

SOME MATCHING PROPERTIES IN COMPLEMENTARY PRISM OF

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics

Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2015
Copyright of Graduate School, Silpakorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics

Department of Mathematics
Graduate School, Silpakorn University
Academic Year 2015
Copyright of Graduate School, Silpakorn University

สมบัติการจับคู่บางประการในกราฟปริซึมเติมเต็ม

The Graduate School, Silpakorn University has approved and accredited the Thesis title of "Some Matching Properties in Complementary Prism of Graphs" submitted by Sqn.Ldr. Pongthep Janseana as a partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

The Thesis Advisor
Associate Professor Nawarat Ananchuen, Ph.D.

The Thesis Examination Committee

(Associate Professor Watcharaphong Ananchuen, Ph.D.)
\qquad
\qquad ../. \qquad
\qquad Member
(Associate Professor Nawarat Ananchuen, Ph.D.)
\qquad
\qquad
\qquad

KEY WORDS : MATCHING EXTENSION / COMPLEMENTARY PRISM / REGULAR GRAPHS
PONGTHEP JANSEANA, SQN.LDR. : SOME MATCHING PROPERTIES IN COMPLEMENTARY PRISM OF GRAPHS THESIS ADVISOR : ASSOC. PROF. NAWARAT ANANCHUEN, Ph.D. 30 pp.

Let \bar{G} denote the complement of a simple graph G. The complementary prism of G denoted by $G \bar{G}$ can be obtained by taking a copy of G and a copy of \bar{G} and then joining corresponding vertices by an edge. A connected graph G of order at least $2 k+2$ is k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M.

In this thesis, we establish some sufficient conditions for the complementary prism of regular graphs to be 2-extendable. We also show that for positive integers l_{1} and l_{2}, there exists a non-bipartite graph G such that G is l_{1}-extendable and \bar{G} is l_{2}-extendable. Finally, we show that if G is l_{1}-extendable and \bar{G} is l_{2}-extendable non-bipartite graphs for $l_{2} \geq 2$ and $l_{2} \geq 2$, then $G \bar{G}$ is $(l+1)$-extendable where $l=\min \left\{l_{1}\right.$, $\left.l_{2}\right\}$.

Department of Mathematics Graduate School, Silpakorn University

Student's signature \qquad
Thesis Advisor's signature

53305803 : สาขาวิชาคณิตศาสตร์
คำสำคัญ : การขยายการจับคู่ / กราฟปริซึมเติมเต็ม / กราฟปรกติ
พงค์เทพ จันทน์เสนะ, นาวาอากาศตรี : สมบัติการจับคู่บางประการในกราฟปริซึมเติม เต็ม อาจารย์ที่ปรึกษาวิทยานิพนธ์ : รศ.ดร.นวรัตน์ อนันต์ชื่น. 30 หน้า.

ให้ \bar{G} แทนกราฟเติมเต็มของกราฟ G กราฟปริซึมเติมเต็มของกราฟ G เขียนแทนด้วย $G \bar{G}$ สามารถสร้างได้จากกราฟ G และกราฟ \bar{G} โดยเชื่อมจุดที่สมนัยกันด้วยเส้นเชื่อม จะกล่าวว่า กราฟเชื่อมโยง G ที่มีอันดับอย่างน้อย $2 k+2$ มีการขยายการจับคู่ขนาด k ถ้าทุก ๆ การจับคู่ M ขนาด k ในกราฟ G มีการจับคู่สมบูรณ์ใน G ที่มี M เป็นสับเซต

ในวิทยานิพนธ์นี้ เราศึกษาเงื่อนไขเพียงพอบางประการที่ทำให้กราฟปริซึมเติมเต็มของ กราฟปรกติมีการขยายการจับคู่ขนจดด 2 เรายังแสดงว่าสำหรับจำนวนเต็มู l_{1} และ l_{2} จะมีกราฟ G ที่ ไม่ใช่กราฟสองส่วนซึ่ง G มีการขยายการจับคู่ขนาด l_{1} และ \bar{G} มีการขยายการจับคู่ขนาด l_{2} และ ท้ายสุด เราแสดงว่า ถ้า G มีการขยายการจับคู่ขนาด l_{1} และ \bar{G} มีการขยายการจับคู่ขนาด l_{2} โดยที่ G และ \bar{G} ไม่ใช่กราฟสองส่วน สำหรับ $l_{1} \geq 2$ และ $l_{2} \geq 2$ แล้ว $G \bar{G}$ มีการขยายการจับคู่ขนาด $l+1$ เมื่อ $l=\min \left\{l_{1}, l_{2}\right\}$

กยาลัยสล

ภาควิชาคณิตศาสตร์
$\begin{aligned} & \text { ลายมือชื่อนักศึกษา.. } \\ & \text { ลายมือชื่ออาจารย์ที่ปรึกษาวิทยานิพนธ์ }\end{aligned}$ ปีาวิทยาลัยศิลปากร
ปีการศึกษา 2558

Acknowledgements

This thesis has been completed by the involvement of people whom I would like to mention here. First of all, I would like to thank Assoc. Prof. Dr. Nawarat Ananchuen, my advisor, for her helpful suggestions, valuable comments and precious supports throughout the study with great attention. I also would like to thank Dr. Jittisak Rakbud and Assoc. Prof. Dr. Watcharaphong Ananchuen, Chairman and Member of the thesis Committee, for their valuable comments and suggestions. This thesis was supported by a research granted from the Graduate School Silpakorn University.

Finally, I would like to express my gratitude to my wife, my son and my friends for their understanding, encouragement and moral support during the study.

Table of Contents

Page
Abstract in English d
Abstract in Thai e
Acknowledgments f
List of Figures h
Chapter
1 Introduction 1
2 Literature review 4
3 Matching extension in complementary prism of regular graphs 8
4 Extendability of complementary prism of extendable graphs 16
Bibliography 28Biography
30

List of Figures

Figures Page
$1.1 \quad \boldsymbol{C}_{5} \overline{\boldsymbol{C}}_{5}$ 3
3.1 Graph F 11
3.2 a 3-regular graph G which $\boldsymbol{G} \overline{\boldsymbol{G}}$ is not 2 - extendable 11

Chapter 1

Introduction

In this chapter, we introduce some definitions and notations used in this thesis. Most of them follows that of Bondy and Murty ([3]).

A graph is a triple $G=\left(V(G), E(G), \omega_{G}\right)$, where $V(G)$ is a finite set of vertices, $E(G)$ is a set of edges and an incidence function ω_{G} that associates with each edge of G and an unordered pair of vertices of G. If e is an edge and x and y are vertices such that $\omega_{G}(e) \rightleftharpoons\{x, y\}$, then e is said to be incident to x and y. Further, the vertices x and y are called end vertices of e and we say that x and y are adjacent. The order of G is the cardinality of $V(G)$. Two or more edges that join the same pair of vertices are called parallel edges. An edge that joins itself is a loop. A graph G is simple if G has no loops and parallel edges. If G is simple and $\omega_{G}(e)=\{x, y\}$, then we simply denote e by $x y$.

A complete graph is a simple graph in which every pair of vertices are adjacent. A complete graph of order n is denoted by K_{n}. The complement \bar{G} of a graph G is that graph with $V(\bar{G})=V(G)$ and $x y \in E(\bar{G})$ if and only if $x y \notin E(G)$. A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. H is called an induced subgraph of G, denoted by $G[H]$, if, for every pair of $x, y \in V(H), x y \in E(H)$ if and only if $x y \in E(G)$. For graphs H and G, G is called H-free if G does not contain H as an induced subgraph. A subset of vertices $S \subseteq V(G)$ is called a clique if $G[S] \cong K_{r}$, for some r. A bipartite graph is a graph whose vertices can be divided into two disjoint sets X and Y such that every edge connects a vertex in X to a vertex in Y.

The neighbor set of a vertex v in G, denoted by $N_{G}(v)$, is defined by $\{u \in V(G) \mid u v \in E(G)\}$. For $v \in V(G)$ and $T \subseteq V(G)$, a neighbor set of a vertex v in T is denoted by $N_{T}(v)=\{u \in T \mid u v \in E(G)\}$ and if $X \subseteq V(G), N_{G}(X)$ denotes $\bigcup_{v \in X} N_{G}(v)$. Observe that $N_{T}(v)=N_{G}(v) \cap T$. The degree of a vertex u in G is denoted by $\operatorname{deg}_{G}(u)=\left|N_{G}(u)\right|$. The minimum degree and maximum degree in a graph G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. A regular graph is a graph which each vertex has the same degree and a k-regular graph is a regular graph with degree of a vertex is k.

A walk in a graph G is a finite, non-empty alternating sequence $W=$ $v_{0} e_{1} v_{1} e_{2} \ldots e_{n} v_{n}$ of vertices and edges such that for $1 \leq i \leq n$, the ends of edge e_{i} are v_{i-1} and v_{i}. W is said to be a walk from v_{o} to v_{n}. A path is a walk with distinct vertices. Two vertices x and y of G are connected if there is a path from
x to y. The distance between two vertices x, y in G, denoted by $d_{G}(x, y)$, is the length of a shortest $x y$-path in G. A graph G is connected if every pair of vertices of G are connected otherwise G is disconnected. A maximal connected subgraph of G is called a component of G. A graph G is called k-connected if removing less than k vertices from G, the resulting graph is connected. An odd(even) component is a component of odd (even) order. The number of odd components of G is denoted by $c_{o}(G)$.

A set $S \subseteq V(G)$ is called an independent vertex set if no two vertices of S are adjacent. The maximum cardinality of an independent set of G is denoted by $\alpha(G)$. A subset M of $E(G)$ is called a matching if no two edges of M have common end vertex. A vertex u is saturated by M if there is an edge in M incident with u. For simplicity, a set of all vertices saturated by M is denoted by $V(M) . M$ is called a maximum matching in G if G contains no matching of size greater than $|M|$. A perfect matching in G is a matching that saturates all vertices of G. If M_{1} and M_{2} are matching in a graph G, then a symmetric different of M_{1} and M_{2}, denoted by $M_{1} \Delta M_{2}$, is an induced subgraph $G\left[\left(M_{1}-\right.\right.$ $\left.\left.M_{2}\right) \cup\left(M_{2}-M_{1}\right)\right]$.

A set $S \subseteq V(G)$ is a dominating set of G, if $N_{G}(S) \cup S=V(G)$ and is a total dominating set if $N_{G}(S)=V(G)$. The domination number of G, denoted by $\gamma(G)$, (respectively, total domination number of G, denoted by $\gamma_{t}(G)$) is the number of vertices in a smallest dominating set (respectively, total dominating set) of G. A set $S \subseteq I(G)$ is an independent dominating set of G, if S is a dominating set and S is independent. The independent domination number of G, denoted by $\gamma_{i}(G)$, is the number of vertices in a smallest independent dominating set of G. A set $S \mp V(G)$ is a connected dominating set of G, if S is a dominating set and the induced subgraph $G[S]$ is connected. The connected domination number of G, denoted by $\gamma_{c}(G)$, is the number of vertices in a smallest conneeted dominating set of G. A set $D \subseteq V(G)$ is a locating-dominating set of G if for every $u \in V(G)-D$, its neigborhood $N_{G}(u) \cap D$ is non-empty and distinct from $N_{G}(v) \cap D$ for all $v \in V(G)-D$ where $v \neq u$. The locating-domination number of G, denoted by $\gamma_{L}(G)$, is the number of vertices in a smallest locating-dominating set of G. A set $D \subseteq V(G)$ is a double dominating set if D dominates every vertex of G twice or $\left|N_{G}(u) \cap D\right| \geq 2$ for all $u \in V(G)$. The double domination number of G, denoted by $\gamma_{\times 2}(G)$, is the number of vertices in a smallest double dominating set of G. A set $S \subseteq V(G)$ is a restrained dominating set of G, if for every vertex $v \in V(G)-S, v$ is adjacent to a vertex in S and to a vertex in $V(G)-S$. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the number of vertices in a smallest restrained dominating set of G.

For a positive integer k, a connected graph G of order at least $2 k+2$ is k-extendable if for every matching M of size k in G, there is a perfect matching in G containing all edges of M. A graph G is k-factor-critical if, for every set $S \subseteq V(G)$ with $|S|=k$, the graph $G-S$ contains a perfect matching. For $k=1$ and $k=2$, k-factor-critical graph is also called factor-critical and bicritical, respectively. For simplicity, a graph with a perfect matching is called 0 -extendable
and 0 -factor-critical. Observe that if G is k-extendable, then $|V(G)|$ is even and if G is k-factor-critical, then $|V(G)| \equiv k(\bmod 2)$.

For graphs H_{1} and H_{2} with disjoint vertex sets V_{1} and V_{2}, the join of H_{1} and H_{2}, denoted by $H_{1}+H_{2}$ is the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup\left\{u v \mid u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$. The cartesian product $G \times H$ of two graphs G and H has the vertex set $V(G) \times V(H)$ and two vertices (u_{1}, v_{1}) and $\left(u_{2}, v_{2}\right)$ are adjacent whenever $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$, or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$. The lexicographic product $G \circ H$ of two graphs G and H has the vertex set $V(G) \times V(H)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent either $u_{1} u_{2} \in E(G)$, or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$.

The complementary prism of G, denoted by $G \bar{G}$, is the graph obtained by taking a copy of G and a copy of \bar{G} and then joining corresponding vertices by an edge. The graph $C_{5} \bar{C}_{5}$ in Figure 1.1 is a complementary prism of C_{5}. Note that $C_{5} \bar{C}_{5}$ is isomorphic to the Petersen graph.

In this thesis, all graphs are simple and finite. Chapter 2 provides some basic background and preliminaries results on extendability and factor-criticality of graphs that we make use of in establishing our results. In Chapter 3, we establish a sufficient condition for the complementary prism of regular graphs to be 2-extendable. Chapter 4 provides some constructions of a graph G such that G and \bar{G} are l_{1}-extendable and l_{2}-extendable non-bipartite, respectively, where l_{1} and l_{2} are positive integers. We then establish that if G and \bar{G} are l_{1}-extendable and l_{2}-extendable non-bipartite graphs, respectively for $l_{1} \geq 2$ and $l_{2} \geq 2$, then $G \bar{G}$ is $(l+1)$-extendable where $l=\min \left\{l_{1}, l_{2}\right\}$.

Chapter 2

Literature Review

In this chapter, we proyide some background and preliminaries related to our work. In 1980, Plummer [16] introduced the concept of matching extension and established a fundamental theorem on k-extendable graphs (see Theorem 2.2). Since then it has been well studied, see surveys by Plummer $[18,19,20]$ and a book by Yu and Liu [26]. One of main topics in studying matching extension is to establish some sufficient conditions for a graph to be k-extendable. These conditions include degree sum [15], minimum degree [16], forbidden subgraph [17], genus of graph [21], etc. Moreover there are some results concerning the extendability of a graph obtained from a product of two graphs such as cartesian product [10], lexicographic product [2] and strong product [9]. A reader is directed to references in Bibliography ([18], [19], [20] and [26]) for more detailed. We shall provide only some results that used of in our work.

Our first result is a well known theorem for studying an existence of a perfect matching in graphs established by Tutte.

Theorem 2.1. [3] (Tutte's Theorem) A graph G has a perfect matching if and only if for any $S \subseteq V(G), c_{o}(G-S) \leq|S|$.

In 1980, Plummer [16] established a fundamental theorem on k-extendable graphs as following.

Theorem 2.2. [16] Let G be a graph of order $p \geq 2 k+2$ and $k \geq 1$. If G is k-extendable, then
(a) G is $(k-1)$-extendable, and
(b) G is $(k+1)$-connected.

He also gave a sufficient condition for a graph to be k-extendable in terms of minimum degree.

Theorem 2.3. [16] Let G be a graph of order $2 p$. If $\delta(G) \geq p+k$, for a nonnegative integer k, then G is k-extendable.

