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Chapter 1

Introduction

In this thesis, we study a new digit map that is a variation of Kaprekar operator

and determine the new constants arising in the process of repeatedly applying the

new digit map related to multiplication. For any x ∈ N∪{0}, we write the decimal

expansion of x as

x = (akak−1 . . . a1a0)10 =
∑

0≤j≤k

ak−j10
k−j,

where 0 ≤ ai ≤ 9 for all i = 0, 1, 2, . . ., k.

First, we introduce the reader to know about the Kaprekar constant.

The Kaprekar operator K is defined by the following operation: take any positive

integer x having four decimal digits which are not all equal and the leading digit

is not zero, say x = (a3a2a1a0)10, a3 ̸= 0, and ai ̸= aj for some i, j, then rearrange

a3, a2, a1, a0 as c3, c2, c1, c0 so that c3 ≥ c2 ≥ c1 ≥ c0. Then

K(x) = (c3c2c1c0)10 − (c0c1c2c3)10. (1.1)

Observe that the second number on the right-hand side of (1.1) is obtained by

reversing the decimal digits of the first. It is well known that no matter what x we

start, after repeating this process at most 7 steps, we always obtain the number

6174, which is known as Kaprekar’s constant. For example, suppose x = 1000.
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Then

K(x) = 1000− 1 = 999,

K2(x) = K(K(x)) = K(999) = K(0999) = 9990− 0999 = 8991,

K3(x) = K(8991) = 9981− 1899 = 8082,

K4(x) = 8820− 0288 = 8532,

K5(x) = 8532− 2358 = 6174,

and Km(x) = 6174 for all m ≥ 6. Here it is important to keep in mind that

the Kaprekar operator operates on the positive integers having four digits not all

equal. So the decimal representation of K(x) with nonzero leading digit may has

only 3 digits but to calculateK(K(x)), we must first write K(x) as 4 digits number

by adding 0 as the leading digit, as shown above in K(999) = K(0999). We can

generalize K to operate on any nonnegative integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let g : N ∪ {0} →

N∪ {0} be given by g(0) = 0 and if x = (akak−1 . . . a0)10, ak ̸= 0, and ck, ck−1, . . .,

c0 is the permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0, then

g(x) = (ckck−1 . . . c1c0)10 − (c0c1 . . . ck−1ck)10.

In addition, for the purpose of this thesis, if x is as above, we always write the

decimal representation of g(x) as k + 1 digits number, say g(x) = (bkbk−1 . . . b0)10.

Another trick is as follows: take any positive integer having three digits,

say x = (a2a1a0)10, where a2 ̸= 0, 0 ≤ aj ≤ 9 for all j, and ai ̸= aj for some
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i, j. Then calculate g(x), say g(x) = b = (b2b1b0)10. Then compute f(b) =

b+reverse(b) = (b2b1b0)10+(b0b1b2)10. No matter what x we start with, we always

obtain f(b) = 1089. We generalize this to the following operator.

Definition 1.2. Let f be the reverse and add operator and let F : N ∪ {0} →

N ∪ {0} be defined by F = f ◦ g. In addition, to calculate F (x) = f(g(x)), we

always keep the same convention in Definition 1.1 where the number of decimal

digits of x and g(x) are equal.

For example, suppose x = 100. Then g(x) = 99 = 099 and so F (x) =

f(099) = 990+099 = 1089. By using a computer or a straightforward calculation,

it is not difficult to notice the following pattern:

if 10 ≤ x < 102, then F (x) = 0 or 99;

if 102 ≤ x < 103, then F (x) = 0 or 1089;

if 103 ≤ x < 104, then F (x) = 0, 10890, or 10989;

if 104 ≤ x < 105, then F (x) = 0, 109890, 0 4or 109989.

In general result, which can read in Chapter 2. Moreover, it is an interesting open

problem to determine whether or not a given number in the range of F is a Lychrel

number. For more information on 6174 and the Kaprekar operator, see for instance

in [6], [13], and [16]. For related articles on 1089 and 2178, see for example in [1],

[2], [3], [4], [18], [19], and [22].

Next, we introduce the reader to know about the happy function. For

each positive integer x, define S(x) to be the sum of squares of the decimal digits
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of x. For example, S(2) = 4 and S(123) = 12 +22 +32 = 14. It is well known that

[11] for any x ∈ N, there exists n ∈ N such that S(n)(x) ∈ {1, 4}, where S(n) is the

n-fold composition of S. The function is called the happy function and if x ∈ N

and S(n)(x) = 1 for some n ∈ N, then x is called a happy number. Furthermore,

we can generalize this concept to an (e, b)-happy function Se,b for e, b ∈ N and e,

b ≥ 2 by defining

Se,b(x) = aek + aek−1 + · · ·+ ae0,

if x = (akak−1 . . . a0)b = akb
k+ak−1b

k−1+ · · ·+a0 is the b-adic expansion of x with

ak ̸= 0 and ai ∈ {0, 1, 2, . . . , b−1} for all i = 0, 1, . . ., k. Then a similar result still

holds: there exists a finite set A ⊆ N such that for any x ∈ N, there exists n ∈ N

such that S
(n)
e,b (x) ∈ A. For example, if (e, b) = (2, 10), then A = {1, 4}; and if

(e, b) = (3, 10), then A = {1, 55, 136, 153, 160, 370, 371, 407, 919}. For more details

about this, see for instance in the articles by El-Sedy and Siksek [7], Grundman

and Teeple [10], and the book by Guy [11].

On one hand, we may focus on the study of long strings of consecutive

integers which are happy or (e, b)-happy as given by El-Sedy and Siksek [7], Pan

[15], Zhou and Cai [23], Gilmer [8], Styer [17], and Chase [5]. On the other hand,

we may consider generalizations of the concept of (e, b)-happy functions as in the

work of Grundman [9], Chase [5], Swart et al. [21], Noppakaew, Phoopha, and

Pongsriiam [14], and Subwattanachai and Pongsriiam [20]. In this thesis, we focus

on the latter and continue the study from those articles [14, 20]. Let us consider

the following functions.
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Definition 1.3. (The sum of factorials of digits) Let b ≥ 2 and let fb : N → N be

defined by

fb(x) = ak! + ak−1! + · · ·+ a0!

if x = (akak−1 . . . a0)b is the b-adic representation of x with ak ̸= 0.

Definition 1.4. (A power of sums of digits) Let e, b ≥ 2 and let ge,b : N → N be

defined by

ge,b(x) = (ak + ak−1 + · · ·+ a0)
e

if x = (akak−1 . . . a0)b is the b-adic representation of x with ak ̸= 0.

The functions fb, ge,b, and similar variations are natural examples of

new digit maps falling outside the scope of Chase’s definition and other articles

on digit maps, yet similar results still hold. That is, if f is such a function, then

we can explicitly determine a finite set A ⊆ N such that for every x ∈ N, there

exists n ∈ N such that f (n)(x) ∈ A. So we can study this result in Chapter 3.

Furthermore, our results can be interpreted as solutions to certain Diophantine

equations which explain some popular mathematical memes in Chapter 4.

Throughout this thesis, there is using a computer to calculate some

numbers. Then we list some relevant codes in the last chapter. Moreover, we hope

that this thesis will help explaining something related to 6174, 1089, and other

similar magic numbers.



