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Let f : [0,∞) → [0,∞). We say that f is metric-preserving if for all
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metric-preserving functions for certain types of (g1, g2).



 vi

Acknowledgements

I would like to first say a very big thank you to my advisor Assistant

Professor Dr.Tammatada Khemaratchatakumthorn for all the support and encour-

agement she gave me, Without her guidance and suggestion this thesis would not

have been achievable.

Moreover, I would like to thank my thesis committees, Associate Profes-

sor Dr. Prapanpong Pongsriiam and Assistant Professor Dr. Nattapong Bosuwan,

for their comments and suggestions.

Finally, I would like to thank my parents and friends for the support

and encouragement.

Duangpon SIRIWAN



 

Table of contents

page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Preliminaries and Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



 

Chapter 1

Introduction

Let X be a nonempty set and d : X×X → [0,∞). Then d is a metric if d satisfies

the following three conditions:

(M1) ∀x, y ∈ X, d(x, y) = 0 ↔ x = y,

(M2) ∀x, y ∈ X, d(x, y) = d(y, x), and

(M3) ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

In 1944, Krasner [8] introduced ultrametric as follows: The function d is called an

ultrametric if d satisfies (M1), (M2), and

(U3) for all x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(z, y)}.

In 1989, Bakhtin [1] introduced b-metric as follows: The function d is said to be a

b-metric if d satisfies (M1), (M2), and

(B3) there exists s ≥ 1 such that

d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X.

It is easy to see that every ultrametric is a metric and every metric is a b-metric.

The function f : [0,∞) → [0,∞) is said to be metric-preserving if for all metric

spaces (X, d), f ◦ d is metric on X and let M be the set of all metric-preserving

functions. The concept of metric preserving functions first appears in Wilson’s

article [11] and is thoroughly by many authors, see example, [2, 3, 4]. In 2014,
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Pongsriiam and Termwuttipong [9] introduced and investigated a variation of con-

cept of metric-preserving functions where metrics are replaced by ultrametrics as

follows.

Definition 1.1. [9] Let f : [0,∞) → [0,∞). Then

(i) f is ultrametric-preserving if for all ultrametric spaces (X, d), f ◦ d is an ultra-

metric,

(ii) f is metric-ultrametric-preserving if for all metric spaces (X, d), f ◦ d is an

ultrametric,

(iii) f is ultrametric-metric-preserving if for all ultrametric spaces (X, d), f ◦ d is

a metric, and

let U be the set of all ultrametric-preserving functions, UM the set of all ultrametric-

metric-preserving functions, and MU the set of all metric-ultrametric-preserving

functions.

In 2018, Khemaratchatakumthorn and Pongsriiam [6] also introduced

and investigated a variation of concept of metric-preserving functions where metrics

are replaced by b-metrics as follows.

Definition 1.2. [6] Let f : [0,∞) → [0,∞). Then

(i) f is b-metric-preserving if for all b-metric spaces (X, d), f ◦ d is a b-metric,

(ii) f is metric-b-metric-preserving if for all metric spaces (X, d), f ◦d is a b-metric,

(iii) f is b-metric-metric-preserving if for all b-metric spaces (X, d), f◦d is a metric,

and let B the set of all b-metric-preserving functions, MB the set of all metric-

b-metric-preserving functions, and BM the set of all b-metric-metric-preserving
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functions.

In 2020, Samphavat, Khemaratchatakumthorn, and Pongsriiam [10] also

introduced and investigated a variation of concept of metric-preserving functions

where metrics are replaced by b-metrics and ultrametric as follows.

Definition 1.3. [10] Let f : [0,∞) → [0,∞). Then

(i) f is ultrametric-b-metric-preserving if for all ultrametric spaces (X, d), f ◦ d is

a b-metric,

(ii) f is b-metric-ultrametric-preserving if for all b-metric spaces (X, d), f ◦ d is a

ultrametric, and

let UB the set of all ultrametric-b-metric-preserving functions and BU the set of

all b-metric-ultrametric-preserving functions.

The relations between M, B, MB, BM, U , UM, MU , BU , UB are

given as follows.

Proposition 1.4. [6, 7, 9, 10] The following statements hold.

(i) MU = BU ⊆ BM ⊆ M ⊆ B = MB ⊆ UB.

(ii) BU = MU ⊆ U ⊆ UM ⊆ UB.

(iii) M ⊆ UM.

They also summarized the subset relations in the following diagram

(Figure 1.1). Note that f ∈ A ⇒ f ∈ B means f ∈ A implies f ∈ B. In addition,

if there is no arrow from f ∈ A to f ∈ B, it means that A ⊈ B.
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f ∈ UB

f ∈ MB = B f ∈ UM

f ∈ M f ∈ U

f ∈ BM

f ∈ BU = MU

Figure 1.1: Subset Relations

It is well known that if g : [a, b] → R and h : [b, c] → R are continuous

and g(b) = h(b), then the function f : [a, c] → R defined by

f(x) =


g(x), if x ∈ [a, b);

h(x), if x ∈ [b, c)

is also continuous. This is usually called a pasting lemma. A version of a pasting

lemma for metric-preserving functions is given by Doboš [5] but there is no pasting

lemma for b-metric-preserving and other related functions in the literature.