Ananchuen and Caccetta [1] gave a necessary condition for a neighbor set of a vertex having minimum degree in extendable graphs. They showed that:

Theorem 2.4. [1] If G is a k-extendable graph on $p \geq 2 k+2$ vertices with $\delta(G)=k+t, 1 \leq t \leq k \leq p$. If $d_{G}(u)=\delta(G)$, then the induced subgraph $G\left[N_{G}(u)\right]$ has at most $t-1$ independent edges.

A neccessary and sufficient condition for a graph to be k-extendable and to be k-factor-critical were provided by $\mathrm{Yu}[24]$ and Favaron [7], respectively.

Theorem 2.5. [24] A graph G is k-extendable $(k \geq 1)$ if and only if for any $S \subseteq V(G)$,
(a) $c_{o}(G-S) \leq|S|$ and
(b) $c_{o}(G-S)=|S|-2 t,(0 \leq t \leq k-1)$ implies that $F(S) \leq t$, where $F(S)$ is the size of a maximum matching in $G[S]$.
Theorem 2.6. [7] A graph G is k-factor-critical if and only if $|V(G)| \equiv k$ (mod 2) and for $S \subseteq V(G)$ with $|S| \geq k, c_{0}(G-S) \leq|S|-k$.

Some following properties of k-factor-critical graphs were proved in [7].
Theorem 2.7. [7] Let G be a k-factor-critical graph. Then G is $(k-2)$-factorcritical.

Theorem 2.8. [7] If G is a $2 k$-extendabl̄e non-bipartite graph for $2 k \geq 2$, then G is a $2 k$-factor-critical graph.

Maschlanka and Volkmann [14] gave a relationship between k-extendable non-bipartite graph and the independence number.

Theorem 2.9. [14] Let G be a k-extendable non-bipartitegraph of order p. Then $\alpha(G) \leq \frac{1}{2} p-k$.

In Phd. Thesis of Yu[25], he gave the following observation.
Observation 2.10. A graph G is k-extendable if and only if for any matching M of size $i(1 \leq i \leq k), G-V(M)$ is a $(k-i)$-extendable graph.

An observation on k-factor-critical graphs which is similar to Observation 2.10 can be stated as following.

Observation 2.11. Let G be a k-factor-critical graph and $S \subseteq V(G)$ where $|S| \leq$ k. Then $G-S$ is $(k-|S|)$-factor-critical.

A following lemma follows from Theorem 2.9.
Lemma 2.12. Let G be a k-extendable non-bipartite graph and $S \subseteq V(G)$ where $|S| \leq 2 k-2$. Then $G-S$ is a non-bipartite graph.

Proof. Suppose to the contrary that $G-S$ is a bipartite graph. Then $\alpha(G) \geq$ $\alpha(G-V(S)) \geq \frac{1}{2}(|V(G)|-(2 k-2))=\frac{1}{2}|V(G)|-k+1$. But this contradicts Theorem 2.9 and completes the proof of our lemma.

Our next corollary follows immediately by Observation 2.10 and Lemma

Corollary 2.13. Let G be a k-extendable non-bipartite graph and let $M \subseteq E(G)$ where $|M|=l \leq k-1$. Then $G-V(M)$ is $(k-l)$-extendable non-bipartite.

Note that the upper bound on $|M|$ in Corollary 2.13 is best possible. Let $G=K_{2 k}+K_{t, t}$ for some positive integers $k, t \geq 2$. It is easy to see that G is k extendable. Clearly, there is a matching M of size k in $G\left[K_{2 k}\right]$ such that $G-V(M)$ is a bipartite graph.

The following results concern the extendability of graphs obtained from a cartesian product, established by Györi and Plummer [10], Liu and Yu [13] and Wu et al. [23] and lexicographic product established by Bai et al. [2].

Theorem 2.14. [10, 13] If G is a k-extendable graph, then $G \times K_{2}$ is $(k+1)$ extendable.
Theorem 2.15. [13] If G is) a k-extendable graph and H is a connected graph, then $G \times H$ is $(k+1)$-extendable.

Theorem 2.16. [10] For non-negative integers l_{1} and l_{2}, let G_{i} be a l_{i}-extendable graph for $1 \leq i \leq 2$. Then $G_{1} \times G_{2}$ is $\left(l_{1}+l_{2}+1\right)$-extendable.
Theorem 2.17. [23] Let G_{1} be an m-factor-critical graph and G_{2} an n-factorcritical graph. Then $G_{1} \times G_{2}$ is $(m+n+\epsilon)$-factor-critical, when $\epsilon=0$, if both m and n are even; $\epsilon=1$, otherwise,

Theorem 2.18. [2] For non-negative integers l_{1} and t_{2}, let G_{i} be a l_{i}-extendable graph for $1 \leq i \leq 2$. Then $G_{1} \circ G_{2}$ is $2\left(l_{1}+1\right)\left(l_{2}+1\right)$-factor-critical. In particular, $G_{1} \circ G_{2}$ is $\left(l_{1}+1\right)\left(l_{2}+1\right)$-extendable.

We now turn our attention to complementary prism of graphs. A complementary prism is a specific case of complementary product of graphs introduced by Haynes et al. [5] in 2007. Haynes et al. [5, 6] studied some parameters of complementary prism of graphs such as the vertex independence number, the chromatic number and the domination number. Some of them are stated in the following theorems.

Theorem 2.19. [6] For any graph $G, \alpha(G)+\alpha(\bar{G})-1 \leq \alpha(G \bar{G}) \leq \alpha(G)+\alpha(\bar{G})$, and both these bounds are sharp.

Theorem 2.20. [6] For any graph G, $\max \{\gamma(G), \gamma(\bar{G})\} \leq \gamma(G \bar{G}) \leq \gamma(G)+$ $\gamma(\bar{G})$.

The bound on various domination number of complementary prism of graphs have been studied in Desormeaux [4], Haynes et al. [6], Holmes [11], Góngara, Desormeaux [8] and Vaughan [22]. These results are stated in the next six theorems.

Theorem 2.21. [4] For any graph G, $\max \{\gamma(G), \gamma(\bar{G})\} \leq \gamma_{r}(G \bar{G}) \leq \gamma_{r}(G)+$ $\gamma_{r}(\bar{G})$ and these bounds are sharp.

Theorem 2.22. [6] If G and \bar{G} have no isolated vertices, then $\max \left\{\gamma_{t}(G), \gamma_{t}(\bar{G})\right\} \leq$ $\gamma_{t}(G \bar{G}) \leq \gamma_{t}(G)+\gamma_{t}(\bar{G})$.

Theorem 2.23. [8] For any graph G, $\max \left\{\gamma_{i}(G), \gamma_{i}(\bar{G})\right\} \leq \gamma_{i}(G \bar{G}) \leq 2(n-1)-$ $\max \{\Delta(G), \Delta(\bar{G})\}$.

Theorem 2.24. [11] For any graph G, $\max \left\{\gamma_{L}(G), \gamma_{L}(\bar{G})\right\} \leq \gamma_{L}(G \bar{G}) \leq \gamma_{L}(G)+$ $\gamma_{L}(\bar{G})+1$.

Theorem 2.25. [11] For any graph G, $\max \{\gamma(G), \gamma(\bar{G})\} \leq \gamma_{c}(G \bar{G}) \leq \gamma_{c}(G)+$ $\gamma_{c}(\bar{G})+1$.

Theorem 2.26. [22] For any graph G with no isolated vertices, $\max \left\{\gamma_{\times 2}(G)\right.$, $\left.\gamma_{\times 2}(\bar{G})\right\} \leq \gamma_{\times 2}(G \bar{G}) \leq \gamma_{\times 2}(G)+\gamma_{\times 2}(\bar{G})$.

We now conclude this chapter by pointing out that matching extension in complementary prism of graphs has been studied recently. The only known results are the last two theorems established by Janseana et al. [12], in 2014.

Theorem 2.27. [12] For positive integers l and i where $1 \leq i \leq l$, let G_{1}, \ldots, G_{l} be components of G. If $G_{i} \bar{G}_{i}$ is k-extendable of order $p_{i} \geq 2 \bar{k}+2$ for some positive integer k, then $G \bar{G}$ is k-extendable.

Theorem 2.28. [12] Let G be a 2-regulär H-free graph where $H \in\left\{C_{3}, C_{4}, C_{5}\right\}$, then $G \bar{G}$ is 2-extendable.

Chapter 3

Matching extension in complementary prism of regular graphs

We begin this chapter by establishing some lemmas concerning complementary prism of graphs and of regular graphs. These results are essential for establishing Theorem 3.10 , a main result of this chapter. To simplify our discussion of complementary prisms, G and \bar{G} are referred to subgraph copies of G and \bar{G}, respectively, in $G \bar{G}$. For a vertex v of G, there is exactly one vertex of \bar{G} which is adjacent to v in $G \bar{G}=$ This vertex is denoted by \bar{v}. That is, $\{\bar{v}\}=N_{G \bar{G}}(v) \cap V(\bar{G})$. Conversely, v is the only vertex of G which is adjacent to \bar{v}. Similarly, for $\phi \neq X \subseteq\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V(G),\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}\right\} \subseteq V(\bar{G})$ is denoted by \bar{X} and vice versa. Clearly, $|X|=|\bar{X}|$.

Lemma 3.1. Let G be a graph. Then $G \bar{G}$ is even and connected.
Proof. Clearly, $G \bar{G}$ is even. Let $u, v \in V(G \bar{G})$. It is easy to see that if $u, v \in$ $V(G)(V(\bar{G}))$, then either $u v \in E(G)$ or $u \bar{u} \bar{v} v$ is a $u-v$ path. We may now assume that $u \in V(G)$ and $v \in V(\bar{G})$. Clearly, $u v \in E(G \bar{G})$ if $v=\bar{u}$. So suppose that $v=\bar{w}$ for some $w \in V(G)-\{u\}$. Then either $u \bar{u} \bar{w}$ or $u w \bar{w}$ is a $u-v$ path. This proves that $G \bar{G}$ is connected and completes the proof of our lemma.

For a graph G, it is easy to see that $G \bar{G}$ has a perfect matching. It then follows by Theorem 2.1 that for a cutset $S \subseteq V(G \bar{G}), c_{o}(G \bar{G}-S) \leq|S|$. The next lemma provides a relationship of a cutset and the number of odd components in a complementary prism.

Lemma 3.2. Let G be a graph and let $S=A \cup \bar{B}$ be a cutset of $G \bar{G}$, where $A \subseteq V(G)$ and $\bar{B} \subseteq V(\bar{G})$. Then
a) $c_{o}(G \bar{G}-S)=|S|-2 t=|A|+|B|-2 t$, for some $t \geq 0$.
b) $c_{o}(G \bar{G}-S) \leq c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}]) \leq|A|+|B|-2|A \cap B|$. Consequently, $|A \cap B| \leq t$.
c) If $c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])=|A|+|B|-2|A \cap B|$, then each component of $G[B-A] \cup \bar{G}[\bar{A}-\bar{B}]$ is singleton. Consequently, $A-B$ is a clique.

Proof. a) Since $G \bar{G}$ contains a perfect matching and is of even order, it follows by Theorem 2.1 that there is a non-negative integer t such that $c_{o}(G \bar{G}-S)=|S|-2 t$,
for any cutset $S \subseteq V(G \bar{G})$. Clearly, $|S|=|A|+|B|$. Thus $c(G \bar{G}-S)=|S|-2 t=$ $|A|+|B|-2 t$ as required.

We first observe that $|B-A|+|\bar{A}-\bar{B}|=|B-A|+|A-B|=|A|+|B|-$ $2|A \cap B|$ since $|A|=|A-B|+|A \cap B|$ and $|B|=|B-A|+|A \cap B|$.
b) Let $C=V(G)-(A \cup B)$. It is easy to see that if $C=\phi$, then $c_{o}(G \bar{G}-$ $S)=c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}]) \leq|B-A|+|\bar{A}-\bar{B}|=|A|+|B|-2|A \cap B|$. We now suppose that $C \neq \phi$. Then, by Lemma 3.1, $G \bar{G}[C \cup \bar{C}]$ is even and connected. Thus $c_{o}(G \bar{G}-S) \leq c_{o}(G \bar{G}-(S \cup C \cup \bar{C}))=c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}]) \leq$ $|B-A|+|\bar{A}-\bar{B}|=|A|+|B|-2|A \cap B|$ as required.
c) follows by the fact that $|B-A|+|A-B|=|A|+|B|-2|A \cap B|$.

For an induced subgraph H of G, Com_{H} denotes the set of all components in H. If $X \subseteq V(G)$, then we use $C o m_{X}$ for $\operatorname{Com}_{G[X]}$. For a cutset S of $G \bar{G}$, put $A=S \cap V(G), \bar{B}=S \cap(V(\bar{G})$ and $C=V(G)-(A \cup B)$. Thus $S=A \cup \bar{B}$. Further, let $T_{B-A}=\left\{F \mid F\right.$ is an odd eomponent of $G[B-A]$ and $N_{G}(u)-V(F) \subseteq$ A for all $u \in V(F)\}$. $T_{\bar{A}-\bar{B}}=\{F \mid F$ is an odd component of $\bar{G}[\bar{A}-\bar{B}]$ and $N_{\bar{G}}(\bar{u})-V(F) \subseteq \bar{B}$ for all $\left.\bar{u} \in V(F)\right\}$. Finally, let $L \notin L_{G} \cup L_{\bar{G}}$, where $L_{G}=\{F \mid F$ is an odd component in $G[B-A]$ and $\left.N_{G}(F(F)) \cap C \neq \phi\right\}$ and $L_{\bar{G}}=\{F \mid F$ is an odd component in $\bar{G}[\bar{A}-\bar{B}]$ and $\left.N_{G \bar{G}}(V(F)) \sim \bar{C} \neq \phi\right\}$. Note that if $C=\phi$, then $L=\phi$. Clearly, $T_{B-A} \cap L_{G}=\phi$ and $T_{\bar{A}-\bar{B}} \cap L_{\bar{G}}=\phi$. It is easy to see that, if G is connected and $G[B-A]$ contains only odd components, then $\operatorname{Com}_{B-A}=T_{B-A} \cup L_{G}$. Similarly, if \bar{G} is connected and $\bar{G}[\bar{A}-\bar{B}]$ contains only odd components, then $\operatorname{Com} \bar{A}-\bar{B}=T_{\bar{A}-\bar{B}} \cup L_{\bar{G}}$. In what follows, the symbols Com $_{H}$, $S, A, \bar{B}, C, T_{B-A}, T_{\bar{A}-\bar{B}}, L, L_{G}$ and $L_{\bar{G}}$ are referred to these set up.

The next lemma follows from our set up.
Lemma 3.3. Let G be an r-regular connected graph of order $p \geq 2 r+1$ and $G \bar{G}$ a complementary prism. If $|A|<r$, then T_{B-A} contains no singleton components. Similarly, if $|\bar{B}|<p-r-1$, then $T_{\bar{A}}-\bar{B}$ contains no singleton components.

Lemma 3.4. For $r \geq 3$, let G be a connected r-regular graph of order $p \geq 2 r+1$. Let $A, B, T_{B-A}, T_{\bar{A}-\bar{B}}$ be defined as abové. Then
a) If $G[A]=K_{r}$, then each component of T_{B-A} is of order at least 3 .
b) If $|A \cap B|=1$ and $G[A-B] \cong K_{r}$, then the number of singleton components in T_{B-A} is at most 1.
c) If $|A \cap B|=1$ and $G[A-B] \cong K_{r-1}$, then the number of singleton components in T_{B-A} is at most 2.