 

Chapter 2

Variation of Kaprekar operator and 1089

In this chapter, if y ∈ R, then ⌊y⌋ is the largest integer less than or equal to y and

⌈y⌉ is the smallest integer larger than or equal to y; and unless stated otherwise, all

other variables are nonnegative integers. Then we recall Definition 1.2 to introduce

the general result.

Theorem 2.1. Let F = f◦g, k ≥ 2, and 10k ≤ x < 10k+1. Let x = (akak−1 . . . a0)10,

ak ̸= 0, and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If k = 2, then F (x) = 0 or 1089.

Suppose that k ≥ 3 and ck, ck−1, . . ., c0 is the permutation of ak, ak−1, . . ., a0

such that ck ≥ ck−1 ≥ · · · ≥ c0. If ai = aj for all i, j, then F (x) = 0. Suppose

that ai ̸= aj for some i, j and let m = z(x) be the largest element of the set

{j ∈ {0, 1, . . . , k} | ck−j > cj}. Then

F (x) = 10 99 . . . 9︸ ︷︷ ︸
y(x)

89 00 . . . 0︸ ︷︷ ︸
z(x)

,

where y(x) = k − 2− z(x).

Proof. We first consider the case k = 2. Since 102 ≤ x < 103, it can be written

in the decimal representation as x = (a2a1a0)10 where a2 ̸= 0 and 0 ≤ ai ≤ 9 for

i = 0, 1, 2. If a2 = a1 = a0, then F (x) = 0. So suppose that a2, a1, a0 are not all

the same and let c2, c1, c0 be the permutation of a2, a1, a0 such that c2 ≥ c1 ≥ c0.
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Then c2 > c0 and

g(x) = (c2c1c0)10 − (c0c1c2)10

= (102c2 + 10c1 + c0)− (102c0 + 10c1 + c2)

= 102(c2 − c0 − 1) + 10(9) + 10− (c2 − c0)

= (d2d1d0)10,

where d2 = c2 − c0 − 1, d1 = 9, and d0 = 10− (c2 − c0). Then it is easy to see that

F (x) = (d2d1d0)10 + (d0d1d2)10 = 1089.

Next, let k ≥ 3, 10k ≤ x < 10k, and write x = (akak−1 . . . a0)10 where ak ̸= 0

and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If ai = aj for all i, j, then F (x) = 0 and

we are done. So suppose that ai ̸= aj for some i, j. Let ck, ck−1, . . ., c0 be the

permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0. Then

g(x) = (ckck−1 . . . c0)10 − (c0c1 . . . ck)10

=
k∑

j=0

ck−j10
k−j −

k∑
j=0

cj10
k−j

=
k∑

j=0

(ck−j − cj)10
k−j. (2.1)

Let A = {j ∈ {0, 1, . . . , k} | ck−j > cj}. Since ck > c0, we see that 0 ∈ A,

and so A ̸= ∅. Let m be the largest element of A. If m ≥ ⌈k
2
⌉, then k − m ≤

k − ⌈k
2
⌉ = ⌊k

2
⌋ ≤ m, which implies ck−m ≤ cm, which contradicts the fact that

m ∈ A. Therefore 0 ≤ m < ⌈k
2
⌉. Since m is the largest element of A and
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ck ≥ ck−1 ≥ · · · ≥ c0, we assert that the following relations hold:

ck−j > cj for 0 ≤ j ≤ m, (2.2)

ck−j ≤ cj for j > m, (2.3)

ck−j = cj for m < j ≤
⌊
k

2

⌋
, (2.4)

ck−j = cj for

⌈
k

2

⌉
≤ j < k −m, (2.5)

ck−j < cj for k −m ≤ j ≤ k. (2.6)

For (2.2), we know that ck−m > cm and if 0 ≤ j < m, then ck−j ≥ ck−m > cm ≥ cj.

So (2.2) is verified. By the choice of m, (2.3) follows immediately. If j ≤ ⌊k
2
⌋, then

k−j ≥ k−⌊k
2
⌋ = ⌈k

2
⌉ ≥ j, and so ck−j ≥ cj. This and (2.3) imply (2.4). Replacing

j by k − j in (2.4), we obtain (2.5). Changing j to k − j in (2.2), we obtain (2.6).

Next, we divide the sum in (2.1) into 3 parts: 0 ≤ j ≤ m,m < j < k−m,

and k −m ≤ j ≤ k. By (2.4) and (2.5), the second part is zero. Therefore (2.1)

becomes

g(x) =
∑

0≤j≤m

(ck−j − cj)10
k−j +

∑
k−m≤j≤k

(ck−j − cj)10
k−j. (2.7)

The terms ck−j−cj in (2.7) are positive in the first sum and negative in the second

sum. Then we write

10k−m =

( ∑
m+1≤j≤k−1

9 · 10k−j

)
+ 10

=

( ∑
m+1≤j≤k−m−1

9 · 10k−j

)
+

( ∑
k−m≤j≤k−1

9 · 10k−j

)
+ 10.
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Let dk−m = ck−m − cm − 1 and d0 = 10 + c0 − ck. Then

(ck−m − cm)10
k−m +

∑
k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m + 10k−m +

∑
k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m +

( ∑
m+1≤j≤k−m−1

9 · 10k−j

)

+
∑

k−m≤j≤k−1

(9 + ck−j − cj) 10
k−j + d0, (2.8)

where dk−m, d0, and the coefficients of 10k−j in the above equation are nonnegative

and are less than 10. Therefore (2.7) and (2.8) imply that we can write g(x) in

the decimal expansion as

g(x) = (dkdk−1 . . . d0)10 =
∑

0≤j≤k

dk−j10
k−j,

where 0 ≤ di ≤ 9 for all i = 0, 1, 2, . . ., k, and dk−j satisfies the following relations:

dk−j = ck−j − cj for 0 ≤ j < m, (2.9)

dk−m = ck−m − cm − 1, (2.10)

dk−j = 9 for m+ 1 ≤ j ≤ k −m− 1, (2.11)

dk−j = 9 + ck−j − cj for k −m ≤ j ≤ k − 1, (2.12)

d0 = 10 + c0 − ck. (2.13)

Since the decimal expansion of g(x) has k + 1 digits, that of f(g(x)) has at most

k + 2 digits. Then

F (x) = f(g(x)) = (dkdk−1 . . . d0)10 + (d0d1 . . . dk)10 = (ek+1ek . . . e0)10,
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where 0 ≤ ei ≤ 9 for all i = 0, 1, . . ., k + 1. Recall the fact from an elementary

arithmetic that e0 = d0 + dk − 10ε0 where ε0 = 0 if d0 + dk < 10, and ε0 = 1

if d0 + dk ≥ 10. In addition, ej = dj + dk−j + εj−1 − 10εj for 1 ≤ j ≤ k, where

εj−1 = 0 if there is no carry in the addition in the (j − 1)th position and εj−1 = 1

otherwise; while εj = 0 if dj +dk−j +εj−1 < 10, and εj = 1 if dj +dk−j +εj−1 ≥ 10.