Theorem 1.5. [5, p.26] Let g, h be metric preserving. Let r > 0 be such that

g(r) = h(r). Define fg,h,r : [0,∞) → [0,∞) as follows

fg,h,r(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Suppose that g is increasing and concave. Then fg,h,r is metric preserving iff

∀x, y ∈ [r,∞) : |x− y| ≤ r → |h(x)− h(y)| ≤ g(|x− y|).
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In this thesis, we investigate pasting lemma by substituting continuous

function or metric-preserving functions by generalized metric-preserving functions.

This thesis is organized as follows: In Chapter 2, we recall some basic definitions

and results concerning M, B, MB, BM, U , UM, MU , BU , UB. In Chapter 3,

we show pasting lemmas for functions in B, BM, MU , U , UM, and UB.



 

Chapter 2

Preliminaries and Lemmas

In this chapter, we recall some basic definitions and results concerning M, B, MB,

BM, U , UM, MU , BU , UB. Throughout this thesis let f : [0,∞) → [0,∞).

Definition 2.1. Let I ⊆ [0,∞). Then f is said to be increasing on I if f(x) ≤ f(y)

for all x, y ∈ I satisfying x < y, and f is said to be strictly increasing on I if

f(x) < f(y) for all x, y ∈ I satisfying x < y.

Definition 2.2. The function f is said to be amenable if f−1({0}) = 0.

Definition 2.3. The function f is said to be tightly bounded on (0,∞) if there is

v > 0 such that f(x) ∈ [v, 2v] for all x > 0.

Definition 2.4. We say that f is subadditive if f(a + b) ≤ f(a) + f(b) for all

a, b ∈ [0,∞) and f is quasi-subadditive if there exists s ≥ 1 such that f(a + b) ≤

s(f(a) + f(b)) for all a, b ∈ [0,∞).

Definition 2.5. The function f is concave if

f((1− t)x1 + tx2) ≥ (1− t)f(x1) + tf(x2)

for all x1, x2 ∈ [0,∞) and t ∈ [0, 1].
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Definition 2.6. A triangle triplet is a triple (a, b, c) of nonnegative real numbers

for which

a ≤ b+ c, b ≤ a+ c, and c ≤ a+ b,

or equivalently,

|a− b| ≤ c ≤ a+ b.

Let s ≥ 1 and a, b, c ≥ 0. A triple (a, b, c) is a s-triangle triplet if

a ≤ s(b+ c), b ≤ s(a+ c), and c ≤ s(a+ b).

A triple (a, b, c) of nonnegative real numbers is an ultra-triangle triplet if

a ≤ max{a, b} b ≤ max{c, a} and c ≤ max{b, c}.

We let △, △s, and △∞ be the sets of all triangle triplets, s-triangle triplets and

ultra-triangle triplets, respectively.

Next, we recall some results concerning metric-preserving functions.

Lemma 2.7. [2, 3, 5] If f is amenable, subadditive and increasing on [0,∞), then

f ∈ M.

Lemma 2.8. [2, 3, 5] If f is amenable and tightly bounded, then f ∈ M.

Lemma 2.9. [2, 3, 5] If f ∈ M, then f is amenable and subadditive.

Lemma 2.10. [2, 3, 5] Let f be amenable. Then the following statements are

equivalent.

(i) f ∈ M.

(ii) For each (a, b, c) ∈ △, (f(a), f(b), f(c)) ∈ △.
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Next, we recall some results concerning b-metric and metric-preserving

functions.

Lemma 2.11. [7] Let f be amenable. Then the following statements are equivalent.

(i) f ∈ B.

(ii) f ∈ MB.

(iii) There exists s ≥ 1 such that (f(a), f(b), f(c)) ∈ △s for all (a, b, c) ∈ △.

Lemma 2.12. [6] If f ∈ B, then f is amenable and quasi-subadditive.

Lemma 2.13. [6] If f ∈ BM if and only if f is amenable and tightly bounded.

Next, we recall some results concerning ultrametric and metric-preserving

functions.

Lemma 2.14. [9] If f ∈ MU if and only if f is amenable and constant on (0,∞).

Lemma 2.15. [9] If f ∈ U if and only if f is amenable and increasing.

Lemma 2.16. [9] Let f be amenable. Then the following statements are equivalent.

(i) f ∈ UM.

(ii) For each (a, b, c) ∈ △∞, (f(a), f(b), f(c)) ∈ △.

(iii) For each 0 ≤ a ≤ b, f(a) ≤ 2f(b).

Next, we recall some results concerning b-metric, ultrametric and metric-

preserving functions.

Lemma 2.17. [10] If f ∈ UB, then f is amenable.
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Lemma 2.18. [10] Let f be amenable. Then the following statements are equiva-

lent.

(i) f ∈ UB.

(ii) There exists s ≥ 1 such that (f(a), f(b), f(c)) ∈ △s for all (a, b, c) ∈ △∞.

(iii) There exists s′ ≥ 1 such that f(a) ≤ s′f(b) whenever 0 ≤ a ≤ b.

Lemma 2.19. [5] Let f be amenable. Then f is concave if and only if

∀t ≥ 0 ∀x, y, z ∈ [0, t], x+ t = y + z → f(x) + f(t) ≤ f(y) + f(z).



 

Chapter 3

Main Results

In this chapter, we give pasting lemmas for functions in B, BM, MU , U , UM,

and UB.