Proof. a) It follows by the fact that G is connected r-regular of order $p \geq 2 r+1$.
b) Suppose to the contrary that T_{B-A} contains two singleton components, say F_{1} and F_{2} where $V\left(F_{1}\right)=\left\{y_{1}\right\}$ and $V\left(F_{2}\right)=\left\{y_{2}\right\}$. Because $|A \cap B|=1, y_{1}$ and y_{2} are adjacent to at least $r-1$ vertices of $A-B$. Since $G[A-B]=K_{r}$ and $r \geq 3$, it follows that there exists a vertex of $A-B$, say y_{3}, such that $\left\{y_{1}, y_{2}\right\} \cup(A-B) \subseteq N_{G}\left(y_{3}\right)$. Thus $d_{G}\left(y_{3}\right) \geq r+1$, a contradiction
c) By applying similar arguments as in the proof of (b), (c) follows.

Let a be a real number, $\lfloor a\rfloor_{e}$ is denoted a greatest even integer less than or equal to a, that is, $\lfloor a\rfloor_{e}=2\lfloor a / 2\rfloor$. Note that if a is an integer and $\lfloor a\rfloor_{e}=k$ then $a=k$ or $a=k+1$.

Lemma 3.5. Let G be a graph and $L=L_{G} \cup L_{\bar{G}}$ be defined as above. Then $c_{o}(G \bar{G}-S)=c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])-\lfloor\mid L\rfloor_{e}$. Consequently $c_{o}(G[B-A])+$ $c_{o}(\bar{G}[\bar{A}-\bar{B}])-c_{o}(G \bar{G}-S) \leq|L| \leq c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])-c_{o}(G \bar{G}-S)+1$.

Proof. If $C=\phi$, then $|L|=0$ and thus $c_{o}(G \bar{G}-S)=c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])$ as required. We now suppose that $C \neq \phi$. By Lemmas 3.2 (a) and (b), $c_{o}(G \bar{G}-$ $S) \leq c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])$. By Lemma 3.1, $G \bar{G}[C \cup \bar{C}]$ is even and connected. So it must be contained in some component of $G \bar{G}-S$, say F. If $x \in V(F)-(C \cup \bar{C})$, then x is in some component of $G[B-A] \cup \bar{G}[\bar{A}-\bar{B}]$, say M. So $V(M) \subseteq V(F)$. If M is odd, then $M \in L$. Note that each odd component of L is a subgraph of F. Hence, $V(F)$ has the same parity with $|L|$ and $c_{o}(G \bar{G}-S)=c_{o}(G[B-A] \cup \bar{G}[\bar{A}-\bar{B}])-|L|+\epsilon$, where $\epsilon=1$ if $|L|$ is odd and $\epsilon=0$ if $|L|$ is even. So $c_{o}(G \bar{G}-S)=C_{o}(G[B-A] \cup \bar{G}[\bar{A}-\bar{B}])-\lfloor\mid L\rfloor_{e}$. Thus $\lfloor|L|\rfloor_{e}=c_{o}(G[B-A] \cup \bar{G}[\bar{A}-\bar{B}])-c_{o}(G \bar{G}-S)$. By properties of $\lfloor x\rfloor_{e}$, our result follows. This proves our lemma.

Lemma 3.6. If G is an r-regular graph ef order $p \geq 2 r+1$, then \bar{G} is connected.
Proof. Note that \bar{G} is $(p-r-1)$-regular graph of order p. Suppose \bar{G} is disconnected. Then each component must have order at least $p-r$. So $p \geq 2(p-r)$ and thus $p \leq 2 r$, a contradiction. This proves our lemma.

Lemma 3.7. Let G be a connected r-regular graph of order $p \geq 2 r+1$. Let S be a cutset of $G \bar{G}$. Then $S \cap V(G) \neq \phi$ and $S \cap V(\bar{G}) \neq \phi$.

Proof. By Lemma 3.6, \bar{G} is connected. Hence, G and \bar{G} are connected. Suppose without loss of generality that $S \cap V(G)=\phi$. So $S \subseteq V(\bar{G})$. Since $G=G \bar{G}-V(\bar{G})$ is connected and each vertex \bar{u} of $V(G)-S$ is adjacent to a vertex $u \mathrm{in} G$, it follows that $G \bar{G}-S$ is connected, a contradiction. Hence, $S \cap V(G) \neq \phi$. By similar arguments, $S \cap V(\bar{G}) \neq \phi$. This proves our lemma.

Theorem 3.8. Let G be a connected r-regular graph of order $p \geq 2 r+1$, for some $r \geq 2$. Then $G \bar{G}$ is bicritical. Consequently, $G \bar{G}$ is 1-extendable.

Proof. Suppose $G \bar{G}$ is not bicritical. By Theorem 2.6, there is a cutset $S \subseteq$ $V(G \bar{G})$, where $|S| \geq 2$ such that $c_{o}(G \bar{G}-S)>|S|-2$. It follows by Lemmas 3.2(a) that $c_{o}(G \bar{G}-S)=|S|$ for $|S| \geq 2$. Note that, by Lemma 3.7, $A=S \cap V(G)$ and $\bar{B}=S \cap V(\bar{G})$ are not empty. Thus \bar{A} and B are not empty. By Lemma 3.2 (b), $A \cap B=\phi$ and thus $\left.c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])=c_{o}(G[B])+c_{o}(\bar{G}[\bar{A}])\right)=$ $c_{o}(G \bar{G}-S)=|S|=|B|+|\bar{A}|$. By Lemma 3.2(c), each component of $G[B]$ and $\bar{G}[\bar{A}]$ is singleton. Hence, $G[A] \cong K_{|A|}$. Since G is r-regular of order $p \geq 2 r+1$, $|A| \leq r+1$. If $|A|=r+1$, then $G[A] \cong K_{r+1}$ is a disconnected component in G, a contradiction. So $1 \leq|A| \leq r$. By Lemmas 3.3 and 3.4(a), no singleton component in $G[B]$ belongs to T_{B-A}. Since each component of $G[B]$ is singleton, $T_{B-A}=\phi$. Because $c_{o}(G \bar{G}-S)=c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B])$, it follows by Lemma 3.5
that $0 \leq|L| \leq 1$. Since $B \neq \phi$ and $G[B]$ contains only singleton components, it follows that $1 \leq|B|=\left|T_{B-A}\right|+\left|L_{G}\right| \leq 1$. Hence, $|B|=\left|L_{G}\right|=1$. Therefore, $|\bar{B}|=1<r \leq p-r-1$. By Lemma 3.3, $T_{\bar{A}-\bar{B}}$ contains no singleton components. Hence, $T_{\bar{A}-\bar{B}}=\phi$. Since each component of $\bar{G}[\bar{A}]$ is singleton, it is contained in $L_{\bar{G}}$. So $\left|L_{\bar{G}}\right|=|\bar{A}|=|A| \geq 1$. Therefore, $|L|=\left|L_{G}\right|+\left|L_{\bar{G}}\right| \geq 2$, a contradiction. Hence, $G \bar{G}$ is bicritical. It then follows that $G \bar{G}$ is 1-extendable. This proves our theorem.

The next lemma follows by Theorem 2.4.
Lemma 3.9. Let G be a connected r-regular graph of order $p \geq 2 r+1$, for some $r \geq 2$. If G contains a triangle, then $G \bar{G}$ is not r-extendable.

By Lemma 3.9, if G is a 3-regular graph of order $p \geq 8$ containing a triangle, then $G \bar{G}$ is not 3-extendable. The next theorem provides a sufficient condition for a connected r-regular graph G which $G \bar{G}$ is 2-extendable, for $r \geq 4$.

In case $r=3$, a graph G in Figure 3.2 contains the graph F in Figure 3.1 as an induced subgraph. It is easy to see that $G \bar{G}$ is not 2 -extendable since $\{y z, \bar{x} \bar{w}\}$ cannot be extended to a perfect matching in $G \bar{G}$. We next show that the complementary prism of connected 3 -regular E-free graphs and connected r regular graphs for $r \geq 4$ are 2-extendable.

Figure 3.2: a 3-regular graph G which $G \bar{G}$ is not 2-extendable

Theorem 3.10. Suppose G is a connected graph of order p. If G is either 3regular F-free where $p \geq 8$ and F is the graph in Figure 3.1 or r_{0}-regular where $p \geq 2 r_{0}+1 \geq 9$, then $G \bar{G}$ is 2-extendable.

Proof. Observe that \bar{G} is $(p-r-1)$-regular where $r \in\left\{3, r_{0}\right\}$ and $p-r-1 \geq 4$. By Theorem 3.8, $G \bar{G}$ is bicritical. Suppose to the contrary that $G \bar{G}$ is not 2extendable. Then there is a matching $M \subseteq E(G \bar{G})$ of size two such that $G \bar{G}-$ $V(M)$ contains no perfect matching. By Theorem 2.1, there is a cutset $T \subseteq$ $V(G \bar{G})-V(M)$ such that $c_{o}(G \bar{G}-(V(M) \cup T))>|T|$. Let $S=T \cup V(M)$. Clearly, $|S| \geq 4$. Thus $c_{o}(G \bar{G}-S)>|S|-4$. Because $G \bar{G}$ is bicritical, by Theorem 2.6, $c_{o}(G \bar{G}-S) \leq|S|-2$. It follows by parity that $c_{o}(G \bar{G}-S)=|S|-2$ and $G \bar{G}[S]$ contains a matching of size at least two. Let $A=S \cap V(G)$ and $\bar{B}=S \cap V(\bar{G})$. By Lemma 3.2 (b), $|A \cap B| \leq 1$. Further, by Lemma 3.7, $A \neq \phi$ and $\bar{B} \neq \phi$. So $\bar{A} \neq \phi$ and $B \neq \phi$. We distinguish 2 cases according to $|A \cap B|$.

Case 1: $|A \cap B|=1$. Put $\{u\}=A \cap B$. By Lemma 3.2(b) $c_{o}(G \bar{G}-S)=$ $c_{o}(G[B-A])+c_{o}(\bar{G}[\bar{A}-\bar{B}])=|S|-2$. By Lemma 3.5, $|L| \leq 1$. Further, by Lemma 3.2(c), each component of $\bar{G}[\bar{A}-\bar{B}] \in G[B-A]$ is singleton. Thus, $A-B$ is a clique, $\left|\operatorname{Com}_{\bar{A}-\bar{B}}\right|=|\bar{A}=\bar{B}|$ and $\left|\operatorname{Com}_{B}-A\right|=|B-A|$. Since G is connected, it is easy to see that if $|A-B| \geq r+1$, then $G[A-B] \cong K_{|A-B|}$ contains a vertex of degree greater than r or $G \cong K_{r+1}$ is a graph of order less than p, a contradiction. Hence, $|A-B| \leq r$.

We first show that $\left|T_{B-A}\right| \geq 2$. Suppose to the contrary that $\left|T_{B-A}\right| \leq 1$. Since $G[B-A]$ contains only singleton components and $\left|L_{G}\right| \leq|L| \leq 1$, it follows that $|B-A|=\left|C o m_{B-A}\right|=\left|T_{B-A}\right|+\left|L_{G}\right| \leq 2$. Thus $|\bar{B}|=|B|=|B-A|+$ $|B \cap A| \leq 3<4 \leq p-r-1 . B y$ Lemma 3.3, $T_{\bar{A}}-\bar{B}$ contains no singleton components. Thus $T_{\bar{A}}\left(\bar{B}=\phi\right.$. Consequently, $\operatorname{Com}_{\bar{A}-\bar{B}}=T_{\bar{A}-\bar{B}} \cup L_{\bar{G}}=L_{\bar{G}}$. Therefore, $|\bar{A}-\bar{B}|=\left|L_{\bar{G}}\right| \leq 1$ since $\bar{G}[\bar{A}-\bar{B}]$ contains only singleton components. So $|A|=|\bar{A}|=|\bar{A}-\bar{B}|+|\bar{A} \cap \bar{B}| \leq 2<r$. By Lemma 3.3, T_{B-A} contains no singleton components. So $T_{B-A}=\phi$. Since $T_{A-\bar{B}}=\phi$ and $T_{B-A}=\phi$, it follows that every odd component of $\bar{G}[\bar{A}-\bar{B}] \cup G[B-A]$ is in L. Because $|L| \leq 1$ and $\bar{G}[\bar{A}-\bar{B}] \cup G[B-A]$ contains only singleton components, it follows that $|\bar{A}-\bar{B}|+|B-A| \leqslant 1$. Hence, $|S|=|A-B|+|A \cap B|+|\bar{A} \cap \bar{B}|+|\bar{B}-\bar{A}|=$ $|A-B|+2|A \cap B|+|\bar{B}-\bar{A}| \leq 3<4$, contradicting the fact that $|S| \geq 4$. Therefore, $\left|T_{B-A}\right| \geq 2$.

Let $D_{1}, D_{2} \in T_{B-A}$. Since $G[B-A]$ contains only singleton components, $D_{i} \cong K_{1}$, for $1 \leq i \leq 2$. Put $\left\{v_{i}\right\}=V\left(D_{i}\right)$. By Lemma 3.3, $|A| \geq r$. Consequently, $|A-B| \geq r-1$. Because $|A-B| \leq r, r-1 \leq|A-B| \leq r$. Since $A-B$ is a clique, $|A \cap B|=1$ and $\left|T_{B-A}\right| \geq 2$, it follows by Lemmas 3.4 (b) and (c) that $|A-B|=r-1$ and $\left|T_{B-A}\right|=2$. Thus $|A|=|A-B|+|A \cap B|=r$. Because $r-1=|A-B|=|\bar{A}-\bar{B}|=\left|\operatorname{Com}_{\bar{A}-\bar{B}}\right|=\left|T_{\bar{A}-\bar{B}}\right|+\left|L_{\bar{G}}\right| \leq\left|T_{\bar{A}-\bar{B}}\right|+1$, it follows that $\left|T_{\bar{A}-\bar{B}}\right| \geq r-2 \geq 1$. Thus $T_{\bar{A}-\bar{B}}$ contains a singleton component. By Lemma 3.3, $|\bar{B}| \geq p-r-1 \geq 4$. Therefore, $|\bar{B}-\bar{A}|=|\bar{B}|-|\bar{B} \cap \bar{A}| \geq p-r-2 \geq 3$. On the other hand, $|B-A|=\left|\operatorname{Com}_{B-A}\right|=\left|T_{B-A}\right|+\left|L_{G}\right| \leq 3$. Then $|B-A|=|\bar{B}-\bar{A}|=3$. Thus $3=\left|T_{B-A}\right|+\left|L_{G}\right|=2+\left|L_{G}\right|$. It follows that $L=L_{G}=\left\{K_{1}\right\}$ and consequently $L_{\bar{G}}=\phi$. Since $|A|=r, d e g_{G} v_{1}=\operatorname{deg}_{G} v_{2}=r$ and $N_{G}\left(v_{1}\right)=N_{G}\left(v_{2}\right) \subseteq A$, it follows that $N_{G}\left(v_{1}\right)=N_{G}\left(v_{2}\right)=A$.

We now put $\{\bar{w}\}=V\left(K_{1}\right)$ where $K_{1} \in T_{\bar{A}-\bar{B}}$. Clearly, $N_{\bar{G}}(\bar{w}) \subseteq \bar{B}-$ $\left\{\bar{v}_{1}, \bar{v}_{2}\right\}$ since v_{1} and v_{2} are adjacent to every vertex in A. Because $|\bar{B}|=\mid \bar{B}-$ $\bar{A}\left|+|\bar{A} \cap \bar{B}|=3+1=4,\left|N_{\bar{G}}(\bar{w})\right| \leq|\bar{B}|-\left|\left\{\bar{v}_{1}, \bar{v}_{2}\right\}\right|=2\right.$ thus \bar{G} is t-regular where $t \leq 2$. This contradicts the fact that \bar{G} is $(p-r-1)$-regular where $p-r-1 \geq 4$. Therefore, Case 1 cannot occur.

Case 2: $|A \cap B|=0$. By Lemmas 3.2(a) and (b), $|S|-2=c_{o}(G \bar{G}-S) \leq$ $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B]) \leq|\bar{A}|+|B|=|S|$. By parity, $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B])=|S|$ or $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B])=|S|-2$. We distinguish 2 cases.

