
& =2 \min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in[r, \infty)} h(x)\right\} \leq 2 \inf _{x \in[r, \infty)} h(x),
\end{aligned}
$$

and, similarly,

$$
\sup _{x \in[r, \infty)} h(x) \leq A \leq 2 B \leq 2 \inf _{x \in(0, r)} g(x),
$$

which proves (iv). Finally, assume that (iv) holds.
Case 1. $\sup _{x \in(0, r)} g(x) \geq \sup _{x \in[r, \infty)} h(x)$. Then $A=\sup _{x \in(0, r)} g(x)$. Since $g \in \mathcal{B M}$, we can use an argument similar to the prove of (ii) \Rightarrow (iii) to obtain

$$
\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in(0, r)} g(x) .
$$

By (iv),

$$
\sup _{x \in(0, r)} g(x) \leq 2 \inf _{x \in[r, \infty)} h(x) .
$$

Therefore

$$
\begin{aligned}
A & \leq \min \left\{2 \inf _{x \in(0, r)} g(x), 2 \inf _{x \in[r, \infty)} h(x)\right\} \\
& =2 \min \left\{\inf _{x \in(0, r)} g(x), \inf _{x \in r, \infty)} h(x)\right\}=2 B .
\end{aligned}
$$

Case 2. $\sup _{x \in(0, r)} g(x)<\sup _{x \in(r, \infty)} h(x)$. Then $A=\sup _{x \in[r, \infty)} h(x)$. Similar to Case 1, since $h \in \mathcal{B M}$, we have $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in[r, \infty)} h(x)$. By (iv), $\sup _{x \in[r, \infty)} h(x) \leq 2 \inf _{x \in(0, r)} g(x)$. These imply $A \leq 2 B$.

In all cases, $A \leq 2 B$, which proves (iii). So the proof is complete.
Pasting lemmas for other functions will be given in a future article.
Acknowledgement. We would like to thank Prapanpong Pongsriiam for his suggestions and his support of this submission.

References

[1] J. Borsík, J. Doboš, Functions whose composition with every metric is a metric, Mathematica Slovaca, 31, (1981), 3-12.
[2] P. Corazza, Introduction to metric-preserving functions, American Mathematical Monthly, 106, no. 4, (1999), 309-323.
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1. (1993), 5-11.
[4] P. P. Das, Metricity preserving transforms, Pattern Recognition Letters, 10, (1989), 73-76.
[5] M. M. Deza, E. Deza, Encyclopedia of Distances, Second edition, Springer, 2013.
[6] J. Doboš, Metric Preserving Functions, Online Lecture Notes available at http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/ 03/mpf1.pdf
[7] T. Khemaratchatakumthorn, P. Pongsriiam, Remarks on b-metric and metric-preserving functions, Mathematica Slovaca, 68, no. 5, (2018), 1009-1016.
[8] T. Khemaratchatakumthorn, P. Pongsriiam, S. Samphavat, Further remarks on b-metrics, metric-preserving functions, and other related metrics, International Journal of Mathematics and Computer Science, 14, no. 2, (2019), 473-480.
[9] P. Pongsriiam, I. Termwuttipong, On metric-preserving functions and fixed point theorems, Fixed Point Theory and Application, 2014:179, 14 pages
[10] P. Pongsriiam, I. Termwuttipong, Remarks on ultrametrics and metricpreserving functions, Abstract and Applied Analysis, Article ID 163258, 2014, 9 pages.
[11] Q. Xia, The geodesic problem in Quasimetric spaces, Journal of Geometric Analysis, 19, no. 2, (2009), 452-479.

VITA

NAME	Duangpon Siriwan
DATE OF BIRTH	26 December 1996
PLACE OF BIRTH	Prachuapkhirikhan, Thailand

INSTITUTIONS ATTENDED 2014-2018 Bachelor of Science in Mathematics, Silpakorn
University.
2018-2020 Master of Science in Mathematics, Silpakorn

HOME ADDRESS
$513 / 3$ Moo 1,Klongwan, Prachuapkhirikhan, Thailand, 77000

PUBLICATION

T. Khemaratchatakumthorn, D. Siriwan, Pasting Lemmas for b--

Metric Preserving and Related Functions, International Journal of
Mathematics and Computer Science, 16(2021), no. 4, 1591-1598.