Theorem 3.1. (A pasting lemma for functions in B and MB) Let g, h : [0,∞) →

[0,∞), g, h ∈ B, r > 0 and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Suppose that g is increasing, concave, and

∀x, y ∈ [r,∞), |x− y| ≤ r → |h(x)− h(y)| ≤ g(|x− y|).

Then f ∈ B.

Proof. Since g, h ∈ B, we obtain by Lemmas 2.11 and 2.12 that g is amenable,

∃s1 ≥ 0 ∀(a, b, c) ∈ △, (g(a), g(b), g(c)) ∈ △s1 and

∃s2 ≥ 0 ∀(a, b, c) ∈ △, (h(a), h(b), h(c)) ∈ △s2 .

Let s = max{s1, s2} ≥ 0 and let (a, b, c) ∈ △. Without loss of generality, we can

assume that 0 ≤ a ≤ b ≤ c ≤ a+ b.

Case 1. a, b, c ∈ [0, r). Then

(f(a), f(b), f(c)) = (g(a), g(b), g(c)) ∈ △s1 ⊆ △s.
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Case 2. a, b, c ∈ [r,∞). Then

(f(a), f(b), f(c)) = (h(a), h(b), h(c)) ∈ △s2 ⊆ △s.

Case 3. a, b ∈ [0, r) and c ∈ [r,∞). Then

f(a) = g(a) ≤ g(b) = f(b) ≤ f(b) + f(c) ≤ s(f(b) + f(c)). (3.1)

Since |r − c| = c− r ≤ a+ b− r < r + r − r = r,

|g(r)− h(c)| = |h(r)− h(c)| ≤ g(|r − c|) = g(c− r).

Then

−g(c− r) ≤ g(r)− h(c) ≤ g(c− r). (3.2)

Then g(r)− g(c− r) ≤ h(c). Since c ≤ a+ b, we obtain c− r ≤ a+ b− r ≤ a.

Since g is increasing, g(c− r) ≤ g(a). So g(a)− g(c− r) ≥ 0. Then

f(b) = g(b) ≤ g(r) ≤ g(r) + g(a)− g(c− r) = g(r)− g(c− r) + g(a)

≤ h(c) + g(a) = f(c) + f(a) ≤ s(f(c) + f(a)). (3.3)

Since g is concave, we can substitute t = r, x = a + b − r, y = a, z = b in

Lemma 2.19 to obtain g(r) + g(a + b − r) ≤ g(a) + g(b). By (3.2), we know that

h(c) ≤ g(r) + g(c− r). Therefore

f(c) = h(c) ≤ g(r) + g(c− r) ≤ g(r) + g(a+ b− r)

≤ g(a) + g(b) = f(a) + f(b) ≤ s(f(a) + f(b)). (3.4)

From (3.1), (3.3), and (3.4), we conclude that (f(a), f(b), f(c)) ∈ △s.

Case 4. a ∈ [0, r) and b, c ∈ [r,∞). Since r ≤ b + c, b ≤ c ≤ c + r, and
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c ≤ a + b ≤ r + b, we see that (r, b, c) ∈ △. Since h ∈ B, (h(r), h(b), h(c)) ∈ △s2 .

Therefore

f(a) = g(a) ≤ g(r) = h(r) ≤ s2(h(b) + h(c)) ≤ s(h(b) + h(c)) = s(f(b) + f(c)).

(3.5)

Since |b − c| = c − b ≤ r, we obtain |h(b) − h(c)| ≤ g(|b − c|) = g(c − b). Then

−g(c− b) ≤ h(b)− h(c) ≤ g(c− b). Therefore

f(b) = h(b) ≤ g(c− b) + h(c) ≤ g(a) + h(c) = f(a) + f(c) ≤ s(f(a) + f(c)) (3.6)

and

f(c) = h(c) ≤ g(c− b) + h(b) ≤ g(a) + h(b) = f(a) + f(b) ≤ s(f(a) + f(b)). (3.7)

From (3.5), (3.6), and (3.7), we obtain (f(a), f(b), f(c)) ∈ △s. In any case,

(f(a), f(b), f(c)) ∈ △s, as required. Therefore f ∈ B and the proof is complete.

Theorem 3.2. (A pasting lemma for functions in BM) Let g, h : [0,∞) → [0,∞),

g, h ∈ BM, r > 0, and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Let A = supx∈(0,∞) f(x) and B = infx∈(0,∞) f(x). Then

(i) A = max
{
supx∈(0,r) g(x), supx∈[r,∞) h(x)

}
and

B = min
{
infx∈(0,r) g(x), infx∈[r,∞) h(x)

}
,

and the following statements are equivalent
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(ii) f ∈ BM

(iii) A ≤ 2B

(iv) supx∈(0,r) g(x) ≤ 2 infx∈[r,∞) h(x) and supx∈[r,∞) h(x) ≤ 2 infx∈(0,r) g(x).

Proof. By Lemma 2.13, we see that infx∈(0,r) g(x), supx∈(0,r) g(x), infx∈[r,∞) h(x),

and supx∈[r,∞) h(x) exist. Then supx∈(0,∞) f(x) and infx∈(0,∞) f(x) exist, and the

statement (i) is obvious. Next assume that (ii) holds. By Lemma 2.13, there exists

v > 0 such that v ≤ f(x) ≤ 2v for all x ∈ (0,∞). Then v ≤ B ≤ A ≤ 2v.