Case 2.1: $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B])=|S|=|\bar{A}|+|B|$. Clearly, each component of $\bar{G}[\bar{A}] \cup G[B]$ is singleton. So $G[A] \cong K_{|A|}$. It is easy to see that if $|A| \geq r+1$, then $G[A]$ contains a vertex of degree greater than r or $G[A]$ is a disconnected component in G, a contradiction. Hence, $|A| \leq r$. By Lemmas 3.3 and 3.4(a), T_{B-A} contains no singleton components. Therefore, $T_{B-A}=\phi$. Thus $\left|L_{G}\right|=|B|$. Because $c_{o}(G[B])+c_{o}(\bar{G}[\bar{A}])-c_{o}(G \bar{G}-S)=|S|-(|S|-2)=2$, by Lemma 3.5, $2 \leq|L| \leq 3$. Since $B \neq \phi$ and $|B|=\left|L_{G}\right| \leq|L|$, it follows that $1 \leq|B| \leq 3$. Because $|\bar{B}|=|B| \leq 3<4 \leq p-r=1$, by Lemma 3.3, $T_{\bar{A}-\bar{B}}$ contains no singleton components. Thus $T_{\bar{A}-\bar{B}}=\phi$. Hence, $\left|L_{\bar{G}}\right|=|\bar{A}|=|A|$. Therefore, $|L|=\left|L_{G}\right|+\left|L_{\bar{G}}\right|=|B|+|\bar{A}|=|S|$ and thus $2 \leq|S| \leq 3$ since $2 \leq|L| \leq 3$, contradicting the fact that $|S| \geq 4$. Hence, Case 2.1 cannot occur.

Case 2.2: $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B]) \neq|S|-2 \neq|\bar{A}|+|B|-2$. Put $s=|S|$. It is easy to see that $\bar{G}[\bar{A}] \cup G[B]$ contains all singleton components except exactly one non-singleton component which is of order 2 or 3. Hence, $\bar{G}[\bar{A}] \cup G[B]$ is isomorphic to a graph in $\left\{(s-2) K_{1} \cup K_{2},(s-3) K_{1} \cup P_{3},(s-3) K_{1} \cup K_{3}\right\}$. If $|\bar{A}| \geq r+2 \geq 5$, then $\bar{G}[\bar{A}]$ must contain a singleton component, say F, where $V(F)=\{\bar{u}\}$. It follows that $d e g_{G} u \geq r \notin(1$, a contradiction. Hence, $|A|-|\bar{A}| \leq r+1$. Since $c_{o}(\bar{G}[\bar{A}])+c_{o}(G[B])-c_{o}(G \bar{G}-S)=(|S|-2)-(|S|-2)=0$, by Lemma 3.5, $|L| \leq 1$. We distinguish 2 subcases according to the non-singleton component.

Subcase 2.2.1 : The only non-singleton component in $\bar{G}[\bar{A}] \cup G[B]$ is contained in $G[B]$. So $\bar{G}[\bar{A}] \cong|\bar{A}| K_{1}$ and $G[A] \cong K_{|\bar{A}|} \cong K_{|A|}$. Clearly, $|A| \leq r$ otherwise $G[A]$ is a disconnected component in G. By Lemmas 3.3 and 3.4(a), T_{B-A} contains no singleton components. So every singleton component in $G[B]$ is contained in L_{G}. Since $\left|L_{G}\right| \leq|L| \leq 1, G[B]$ contains at most 1 singleton component. We first show that $\bar{T}_{\bar{A}-\bar{B}}=\phi$. Suppose this is not the case. Then there is $K_{1} \in T_{\bar{A}-\bar{B}}$ since $\bar{G}[\bar{A}]$ contains only singleton components. By Lemma 3.3, $|B|=|\bar{B}| \geq p-r-1 \geq 4$. Because $G[B]$ contains a non-singleton component of order either 2 or 3 and at most 1 singleton component, it follows that $G[B]$ is isomorphic to a graph in $\left\{K_{1} \cup P_{3}, K_{1} \cup K_{3}\right\}$. Thus $|B|=4$ and either $T_{B-A}=\left\{P_{3}\right\}$ or $T_{B-A}=\left\{K_{3}\right\}$, and $L_{G}=\left\{K_{1}\right\}$. Thus $L_{\bar{G}}=\phi$. So $\operatorname{Com}_{\bar{A}}=T_{\bar{A}-\bar{B}} \cup L_{\bar{G}}=T_{\bar{A}-\bar{B}}$. Therefore, each vertex of \bar{A} is adjacent to every vertex of \bar{B} since \bar{G} is $(p-r-1)$ regular and $p-r-1 \geq 4$. It follows that there is no edge joining vertices of A and B. But this contradicts the fact that $T_{B-A} \neq \phi$. Hence, $T_{\bar{A}-\bar{B}}=\phi$ as required.

Therefore, $\operatorname{Com}_{\bar{A}}=L_{\bar{G}}$. Since $\left|L_{\bar{G}}\right| \leq|L| \leq 1$ and $|\bar{A}|=|A| \neq 0$, it follows that $\left|\operatorname{Com}_{\bar{A}}\right|=\left|L_{\bar{G}}\right|=1$. Further, $L_{G}=\phi$ and $\bar{G}[\bar{A}]=K_{1}$. Thus $\operatorname{Com}_{B}=T_{B-A}$. Because $|A|=|\bar{A}|=1<r \leq 3$, by Lemma 3.3, T_{B-A} contains no singleton components. So $G[B]$ contains no singleton components and $G[B]$ is isomorphic to
a graph in $\left\{P_{3}, K_{3}\right\}$ since $|B|=|S|-|A| \geq 3$. Then $G \bar{G}[S]=G[A] \cup \bar{G}[\bar{B}]$ contains a matching of size less than two, contradicting the fact that $G \bar{G}[S]$ contains a matching of size at least two. Hence, Subcase 2.2.1 cannot occur.

Subcase 2.2.2 : The only non-singleton component in $\bar{G}[\bar{A}] \cup G[B]$ is contained in $\bar{G}[\bar{A}]$. So $G[B] \cong|B| K_{1}$. We first show that $T_{B-A} \neq \phi$. Suppose this is not the case. Then $T_{B-A}=\phi$ and thus $\operatorname{Com}_{B}=T_{B-A} \cup L_{G}=L_{G}$. Since $B \neq \phi$ and $\left|L_{G}\right|+\left|L_{\bar{G}}\right|=|L| \leq 1$, it follows that $\left|L_{G}\right|=1$ and $\left|L_{\bar{G}}\right|=0$. Consequently, $|B|=1$ since $G[B] \cong|B| K_{1}$. Because $|\bar{B}|=|B|=1<r, T_{\bar{A}-\bar{B}}$ contains no singleton components by Lemma 3.3. Hence, $G[\bar{A}]$ contains exactly one non-singleton component of order 2 or 3 . Thus $|A|=|\bar{A}| \leq 3$. It is easy to see that $G \bar{G}[S]=G[A] \cup \bar{G}[\bar{B}]$ contains a matching of size at most one since $|\bar{B}|=1$. This contradicts the fact that $G \bar{G}[S]$ contains a matching of size at least two. Hence, $T_{B-A} \neq \phi$. Fûrther, $\left|T_{B-A}\right| \geq|B|-1$ since $\left|L_{G}\right| \leq|L| \leq 1$ and $\left|T_{B-A}\right|+\left|L_{G}\right|=|B|$.

Because $G[B] \cong|B| K_{1}$, there exists $K_{1} \in T_{B-A}$. By Lemma 3.3, $|A| \geq r$. So $r \leq|A| \leq r+1$. We first suppose that $|A|=r+1$. Let F_{t} be the nonsingleton component of order t in $\bar{G}[\bar{A}]$ and let $\bar{A}_{1}=W\left(F_{t}\right)$ 。 Then $2 \leq t \leq 3$ and $\bar{G}[\bar{A}] \cong(r+1-t) K_{1} \cup F_{t}$. It is easy to $\overline{\text { see }}$ that $G[A]$ contains $r+1-t$ vertices of degree r and each vertex of $A_{1}=\overline{\bar{A}}_{1}$ has degree, in $G[A]$, at least $r+1-t$ and at most $r-1$. Let $\{w\}=V\left(K_{1}\right)$ where $K_{1} \in T_{B-A}$, then $N_{G}(w) \subseteq A_{1}$ and thus $3 \leq r=\operatorname{deg}_{G}(w) \leq t \leq 3$. It then follows that $N_{G}(w)=A_{1}$ and $t=r=3$. Thus \bar{w} is not adjacent to any vertex of \bar{A}_{1} and $\bar{G}[\bar{A}] \cong K_{1} \cup F_{3}$. Further, each vertex of A_{1} has degree at least $\left|T_{B-A}\right|+1=|B|-\left|L_{G}\right|+1 \geq|B|$ since $\left|L_{G}\right| \leq 1$. Thus $|B| \leq 3$ since G is now 3-regular. Because \bar{G} is $(p-r+1)$-regular where $p-r-1 \geq 4$ and each vertex of $V\left(F_{3}\right)=\bar{A}_{1}$ has degree at most 3 in $\bar{G}[\bar{A} \cup \bar{B}]$ since it must be adjacent to at most one vertex in \bar{B}, it follows that $F_{3} \in L_{\bar{G}}$. Since $\left|L_{\bar{G}}\right| \leq|L| \leq 1$, the only singleton component, K_{1}, of $\bar{G}[\bar{A}]$ must be in $T_{\bar{A}-\bar{B}}$. By Lemma 3.3, $|\bar{B}| \geq p-r-1 \geq 4$. But this contradicts the fact that $|\bar{B}|=|B| \leq 3$. Therefore, $|A|=r$.

Consequently, for each $w \in V\left(K_{1}\right)$ where $K_{1} \in T_{B-A}, N_{G}(w)=A$. Now let $\bar{v} \in \bar{A}$. Then $\operatorname{deg}_{\bar{B}}(\bar{v}) \leq|\bar{B}|-\left|T_{B-A}\right|=|B|-\left|T_{B-A}\right|=\left|L_{G}\right| \leq 1$. Further, $\operatorname{deg}_{\bar{A}}(\bar{v}) \leq 2$ since each component of $\bar{G}[\bar{A}]$ has order at most 3 . Because \bar{G} is $(p-r-1)$-regular where $p-r-1 \geq 4, \bar{v}$ is adjacent to some vertex of \bar{C}. Consequently, each odd component of $\bar{G}[\bar{A}]$ is contained in $L_{\bar{G}}$. Because $|\bar{A}|=$ $|A|=r \geq 3, \bar{G}[\bar{A}]$ contains a non-singleton component of order either 2 or 3 and $\left|L_{\bar{G}}\right| \leq|L| \leq 1$, it follows that $c_{o}(\bar{G}[\bar{A}])=1$. Therefore, $\bar{G}[\bar{A}]$ is isomorphic to a graph in $\left\{K_{1} \cup K_{2}, P_{3}, K_{3}\right\}$. Hence, $r=|A|=3,|L|=\left|L_{\bar{G}}\right|=1, \operatorname{Com}_{B}=T_{B-A}=$ $\left\{|B| K_{1}\right\}$. Further, for $x \in B, y \in A, N_{G}(x)=A$ and $\operatorname{deg}_{G}(y)=r=3 \geq|B|=|\bar{B}|$.

We first suppose that $\bar{G}[A] \cong K_{3}$. Then $G[A]$ is independent and thus $\bar{G}[\bar{B}]$ must contain a matching of size at least two since $G \bar{G}[S]$ contains a matching of size at least two. So $|B|=|\bar{B}| \geq 4$. But this contradicts the fact that $|B|=|\bar{B}| \leq 3$. Hence, $\bar{G}[\bar{A}] \neq K_{3}$. Therefore, $\bar{G}[\bar{A}]$ is isomorphic to a graph in $\left\{P_{3}, K_{1} \cup K_{2}\right\}$. In either case, $G[A]$ contains a maximum matching of size one. Then $2 \leq|\bar{B}| \leq 3$ since $G \bar{G}[A \cup \bar{B}]$ contains a matching of size at least two.

We now suppose that $\bar{G}[\bar{A}] \cong K_{1} \cup K_{2}$. Then $G[A] \cong P_{3}$ and then the vertex
of degree two in P_{3} has degree, in G, greater than $r=3$, again a contradiction. Hence, $\bar{G}[\bar{A}] \neq K_{1} \cup K_{2}$. Consequently, $\bar{G}[\bar{A}] \cong P_{3}$ and then $G[A] \cong K_{1} \cup K_{2}$. Clearly, $|B| \neq 3$ otherwise $G[A]$ contains a vertex of degree greater than $r=3$. So $|B|=2$ and thus $G[A \cup B]$ contains the graph F in Figure 3.1 as an induced subgraph. But this contradicts our hypothesis that G is 3 -regular F-free graph. This completes the proof of our theorem.

It is clear that a connected 3-regular graph containing F, in Figure 3.1, as an induced subgraph contains v as a cut vertex. So 2-connected 3 -regular graphs are F-free. The next corollary follows by this fact and Theorem 3.10.

Corollary 3.11. If G is a 2-connected r-regular graph of order $p \geq 2 r+1$, for $r \geq 3$, then $G \bar{G}$ is 2 -extendable.

Note that for positive integers r and s where $r+s \geq 6$, a graph $G=K_{r}+\bar{K}_{s}$ is a non-regular graph with minimum degree of $G \bar{G}$ is 1 . Thus $G \bar{G}$ cannot be 2extendable by Theroem 2.2(b). Hence, the hypothesis of regularity in Theorem 3.10 cannot be dropped.

According to Theorems 2.27 and 3.10 , we have the following theorem.
Theorem 3.12. If each component G_{i} of G is 3 -regular F-free of order at least 8 where F is the graph in Figure 3.1 or r_{0}-regular of order at least $2 r_{0}+1 \geq 9$, then $G \bar{G}$ is 2-extendable.

We conclude our chapter by posing following problem.
Problem : Establish sufficient condition for a complementary prism of r-regular graphs to be k-extendable for $r \geq k \geq 3$.

Chapter 4

Extendability of complementary prism of extendable graphs

In this chapter, we show, in Section 4.2, that if G and \bar{G} are l_{1}-extendable and l_{2}-extendable non-bipartite graphs for $l_{1} \geq 2$ and $l_{2} \geq 2$, then $G \bar{G}$ is $(l+1)$ extendable where $l=\min \left\{l_{1}, l_{2}\right\}$. One might ask whether there exist such graphs G and \bar{G}. We affirm this in Section 4.1 by providing some constructions of a non-bipartite graph G such that G and \bar{G} are l_{1}-extendable and l_{2}-extendable non-bipartite graphs, respectively, where $-l_{1}$ and l_{2} are positive integers.

4.1 Some constructions of extendable non-bipartite graphs

In this section, we provide two constructions of extendable non-bipartite graphs in which their complement graphs are also extendable by using cartesian and lexicographic products of two extendable graphs.

Theorem 4.1. For non-negative integers $l_{1}, l_{2}, p_{1} \geqq 2 l_{1}+2$ and $p_{2} \geq 2 l_{2}+2$ and $1 \leq i \leq 2$, let H_{i} be l_{i}-extendable of order p_{i}. Further, let $G=H_{1} \times H_{2}$. If $\Delta\left(H_{1}\right)=p_{1}-1-t_{1}$ and $\Delta\left(H_{2}\right)=p_{2}-1-t_{2}$ for some non-negative integers t_{1} and t_{2}, then G is $\left(l_{1}+l_{2}+1\right)$-extendable and \bar{G} is $\left(\frac{1}{2}\left(p_{1}-2\right)\left(p_{2}-2\right)+t_{1}+t_{2}-1\right)$ extendable.