Moreover, ek+1 = 0 if there is no carry in the addition in the kth position and

ek+1 = 1 otherwise. We now calculate e0, e1, . . ., ek, ek+1 by using this fact and

the relations in (2.9) to (2.13). We obtain

e0 = d0 + dk − 10ε0 = (10 + c0 − ck) + (ck − c0)− 10ε0 = 10− 10ε0,

which implies ε0 = 1 and e0 = 0. Then

e1 = d1 + dk−1 + 1− 10ε1 = (9 + c1 − ck−1) + (ck−1 − c1) + 1− 10ε1 = 10− 10ε1,

which implies ε1 = 1 and e1 = 0. In general, we replace j by k− j in (2.12) to see

that dj = 9 + cj − ck−j for 1 ≤ j ≤ m; and if εj−1 = 1 and 2 ≤ j ≤ m− 1, then

ej = dj + dk−j + 1− 10εj = (9 + cj − ck−j) + (ck−j − cj) + 1− 10εj = 10− 10εj,

which implies εj = 1 and ej = 0. Applying this observation for j = 2, 3, . . ., m−1,

respectively, we obtain

ε2 = 1, e2 = 0, ε3 = 1, e3 = 0, . . . , εm−1 = 1, em−1 = 0.

Then

em = dm + dk−m + 1− 10εm

= (9 + cm − ck−m) + (ck−m − cm − 1) + 1− 10εm = 9− 10εm,
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which implies εm = 0 and em = 9. Then em+1 = dm+1 + dk−m−1 − 10εm+1 =

9+ 9− 10εm+1, which implies εm+1 = 1 and em+1 = 8. In general, we replace j by

k − j in (2.11) to obtain dj = 9 for m + 1 ≤ j ≤ k −m − 1; and if εj−1 = 1 and

m+ 2 ≤ j ≤ k −m− 1, then

ej = dj + dk−j + εj−1 − 10εj = 9 + 9 + 1− 10εj = 19− 10εj,

which implies εj = 1 and ej = 9. Applying this observation for j = m+ 2, m+ 3,

. . ., k −m− 1, respectively, we obtain

εm+2 = 1, em+2 = 9, εm+3 = 1, em+3 = 9, . . . , εk−m−1 = 1, ek−m−1 = 9.

Then

ek−m = dk−m + dm + 1− 10εk−m

= (ck−m − cm − 1) + (9 + cm − ck−m) + 1− 10εk−m = 9− 10εk−m,

which implies εk−m = 0 and ek−m = 9. Then

ek−m+1 = dk−m+1 + dm−1 − 10εk−m+1

= (ck−m+1 − cm−1) + (9 + cm−1 − ck−m+1)− 10εk−m+1

= 9− 10εk−m+1,

which implies εk−m+1 = 0 and ek−m+1 = 9. In general, we replace j by k − j in

(2.12) to obtain dj = 9+cj−ck−j for 1 ≤ j ≤ m; and if εk−j−1 = 0 and 1 ≤ j < m,

then

ek−j = dk−j + dj − 10εk−j = (ck−j − cj) + (9 + cj − ck−j)− 10εk−j = 9− 10εk−j,
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which implies εk−j = 0 and ek−j = 9. Applying this observation for j = m − 2,

m− 3, . . ., 1, respectively, we obtain

εk−m+2 = 0, ek−m+2 = 9, εk−m+3 = 0, ek−m+3 = 9, . . . , εk−1 = 0, ek−1 = 9.

Then

ek = dk + d0 − 10εk = (ck − c0) + (10 + c0 − ck)− 10εk = 10− 10εk,

which implies εk = 1 and ek = 0. Then ek+1 = 1. To conclude, we obtain that

ej = 0 for 0 ≤ j < m, em = 9, em+1 = 8, ej = 9 for m+2 ≤ j ≤ k− 1, ek = 0, and

ek+1 = 1. This completes the proof.



 

Chapter 3

Happy Functions and Digit Maps

In this chapter, we first show the calculation related to fb in Definition 1.3 and

ge,b in Definition 1.4. After that we consider a similar function and give some

calculations in less details. Our results are as follows.

Lemma 3.1. Let b ≥ 2 be integer. Then there exists an integer M = Mb ≥ 1 such

that

(k + 1)(b− 1)! < bk for all k ≥ M.

In particular, if b = 10, then we can choose M = 7.

Proof. By using a usual method in calculus, one can show that bk/(k + 1) → +∞

as k → +∞. So there is an integer M ≥ 1 such that if k ≥ M , then bk/(k + 1) is

larger than (b − 1)!. This proves the first part. For the second part, we prove by

induction that

(k + 1)9! < 10k for all k ≥ 7. (3.1)

It is easy to see that (3.1) holds when k = 7. Suppose that k ≥ 7 and (3.1) holds

for k. Then

(k + 2)9! < (10k + 10)9! = 10(k + 1)9! < 10k+1.

Therefore (3.1) is verified and the proof is complete.
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Remark 3.2. By a similar method as in the proof of Lemma 3.1 for 2 ≤ b ≤ 9,

we can take Mb as follows: M2 = 2, M3 = 2, M4 = 3, M5 = 3, M6 = 4, M7 = 5,

M8 = 5, and M9 = 6.

Theorem 3.3. Let b and M be the integers as given in Lemma 3.1. Then

fb(x) < x for all x ≥ bM . (3.2)

In particular, f10(x) < x for all x ≥ 107.

Proof. Let x ≥ bM . Then x = (akak−1 . . . a0)b where k ≥ M , ak ̸= 0, and 0 ≤ ai ≤

b− 1 for all i = 0, 1, . . ., k. By Lemma 3.1, we obtain

fb(x) = ak! + ak−1! + · · ·+ a0! ≤ (k + 1)(b− 1)! < bk ≤ akb
k ≤ x.

This proves (3.2). The second part follows from (3.2) and Lemma 3.1.

Remark 3.4. By Remark 3.2 and Theorem 3.3, we see that

f2(x) < x for all x ≥ 22, f3(x) < x for all x ≥ 32,

f4(x) < x for all x ≥ 43, f5(x) < x for all x ≥ 53,

f6(x) < x for all x ≥ 64, f7(x) < x for all x ≥ 75,

f8(x) < x for all x ≥ 85, and f9(x) < x for all x ≥ 96.

To obtain a finite set A ⊆ N satisfying f
(n)
b (x) ∈ A, we now only need

to recall Theorem 1.2 of Noppakaew, Phoopha, and Pongsriiam [14]. Consider the

following two conditions for a function f : N → N:

(A) There exists Nf ∈ N such that f(x) < x for all x ≥ Nf .
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(B) For each x ∈ N, the sequence
(
f (n) (x)

)
n≥1

converges to a fixed point or

eventually enters into a cycle. In addition, the number of all such fixed

points and cycles is finite.

Then we have the following results.

Theorem 3.5. (Noppakaew, Phoopha, and Pongsriiam [14]) If f : N → N satisfies

the condition (A), then f satisfies the condition (B).

Theorem 3.6. Let b ≥ 2 be an integer. Then there exists a finite set A = Ab ⊆ N

such that for every x ∈ N, there is an integer n ≥ 1 such that f
(n)
b (x) ∈ A. In

particular, if b = 10, then we can take A = {1, 2, 145, 40585, 169, 871, 872}. In

fact, 1, 2, 145, 40585 are the fixed points of fb and 169, 871, 872 are the elements

of distinct cycles arising from the iteration f
(n)
b (x) for any n, x ∈ N.

Proof. By Theorems 3.3 and 3.5, we see that fb satisfies the condition (B). Then

we choose Ab to be the set of all elements in the cycles and fixed points of fb, so

that Ab is a finite subset of N. Let x ∈ N be given. We know that fb : N → N, so

if f
(n)
b (x) converges to a fixed point y ∈ N as n → ∞, then it means that there

is N ∈ N such that f
(n)
b (x) = y for all n ≥ N . So in particular, f

(N)
b (x) ∈ Ab.