Therefore 2B ≥ 2v ≥ A, which proves (iii). Next, suppose (iii) holds. Then for

each x ∈ (0,∞), we have

B = inf
x∈(0,∞)

f(x) ≤ f(x) ≤ sup
x∈(0,∞)

f(x) = A ≤ 2B.

So f is tightly bounded. By Lemma 2.13, g and h are amenable. So f is also

amenable. Applying Lemma 2.13 again, we obtain f ∈ BM, as required. Hence

(ii) and (iii) are equivalent. Next, we prove (iii) implies (iv). We have

sup
x∈(0,r)

g(x) ≤ max

{
sup

x∈(0,r)
g(x), sup

x∈[r,∞)

h(x)

}
= A ≤ 2B

= 2min

{
inf

x∈(0,r)
g(x), inf

x∈[r,∞)
h(x)

}
≤ 2 inf

x∈[r,∞)
h(x),

and similarly

sup
x∈[r,∞)

h(x) ≤ A ≤ 2B ≤ 2 inf
x∈(0,r)

g(x),

which proves (iv). Finally, assume that (iv) holds.

Case 1 supx∈(0,r) g(x) ≥ supx∈[r,∞) h(x). Then A = supx∈(0,r) g(x).

Since g ∈ BM, we can use an argument similar to the prove of (ii)⇒(iii) to
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obtain that

sup
x∈(0,r)

g(x) ≤ 2 inf
x∈(0,r)

g(x).

By (iv),

sup
x∈(0,r)

g(x) ≤ 2 inf
x∈[r,∞)

h(x).

Therefore

A ≤ min

{
2 inf
x∈(0,r)

g(x), 2 inf
x∈[r,∞)

h(x)

}
= 2min

{
inf

x∈(0,r)
g(x), inf

x∈[r,∞)
h(x)

}
= 2B.

Case 2 supx∈(0,r) g(x) < supx∈[r,∞) h(x). Then A = supx∈[r,∞) h(x). Similar to

Case 1, since h ∈ BM, we have supx∈[r,∞) h(x) ≤ 2 infx∈[r,∞) h(x). By (iv),

supx∈[r,∞) h(x) ≤ 2 infx∈(0,r) g(x). These imply A ≤ 2B.

In any case, A ≤ 2B, which proves (iii). So the proof is complete.

Theorem 3.3. (A pasting lemma for functions inMU and BU) Let g, h : [0,∞) →

[0,∞), g, h ∈ MU , r > 0 and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then f ∈ MU .

Proof. Since g, h ∈ MU , by Lemma 2.14, g and h are amenable and constant on

(0,∞). Since g(r) = h(r) for all r > 0, we have g(x) = g(r) = h(r) = h(x) for all

x > 0. Then f is amenable and constant on (0,∞). Therefore f ∈ MU .
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Theorem 3.4. (A pasting lemma for functions in U) Let g, h : [0,∞) → [0,∞),

g, h ∈ U , r > 0 and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then f ∈ U .

Proof. Since g, h ∈ U , by Lemma 2.15, g and h are amenable and increasing.

Since g(r) = h(r) and h is increasing, we have h(x) ≥ g(r) for all x ≥ r. Then f

is increasing. Since g is amenable, so is f . Therefore f ∈ U .

Theorem 3.5. (A pasting lemma for functions in UM) Let g, h : [0,∞) → [0,∞),

g, h ∈ UM, r > 0 and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then f ∈ UM if and only if supx∈(0,r) g(x) ≤ 2 infx∈[r,∞) h(x).

Proof. We use Lemma 2.16 throughout the proof without further reference.

Assume f ∈ UM. Since g(a) ≤ 2g(r) for every a ∈ (0, r), supx∈(0,r) g(x) exists.

Since h(b) ≥ 1
2
h(r) for every b ∈ [r,∞), infx∈[r,∞) h(x) exists. Let x ∈ (0, r) and

y ∈ [r,∞). Then x ≤ y and

g(x) = f(x) ≤ 2f(y) = 2h(y).

Then g(x) ≤ 2h(y) for all x ∈ (0, r). Hence supx∈(0,r) g(x) ≤ 2h(y). Since

supx∈(0,r) g(x) ≤ 2h(y) for all y ∈ [r,∞), we have

sup
x∈(0,r)

g(x) ≤ inf
y∈[r,∞)

2h(y) = 2 inf
y∈[r,∞)

h(y).
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For the converse, assume that supx∈(0,r) g(x) ≤ 2 infx∈[r,∞) h(x). Let 0 ≤ a ≤ b.

If a, b < r, then f(a) = g(a) ≤ 2g(b) = 2f(b). If a, b ≥ r, then f(a) = h(a) ≤

2h(b) = 2f(b). So suppose that a < r ≤ b. Then

f(a) = g(a) ≤ sup
x∈(0,r)

g(x) ≤ 2 inf
x∈[r,∞)

h(x) ≤ 2h(b) = 2f(b).

In any case, f(a) ≤ 2f(b). Hence f ∈ UM. This completes the proof.

Theorem 3.6. (A pasting lemma for functions in UB) Let g, h : [0,∞) → [0,∞),

g, h ∈ UB, r > 0 and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then f ∈ UB.