Proof. By Theorem 2.16, $G=H_{1} \times H_{2}$ is $\left(l_{1}+l_{2}+1\right)$-extendable as required. We need only to show that \bar{G} is $\left(\frac{1}{2}\left(p_{1}-2\right)\left(p_{2}-2\right)+t_{1}+t_{2}-1\right)$-extendable. Clearly, G and \bar{G} are of order $p_{1} p_{2}$. Since $N_{G}((u, v))=\left\{(x, v) \mid x u \in E\left(H_{1}\right)\right\} \cup\{(u, y) \mid v y \in$ $\left.E\left(H_{2}\right)\right\}, \operatorname{deg}_{G}((u, v))=\operatorname{deg}_{H_{1}}(u)+\operatorname{deg}_{H_{2}}(v)$. Thus $\Delta(G)=\Delta\left(H_{1}\right)+\Delta\left(H_{2}\right)=$ $p_{1}+p_{2}-2-t_{1}-t_{2}$. Therefore, $\delta(\bar{G})=p_{1} p_{2}-p_{1}-p_{2}+2+t_{1}+t_{2}-1=$ $\frac{1}{2} p_{1} p_{2}+\frac{1}{2} p_{1} p_{2}-p_{1}-p_{2}+t_{1}+t_{2}+1=\frac{1}{2} p_{1} p_{2}+\frac{1}{2}\left(p_{1}-2\right)\left(p_{2}-2\right)+t_{1}+t_{2}-1$. By Theorem 2.3, \bar{G} is $\left(\frac{1}{2}\left(p_{1}-2\right)\left(p_{2}-2\right)+t_{1}+t_{2}-1\right)$-extendable as required. This proves our theorem.

Corollary 4.2. Let H_{1}, H_{2} and G be graphs defined in Theorem 4.1. If either H_{1} or H_{2} is non-bipartite, then G and \bar{G} are also non-bipartite.

Theorem 4.3. For non-negative integers $h_{1}, h_{2}, \bar{h}_{1}, \bar{h}_{2}$, let H_{i} be a h_{i}-extendable and let \bar{H}_{i} be a \bar{h}_{i}-extendable for $1 \leq i \leq 2$. Then $G=H_{1} \circ H_{2}$ is $\left(h_{1}+1\right)\left(h_{2}+1\right)$ extendable graph and \bar{G} is $\left(\bar{h}_{1}+1\right)\left(\bar{h}_{2}+1\right)$-extendable graph.

Proof. By Theorem 2.18, $G=H_{1} \circ H_{2}$ is $\left(h_{1}+1\right)\left(h_{2}+1\right)$-extendable. We first show that $\bar{G}=\bar{H}_{1} \circ \bar{H}_{2}$. Clearly, $V(\bar{G})=V\left(\overline{H_{1} \circ H_{2}}\right)=V\left(H_{1}\right) \times V\left(H_{2}\right)=$ $V\left(\bar{H}_{1}\right) \times V\left(\bar{H}_{2}\right)=V\left(\bar{H}_{1} \circ \bar{H}_{2}\right)$. Let $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in V\left(H_{1}\right) \times V\left(H_{2}\right)$ and let $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E\left(\overline{H_{1} \circ H_{2}}\right)$. Thus $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \notin E\left(H_{1} \circ H_{2}\right)$.

If $u_{1}=u_{2}$, then $v_{1} v_{2} \notin E\left(H_{2}\right)$ and thus $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E\left(\bar{H}_{1} \circ \bar{H}_{2}\right)$. Further, if $u_{1} \neq u_{2}$, then $u_{1} u_{2} \notin E\left(H_{1}\right)$. And again $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E\left(\bar{H}_{1} \circ \bar{H}_{2}\right)$. Hence, $E\left(H_{1} \circ H_{2}\right) \subseteq E\left(H_{1} \circ H_{2}\right)$.

We now suppose that $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E\left(\bar{H}_{1} \circ \bar{H}_{2}\right)$. If $u_{1}=u_{2}$, then $v_{1} v_{2} \in$ $E\left(\bar{H}_{2}\right)$. Thus $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \notin E\left(H_{1} \circ H_{2}\right)$. Further, if $u_{1} \neq u_{2}$, then $u_{1} u_{2} \in E\left(\bar{H}_{1}\right)$ and thus $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \notin E\left(H_{1} \circ H_{2}\right)$. In either case $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E\left(\overline{H_{1} \circ H_{2}}\right)$. Hence, $E\left(\bar{H}_{1} \circ \bar{H}_{2}\right) \subseteq E\left(\overline{H_{1} \circ H_{2}}\right)$. Therefore, $E\left(\bar{H}_{1} \circ \bar{H}_{2}\right)=E\left(\overline{H_{1} \circ H_{2}}\right)$. Thus $\overline{H_{1} \circ H_{2}}=\bar{H}_{1} \circ \bar{H}_{2}$. It follows by Theorem 2.18 that \bar{G} is $\left(\bar{h}_{1}+1\right)\left(\bar{h}_{2}+1\right)$-extendable graph as required. This proves our theorem.

Corollary 4.4. For $1 \leq i \leq 2$, let H_{i}, \bar{H}_{i} and G be graphs defined in Theorem 4.3. If H_{1} is connected, $E\left(H_{2}\right) \neq \phi$ and $E\left(\bar{H}_{2}\right) \neq \phi$ then G and \bar{G} are nonbipartite.

According to Theorems 4.1 and 4.3, we have shown that there exists a graph G such that G is l_{1}-extendable and \bar{G} is l_{2}-extendable for some integers l_{1} and l_{2}. Theorem 4.6 establishes that for any positive integers l_{1} and l_{2}, there is a graph G such that G is l_{1}-extendable and \bar{G} is l_{2}-extendable

Lemma 4.5. Let P_{t} be a path of order t. If $t \geq 4$ is an even integer, then P_{t} is 0 -extendable and \bar{P}_{t} is $(t-4)$-factor-critical. Further, \bar{P}_{t} is $\frac{1}{2}(t-4)$-extendable.

Proof. Clearly, P_{t} contains a perfect matching. We only show that \bar{P}_{t} is $(t-4)-$ factor-critical. Let $T \subseteq V\left(\bar{P}_{t}\right)$ such that $|T|=t-4$. Clearly, $\bar{P}_{t}-T$ is connected and contains P_{4} as a subgraph. Thus $\bar{P}_{t}-T$ is one of a graph in $\left\{K_{4}, K_{4}-\right.$ $\left.e, C_{4}, K_{4}-\left\{e_{1}, e_{2}\right\}, P_{4}\right\}$, where e_{1} and e_{2} have â common end vertex. In either case, $\bar{P}_{t}-T$ contains a perfect matching. Thus $\bar{P}_{t}-T$ is $(t-4)$-factor-critical as required. It then follows by definition of k-extendable that \bar{P}_{t} is $\frac{1}{2}(t-4)$ extendable. This proves our lemma.

Theorem 4.6. For positive integers l_{1} and l_{2}, there is a non-bipartite graph G such that G is l_{1}-extendable and \bar{G} is l_{2}-extendable non-bipartite.

Proof. Let $H_{1}=\bar{P}_{2 l_{1}+2}$ and $H_{2}=P_{2 l_{2}+2}$. By Lemma 4.5, H_{1} is ($l_{1}-1$)-extendable, \bar{H}_{1} is 0 -extendable, H_{2} is 0 -extendable and \bar{H}_{2} is $\left(l_{2}-1\right)$-extendable. Let $G=$ $H_{1} \circ H_{2}$. By Theorem 4.3, G is l_{1}-extendable and \bar{G} is l_{2}-extendable as required. Further, it is clear that G and \bar{G} are non-bipartite. This proves our theorem.

4.2 Extendability of complementary prism of extendable graphs

In this section, we establish the extendability of the complementary prism $G \bar{G}$ of G where G and \bar{G} are l_{1}-extendable and l_{2}-extendable non-bipartite graphs for $l_{1} \geq 2$ and $l_{2} \geq 2$, respectively. We begin with some lemmas.

Lemma 4.7. Let G be a k-extendable graph for some integer $k \geq 2$ and let $S \subseteq$ $V(G)$ be a cutset of G. If $G[S]$ contains $t \leq k-1$ independent edges, then $|S| \geq k+t+1$.

Proof. Let $S^{\prime}=S-V(F)$ where F is a matching of size t in $G[S]$. By Observation 2.10, $G^{\prime}=G-V(F)$ is $(k-t)$-extendable. Observe that $k-t \geq 1$. By Theorem 2.2(b), G^{\prime} is $(k-t+1)$-connected. Since S^{\prime} is a cutset of $G^{\prime},\left|S^{\prime}\right| \geq k-t+1$ and thus $|S| \geq 2 t+k-t+1=k+t+1$ as required. This proves our lemma.

Recall that, $\lfloor a\rfloor_{e}$ is denoted a greatest even integer less than or equal to a. Similarly, a greatest odd integer less than or equal to a may be denoted by $\lfloor a\rfloor_{o}$. Clearly, $\lfloor a\rfloor_{o}=2\lfloor(a-1) / 2\rfloor+1$.

Lemma 4.8. Let G be a k-extendable non-bipartite graph for $k \geq 2$. Further, let $M \subseteq E(G)$ be a matching of size m and let $S=\phi$ or $S \subseteq V(G)-V(M)$ be an independent set such that $k-m-|S|=t \geq 0$ for some integer t. Then
(a) If $|S|$ is even, then $G-(V(M) \cup S)$ is t-extendable. Further G $(V(M) \cup S)$ is $\lfloor t\rfloor$-factor-critical. Consequently, there is a perfect matching in $G-(V(M) \cup S)$.
(b) If $|S|$ is odd and $t \geq 1$, then $G-(V(M) \cup S)$ is $\mid t\rfloor_{o-f a c t o r-c r i t i c a l . ~}^{\text {a }}$. Thus $G-(V(M) \cup S)$ is 1-factor-critical.
(c) If $|S|$ is odd, $t=0$ and there is a vertex $v \in V(G)-(V(M) \cup S)$ such that vs $\in E(G)$ for some $s \in S$, then $G-(V(M) \cup S \cup\{v\})$ contains a perfect matching.

Proof. We first suppose $m=k$. So $S=\phi$ and thus $G-(V(M) \cup S)=G-$ $V(M)$ contains a perfect matching by Theorem 2.2(a) and it is 0 -factor-critical as required. We now suppose that $m \leq k-1$. By Corollary 2.13, $G-V(M)$ is $(k-m)-$ extendable non-bipartite. Since $k-m=|S|+t, G-V(M)$ is $(|S|+t)$-extendable non-bipartite.
(a) $|S|$ is even. By Theorem 2.2(a), $G-V(M)$ is $\left(|S|+\lfloor t\rfloor_{e}\right)$-extendable and thus it is $\left(|S|+\lfloor t\rfloor_{e}\right)$-factor-critical by Theorem 2.8. Hence, by Observation 2.11, $G-(V(M) \cup S)$ is $\lfloor t\rfloor_{e}$-factor-critical as required. It then follows by Theorem 2.2(a) that $G-(V(M) \cup S)$ contains a perfect matching. This proves (a).
(b) $|S|$ is odd and $t \geq 1$. By Theorem 2.2(a), $G-V(M)$ is $\left(|S|+\lfloor t\rfloor_{o}\right)$ extendable and thus it is $\left(|S|+\lfloor t\rfloor_{o}\right)$-factor-critical by Theorem 2.8. By Observation 2.11, $G-(V(M) \cup S)$ is $\lfloor t\rfloor_{o}$-factor-critical. Since $t \geq 1,\lfloor t\rfloor_{o} \geq 1$. Further, by Theorem 2.7, $G-(V(M) \cup S)$ is 1-factor-critical as required. This proves (b).
(c) Let $M^{\prime}=M \cup\{v s\}$ and $S^{\prime}=S-\{s\}$. Hence, our result follows from (a). This completes the proof of our lemma.

Lemma 4.9. Let G be a k-extendable graph for some integer k and let $S \subseteq V(G)$ be a cutset of G. If $G[S]$ contains t independent edges for $t \leq k$, then $c_{o}(G-S) \leq$ $|S|-2 t$. Further, if $1 \leq t \leq k-1$ and $c_{o}(G-S)=|S|-2 t$ then $G-S$ contains no even components.

Proof. Let F be a matching of size t in $G[S]$. Since G is a k-extendable graph, $G-V(F)$ contains a perfect matching by Theorem 2.2(a). By Theorem 2.1, $c_{o}(G-S)=c_{o}((G-V(F))-(S-V(F))) \leq|S-V(F)|=|S|-2 t$, as required. We now suppose that $1 \leq t \leq k-1$ and $c_{o}(G-S)=|S|-2 t$. Let D be an even component of $G-S$. By Lemma 4.7 and the fact that $t \leq k-1<k+1, V(F)$ is not a cutset of G. Then there is an edge $e=s d$ joining a vertex s in $S-V(F)$ and a vertex d in D. Since G is k-extendable and $F \cup\{e\}$ is a matching of size $t+1 \leq k$, it follows that there is a perfect matching in $G^{\prime}=G-(V(F) \cup\{s, d\})$. Let $S^{\prime}=S-(V(F) \cup\{s\})$. Clearly, $c_{o}\left(G^{\prime}-S^{\prime}\right)=\left(c_{o}(G-S)+1=|S|-2 t+1\right.$. Since G^{\prime} contains a perfect matching, by Theorem 2.1, $|S|-2 t+1 \leq c_{o}\left(G^{\prime}-S^{\prime}\right) \leq$ $|S|-(|V(F)|+1)|=|S|-2 t-1$, a-contradiction. Hence, there is no even component in $G-S$. This proves our lemma.

Lemma 4.10. Let G be anl-extendable graph and let M be a matching of size $l+t$ where $t \geq 1$. Then there is a maximum matching in $G-V(M)$ saturates all except at most $2 t$ non-adjacent vertices in $G-V(M)$.

Proof. Let $T \subseteq M$ where $|T|=t$. Thus $M-T$ is a matching of size l in G. So there is a perfect matching F in $G-V(M-T)$. Clearly, $|V(F) \cap V(T)|=2 t$. Let $F_{1}=\{x y \in F \mid\{x, y\} \cap V(M)=\phi\}$ and $F_{2}=\{x y \in F \mid x \in V(M)$ and $y \notin V(M)\}$. Further, let F_{2}^{\prime} be a maximum matching in $G\left[V\left(F_{2}\right)-V(M)\right]$. Then, $F_{1} \cup F_{2}^{\prime}$ is a matching in $G-V(M)$ saturates all except at most $2 t$ non-adjacent vertices as required.

By similar arguments as in the proof of Lemma 4.10, the next lemma follows.

Lemma 4.11. Let G be a k-factor-critical graph and let $T \subseteq V(G)$ where $|T|=$ $k+t$. Then there is a maximum matching in $G-V(T)$ saturates all except at most t non-adjacent vertices in $G-V(T)$.

Lemma 4.12. Let G be an 1-extendable graph of order $p \geq 6$ and let v be a vertex of degree 2 in G. Then there are perfect matchings M_{1}, M_{2} in G such that v is a vertex of $C_{2 n}$ in $M_{1} \triangle M_{2}$ where $n \geq 3$. Further, there is a vertex $x \in V\left(C_{2 n}\right)$ where $C_{2 n}$ is a subgraph of $M_{1} \triangle M_{2}$ such that $v x \notin E(G)$ and $G-\{v, x\}$ contains a perfect matching.

Proof. Let $\left\{u_{1}, u_{2}\right\}=N_{G}(v)$. We first suppose $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)=\{v\}$. Let M_{1} be a perfect matching in G containing $v u_{1}$ and M_{2} a perfect matching in G containing $v u_{2}$. Clearly, $\left\{v u_{1}, u_{2} u_{3}\right\} \subseteq M_{1}$ and $\left\{v u_{2}, u_{1} u_{4}\right\} \subseteq M_{2}$ for some $u_{3}, u_{4} \in V(G)$. Since $\{v\}=N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right), u_{3} \neq u_{4}$. Hence, $u_{3} u_{2} v u_{1} u_{4}$ is a path of length 4 containing v. It must be contained in an even cycle of order at least 6 in $M_{1} \triangle M_{2}$ as required.