Moreover, if f
(n)
b (x) eventually enters into a cycle as n → ∞, then f

(n)
b (x) ∈ Ab

for some n. This proves the first part. For the second part, let b = 10, and let F10

be the set of fixed points of f10 and C10 the set of all cycles (which are not fixed

points) occurring in the iteration f
(n)
10 (x) for any n, x ∈ N. We assert that

F10 = {1, 2, 145, 40585} and
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C10 = {(169, 363601, 1454), (871, 45361), (872, 45362)}.

It is easy to check that if x ∈ {1, 2, 145, 40585}, then f10(x) = x. Suppose x ∈ N

and f10(x) = x. By Theorem 3.3, we obtain x < 107. So we only need to check the

integers x in [1, 107) whether or not they satisfy f10(x) = x. After a computation

in a computer, we find that f10(x) = x if and only if x ∈ {1, 2, 145, 40585}. This

gives the set F10. Similarly, to determine the set C10, it is enough to look for

the cycles occurring in the sequence
(
f (n) (x)

)
where x runs over the integers in

[1, 107). After a straightforward verification, we obtain C10 as asserted.

Therefore we can take A to be the set consisting of 1, 2, 145, 40585,

169, 363601, 1454, 871, 45361, 872, 45362. But 169, 363601, 1454 are in the

same cycle, so we need only one of them. For instance, if f
(n)
10 (x) = 169, then

f
(n+1)
10 (x) = 363601, f

(n+2)
10 (x) = 1454, and f

(n+3)
10 (x) = 169. Similarly, we can

choose just one of 871, 45361 and one of 872, 45362. Therefore we can take A to

be the set consisting of 1, 2, 145, 40585, 169, 871, 872 as required. This completes

the proof.

Remark 3.7. By a similar method as in Theorem 3.6, we obtain for 2 ≤ b ≤ 9 the

set Fb of fixed points of fb and the set Cb of cycles in the iteration f
(n)
b (x) for any

n, x ∈ N as follows. For b = 2, we only need to run a computation in a computer

for x in [1, 22) to obtain that F2 = {1, 2} and C2 = ∅. Similarly, for b = 3, 4, 5, 6,

7, 8, 9, we run a computation, respectively, for x ∈ [1, 32), x ∈ [1, 43), x ∈ [1, 53),
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x ∈ [1, 64), x ∈ [1, 75), x ∈ [1, 85), x ∈ [1, 96) to obtain

F3 = {1, 2}, C3 = ∅,

F4 = {1, 2, 7}, C4 = {(3, 6)},

F5 = {1, 2, 49}, C5 = ∅,

F6 = {1, 2, 25, 26}, C6 = ∅,

F7 = {1, 2}, C7 = {(38, 126, 27, 726, 243, 864)},

F8 = {1, 2}, C8 = {(3, 6, 720, 10), (125, 5161)},

F9 = {1, 2, 41282},

and C9 consists of exactly one cycle, namely,

(1450, 80642, 251, 40327, 10803, 5173, 15121, 1445, 45481, 41094, 735, 723, 80646, 969, 41043).

The calculation for ge,b is similar to that for fb, but the well known Euler

constant will appear in the proof. So to avoid confusion, we will write E to denote

Euler’s constant, while e is reserved for the integers appearing in the definition of

ge,b.

Lemma 3.8. We have 81(k + 1)2 < 10k for all k ≥ 4, 729(k + 1)3 < 10k for all

k ≥ 6, 6561(k + 1)4 < 10k for all k ≥ 8, 59049(k + 1)5 < 10k for all k ≥ 10. In

general, if e ≥ 2 is an integer, then

9e(k + 1)e < 10k for all k ≥ e2. (3.3)

Proof. The first four inequalities can be straightforwardly proved by induction, so

we leave the details to the reader. For (3.3), let e ≥ 2 be an integer. Observe that
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it can be proved by induction that 9(n2 + 1) < 10n for all n ≥ 2, so in particular

9(e2 + 1) < 10e. This implies that (3.3) holds when k = e2. Next, suppose that

k ≥ e2 and (3.3) holds for k. Recall that the sequence (an) =
((
1 + 1

n

)n)
is strictly

increasing and converges to E, the Euler constant. From this and the fact that

k ≥ e2, we obtain

(k + 2)e

(k + 1)e
=

(
1 +

1

k + 1

)e

≤
(
1 +

1

e2 + 1

)e

<

(
1 +

1

e2 + 1

)e2+1

= ae2+1 ≤ sup{an | n ∈ N} = lim
n→∞

an = E < 10.

Then 9e(k + 2)e < 9e(10)(k + 1)e < 10k+1, by the induction hypothesis. So the

proof is complete.

Lemma 3.8 will be used in the calculation in some examples. For a

general result, we have the following theorem.

Theorem 3.9. Let e, b ≥ 2 be integers. Then the following statements hold.

(i) There exists an integer M = Me,b ≥ 1 such that (k + 1)e(b− 1)e < bk for all

k ≥ M .

(ii) ge,b(x) < x for all x ≥ bM .

(iii) ge,b satisfies the condition (B) and there exists a finite set A = Ae,b ⊆ N such

that for every x ∈ N, there is n ∈ N such that g
(n)
e,b (x) ∈ A.

(iv) Let Fe,b and Ce,b be the sets of fixed points of ge,b and the cycles arising in
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the sequence
(
g
(n)
e,b (x)

)
n≥1

for any x ∈ N. Then we have

F2,10 = {1, 81}, C2,10 = {(169, 256)},

F3,10 = {1, 512, 4913, 5832, 17576, 19683}, C3,10 = {(6859, 21952)},

F4,10 = {1, 2401, 234256, 390625, 614656, 1679616}, C4,10 = {(104976, 531441)},

F5,10 = {1, 17210368, 52521875, 60466176, 205962976},

and C5,10 consists of the following cycles:

(16807, 5153632, 9765625, 102400000), (6436343, 20511149), (28629151, 45435424).

Proof. Since e, b are already given, we obtain bk/(k + 1)e → +∞ as k → ∞,

and so there exists M ≥ 1 such that bk/(k + 1)e > (b − 1)e for all k ≥ M . This

proves (i). Suppose x ≥ bM . Then x = (akak−1 . . . a0)b where k ≥ M , ak ̸= 0, and

0 ≤ ai ≤ b− 1 for all i = 0, 1, . . ., k. Then by (i), we obtain

ge,b(x) = (ak + ak−1 + · · ·+ a0)
e ≤ ((k + 1) (b− 1))e < bk ≤ akb

k ≤ x.

This proves (ii). Then (iii) follows from (ii), Theorem 3.5, and exactly the same

argument as in Theorem 3.6. For (iv), to determine the set Fe,b and Ce,b for a

particular pair of (e, b), we only need to apply Lemma 3.8 and run a computation

on the integers in [1, bM) as in the proof of Theorem 3.6. If e = 2 and b = 10,

we can take Me,b = 4. After checking
(
g
(n)
e,b (x)

)
n≥1

for x in the interval [1, 104),

we obtain F2,10 = {1, 81}, C2,10 = {(169, 256)}. If e = 3 and b = 10, we can take

Me,b = 6. Then running a computation for g
(n)
e,b (x) where n ∈ N and x ∈ [1, 106),

we obtain

F3,10 = {1, 512, 4913, 5832, 17576, 19683} and C3,10 = {(6859, 21952)}.
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Similarly, if (e, b) = (4, 10), then we take Me,b = 8; if (e, b) = (5, 10), then we take

Me,b = 10. After running a computation in a computer, we obtain F4,10, C4,10,

F5,10, and C5,10 as given above. So the proof is complete.