Proof. Since g, h ∈ UB, by Lemma 2.18, we have

∃s1 ≥ 1 ∀ 0 ≤ a ≤ b, g(a) ≤ s1g(b) and

∃s2 ≥ 1 ∀ 0 ≤ a ≤ b, h(a) ≤ s2h(b).

Since g(a) ≤ s1g(r) for every a ∈ (0, r), supx∈(0,r) g(x) exists. Since h(b) ≥ 1
s2
h(r)

for every b ∈ [r,∞), infx∈[r,∞) h(x) exists and is positive. Then there exists s3 ≥ 1

such that

sup
x∈(0,r)

g(x) ≤ s3 inf
x∈[r,∞)

h(x).

To show that f ∈ UB, we choose s = max{s1, s2, s3}. Let 0 ≤ a ≤ b. If a, b < r,

then f(a) = g(a) ≤ s1g(b) ≤ sg(b) = sf(b). If a, b ≥ r, then f(a) = h(a) ≤
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s2h(b) ≤ sh(b) = sf(b). So suppose that a < r ≤ b. Then

f(a) = g(a) ≤ sup
x∈(0,r)

g(x) ≤ s3 inf
x∈[r,∞)

h(x) ≤ s inf
x∈[r,∞)

h(x) ≤ sh(b) = sf(b).

In any case, we have f(a) ≤ sf(b). Therefore f ∈ UB, as desired, so the proof is

complete.

From the subset properties in Proposition 1.4, we immediately obtain

the following theorems.

Theorem 3.7. Let g, h : [0,∞) → [0,∞), r > 0 and g(r) = h(r). Define f :

[0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then

(i) If g, h ∈ MU , then f ∈ BM.

(ii) If g, h ∈ MU , then f ∈ M.

(iii) If g, h ∈ MU , then f ∈ B.

(iv) If g, h ∈ MU , then f ∈ U .

(v) If g, h ∈ MU , then f ∈ UM.

(vi) If g, h ∈ MU , then f ∈ UB.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.3.

Theorem 3.8. Let g, h : [0,∞) → [0,∞), r > 0 and g(r) = h(r). Define f :
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[0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then

(i) If g, h ∈ U , then f ∈ UM.

(ii) If g, h ∈ U , then f ∈ UB.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.4.

Theorem 3.9. Let g, h : [0,∞) → [0,∞), r > 0 and g(r) = h(r). Define f :

[0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Then

(i) If g, h ∈ MU , then f ∈ U .

(ii) If g, h ∈ MU , then f ∈ UM.

(iii) If g, h ∈ MU , then f ∈ UB.

(iv) If g ∈ MU and h ∈ U , then f ∈ U .

(v) If g ∈ MU and h ∈ U , then f ∈ UM.

(vi) If g ∈ MU and h ∈ U , then f ∈ UB.

(vii) If g ∈ U and h ∈ MU , then f ∈ U .

(viii) If g ∈ U and h ∈ MU , then f ∈ UM.

(ix) If g ∈ U and h ∈ MU , then f ∈ UB.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.4.
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Theorem 3.10. Let g, h : [0,∞) → [0,∞), r > 0 and g(r) = h(r). Define

f : [0,∞) → [0,∞) by

f(x) =


g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Let A be one of the following sets : MU , BM, M, B, U , UM. Then if g, h ∈ A,

then f ∈ UB.

Proof. This follows immediately from Proposition 1.4 and Theorem 3.6.

Next, we give some examples to show that

(i) g ∈ BM, h ∈ BM but f /∈ BM,

(ii) g ∈ M, h ∈ B but f /∈ M,

(iii) g ∈ B, h ∈ B but f /∈ M,

(iv) g ∈ MU , h ∈ UM but f /∈ MU , and

(v) g ∈ U , h ∈ MU but f /∈ MU .

Example 3.11. Let g(x) =



0, if x = 0,

1, if x ∈ (0, 2),

2, if x ∈ [2,∞)

and h(x) =



0, if x = 0,

2, if x ∈ (0, 2],

3, if x ∈ (2,∞).

Since g and h are amenable and tightly bounded, we have g, h ∈ BM.

We will show that f(x) =


g(x), if x ∈ [0, 2),

h(x), if x ∈ [2,∞)

is not tightly bounded.
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We have f(x) =



0, if x = 0,

1, if x ∈ (0, 2),

2, if x = 2,

3, if x ∈ (2,∞).

To show that f is not tightly bounded, let a > 0. Then a ≤ 1 or a > 1.

Case 1. a ≤ 1. Then 2a ≤ 2. Choose x = 3. So f(x) = 3 > 2a. Then

f(x) /∈ [a, 2a].

Case 2. a > 1. Choose x = 1. Then f(x) = 1 < a, so f(x) /∈ [a, 2a].

In any case, f(x) /∈ [a, 2a], so f is not tightly bounded. This example show that

g, h ∈ BM but f /∈ BM.

Example 3.12. Let g(x) = x and h(x) = x2 Then g ∈ M and h ∈ B. We will

show that f(x) =


g(x), if x ∈ [0, 1),

h(x), if x ∈ [1,∞)

is not metric-preserving function.

We have f(x) =


x, if x ∈ [0, 1),

x2, if x ∈ [1,∞).