So we now suppose that $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right) \neq\{v\}$. Then there is a vertex $v \neq u_{3} \in N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)$. Since G is 2-connected by Theorem 2.2(b) and G is of order at least 6 , it follows that u_{3} is not a cut vertex. Then there is a vertex $u_{4} \in N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right)$ where $u_{4} \neq u_{3}$. Without loss of generality, suppose $u_{4} \in N_{G}\left(u_{1}\right)$. Let M_{1} be a perfect matching in G containing $u_{1} u_{4}$ and M_{2} be a perfect matching in G containing $u_{2} u_{3}$. It is easy to see that $\left\{u_{1} u_{4}, v u_{2}\right\} \subseteq M_{1}$ and $\left\{u_{2} u_{3}, v u_{1}\right\} \subseteq M_{2}$. Hence, $u_{4} u_{1} v u_{2} u_{3}$ is a path of length 4 containing v. It must be contained in an even cycle of order at least 6 in $M_{1} \triangle M_{2}$ as required.

Further, let $x \in V\left(C_{2 n}\right)$ be such that the distance between v and x along the cycle $C_{2 n}$ is 3 . Clearly, $x v \notin E(G)$ and it is easy to see that $G-\{v, x\}$ contains a perfect matching. This completes the proof of our lemma.

Lemma 4.13. For a graph G, let $A \subseteq V(G)$ and $\bar{B} \subseteq V(\bar{G})$. Suppose $c_{o}(G-A)=$ $|A|-t_{1}$ and $c_{o}(\bar{G}-\bar{B})=\left(|\bar{B}|-t_{2}\right.$, for some non-negative integers t_{1}, t_{2}. Then $c_{o}(G \bar{G}-(A \cup \bar{B})) \leq|A|+|\bar{B}|-\left(t_{1}+t_{2}\right)$. Further, if $A \cup B \neq V(G)$ and $G-A$ and $\bar{G}-\bar{B}$ contain no even components, then $\epsilon_{o}(G \bar{G}-(A \cup \bar{B})) \leq|A|+|\bar{B}|-\left(t_{1}+t_{2}\right)-2$. Proof. It is easy to see that $c_{0}(\bar{G} \bar{G}-(A \cup \bar{B})) \leq|A|+|\bar{B}|-\left(t_{1}+t_{2}\right)$. We now suppose that $A \cup B \neq \bar{V}(G)$ and $G-\bar{A}, \bar{G}-\bar{B}$ contain no even components. Let $x \in V(G)-(A \cup B)$. Then x is in an odd component of $G-A$, say C. Clearly, $\bar{x} \notin \bar{A} \cup \bar{B}$ and thus \bar{x} is in an odd component of $\bar{G}-\bar{B}$, say D. Hence, $G \bar{G}[V(C) \cup V(D)]$ forms an even component in $G \bar{G}-(A \cup \bar{B})$. Therefore $c_{o}(G \bar{G}-$ $(A \cup \bar{B})) \leq|A|+|\bar{B}|-\left(t_{1}+t_{2}\right)-2$ as required. This proyes our lemma.

Lemma 4.14. Let G and \bar{G} be l_{1}-extendable and l_{2}-extendable graphs, respectively where l_{1} and l_{2} are positive integers. Further, let M be a matching of size $l+1$ in $G \bar{G}$ where $l=\min \left\{l_{1}, l_{2}\right\}$. If either $M=\left\{x_{i} \bar{x}_{i} \mid x_{i} \in V(G)\right.$ for $\left.1 \leq i \leq l+1\right\}$ or $M \subseteq(E(G) \cup E(\bar{G}))$, then $G \bar{G}$ has a perfect matching containing M.

Proof. Clearly, if $M=\left\{x_{i} \bar{x}_{i} \mid x_{i} \in V(G)\right.$ for $\left.1 \leq i \leq 1+1\right\}$, then $\{v \bar{v} \mid v \in V(G)\}$ is a perfect matching in $G \bar{G}$ containing M as required. So we now suppose that $M \subseteq(E(G) \cup E(\bar{G}))$. Put $M_{G}=M \cap E(G)$ and $M_{\bar{G}}=M \cap E(\bar{G})$. If $1 \leq\left|M_{G}\right| \leq l$ and $1 \leq\left|M_{\bar{G}}\right| \leq l$, then it is easy to see that $M \subseteq M_{G} \cup M_{\bar{G}}$ can be extended to a perfect matching in $G \bar{G}$, by Theorem $2.2\left(\right.$ a) , since G is l_{1}-extendable and \bar{G} is l_{2}-extendable. Hence, we suppose without loss of generality that $\left|M_{G}\right|=l+1$. Suppose there is no perfect matching in G containing M_{G}. By Lemma 4.10, there is a maximum matching F_{1} in $G-V(M)$ saturates all except two non-adjacent vertices, say x and y. So $\bar{x} \bar{y} \in E(\bar{G})$. Since \bar{G} is l_{2}-extendable where $l_{2} \geq 1$ and by Theorem 2.2(a), it follows that there is a perfect matching F_{2} in \bar{G} containing $\bar{x} \bar{y}$. Hence, $M \cup F_{1} \cup\left(F_{2}-\{\bar{x} \bar{y}\}\right) \cup\{x \bar{x}, y \bar{y}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This completes the proof of our lemma.

We are now ready to prove our main result. We begin with the extendability of $G \bar{G}$ where G is l_{1}-extendable and \bar{G} is l_{2}-extendable for $l_{1} \geq 4$ and $l_{2} \geq 4$.

Theorem 4.15. For positive integers $l_{1} \geq 4, l_{2} \geq 4$, let G and \bar{G} be l_{1}-extendable and l_{2}-extendable non-bipartite graphs, respectively. Then $G \bar{G}$ is $(l+1)$-extendable, where $l=\min \left\{l_{1}, l_{2}\right\}$.

Proof. Let $M \subseteq E(G \bar{G})$ be a matching of size $l+1$ in $G \bar{G}$. Put $M_{G}=M \cap E(G)$, $M_{\bar{G}}=M \cap E(\bar{G})$ and $M_{G \bar{G}}=M-\left(M_{G} \cup M_{\bar{G}}\right)$. Note that $M_{G \bar{G}}=\{x \bar{x} \mid x \in V(G)\}$. If $M_{G \bar{G}}=M$ or $M_{G \bar{G}}=\phi$, then, by Lemma 4.14, there is a perfect matching in $G \bar{G}$ containing M as required. We now suppose that $M_{G \bar{G}} \neq M$ and $M_{G \bar{G}} \neq \phi$. Without loss of generality, we may suppose that $\left|M_{G}\right| \geq\left|M_{\bar{G}}\right|$. Hence, $M_{G} \neq \phi$.

Put $S=V(G) \cap V\left(M_{G \bar{G}}\right)$. Let N_{S} be a maximum matching in $G[S]$. Put $I_{S}=S-V\left(N_{S}\right)$. Clearly, I_{S} is an independent set. Similarly, let $N_{\bar{S}}$ be a maximum matching in $\bar{G}[\bar{S}]$ and put $I_{\bar{S}}=\bar{S}-V\left(N_{\bar{S}}\right)$. For simplicity, we denote the cardinalities of each set by its small letter, i.e., $m_{G}=\left|M_{G}\right|, m_{\bar{G}}=\left|M_{\bar{G}}\right|$, $m_{G \bar{G}}=\left|M_{G \bar{G}}\right|, s=|S|, i_{S}=\left|I_{S}\right|$, etc.

Clearly, $1 \leq m_{G} \leq l, s=\bar{s}, n_{S}+i_{S} \geq 1$ and $n_{\bar{S}}+i_{\bar{S}} \geq 1$ since $s=\bar{s}=$ $m_{G \bar{G}} \geq 1$. Therefore,

Consequently, $m_{G}+n_{S}=l+1-\left(m_{\bar{G}}+n_{S}+i_{S}\right) \leq l$ since $n_{S}+i_{S} \geq 1$ and $m_{\bar{G}}+n_{\bar{S}}=l+1-\left(m_{G}+n_{\bar{S}}+i_{\bar{S}}\right) \leq l$ since $n_{\bar{S}}+i_{\bar{S}} \geq 1$. Further, $s \equiv i_{S}(\bmod 2)$ and $\bar{s} \equiv i_{\bar{S}}(\bmod 2)$ because $s=2 n_{s}+i_{S}$ and $s=\bar{s}=2 n \bar{s}+i_{\bar{s}}$.

We first suppose that $i_{S}=0$. Since $m_{G}+n_{S} \leq 1$, by Theorem 2.2(a), there is a perfect matching in $G-\left(V\left(M_{G}\right) \cup N_{S}\right)$, say F_{G}. Now consider \bar{G}. By Equation 4.4, $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1 \geq 0$ since $m_{G} \geq 1$. By Lemma 4.8(a), there is a perfect matching in $\bar{G}-(V(M)$ a perfect matching in $G \bar{G}$ containing M as required.

So we now suppose that $i_{S} \geq 1$. We distinguish 2 cases according to parity of s.

Case 1:s is even. So $i_{S} \geq 2$ and $i_{\bar{S}} \geq 0$ are also even. We distinguish 2 subcases according to $m_{\bar{G}}+n_{S}$.

Subcase 1.1: $m_{\bar{G}}+n_{S} \geq 1$. So, by Equation 4.3, $l-\left(m_{G}+n_{S}+\right.$ $\left.i_{S}\right)=m_{\bar{G}}+n_{S}-1 \geq 0$. By Lemma 4.8(a), there is a perfect matching in $G-$ $\left(V\left(M_{G} \cup N_{S}\right) \cup I_{S}\right)$, say F_{G}. Further, by Equation 4.4 and the fact that $m_{G} \geq 1$, $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1 \geq 0$. So, by Lemma 4.8(a), there is a perfect matching in $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$, say $F_{\bar{G}}$. Hence, $M \cup F_{G} \cup F_{\bar{G}}$ is a perfect matching in $G \bar{G}$ containing M as required.

Subcase 1.2: $m_{\bar{G}}=n_{S}=0$. We first show that $n_{\bar{S}} \leq \frac{l}{2}$. Since $n_{S}=$ $0, G[S]$ is independent and thus $\bar{G}[\bar{S}]$ is a complete graph. Because s is even, $n_{\bar{S}}=\frac{1}{2} \bar{s}=\frac{1}{2} s$. So, by Equation 4.2 and the fact that $m_{G} \geq 1, n_{\bar{S}}=\frac{1}{2} s=$ $\frac{1}{2}\left(l+1-m_{G}-m_{\bar{G}}\right)=\frac{1}{2}\left(l+1-m_{G}\right) \leq \frac{l}{2}$ as required. By Equation 4.3, $l-m_{G}=$ $m_{\bar{G}}+2 n_{S}+i_{S}-1=i_{S}-1$ and $\left\lfloor i_{S}-1\right\rfloor_{e}=i_{S}-2 \geq 0$ since $i_{S}=s$ is even. It follows by Lemma 4.8(a) that $G^{\prime}=G-V\left(M_{G}\right)$ is ($i_{S}-2$)-factor-critical. By Lemma 4.11, there is a maximum matching F_{G} in $G^{\prime}-I_{S}$ saturates all except at most 2 vertices in $G^{\prime}-I_{S}$.

We next consider \bar{G}. By Equation 4.4 and the fact that $m_{G} \geq 1, l-\left(m_{\bar{G}}+\right.$ $\left.n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1 \geq n_{\bar{S}} \geq 0$. By Lemma 4.8(a), there is a perfect matching in $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$, say $F_{\bar{G}}$. Clearly, if F_{G} is a perfect matching in $G^{\prime}-I_{S}$, then $M \cup F_{G} \cup F_{\bar{G}}$ is a perfect matching in $G \bar{G}$ as required.

We now suppose that F_{G} is not a perfect matching. Let $x, y \in V\left(G^{\prime}\right)-I_{S}$ where x and y are unsaturated by F_{G}. Clearly, $x y \notin E(G)$. So $\bar{x} \bar{y} \in E(\bar{G})$. Because $n_{\bar{S}} \leq \frac{l}{2}$ and $l \geq 4$, it follows that $m_{\bar{G}}+n_{\bar{S}}+1=n_{\bar{S}}+1 \leq \frac{l}{2}+1 \leq$ $\frac{l}{2}+\left(\frac{l}{2}-1\right) \leq l-1$. By Theorem 2.2(a), there is a perfect matching in $\bar{G}-V\left(M_{\bar{G}} \cup\right.$ $\left.N_{\bar{S}} \cup\{\bar{x} \bar{y}\}\right)$, say $F_{\bar{G}}^{\prime}$. Hence, $M \cup F_{G} \cup\left(F_{\bar{G}}^{\prime}-\{\bar{x} \bar{y}\}\right) \cup\{x \bar{x}, y \bar{y}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This proves Case 1.

Case 2: s is odd. So i_{S} and i_{S} are also odd. We distinguish 3 subcases according to $m_{\bar{G}}+n_{S}$.

Subcase 2.1: $m_{\bar{G}} \neq n_{S}=0$. By Equation 4.3, $l-\left(m_{G}+\left(i_{S}-1\right)\right)=$ $m_{\bar{G}}+2 n_{S}=0$. Let $i \in I_{S}$, by Lemma 4.8(a), there is a perfect matching in $G-\left(V\left(M_{G}\right) \cup\left(I_{S}-\{i\}\right)\right)$, say F_{G}. Let $i v \in F_{G}$. We now consider \bar{G}. Since $n_{S}=0, G[S]$ is independent and thus $\bar{G}[\bar{S}]$ is a complete graph of odd order s. Therefore, $n_{\bar{S}}=\frac{1}{2}(s-1)$ and $i_{\bar{S}}=1$. By Equation 4.2, $l=m_{G}+s-1$. So $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=l-\left(n_{\bar{S}}+i_{\bar{S}}\right)=m_{G} \bar{\xi} s-1-\left(\frac{1}{2}(s-1)+1\right)=m_{G}+\frac{1}{2}(s-3)$.

We next show that $m_{G}+\frac{1}{2}(s-3) \geq 1$. Suppose to the contrary that $m_{G}+\frac{1}{2}(s-3)=0$. Since $m_{G} \geq 1$ and s is a positive odd integer, it follows that $m_{G}=1$ and $s=1$. By Equation 4.2, $1+1=m_{G}+m_{\bar{G}}+s=1+0+1=2$. Thus $l=1$, contradicting the fact that $l \geq 4$. Hence, $m_{G}+\frac{1}{2}(s-3) \geq 1$ as required.

Therefore, $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+\frac{1}{2}(s-3) \geq 1$. By Lemma 4.8(b), $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$ is 1-factor-critical. Recall that $i v \in F_{G}$. Clearly, $\bar{v} \notin V\left(M_{\bar{G}}\right)$ since $m_{\bar{G}}=0$. So there is a perfect matching in $\left.\bar{G}-\left((V)\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right) \cup\{\bar{v}\}\right)$, say $F_{\bar{G}}$. Hence, $M \cup\left(F_{G} \rightarrow\{v v\}\right) \cup F_{\bar{G}} \cup\{v \vec{v}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This proves Subcase 2.1

Subcase 2.2: $m_{\bar{G}}+n_{S} \geq 2$. By Equation 4.3, $l-\left(m_{G}+n_{S}+i_{S}\right)=$ $m_{\bar{G}}+n_{S}-1 \geq 1$. By Lemma 4.8(b), $G-\left(V\left(M_{G} \cup N_{S}\right) \cup I_{S}\right)$ is 1-factor-critical.