Observing that 3435 = 33+44+33+55, we are interested in determining

all numbers with this property. So we should consider h(x) = aakk +a
ak−1

k−1 + · · ·+aa00

if x = (akak−1 . . . a0)10 but there is a problem with this definition since 00 is

not defined. One way to avoid this is to skip the zero digit and define h(x) =

bbmm + b
bm−1

m−1 + · · ·+ bb00 if x = (akak−1 . . . a0)10 and bm, bm−1, . . ., b0 are taken from

ak, ak−1, . . ., a0 but without zero. Equivalently, we can temporarily assign the

value 00 = 0 and study the following function.

Definition 3.10. Let h : N ∪ {0} → N ∪ {0} be defined by h(0) = 0, h(a) = aa if

a ∈ {1, 2, . . . , 9}, and

h(x) = h(ak) + h(ak−1) + · · ·+ h(a0)

if x ≥ 10 and x = (akak−1 . . . a0)10 is the decimal representation of x with ak ̸= 0.

Equivalently, we can assign 00 = 0 and define h by

h(x) = aakk + a
ak−1

k−1 + · · ·+ aa00

for each x = (akak−1 . . . a0)10.

The calculation for h can be done in the same way as that for fb and

ge,b, so we skip the details and leave them to the reader. We have the following

result.
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Theorem 3.11. The following statements hold.

(i) (k + 1) 99 < 10k for all k ≥ 10.

(ii) h(x) < x for all x ≥ 1010.

(iii) h satisfies the condition (B) and there exists a finite set A ⊆ N such that for

every x ∈ N, there is n ∈ N such that h(n)(x) ∈ A.

(iv) The set of fixed points of h is {1, 3435, 438579088}.

Proof. The statement (i) can be proved by induction. If x ≥ 1010, then we write

x = (akak−1 . . . a0)10 with k ≥ 10 and ak ̸= 0, and so

h(x) ≤ 99(k + 1) < 10k ≤ ak10
k ≤ x.

Then (iii) follows from (ii), Theorem 3.5, and exactly the same argument as before.

Then running a computation in a computer, we obtain (iv).



 

Chapter 4

Diophantine Equations and Proofs of Some Mathematical

Memes

Many people have seen some fun fact in mathematics from memes which are dis-

tributed via social media worldwide. Memes can be discovered by anyone and can

definitely be appreciated without proofs or explanations. Nevertheless, we show

that our results can be interpreted as solutions to certain Diophantine equations

and use them to explain or create some memes. For example, the only fixed points

of f10 are 1, 2, 145, and 40585, and so the solutions in nonnegative integers ak,

ak−1, . . ., a0 with ak ̸= 0 to the Diophantine equation

ak! + ak−1! + · · ·+ a0! = (akak−1 . . . a0)10

are given by the numbers 1, 2, 145, and 40585.

Corollary 4.1. 1 = 1!, 2 = 2!, 145 = 1!+4!+5!, 40585 = 4!+0!+5!+8!+5!, and

these are the only positive integers with this property. That is, a positive integer

x is the sum of the factorials of all its decimal digits (except the leading zeros) if

and only if x = 1, 2, 145, or 40585.

Proof. Let f10(x) be the function in Theorem 3.3. We would like to find all x ∈ N

such that f10(x) = x. By Theorem 3.3, f10(x) < x for all x ≥ 107. So we only need
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to find x < 107 such that f10(x) = x, which can be done using a computer.

Corollary 4.2. 1 = (1)9 = 1!, 2 = (2)9 = 2!, 41282 = (62558)9 = 6!+2!+5!+5!+8!

and these are the only positive integers with this property. That is, if x ∈ N, then

x is the sum of factorials of its digits (in base 9) if and only if x = (1)9, (2)9,

(62558)9.

Proof. This follows immediately from Remark 3.7.

Corollary 4.3. We have

1 = 13, 512 = (5 + 1 + 2)3, 4913 = (4 + 9 + 1 + 3)3,

5832 = (5 + 8 + 3 + 2)3, 17576 = (1 + 7 + 5 + 7 + 6)3, 19683 = (1 + 9 + 6 + 8 + 3)3,

and these are the only positive integers with this property. That is, if x ∈ N, then

x is the cubes of the sum of its decimal digits if and only if x = 1, 512, 4913, 5832,

17576, or 19683. Similarly,

1 = 14, 2401 = (2 + 4 + 0 + 1)4,

234256 = (2 + 3 + 4 + 2 + 5 + 6)4, 390625 = (3 + 9 + 0 + 6 + 2 + 5)4,

614656 = (6 + 1 + 4 + 6 + 5 + 6)4, 1679616 = (1 + 6 + 7 + 9 + 6 + 1 + 6)4

are the only positive integers that are equal to the 4th power of the sum of their
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decimal digits;

1 = 15, 17210368 = (1 + 7 + 2 + 1 + 0 + 3 + 6 + 8)5,

52521875 = (5 + 2 + 5 + 2 + 1 + 8 + 7 + 5)5,

60466176 = (6 + 0 + 4 + 6 + 6 + 1 + 7 + 6)5,

205962976 = (2 + 0 + 5 + 9 + 6 + 2 + 9 + 7 + 6)5

are the only positive integers that are equal to the 5th power of the sum of their

decimal digits.

Proof. This follows immediately from Theorem 3.9.

Corollary 4.4. 1 = 11, 3435 = 33 +44 +33 +55, 438579088 = 44 +33 +88 +55 +

77 + 99 + 88 + 88, and these are the only positive integers with this property.

Proof. This follows immediately from Theorem 3.11.

Other known results in the literature can be used to produce fun fact

or memes too. Here we rewrite the results of Grundman and Teeple [10], and

Hargreaves and Siksek [12].

Corollary 4.5. (Grundman and Teeple [10], and Hargreaves and Siksek [12]) We

have

1 = 13, 153 = 13+53+33, 370 = 33+73+03, 371 = 33+73+13, 407 = 43+03+73,

and these are the only positive integers with this property. That is, if x ∈ N, then

x is the sum of the cubes of its decimal digits if and only if x = 1, 153, 370, 371,
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407. Similarly,

1 = 14, 1634 = 14 +64 +34 +44, 8208 = 84 +24 +04 +84, 9474 = 94 +44 +74 +44,

are the only positive integers that are equal to the sum of the 4th powers of their

decimal digits. In addition,

1 = 15, 4150 = 45 + 15 + 55 + 05, 4151 = 45 + 15 + 55 + 15,

54748 = 55 + 45 + 75 + 45 + 85, 92727 = 95 + 25 + 75 + 25 + 75,

93084 = 95 + 35 + 05 + 85 + 45, 194979 = 15 + 95 + 45 + 95 + 75 + 95

are the only positive integers that are equal to the sum of the 5th powers of their

decimal digits.



 

Chapter 5

Computer Code for the Using MATLAB

In this chapter, we will explain the MATLAB code that we use various theorems.

For the first below code, we use it to calculate the general result of

Definition 1.2.

1 c l e a r a l l ; % c l e a r s v a r i a b l e s . I t a l s o c l e a r s a l o t o f

other th ing s from memory , such as breakpoints ,

p e r s i s t e n t va r i ab l e s , and cached memory .