Let a = 3, b = 1, and c = 2. We see that (3, 1, 2) ∈ △. Then f(3) = 9 and

f(1)+ f(2) = 5. So (f(3), f(1), f(2)) /∈ △. Then f /∈ M. This example show that

g ∈ M and h ∈ B but f /∈ M.

Since M ⊆ B, we also obtain example of g ∈ B, h ∈ B but f /∈ M.

Example 3.13. Let g(x) =


0, if x = 0,

1, if x > 0

and h(x) =


x, if x ≤ 1,

1
2
, if x > 1.
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Since g is amenable and constant on (0,∞), g ∈ MU .

By [9, Example 22], we have h ∈ UM. We will show that f(x) =


g(x), if x ∈ [0, 1),

h(x), if x ∈ [1,∞)

is not ultrametric-metric-preserving function. We have f(x) =



0, if x = 0,

1, if x ∈ (0, 1],

1
2
, if x ∈ (1,∞).

Since f is not constant on (0,∞), f /∈ MU . This example show that g ∈ MU and

h ∈ UM but f /∈ MU .

Example 3.14. Let g(x) = x and h(x) =


0, if x = 0,

2, if x > 0.

We see that g ∈ U .

Since h is amenable and constant on (0,∞), h ∈ MU . We will show that

f(x) =


g(x), if x ∈ [0, 2),

h(x), if x ∈ [2,∞)

is not metric-ultrametric-preserving function. We

have f(x) =


x, if x ∈ [0, 2),

2, if x ∈ [2,∞).

Since f is not constant on (0,∞), f /∈ MU . This

example show that g ∈ U and h ∈ MU but f /∈ MU .
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[8] M. Krasner, Nombres semi-réel et espaces ultramétriques, Comptes rendus de
l’Académie des Sciences, 219 (1944), 433.

[9] P. Pongsriiam and I. Termwuttipong, Remarks on Ultrametrics and Metic-
Preserving Functions, Abstract and Applied Analysis, (2014).

[10] S. Samphavat, T. Khemaratchatakumthorn, and P. Pongsriiam, Remarks on
b-Metrics, Ultrametrics, and Metric-Preserving Functions, Mathematica Slo-
vaca, 70 (2020), 1–10.

[11] W. A. Wilson, On certain type of continuous transformations of metric space,
American Journal of Mathematics, 57 (1935), 62–68.



 23

Appendix



 

International Journal of Mathematics and
Computer Science, 16(2021), no. 4, 1591–1598

b b

M
CS

Pasting Lemmas for b−Metric Preserving and
Related Functions

Tammatada Khemaratchatakumthorn, Duangpon Siriwan

Department of Mathematics
Faculty of Science

Silpakorn University
Nakhon Pathom, 73000, Thailand

email: tammatada@gmail.com, khemaratchataku t@silpakorn.edu
duangpon.siriwan@gmail.com

(Received May 5, 2021, Accepted June 7, 2021)

Abstract

Previously ([7], [8]), we established some relations between b−metrics
and metric-preserving functions. In this article, we give pasting lem-
mas for those functions.

1 Introduction

It is well known that if g : [a, b] → R and h : [b, c] → R are continuous and
g(b) = h(b), then the function f : [a, c] → R defined by

f(x) =

{

g(x), if x ∈ [a, b);

h(x), if x ∈ [b, c]

is also continuous. This is usually called a pasting lemma. A version of
a pasting lemma for metric-preserving functions is given by Doboš [6, p.
26] but there is no pasting lemma for b−metric-preserving and other related
functions in the literature. So we provide such a lemma in this article. Let us
recall the definitions and useful results on b−metrics and metric-preserving
functions which were previously given in [7, 8] as follows:
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Definition 1.1. Let X be a nonempty set. A function d : X ×X → [0,∞)
is called a b−metric if it satisfies the following three conditions:

(B1) for all x, y ∈ X, d(x, y) = 0 if and only if x = y,

(B2) for all x, y ∈ X, d(x, y) = d(y, x),

(B3) there exists s ≥ 1 such that

d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X.

Definition 1.2. The function f : [0,∞) → [0,∞) is called metric preserving

if for all metric spaces (X, d), f ◦ d is a metric on X.

The concept of b-metrics appears in many articles (for example in [3,
5, 7, 11]). We also refer the reader to [1, 2, 4, 6, 10] for more informa-
tion on metric-preserving functions and to [9] for applications in fixed point
theory. In connection with metric-preserving functions and b−metrics, Khe-
maratchatakumthorn and Pongsriiam [7] define the following notions:

Definition 1.3. Let f : [0,∞) → [0,∞). We say that

(i) f is b−metric-preserving if for all b−metric spaces (X, d), f ◦ d is a

b−metric on X,

(ii) f is metric-b−metric-preserving if for all metric spaces (X, d), f ◦ d is

a b−metric on X, and

(iii) f is b−metric-metric-preserving if for all b-metric spaces (X, d), f ◦ d
is a metric on X.

We let M be the set of all metric-preserving functions, B the set of all

b−metric-preserving functions, MB the set of all metric-b−metric-preserving

functions, and BM the set of all b−metric-metric-preserving functions.

From [7, Theorem 15 and Example 16] and [8, Theorem 3.1], we have the
following theorem.