We now consider \bar{G}. By Equation 4.4, $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1$.
We first suppose that $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1 \geq 1$. By Lemma 4.8(b), $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$ is 1-factor-critical. Let $x \in V(G)$ such that $x, \bar{x} \notin V(M)$. Clearly, x exists because $\left|V\left(M_{G} \cup M_{\bar{G}}\right) \cup S\right| \leq 2 l+1$ and G and \bar{G} are of order at least $2 l+2$. Since $G-\left(V\left(M_{G} \cup N_{S}\right) \cup I_{S}\right)$ and $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$ are 1-factor-critical, it follows that there is a perfect matching in $G-\left(V\left(M_{G} \cup N_{S}\right) \cup\right.$ $\left.I_{S} \cup\{x\}\right)$, say F_{G}, and there is a perfect matching in $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}} \cup\{\bar{x}\}\right)$, say $F_{\bar{G}}$. Hence, $M \cup F_{G} \cup F_{\bar{G}} \cup\{x \bar{x}\}$ is a perfect matching in $G \bar{G}$ containing M as required.

So we next suppose that $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1=0$. It follows that $n_{\bar{S}}=0$ and $m_{G}=1$ since $m_{G} \geq 1$. Thus $i_{\bar{S}}=\bar{s}$ and $m_{\bar{G}} \leq m_{G}=1$. Put $M_{G}=\{x y\}$. Since \bar{G} is l_{2}-extendable, for $l_{2} \geq 4$, by Theorem $2.2(\mathrm{~b}), \bar{G}$ is 5-connected. So $\{\bar{x}, \bar{y}\} \cup V\left(M_{\bar{G}}\right)$ is not a cutset of $\overline{\bar{G}}$ since $\left|\{\bar{x}, \bar{y}\} \cup V\left(M_{\bar{G}}\right)\right| \leq 4$. Hence, there is an edge joining a vertex in $V(\bar{G})-\left(\{\bar{x}, \bar{y}\} \cup V\left(M_{\bar{G}}\right)\right)$, say \bar{u}, and a vertex in \bar{S}, say \bar{w}. Because $l-\left(m_{\bar{G}}+n_{\bar{S}}+i_{\bar{S}}\right)=0$ and $i_{\bar{S}}=\bar{s}$, it follows that $l-\left(m_{\bar{G}}+n_{\bar{S}}+1+\left(i_{\bar{S}}-1\right)\right)=l-\left(m_{\bar{G}}+n_{\bar{S}}+1+(\bar{s}-1)\right)=0$. By Lemma
4.8(a), there is a perfect matching in $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}} \cup\{\bar{u} \bar{w}\}\right) \cup(\bar{S}-\{\bar{w}\})\right)$, say $F_{\bar{G}}$. Since $G-\left(V\left(M_{G} \cup N_{S}\right) \cup I_{S}\right)$ is 1-factor-critical and $u \notin V\left(M_{G}\right)$, it follows that there is a perfect matching in $G-\left(V\left(M_{G} \cup N_{S}\right) \cup I_{S} \cup\{u\}\right)$, say F_{G}. Hence, $M \cup F_{G} \cup F_{\bar{G}} \cup\{u \bar{u}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This proves Subcase 2.2.

Subcase 2.3: $m_{\bar{G}}+n_{S}=1$. By Equation 4.3 and the fact that i_{S} is odd, $m_{G}+n_{S}=l+1-\left(m_{\bar{G}}+n_{S}+i_{S}\right) \leq l-1$. We distinguish 2 subcases according to $m_{\bar{G}}$ and n_{S}.

Subcase 2.3.1: $m_{\bar{G}}=0$ and $n_{S}=1$. Observe that $G\left[V\left(M_{G} \cup N_{S}\right)\right]$ contains $m_{G}+n_{S} \leq l-1$ independent edges and $\left|V\left(M_{G} \cup N_{S}\right)\right|=2\left(m_{G}+n_{S}\right)=$ $\left(m_{G}+n_{S}\right)+m_{G}+n_{S} \leq l-1+\left(m_{G}+n_{S}\right)$. It follows by Lemma 4.7 that $V\left(M_{G} \cup N_{S}\right)$ is not a cutset of G. Then there are a/vertex $u \in V(G)-\left(V\left(M_{G}\right) \cup S\right)$ and a vertex $z \in I_{S}$ such that $u z \in E(G)$. Since $l-\left(\left(m_{G}+n_{S}+1\right)+\left(i_{S}-1\right)\right)=$ $l-\left(m_{G}+n_{S}+i_{S}\right)=m_{\bar{G}}+n_{S}-1=0$, by Lemma 4.8(a), there is a perfect matching in $G-\left(V\left(M_{G} \cup N_{S} \cup\{u z\}\right) \cup\left(I_{S}-\{z\}\right)\right)$, say F_{G}. We now consider \bar{G}. We next show that $m_{G}+n_{\bar{S}} \geq 2$. Suppose to the contrary that $m_{G}+n_{\bar{S}}=1$. Since $m_{G} \geq 1, n_{\bar{S}}=0$ and $m_{G}=1$. By Equation $4.3, l+1=m_{G}+m_{\bar{G}}+2 n_{S}+i_{S}=3+i_{S}$. So $i_{S}=l-2 \geq 4-2=2$. It follows that $\bar{G}[\bar{S}]$ contains K_{2} as an induced subgraph. Thus $n_{\bar{S}} \geq 1$, contradicting the fact that $n_{\bar{S}}=0$. Hence, $m_{G}+n_{\bar{S}} \geq 2$.

By Equation 4.4, $l-\left(m_{\bar{G}}+n_{\bar{S}}+i \overline{\bar{S}}\right)=m_{G}+n_{\bar{S}}-1 \geq 1$. By Lemma 4.8(b), $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}}\right)$ is 1 -factor-critical. Recall that $m_{\bar{G}}=0$. So $\bar{u} \notin V\left(M_{\bar{G}}\right)$ Therefore, there is a perfect matching in $\bar{G}-\left(V\left(M_{\bar{G}} \cup N_{\bar{S}}\right) \cup I_{\bar{S}} \cup\{\bar{u}\}\right)$, say $F_{\bar{G}}$. Hence, $M \cup F_{G} \cup F_{\bar{G}} \cup\{u \bar{u}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This completes the proof of Subcase 2.3.1.

Subcase 2.3.2 $m_{\bar{G}}=1$ and $n_{S}=0$. Put $m_{\bar{G}}=\left\{\bar{x}_{1} \bar{x}_{2}\right\}$. Note that $m_{G}+n_{\bar{S}} \geq 2$ since $|m|=7+1 \geq 5$ and $n_{S}=0$. If there is a vertex $u \in$ $V(G)-\left(V\left(M_{G}\right) \cup S \cup\left\{x_{1}, x_{2}\right\}\right)$ such that $u z \in E(G)$ for some $z \in S$, then by applying similar argument as in the proof of Subcase 2.3.1, there is a perfect matching in $G \bar{G}$ containing M as required. So we now suppose that there is no vertex $u \in V(G)-\left(V\left(M_{G}\right) \cup S \cup\left\{x_{1}, x_{2}\right\}\right)$ such that $u z \in E(G)$ for some $z \in S$. Thus $V\left(M_{G}\right) \cup\left\{x_{1}, x_{2}\right\}$ is a cutset of G and $\left\{x_{1}, x_{2}\right\}$ is a cutset of $G-V\left(M_{G}\right)$. We next show that $s=1$. Suppose to the contrary that $s \geq 3$. By Equation 4.2, $m_{G}=l+1-m_{\bar{G}}-s=l-s \leq l-3$. By Observation 2.10, $G-V\left(M_{G}\right)$ is $\left(l-m_{G}\right)$-extendable. Because $l-m_{G} \geq 3$, by Theorem 2.2(b), $G-V\left(M_{G}\right)$ is 4 -connected, contradicting the fact that $\left\{x_{1}, x_{2}\right\}$ is a cutset of $G-V\left(M_{G}\right)$. Hence, $s=1$. Put $S=\{z\}$. Therefore, $z u \notin E(G)$ for $u \in V(G)-\left(V\left(M_{G}\right) \cup S \cup\left\{x_{1}, x_{2}\right\}\right)$. So $N_{G}(z) \subseteq V\left(M_{G}\right) \cup\left\{x_{1}, x_{2}\right\}$

By Equation 4.2, $m_{G}=l+1-m_{\bar{G}}-s=l-1$. By Observation 2.10, $G^{\prime}=$ $G-V\left(M_{G}\right)$ is 1-extendable. By Theorem 2.2(b), G^{\prime} is 2-connected. Therefore, $N_{G^{\prime}}(z)=\left\{x_{1}, x_{2}\right\}$ and $\operatorname{deg}_{G^{\prime}}(z)=2$. By Lemma 4.12, there is a vertex $u \in V\left(G^{\prime}\right)$ such that $u z \notin E\left(G^{\prime}\right)$ and $G^{\prime}-\{u, z\}$ contains a perfect matching, say F_{G}. We now consider \bar{G}. Since $l \geq 4, m_{\bar{G}}=1$ and $\bar{s}=s=1$, it follows that $l-\left(m_{\bar{G}}+\bar{s}\right)=$ $l-2 \geq 2$. By Lemma 4.8(b), $\bar{G}^{\prime}=\bar{G}-V\left(M_{\bar{G}} \cup \bar{S}\right)$ is 1-factor-critical. Then there is a perfect matching in $\bar{G}^{\prime}-\{\bar{u}\}$, say $F_{\bar{G}}$. Hence, $M \cup F_{G} \cup F_{\bar{G}} \cup\{u \bar{u}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This completes the proof of Subcase
2.3.2. and thus completes the proof of our theorem.

We now turn our attention to studying the extendability of $G \bar{G}$ when G or \bar{G} is l-extendable for $1 \leq l \leq 3$.

We first provide an example of a graph G suchthat both G and \bar{G} are 1extendable but $G \bar{G}$ is not 2-extendable. Let G be a graph where $V(G)=\left\{u_{i} \mid\right.$ for $1 \leq i \leq 4\} \cup\left\{v_{i} \mid\right.$ for $\left.1 \leq i \leq 6\right\}$ and $E(G)=\left\{u_{i} u_{i+1} \mid\right.$ for $\left.1 \leq i \leq 3\right\} \cup\left\{v_{i} v_{i+1} \mid\right.$ for $1 \leq i \leq 6$ where the subscript is read modulo 6$\} \cup\left\{u_{1} v_{i} \mid\right.$ for $\left.1 \leq i \leq 6\right\} \cup$ $\left\{u_{3} v_{1}, u_{4} v_{2}, u_{4} v_{3}\right\}$. Observe that $G\left[\left\{u_{i} \mid\right.\right.$ for $\left.\left.1 \leq i \leq 4\right\}\right]$ and $G\left[\left\{v_{i} \mid\right.\right.$ for $\left.\left.1 \leq i \leq 6\right\}\right]$ are a path of order 4 and a cycle of order 6 , respectively. It is routine to verify that G and \bar{G} are 1-extendable. But $G \bar{G}$ is not 2-extendable since $\left\{\bar{u}_{2} \bar{u}_{4}, u_{3} \bar{u}_{3}\right\}$ cannot be extended to a perfect matching in $G \bar{G}$.

We now scope our attention to extendability of $G \bar{G}$ where G is l_{1}-extendable and \bar{G} is l_{2}-extendable for $l_{1} \geq 2$ and $l_{2} \geq 2$. We first consider the case where $l_{1}=2$ and $l_{2} \geq 2$. We begin with the following lemma. Recall that if $\phi \neq$ $\left\{x_{1}, \ldots, x_{t}\right\} \subseteq V(G)$, then $\left\{\bar{x}_{1}, \bar{x}_{t}\right\} \subseteq V(\bar{G})$ is denoted by \bar{X} and vice versa.

Lemma 4.16. Let G and \bar{G} be 2-extendable non-bipartite graphs of order $p \geq 10$ and let $M=\left\{x_{1} x_{2}, \bar{y}_{1} \bar{y}_{2}, z \bar{z}\right\}$ be a matching of size 3 -in $G \bar{G}$, where $\left\{x_{1}, x_{2}, z\right\} \subseteq$ $V(G)$ and $\left\{\bar{y}_{1}, \bar{y}_{2}, \bar{z}\right\} \subseteq V(\bar{G}) \backsim$ Then there is a perfect matching in $G \bar{G}$ containing M.

Proof. Suppose to the contrary that there is no perfect matching in $G \bar{G}$ containing M. By Theorem 2.1, there is a cutset $T \subseteq V(G \bar{G})-V(M)$ such that $c_{o}(G \bar{G}-$ $(V(M) \cup T))>|T|$ By parity, $c_{o}(G \bar{G}-(V(M) \cup T)) \geq|T|+2$. Put $S=T \cup V(M)$. So $c_{o}(G \bar{G}-S) \geq|S|-4$. Put $A=\operatorname{SaV}(G), \bar{B}=S \cap V(\bar{G})$ and $C=V(G)-(A \cup B)$. Observe that $|A| \geq 3$ and $|\bar{B}| \geq 3$.

By Theorem 2.8, G and \bar{G} are bicritical. Thus, by Theorem 2.6, $c_{o}(G-A) \leq$ $|A|-2$ and $c_{o}(\bar{G}-\bar{B}) \leq|\bar{B}|-2$. We first show that $c_{o}(G-A)=|A|-2$ and $c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2$. Suppose to the contrary that $c_{o}(G-A)<|A|-2$. By parity, $c_{o}(G-A) \leq|A|-4$. It then follows by Lemma 4.13 that $c_{o}(G \bar{G}-S) \leq c_{o}(G-$ $A)+c_{o}(\bar{G}-\bar{B}) \leq|A|+|\bar{B}|-6$, contradicting the fact that $c_{o}(G \bar{G}-S) \geq|S|-4$. Hence, $c_{o}(G-A)=|A|-2$. Similarly, $c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2$.

Since G and \bar{G} are 2-extendable, by Theorem 2.5(b), $G[A]$ and $\bar{G}[\bar{B}]$ contain at most one independent edge. Because $\left\{x_{1}, x_{2}, z\right\} \subseteq A$ and $\left\{\bar{y}_{1}, \bar{y}_{2}, \bar{z}\right\} \subseteq \bar{B}$, $G[A]$ and $\bar{G}[\bar{B}]$ contain exactly 1 independent edge. By Lemma 4.9, $G-A$ and $\bar{G}-\bar{B}$ contain no even components. If $A \cup B \neq V(G)$, then, by Lemma 4.13, $c_{o}(G \bar{G}-S)=c_{o}(G \bar{G}-(A \cup \bar{B})) \leq|A|+|\bar{B}|-6=|S|-6$, again a contradiction. Hence, $A \cup B=V(G)$. Observe that if $c_{o}(G-A) \geq 4, G[B]=G-A$ contains at least 4 independence vertices and thus $\bar{G}[\bar{B}]$ contains a matching of size at least two, a contradiction. Hence, $c_{o}(G-A) \leq 3$. Similarly, $c_{o}(\bar{G}-\bar{B}) \leq 3$ and each component of $\bar{G}-\bar{B}$ is singleton otherwise $G[A]=G-B$ contains at least 2 independent edges, a contradiction. Therefore, $c_{o}(G[B-A])=c_{o}(G-A) \leq 3$ and $\bar{G}[\bar{A}-\bar{B}]=c_{o}(\bar{G}-\bar{B}) \leq 3$. Since $c_{o}(G-A)=|A|-2$ and $c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2$, it follows that $|A|=2+c_{o}(G-A) \leq 5$ and $|B|=|\bar{B}|=2+c_{o}(\bar{G}-\bar{B}) \leq 5$. Because $z \in A \cap B,|A \cup B|=|A|+|B|-|A \cap B| \leq 5+5-1 \leq 9$, contradicting the fact that $|V(G)|=p \geq 10$. This completes the proof of our lemma.