2 c l c ; % c l e a r s the command window

3 k=4; % d i g i t s numbers

4 f p r i n t f ( ’===== x i s %d d i g i t numbers =====\n ’ , k+1) ;

5 cy c l e = [ ] ;

6 f o r x=10ˆk : 10ˆ ( k+1)−1

7 % s p l i t a number in to i t s i nd i v i dua l par t s

8 newx=rem( f l o o r ( x . / ( 1 0 . ˆ ( f l o o r ( log10 (x ) ) :−1:0) ) ) ,10) ;

9 % so r t new number to descending and ascending

10 desc=so r t (newx , ’ descend ’ ) ;

11 asc=so r t (newx) ;

12 % sum the i nd i v i dua l d i g i t s



 27

13 gx1=0; gx2=0;

14 f o r i =1: l ength (newx)

15 gx1 = gx1 + desc ( i ) ∗10ˆ( l ength (newx)− i ) ;

16 gx2 = gx2 + asc ( i ) ∗10ˆ( l ength (newx)− i ) ;

17 end

18 gx = gx1 − gx2 ;

19 % adding 0 when d i g i t s number i s not equal to k .

20 i f ( gx < 10ˆk )

21 gx = gx ∗10 ;

22 end

23 % s p l i t a number in to i t s i nd i v i dua l par t s

24 y=rem( f l o o r ( gx . / ( 1 0 . ˆ ( f l o o r ( log10 ( gx ) ) :−1:0) ) ) ,10) ;

25 % sum the i nd i v i dua l d i g i t s

26 fx1=0; fx2=0;

27 f o r i =1: l ength (y )

28 fx1 = fx1 + y( i ) ∗10ˆ( l ength (y )− i ) ;

29 fx2 = fx2 + y( i ) ∗10ˆ( i −1) ;

30 end

31 fx = fx1 + fx2 ;

32 % pr inted any numbers yet ?

33 i f l ength ( f i nd ( cy c l e==fx ) )==0

34 f p r i n t f ( ’%d\n ’ , fx ) ;
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35 cy c l e =[ cyc l e , fx ] ;

36 end

37 end

Next, let b = 10 and we know that M10 = 7 in Lemma 3.1, so we use

the code below to find the set F10 of fixed points of f10 and the set C10 of cycles

in the iteration f
(n)
10 (x) for any n ∈ N, 1 ≤ x < 107 in Theorem 3.6 as follows.

1 c l e a r a l l ; c l c ;

2 base=10; m=7; % m in Lemma 3 .1

3 cy c l e = [ ] ;

4 f o r x=1: base ˆm − 1

5 r e c a l =1; k e rne l = [ ] ;

6 whi le ( r e ca l >0)

7 j =0; newx=x ; number=0;

8 % s p l i t number in to i t s i nd i v i dua l par t s and sum

f a c t o r i a l s o f a l l i t s d i g i t s

9 whi le ( j>=0)

10 number = number + f a c t o r i a l (mod(newx , base ) ) ;

11 newx = f l o o r (newx/base ) ;

12 i f ( newx == 0)

13 j=−1;

14 e l s e i f (newx < base )

15 number = number + f a c t o r i a l (newx) ;
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16 j=−1;

17 end

18 end

19 % break f o r f i x e d po int

20 i f x == number

21 i f l ength ( f i nd ( cy c l e==number ) )==0

22 f p r i n t f ( ’%d\n ’ , number ) ;

23 cy c l e =[ cyc l e , number ] ;

24 end

25 r e c a l=−1;

26 % break or r e l oop f o r cy c l e

27 e l s e

28 i f l ength ( f i nd ( ke rne l==number ) )==0

29 ke rne l =[ kerne l , number ] ;

30 x=number ;

31 e l s e

32 inxcy = f i nd ( ke rne l==number ) ;

33 i f l ength ( f i nd ( cy c l e==number ) )==0

34 f p r i n t f ( ’ ( ’ ) ;

35 f o r idx=inxcy : l ength ( ke rne l )

36 f p r i n t f ( ’%d , ’ , k e rne l ( idx ) ) ;

37 cy c l e =[ cyc l e , k e rne l ( idx ) ] ;
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38 end

39 f p r i n t f ( ’ )\n ’ ) ;

40 end

41 r e c a l=−1;

42 end

43 end

44 end

45 end

In the same way, to calculate the results of Theorem 3.9, we just change

the conditions of the calculation function but for finding fixed points and cycles

are written the same.

1 c l e a r a l l ; c l c ;

2 base=10; m=6; % m in Theorem 3 . 9 ( i )

3 e=3; % e th power

4 cy c l e = [ ] ;

5 f o r x=1: base ˆm − 1

6 r e c a l =1; k e rne l = [ ] ;

7 whi le ( r e ca l >0)

8 % s p l i t number in to i t s i nd i v i dua l par t s and power

o f sums in g iven base

9 arrnumber = rem( f l o o r ( x . / ( base . ˆ ( f l o o r ( l og (x ) / log (

base ) ) :−1:0) ) ) , base ) ;
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10 number = sum( arrnumber ) ˆe ;

11 % break f o r f i x e d po int

12 i f x == number

13 i f l ength ( f i nd ( cy c l e==number ) )==0

14 f p r i n t f ( ’%d\n ’ , number ) ;

15 cy c l e =[ cyc l e , number ] ;

16 end

17 r e c a l=−1;

18 % break or r e l oop f o r cy c l e

19 e l s e

20 i f l ength ( f i nd ( ke rne l==number ) )==0

21 ke rne l =[ kerne l , number ] ;

22 x=number ;

23 e l s e

24 inxcy = f i nd ( ke rne l==number ) ;

25 i f l ength ( f i nd ( cy c l e==number ) )==0

26 f p r i n t f ( ’ ( ’ ) ;

27 f o r idx=inxcy : l ength ( ke rne l )

28 f p r i n t f ( ’%d , ’ , k e rne l ( idx ) ) ;

29 cy c l e =[ cyc l e , k e rne l ( idx ) ] ;

30 end

31 f p r i n t f ( ’ )\n ’ ) ;
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32 end

33 r e c a l=−1;

34 end

35 end

36 end

37 end

Finally, we use the last code to calculate the last theorem, in which the

principle of coding remains the same as the previous theorem.

1 c l e a r a l l ; c l c ;

2 base=10; m=10; % m in Theorem 3 . 11 ( i )

3 cy c l e = [ ] ;

4 f o r x=1: base ˆm − 1

5 j =0; newx=x ; number=0;

6 % s p l i t number in to i t s i nd i v i dua l par t s and sum of

i t s e l f power

7 whi le ( j>=0)

8 d i g i t = mod(newx , base ) ;

9 i f ( d i g i t ˜= 0)

10 number = number + d i g i t ˆ d i g i t ;

11 end

12 newx = f l o o r (newx/base ) ;

13 i f ( newx == 0)
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14 j=−1;

15 e l s e i f (newx < base )

16 number = number + newxˆnewx ;

17 j=−1;

18 end

19 end

20 % break f o r f i x ed po int

21 i f x == number

22 i f l ength ( f i nd ( cy c l e==number ) )==0

23 f p r i n t f ( ’%d\n ’ , number ) ;

24 cy c l e =[ cyc l e , number ] ;

25 end

26 end

27 end
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Abstract

We study a variation of the Kaprekar operator F (x) for all non-
negative integers x and show that the range of F consists of 0, 99,
1089, and the integers of the form 1099 . . . 98900 . . . 0, where 99 . . . 9
and 00 . . . 0 may be long, short, or disappear.