Theorem 1.4. [7, 8] We have BM ⊆ M ⊆ B = MB, M 6⊆ BM, and

B 6⊆ M.
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2 Preliminaries and Lemmas

In order to prove our main theorem, we need to recall some basic definitions
and results in [7].

Let f : [0,∞) → [0,∞) and let I ⊆ [0,∞). Then f is said to be increasing
on I if f(x) ≤ f(y) for all x, y ∈ I satisfying x < y, and f is said to be strictly
increasing on I if f(x) < f(y) for all x, y ∈ I satisfying x < y. The notion
of decreasing or strictly decreasing functions is defined similarly.

The function f is said to be amenable if f−1(0) = {0}, and f is said to
be tightly bounded on (0,∞) if there is v > 0 such that f(x) ∈ [v, 2v] for all
x > 0. We say that f is concave if f((1− t)x1 + tx2) ≥ (1− t)f(x1) + tf(x2)
for all x1, x2 ∈ [0,∞) and t ∈ [0, 1]. In addition, we say that f is quasi-
subadditive if there exists s ≥ 1 such that f(a + b) ≤ s(f(a) + f(b)) for all
a, b ∈ [0,∞).

Definition 2.1. A triangle triplet is a triple (a, b, c) of nonnegative real

numbers for which

a ≤ b+ c, b ≤ a+ c, and c ≤ a + b,

or, equivalently,

|a− b| ≤ c ≤ a+ b.

Let s ≥ 1 and a, b, c ≥ 0. A triple (a, b, c) is an s-triangle triplet if

a ≤ s(b+ c), b ≤ s(a+ c), and c ≤ s(a+ b).

Let ∆ and ∆s be the sets of all triangle triplets and s−triangle triplets,

respectively.

Next, we recall results concerning b−metrics and metric-preserving func-
tions. Again, we let f : [0,∞) → [0,∞) throughout.

Lemma 2.2. [7] f ∈ BM if and only if f is amenable and tightly bounded.

Lemma 2.3. [7] If f ∈ B, then f is amenable and quasi-subadditive.

Lemma 2.4. [7, 8] Suppose f is amenable. Then f ∈ B if and only if there

exists s ≥ 1 such that (f(a), f(b), f(c)) ∈ ∆s for all (a, b, c) ∈ ∆.

Lemma 2.5. [6, p. 12] Let f be amenable. Then f is concave if and only if

for all t ≥ 0 and x, y, z ∈ [0, t] if x+t = y+z, then f(x)+f(t) ≤ f(y)+f(z).
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3 Main Results

We begin with a pasting lemma for functions in B. We see that a slight
modification from those in M is enough. In addition, by Theorem 1.4, this
also gives a pasting lemma for functions in MB as follows.

Theorem 3.1. (A pasting lemma for functions in B and MB) Let g, h ∈ B,
r > 0, and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =

{

g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Suppose that g is increasing, concave, and

∀x, y ∈ [r,∞), |x− y| ≤ r ⇒ |h(x)− h(y)| ≤ g(|x− y|).

Then f ∈ B.

Proof. Since g, h ∈ B, by Lemmas 2.3 and 2.4 there are s1, s2 ≥ 1 such that

(g(a), g(b), g(c)) ∈ ∆s1
and (h(a), h(b), h(c)) ∈ ∆s2

for every (a, b, c) ∈ ∆.

Let s = max{s1, s2} and let (a, b, c) ∈ ∆. Without loss of generality, as-
sume 0 ≤ a ≤ b ≤ c ≤ a + b. If a, b, c ∈ [0, r), then (f(a), f(b), f(c)) =
(g(a), g(b), g(c)) ∈ ∆s1

⊆ ∆s. If a, b, c ∈ [r,∞), then (f(a), f(b), f(c)) =
(h(a), h(b), h(c)) ∈ ∆s2

⊆ ∆s. So it remains to consider the cases where
a, b, c are not in the same interval. If c ∈ [0, r), then a, b ∈ [0, r) too. So
there are two cases left to consider as follows.

Case 1. a, b ∈ [0, r) and c ∈ [r,∞). Then

f(a) = g(a) ≤ g(b) = f(b) ≤ f(b) + f(c) ≤ s(f(b) + f(c)). (3.1)

Since |r − c| = c− r ≤ a+ b− r < r + r − r = r,

|g(r)− h(c)| = |h(r)− h(c)| ≤ g(|r − c|) = g(c− r).

Then
−g(c− r) ≤ g(r)− h(c) ≤ g(c− r). (3.2)

Then g(r)− g(c− r) ≤ h(c). Since c ≤ a+ b, c− r ≤ a+ b− r ≤ a. Since g

is increasing, g(c− r) ≤ g(a) and therefore

f(b) = g(b) ≤ g(r) ≤ g(r) + g(a)− g(c− r) = (g(r)− g(c− r)) + g(a)

≤ h(c) + g(a) = f(c) + f(a)

≤ s(f(c) + f(a)). (3.3)
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Since g is concave, we can substitute t = r, x = a + b − r, y = a, z = b in
Lemma 2.5 to obtain g(a + b − r) + g(r) ≤ g(a) + g(b). By (3.2), h(c) ≤
g(r) + g(c− r). Therefore

f(c) = h(c) ≤ g(r) + g(c− r) ≤ g(r) + g(a+ b− r)

≤ g(a) + g(b) = f(a) + f(b)

≤ s(f(a) + f(b)). (3.4)

From (3.1), (3.3), and (3.4), we conclude that (f(a), f(b), f(c)) ∈ ∆s.
Case 2. a ∈ [0, r) and b, c ∈ [r,∞). Since r ≤ b+ c, b ≤ c ≤ c + r, and

c ≤ a + b ≤ r + b, we see that (r, b, c) ∈ ∆. Then (h(r), h(b), h(c)) ∈ ∆s2
.