1 Introduction and Statement of the Main
Result

Throughout this article, if y ∈ R, then "y# is the largest integer less than or
equal to y and $y% is the smallest integer larger than or equal to y. Unless
stated otherwise, all other variables are nonnegative integers. For any x ∈
N ∪ {0}, we write the decimal expansion of x as

x = (akak−1 . . . a1a0)10 =
∑

0≤j≤k

ak−j10
k−j,

where 0 ≤ ai ≤ 9 for all i = 0, 1, 2, . . ., k.
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2 N. Phoopha, P. Pongsriiam

The Kaprekar operator K is defined by the following operation: take any
positive integer x having four decimal digits which are not all equal and the
leading digit is not zero, say x = (a3a2a1a0)10, a3 (= 0, and ai (= aj for some
i, j, then rearrange a3, a2, a1, a0 as c3, c2, c1, c0 so that c3 ≥ c2 ≥ c1 ≥ c0.
Then

K(x) = (c3c2c1c0)10 − (c0c1c2c3)10. (1.1)

Observe that the second number on the right-hand side of (1.1) is obtained
by reversing the decimal digits of the first. It is well known that no matter
what x we start with, after repeating this process at most 7 steps, we always
obtain the number 6174. For example, suppose x = 1000. Then

K(x) = 1000− 1 = 999,

K2(x) = K(K(x)) = K(999) = K(0999) = 9990− 0999 = 8991,

K3(x) = K(8991) = 9981− 1899 = 8082,

K4(x) = 8820− 0288 = 8532,

K5(x) = 8532− 2358 = 6174,

and Km(x) = 6174 for all m ≥ 6. Here, it is important to keep in mind that
the Kaprekar operator operates on the positive integers having four digits
not all equal. So the decimal representation of K(x) with nonzero leading
digit may have only 3 digits but, to calculate K(K(x)), we must first write
K(x) as 4 digits number by adding 0 as the leading digit, as shown above
in K(999) = K(0999). We can generalize K to operate on any nonnegative
integers as follows:

Definition 1.1 (Kaprekar operator on nonnegative integers). Let g :
N∪ {0} → N∪ {0} be given by g(0) = .0 If x = (akak−1 . . . a0)10, ak (= 0, and
ck, ck−1, . . ., c0 is the permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥
· · · ≥ c0, then

g(x) = (ckck−1 . . . c1c0)10 − (c0c1 . . . ck−1ck)10.

In addition, for the purpose of this article, if x is as above, then we always
write the decimal representation of g(x) as k + 1 digits number, say g(x) =
(bkbk−1 . . . b0)10.

Another trick is as follows: take any positive integer having three digits,
say x = (a2a1a0)10, where a2 (= 0, 0 ≤ aj ≤ 9 for all j, and ai (= aj for
some i, j. Then calculate g(x), say g(x) = b = (b2b1b0)10. Then compute
f(b) = b + reverse(b) = (b2b1b0)10 + (b0b1b2)10. No matter what x we start
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with, we always obtain f(b) = 1089. We generalize this to the following
operator:

Definition 1.2. Let f be the reverse and add an operator. Let F : N∪{0} →
N ∪ {0} be defined by F = f ◦ g. In addition, to calculate F (x) = f(g(x)),
we always keep the same convention in Definition 1.1, where the number of
decimal digits of x and g(x) are equal.

For example, suppose x = 100. Then g(x) = 99 = 099 and so F (x) =
f(099) = 990 + 099 = 1089. By using a computer or a straightforward
calculation, it is not difficult to notice the following pattern:

if 10 ≤ x < 102, then F (x) = 0 or 99;

if 102 ≤ x < 103, then F (x) = 0 or 1089;

if 103 ≤ x < 104, then F (x) = 0, 10890, or 10989;

if 104 ≤ x < 105, then F (x) = 0, 109890, or 109989.

In general, we have the following result.

Theorem 1.3. Let F = f ◦ g, k ≥ 2, and 10k ≤ x < 10k+1. Let x =
(akak−1 . . . a0)10, ak (= 0, and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If k = 2,
then F (x) = 0 or 1089. Suppose that k ≥ 3 and ck, ck−1, . . ., c0 is the
permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0. Let m = z(x)
be the largest element of the set {j ∈ {0, 1, . . . , k} | ck−j > cj}. If ai = aj for
all i, j, then F (x) = 0. If ai (= aj for some i, j, then

F (x) = 10 99 . . .9
︸ ︷︷ ︸

y(x)

89 00 . . . 0
︸ ︷︷ ︸

z(x)

,

where y(x) = k − 2− z(x).

Although the result is easy to observe for k = 2, 3, 4, it is more difficult
when k is large. As far as we know, there is no proof for a general k. We
hope that this article will help explain something related to 6174, 1089, and
other similar magic numbers. Finally, it is an interesting open problem to
determine whether or not a given number in the range of F is a Lychrel num-
ber. We leave this problem for the interested reader. For more information
on 6174 and the Kaprekar operator, see for instance in [5], [6], and [7]. For
related articles on 1089 and 2178, see for example [1], [2], [3], [4], [8], [9], and
[10].
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2 Proof of the Main Result
Proof. We first consider the case k = 2. Since 102 ≤ x < 103, it can be
written in the decimal representation as x = (a2a1a0)10, where a2 (= 0 and
0 ≤ ai ≤ 9 for i = 0, 1, 2. If a2 = a1 = a0, then F (x) = 0. So suppose that
a2, a1, a0 are not all the same and let c2, c1, c0 be the permutation of a2, a1,
a0 such that c2 ≥ c1 ≥ c0. Then c2 > c0 and

g(x) = (c2c1c0)10 − (c0c1c2)10
= (102c2 + 10c1 + c0)− (102c0 + 10c1 + c2)

= 102(c2 − c0 − 1) + 10(9) + 10− (c2 − c0)

= (d2d1d0)10,

where d2 = c2 − c0 − 1, d1 = 9, and d0 = 10 − (c2 − c0). Then it is easy to
see that

F (x) = (d2d1d0)10 + (d0d1d2)10 = 1089.

Next, let k ≥ 3, 10k ≤ x < 10k, and write x = (akak−1 . . . a0)10, where ak (= 0
and 0 ≤ ai ≤ 9 for all i = 0, 1, . . ., k. If ai = aj for all i, j, then F (x) = 0
and we are done. So suppose that ai (= aj for some i, j. Let ck, ck−1, . . ., c0
be the permutation of ak, ak−1, . . ., a0 such that ck ≥ ck−1 ≥ · · · ≥ c0. Then

g(x) = (ckck−1 . . . c0)− (c0c1 . . . ck)10

=
k
∑

j=0

ck−j10
k−j −

k
∑

j=0

cj10
k−j

=
k
∑

j=0

(ck−j − cj)10
k−j. (2.2)

Let A = {j ∈ {0, 1, . . . , k} | ck−j > cj}. Since ck > c0, we see that 0 ∈ A,
and so A (= ∅. Let m be the largest element of A. If m ≥ $k

2%, then
k−m ≤ k−$k

2% = "k
2# ≤ m, which implies ck−m ≤ cm which contradicts the

fact that m ∈ A. Therefore, 0 ≤ m < $k
2%. Since m is the largest element of
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A and ck ≥ ck−1 ≥ · · · ≥ c0, we assert that the following relations hold:

ck−j > cj for 0 ≤ j ≤ m, (2.3)

ck−j ≤ cj for j > m, (2.4)

ck−j = cj for m < j ≤

⌊
k

2

⌋

, (2.5)

ck−j = cj for

⌈
k

2

⌉

≤ j < k −m, (2.6)

ck−j < cj for k −m ≤ j ≤ k. (2.7)

For (2.3), we know that ck−m > cm and if 0 ≤ j < m, then ck−j ≥ ck−m >
cm ≥ cj . So (2.3) is verified. By the choice of m, (2.4) follows immediately.
If j ≤ "k

2#, then k− j ≥ k−"k
2# = $k

2% ≥ j, and so ck−j ≥ cj. This and (2.4)
imply (2.5). Replacing j by k − j in (2.5), we obtain (2.6). Changing j to
k − j in (2.3), we obtain (2.7).