Therefore

f(a) = g(a) ≤ g(r) = h(r) ≤ s2(h(b) + h(c))

≤ s(h(b) + h(c)) = s(f(b) + f(c)). (3.5)

Since |b − c| = c − b ≤ r, |h(b) − h(c)| ≤ g(|b − c|) = g(c − b). Then
−g(c− b) ≤ h(b)− h(c) ≤ g(c− b) and therefore

f(b) = h(b) ≤ g(c− b) + h(c) ≤ g(a) + h(c)

= f(a) + f(c) ≤ s(f(a) + f(c)), (3.6)

and

f(c) = h(c) ≤ g(c− b) + h(b) ≤ g(a) + h(b)

= f(a) + f(b) ≤ s(f(a) + f(b)). (3.7)

From (3.5), (3.6), and (3.7), we obtain (f(a), f(b), f(c)) ∈ ∆s. In all cases,
(f(a), f(b), f(c)) is in ∆s, as required. Consequently, f ∈ B and the proof is
complete.

It remains to consider functions in BM.

Theorem 3.2. (A pasting lemma for functions in BM) Let g, h ∈ BM,

r > 0, and g(r) = h(r). Define f : [0,∞) → [0,∞) by

f(x) =

{

g(x), if x ∈ [0, r),

h(x), if x ∈ [r,∞).

Let A = sup
x∈(0,∞) f(x) and B = infx∈(0,∞) f(x). Then
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(i) A = max
{

sup
x∈(0,r) g(x), supx∈[r,∞) h(x)

}

and

B = min
{

infx∈(0,r) g(x), infx∈[r,∞) h(x)
}

,

and the following statements are equivalent

(ii) f ∈ BM

(iii) A ≤ 2B

(iv) sup
x∈(0,r) g(x) ≤ 2 infx∈[r,∞) h(x) and sup

x∈[r,∞) h(x) ≤ 2 infx∈(0,r) g(x).

Proof. By Lemma 2.2, it follows that infx∈(0,r) g(x), supx∈(0,r) g(x), infx∈[r,∞) h(x),
and sup

x∈[r,∞) h(x) exist. Then sup
x∈(0,∞) f(x) and infx∈(0,∞) f(x) exist, and

the statement (i) is obvious. Next, assume that (ii) holds. By Lemma 2.2,
there exists v > 0 such that v ≤ f(x) ≤ 2v for all x ∈ (0,∞). Then
v ≤ B ≤ A ≤ 2v. Therefore 2B ≥ 2v ≥ A, which proves (iii). Now, suppose
(iii) holds. Then for each x ∈ (0,∞), we have

B = inf
x∈(0,∞)

f(x) ≤ f(x) ≤ sup
x∈(0,∞)

f(x) = A ≤ 2B.

So f is tightly bounded. By Lemma 2.2, g and h are amenable. So f is
also amenable. Applying Lemma 2.2 again, we obtain f ∈ BM, as required.
Hence (ii) and (iii) are equivalent. Next, we prove (iii) implies (iv). We have

sup
x∈(0,r)

g(x) ≤ max

{

sup
x∈(0,r)

g(x), sup
x∈[r,∞)

h(x)

}

= A ≤ 2B

= 2min

{

inf
x∈(0,r)

g(x), inf
x∈[r,∞)

h(x)

}

≤ 2 inf
x∈[r,∞)

h(x),

and, similarly,
sup

x∈[r,∞)

h(x) ≤ A ≤ 2B ≤ 2 inf
x∈(0,r)

g(x),

which proves (iv). Finally, assume that (iv) holds.
Case 1. sup

x∈(0,r) g(x) ≥ sup
x∈[r,∞) h(x). Then A = sup

x∈(0,r) g(x). Since
g ∈ BM, we can use an argument similar to the prove of (ii)⇒(iii) to obtain

sup
x∈(0,r)

g(x) ≤ 2 inf
x∈(0,r)

g(x).

By (iv),
sup

x∈(0,r)

g(x) ≤ 2 inf
x∈[r,∞)

h(x).
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Therefore

A ≤ min

{

2 inf
x∈(0,r)

g(x), 2 inf
x∈[r,∞)

h(x)

}

= 2min

{

inf
x∈(0,r)

g(x), inf
x∈[r,∞)

h(x)

}

= 2B.

Case 2. sup
x∈(0,r) g(x) < sup

x∈[r,∞) h(x). Then A = sup
x∈[r,∞) h(x). Similar

to Case 1, since h ∈ BM, we have sup
x∈[r,∞) h(x) ≤ 2 infx∈[r,∞) h(x). By (iv),

sup
x∈[r,∞) h(x) ≤ 2 infx∈(0,r) g(x). These imply A ≤ 2B.
In all cases, A ≤ 2B, which proves (iii). So the proof is complete.

Pasting lemmas for other functions will be given in a future article.
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