Next, we divide the sum in (2.2) into 3 parts: 0 ≤ j ≤ m, m < j < k−m,
and k −m ≤ j ≤ k. By (2.5) and (2.6), the second part is zero. Therefore,
(2.2) becomes

g(x) =
∑

0≤j≤m

(ck−j − cj)10
k−j +

∑

k−m≤j≤k

(ck−j − cj)10
k−j. (2.8)

The terms ck−j − cj in (2.8) are positive in the first sum and negative in the
second. Then we write

10k−m =

(

∑

m+1≤j≤k−1

9 · 10k−j

)

+ 10

=

(

∑

m+1≤j≤k−m−1

9 · 10k−j

)

+

(

∑

k−m≤j≤k−1

9 · 10k−j

)

+ 10.

Let dk−m = ck−m − cm − 1 and d0 = 10 + c0 − ck. Then

(ck−m − cm)10
k−m +

∑

k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m + 10k−m +

∑

k−m≤j≤k

(ck−j − cj)10
k−j

= dk−m10
k−m +

(

∑

m+1≤j≤k−m−1

9 · 10k−j

)

+
∑

k−m≤j≤k−1

(9 + ck−j − cj) 10
k−j + d0, (2.9)
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where dk−m, d0, and the coefficients of 10k−j in the above equation are non-
negative and are less than 10. Therefore, (2.8) and (2.9) imply that we can
write g(x) in the decimal expansion as:

g(x) = (dkdk−1 . . . d0)10 =
∑

0≤j≤k

dk−j10
k−j,

where 0 ≤ di ≤ 9 for all i = 0, 1, 2, . . ., k, and dk−j satisfies the following
relations:

dk−j = ck−j − cj for 0 ≤ j < m, (2.10)

dk−m = ck−m − cm − 1, (2.11)

dk−j = 9 for m+ 1 ≤ j ≤ k −m− 1, (2.12)

dk−j = 9 + ck−j − cj for k −m ≤ j ≤ k − 1, (2.13)

d0 = 10 + c0 − ck. (2.14)

Since the decimal expansion of g(x) has k + 1 digits, that of f(g(x)) has at
most k + 2 digits. Then

F (x) = f(g(x)) = (dkdk−1 . . . d0)10 + (d0d1 . . . dk)10 = (ek+1ek . . . e0)10,

where 0 ≤ ei ≤ 9 for all i = 0, 1, . . ., k + 1. From elementary arithmetic,
recall the fact that e0 = d0 + dk − 10ε0, where ε0 = 0 if d0 + dk < 10, and
ε0 = 1 if d0+dk ≥ 10. In addition, ej = dj+dk−j+εj−1−10εj for 1 ≤ j ≤ k,
where εj−1 = 0 if there is no carry in the addition in the (j − 1)th position
and εj−1 = 1 otherwise; while εj = 0 if dj + dk−j + εj−1 < 10, and εj = 1 if
dj + dk−j + εj−1 ≥ 10. Moreover, ek+1 = 0 if there is no carry in the addition
in the kth position and ek+1 = 1 otherwise. We now calculate e0, e1, . . ., ek,
ek+1 by using this fact and the relations in (2.10) to (2.14). We obtain

e0 = d0 + dk − 10ε0 = (10 + c0 − ck) + (ck − c0)− 10ε0 = 10− 10ε0,

which implies ε0 = 1 and e0 = 0. Then

e1 = d1+dk−1+1−10ε1 = (9+c1−ck−1)+(ck−1−c1)+1−10ε1 = 10−10ε1,

which implies ε1 = 1 and e1 = 0. In general, we replace j by k − j in (2.13)
to get dj = 9 + cj − ck−j for 1 ≤ j ≤ m; and if εj−1 = 1 and 2 ≤ j ≤ m− 1,
then

ej = dj+dk−j+1−10εj = (9+ cj − ck−j)+(ck−j− cj)+1−10εj = 10−10εj,
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which implies εj = 1 and ej = 0. Applying this observation for j = 2, 3, . . .,
m− 1, respectively, we obtain

ε2 = 1, e2 = 0, ε3 = 1, e3 = 0, . . . , εm−1 = 1, em−1 = 0.

Then

em = dm + dk−m + 1− 10εm
= (9 + cm − ck−m) + (ck−m − cm − 1) + 1− 10εm = 9− 10εm,

which implies εm = 0 and em = 9. Then em+1 = dm+1 + dk−m−1 − 10εm+1 =
9+9−10εm+1, which implies εm+1 = 1 and em+1 = 8. In general, we replace
j by k − j in (2.12) to obtain dj = 9 for m + 1 ≤ j ≤ k − m − 1; and if
εj−1 = 1 and m+ 2 ≤ j ≤ k −m− 1, then

ej = dj + dk−j + εj−1 − 10εj = 9 + 9 + 1− 10εj = 19− 10εj,

which implies εj = 1 and ej = 9. Applying this observation for j = m + 2,
m+ 3, . . ., k −m− 1, respectively, we obtain

εm+2 = 1, em+2 = 9, εm+3 = 1, em+3 = 9, . . . , εk−m−1 = 1, ek−m−1 = 9.

Then

ek−m = dk−m + dm + 1− 10εk−m

= (ck−m − cm − 1) + (9 + cm − ck−m) + 1− 10εk−m = 9− 10εk−m,

which implies εk−m = 0 and ek−m = 9. Then

ek−m+1 = dk−m+1 + dm−1 − 10εk−m+1

= (ck−m+1 − cm−1) + (9 + cm−1 − ck−m+1)− 10εk−m+1

= 9− 10εk−m+1,

which implies εk−m+1 = 0 and ek−m+1 = 9. In general, we replace j by k − j
in (2.13) to obtain dj = 9 + cj − ck−j for 1 ≤ j ≤ m; and if εk−j−1 = 0 and
1 ≤ j < m, then

ek−j = dk−j+dj−10εk−j = (ck−j−cj)+(9+cj−ck−j)−10εk−j = 9−10εk−j,

which implies εk−j = 0 and ek−j = 9. Applying this observation for j = m−2,
m− 3, . . ., 1, respectively, we obtain

εk−m+2 = 0, ek−m+2 = 9, εk−m+3 = 0, ek−m+3 = 9, . . . , εk−1 = 0, ek−1 = 9.
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Then

ek = dk + d0 − 10εk = (ck − c0) + (10 + c0 − ck)− 10εk = 10− 10εk,

which implies εk = 1 and ek = 0. Then ek+1 = 1. To conclude, we obtain
ej = 0 for 0 ≤ j < m, em = 9, em+1 = 8, ej = 9 for m + 2 ≤ j ≤ k − 1,
ek = 0, and ek+1 = 1. This completes the proof.
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