The next theorem shows that if G is a 2-extendable non-bipartite graph and \bar{G} is a l-extendable non-bipartite graph of order $p \geq 10$ and $l \geq 2$, then $G \bar{G}$ is 3 -extendable.

Theorem 4.17. Let G be a 2-extendable non-bipartite graph of order $p \geq 10$. If \bar{G} is l-extendable non-bipartite for some positive integer $l \geq 2$, then $\bar{G} \bar{G}$ is 3-extendable.

Proof. By Theorem 2.2(b), \bar{G} is 2-extendable non-bipartite graph. Let M be a matching of size 3 in $G \bar{G}$. Put $M_{G}=M \cap E(G), M_{\bar{G}}=M \cap E(\bar{G})$ and $M_{G \bar{G}}=M-\left(M_{G} \cup M_{\bar{G}}\right)$. Further, put $m_{G}=\left|M_{G}\right|, m_{\bar{G}}=\left|M_{\bar{G}}\right|$ and $m_{G \bar{G}}=\left|M_{G \bar{G}}\right|$. If $m_{G \bar{G}}=0$ or $m_{G \bar{G}}=3$, then, by Lemma 4.14, there is a perfect matching in $G \bar{G}$ containing M as required. So we now consider $1 \leq m_{G \bar{G}} \leq 2$. We distinguish 2 cases according to $m_{G \bar{G}}$.

Case 1: $m_{G \bar{G}}=1$. If $m_{G}=m_{\bar{G}}=1$, then, by Lemma 4.16, there is a perfect matching in $G G$ containing M as required. So we suppose without loss of generality that $m_{G}=2, m_{\bar{G}}=0$. By applying similar arguments as in the proof of Subcase 2.1 in Theorem 4.15, there is a perfect matching in $G \bar{G}$ containing M as required.

Case 2: $m_{G \bar{G}}=2$. By applying similar arguments as in the proof of Case 1 in Theorem 4.15, there is a perfect matching in $G \bar{G}$ containing M as required. This completes the proof of our theorem.

We point outhere that the bound on the order of graphs in Theorem 4.17 is best possible and the hypothesis that G and \bar{G} are non-bipartite is essential. Let G be a 3 -regular bipartite graph of order 8 with bipartition (X, Y) where $X=\left\{x_{i} \mid 1 \leq i \leq 4\right\}$ and $Y=\left\{y_{i} \mid 1 \leq i \leq 4\right\}$ and $E(G)=\left\{x_{i} y_{j} \mid 1 \leq i \neq j \leq 4\right\}$. It is not difficult to show that $\bar{G} \cong K_{4} \times K_{2}$ and both G and \bar{G} are 2-extendable. However, $G \bar{G}$ is not 3 -extendable since $\left\{x_{1} \bar{x}_{1}, x_{2} y_{1}, \bar{y}_{2} \bar{y}_{3}\right\}$ cannot be extended to a perfect matching in $G \bar{G}$.

We finally turn our attention to 3 -extendable graphs.
Lemma 4.18. Suppose G and \bar{G} are 3 -extendable non-bipartite graphs of order $p \geq 8$. Let $\left\{x, y, z_{1}, z_{2}, z_{3}\right\} \subseteq V(G)$ and $\left\{\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}\right\} \subseteq V(\bar{G})$ such that $G\left[\left\{z_{1}, z_{2}, z_{3}\right\}\right] \cong K_{3}$. Further, let $M=\left\{x y, z_{1} \bar{z}_{1}, z_{2} \bar{z}_{2}, z_{3} \bar{z}_{3}\right\}$ be a matching of size 4 in $G \bar{G}$. Then there is a perfect matching in $G \bar{G}$ containing M.
Proof. Suppose there is no perfect matching in $G \bar{G}-V(M)$. Then by Theorem 2.1, there is a cutset $T \subseteq V(G \bar{G})-V(M)$ such that $c_{o}(G \bar{G}-(T \cup V(M)))>$ $|T|$. By parity, $c_{o}(G \bar{G}-(T \cup V(M))) \geq|T|+2$. Put $S=T \cup V(M)$. So $c_{o}(G \bar{G}-S) \geq|S|-6$. Since $G \bar{G}$ contains a perfect matching, by Theorem 2.1, $c_{o}(G \bar{G}-S) \leq|S|$. Thus $|S|-6 \leq c_{o}(G \bar{G}-S) \leq|S|$. Put $A=S \cap V(G)$, $\bar{B}=S \cap V(\bar{G})$ and $C=V(G)-(A \cup B)$. Clearly, $\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq A \cap B$. By Lemma $3.2(\mathrm{~b}), c_{o}(G \bar{G}-S) \leq|S|-6$. So $c_{o}(G \bar{G}-S)=|S|-6$.

Since $x y, z_{1} z_{2} \in E(G)$, by Lemma 4.9, $c_{o}(G-A) \leq|A|-4$. On the other hand, since \bar{G} is 3 -extendable non-bipartite graph, by Theorems 2.2 (a) and 2.8, \bar{G} is bicritical. Therefore, by Theorem 2.6, $c_{o}(\bar{G}-\bar{B}) \leq|\bar{B}|-2$. We first show
that $c_{o}(G-A)=|A|-4$ and $c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2$. Suppose to the contrary that $c_{o}(G-A) \neq|A|-4$. By parity, $c_{o}(G-A) \leq|A|-6$. By Lemma 4.13(a), $c_{o}(G \bar{G}-S)=c_{o}(G \bar{G}-(A \cup \bar{B})) \leq|A|-6+|\bar{B}|-2=|S|-8$, a contradiction. Hence, $c_{o}(G-A)=|A|-4$. By similar argument, $c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2$. By Lemma 4.9, $G-A$ contains no even components. We next show that $\bar{G}-\bar{B}$ contains no even components. Suppose this is not the case. Then $\bar{G}-\bar{B}$ contains an even component, say \bar{D}. Let $\bar{b} \bar{d} \in E(\bar{G})$ such that $\bar{b} \in \bar{B}$ and $\bar{d} \in V(\bar{D})$. By Corollary 2.13, $\bar{G}^{\prime}=\bar{G}-\{\bar{b}, \bar{d}\}$ is 2-extendable non-bipartite. By Theorem 2.8, \bar{G}^{\prime} is bicritical. Since $c_{o}(\bar{G}-(\bar{B} \cup\{\bar{d}\}))=|\bar{B}|-1, c_{o}\left(\bar{G}^{\prime}-(\bar{B}-\{\bar{b}\})\right)=|\bar{B}-\{\bar{b}\}|$, contradicting Theorem 2.6. Hence, $\bar{G}-\bar{B}$ contains no even components.

If $A \cup B \neq V(G)$, then by Lemma 4.13, $c_{o}(G \bar{G}-S)=c_{o}(G \bar{G}-(A \cup \bar{B})) \leq$ $c_{o}(G-A)+c_{o}(\bar{G}-\bar{B})-2=|A|+|\bar{B}|-8=|S|-8$, a contradiction. So $A \cup B=V(G)$.

Note that $G[A-B]$ contains the edge $x y$. We first show that $G[A-B]$ contains exactly one independent edge. Suppose $G[A-B]$ contains 2 independent edges. Since $z_{1} z_{2} \in E(G[A \cap B])$, there are at least 3 independent edges in $G[A]$. Therefore, by Lemma 4.9, $c_{o}(G-A) \leq|A|-6$, contradicting the fact that $c_{o}(G-A)=|A|-4$. Hence, $G[A-B]$ contains exactly one independent edge. We next show that $\bar{G}[\bar{B}]$ contains $=$ no edges Suppose to the contrary that \bar{B} contains an edge $\bar{u}_{1} \bar{u}_{2}$. By Corollary $2.13, \bar{G}\left(-\left\{\bar{u}_{1}, \bar{u}_{2}\right\}\right.$ is 2-extendable nonbipartite graph. By Theorem 2.8, $\bar{G}-\left\{\bar{u}_{1}, \bar{u}_{2}\right\}$ is bicritical. Then, by Theorem 2.6, $c_{o}(\bar{G}-\bar{B})=c_{o}\left(\left(\bar{G}-\left\{\bar{u}_{1}, \bar{u}_{2}\right\}\right)-\left(\bar{B}-\left\{\bar{u}_{1}, \bar{u}_{2}\right\}\right)\right) \leqslant\left|\bar{B}-\left\{\bar{u}_{1}, \bar{u}_{2}\right\}\right|-2=|\bar{B}|-4$, contradicting the fact that $c_{0}(\bar{G}-\bar{B})=|\bar{B}|-2$. Hence, $\bar{G}[\bar{B}]$ contains no edges and $\bar{G}[\bar{B}]$ is independent So $G[B]$ and $B-A$ are elique and thus $c_{o}(G[B-A]) \leq 1$.

Therefore, $|A|-\left(4 \in c_{0}(G-A)=c_{0}(G[B-A]) \leq 1\right.$. So $|A| \leq 5$. If $\bar{G}[\bar{A}-\bar{B}]$ contains at least 4 components, then $G[A-B]$ contains at least two independent edges. But this contradicts the fact that $G[A-B]$ contains exactly one independent edges. Hence, $\bar{G}[\bar{A} \cap \bar{B}]$ contains at most 3 components. Therefore, $c_{o}(\bar{G}[\bar{A}-\bar{B}])=c_{o}(\bar{G}-\bar{B})=|\bar{B}|-2 \leq 3$. Hence, $|B|=|\bar{B}| \leq 5$. It follows that $|V(G)|=|A \cup B|=|A|+|B|-|A \cap B| \leq 5+5-3=7$, a contradiction. This proves our lemma.

Lemma 4.19. Suppose G and \bar{G} are 3 -extendable non-bipartite graphs of order $p \geq 8$. Let $\left\{x, y, z_{1}, z_{2}, z_{3}\right\} \subseteq V(G)$ and $\left\{\bar{z}_{1}, \bar{z}_{2}, \bar{z}_{3}\right\} \subseteq V(\bar{G})$ such that $G\left[\left\{z_{1}, z_{2}, z_{3}\right\}\right] \not \equiv K_{3}$. Further, let $M=\left\{x y, z_{1} \bar{z}_{1}, z_{2} \bar{z}_{2}, z_{3} \bar{z}_{3}\right\}$ be a matching of size 4 in $G \bar{G}$. Then there is a perfect matching in $G \bar{G}$ containing M.

Proof. Suppose $M=\left\{x y, z_{1} \bar{z}_{1}, z_{2} \bar{z}_{2}, z_{3} \bar{z}_{3}\right\}$ where $x, y \in V(G)$. Since $G\left[\left\{z_{1}, z_{2}, z_{3}\right\}\right]$ $\not \approx K_{3}$, we may suppose that $z_{1} z_{2} \notin E(G)$. Since $x y \in E(G)$, by Lemma 4.8(a), there is a perfect matching in $G-\left\{x, y, z_{1}, z_{2}\right\}$, say F_{G}. Let $z_{3} w \in F_{G}$. Again, because $\bar{z}_{1} \bar{z}_{2} \in E(\bar{G})$, by Lemma $4.8($ a), there is a perfect matching in $\bar{G}-$ $\left\{\bar{z}_{1}, \bar{z}_{2}, \bar{w}, \bar{z}_{3}\right\}$, say $F_{\bar{G}}$. Thus $M \cup\left(F_{G}-\left\{z_{3} w\right\}\right) \cup F_{\bar{G}} \cup\{w \bar{w}\}$ is a perfect matching in $G \bar{G}$ containing M as required. This completes the proof of our lemma.

Theorem 4.20. Let G be a 3-extendable non-bipartite graph of order $p \geq 8$. If \bar{G} is l-extendable non-bipartite for some positive integer $l \geq 3$, then $G \overline{\bar{G}}$ is 4extendable.

Proof. By Theorem 2.2(b), \bar{G} is 3 -extendable non-bipartite graph. Let M be a matching of size 4 in $G \bar{G}$. Put $M_{G}=M \cap E(G), M_{\bar{G}}=M \cap E(\bar{G})$ and $M_{G \bar{G}}=M-\left(M_{G} \cup M_{\bar{G}}\right)$. Without loss of generallity, suppose $\left|M_{G}\right| \geq\left|M_{\bar{G}}\right|$. If $M_{G \bar{G}}=\phi$ or $M_{G \bar{G}}=M$, then, by Lemma 4.14, there is a perfect matching in $G \bar{G}$ containing M as required. So we now suppose that $M_{G \bar{G}} \neq \phi$ and $M_{G \bar{G}} \neq M$. Therefore, $1 \leq\left|M_{G \bar{G}}\right| \leq 3$. We distinguish 3 cases according to $\left|M_{G \bar{G}}\right|$.

Case 1: $\left|M_{G \bar{G}}\right|=1$. By applying similar arguments as in the proof of Subcase 2.1 (if $\left|M_{\bar{G}}\right|=0$) or Subcase 2.3 (if $\left|M_{\bar{G}}\right|=1$) in Theorem 4.15, there is a perfect matching in $G \bar{G}$ containing M as required.

Case 2: $\left|M_{G \bar{G}}\right|=2$. By applying similar arguments as in the proof of Case 1 in Theorem 4.15, there is a perfect matching in $G \bar{G}$ containing M as required.

Case 3: $\left|M_{G \bar{G}}\right|=3$. Then, $\left|M_{G}\right|=1$ and $\left|M_{\bar{G}}\right|=0$. So, by Lemmas 4.18 and 4.19, there is a perfect matching in $G \bar{G}$ containing M as required.

This completes the proof of our theorem.
The next Theorem follows by Theorems 4.15, 4.17 and 4.20.
Theorem 4.21. For positive integers $\eta_{1} \geq 2, l_{2} \geq 2$, let G and \bar{G} be l_{1}-extendable and l_{2}-extendable non-bipartite graphs, rēspectively. Then $G \bar{G}$ is $(l+1)$-extendable, where $l=\min \left\{l_{1}, l_{2}\right\}$.

Bibliography

[1] N. Ananchuen and L. Caccetta, On critically k-extendable graphs, Australasian Journal of Combinatorics, 6(1992) 39-65.
[2] B. Bai, Z. Wu, X. Yang and Q. Yu, Lexicographic product of extendable graphs, Bulletin of the Mayaysian Mathematical Scienced Society, 33(2010) 197-204.
[3] J.A. Bondy and U.S.Murty, Graph Theory with Applcations, Elsevier Science Publishing Co., Inc, New York 1976.
[4] W.J. Desormeaux, Restrained and cother domination in complementary prisms, East Tennessee State University, Department of Mathematics, M.D.Thesis., (2008)
[5] T.W. Haynes, M.A. Henning, P.J. Slater and L.C. van der Merwe, The complementary product of two graphs, Bulletin of the Institute of Combinatorics and its Applications. 51 (2007) 21-30.
[6] T.W. Haynes, M.A. Henning, P.J. Slater and E.C. van der Merwe, Domination and total domination in complementary prisms, Journal of Combinatorial Optimization 18(2009) 23-37.
[7] O. Favaron, On n-factor-critical graphs, Discussiones Mathematics Graph Theory 16(1996) 41-51.
[8] J.A. Góngara W.J. Desormeaux, Independent domination in complementary prisms, East Tennessee State University, Department of Mathematics, M.D.Thesis., (2009).
[9] E. Györi and W. Imrich, On the strong product of a k-extendable and an l-extendable graph, Graphs and Combinatorics 17(2001) 245-253.
[10] E. Györi and M.D. Plummer, The cartesian product of a k-extendable and an l-extendable graph is $(k+l+1)$-extendable, Discrete Mathematics 101(1992) 87-96.
[11] K.R.S. Holmes, Locating-domination in complementary prisms, East Tennessee State University, Department of Mathematics, M.D.Thesis., (2009).
[12] P. Janseana, S. Rueangthampisan and N. Ananchuen, Extendability of the complementary prism of 2-regular graphs, (submitted).
[13] J. Liu and Q. Yu, Matching extension and product of graphs: In: J.W.K. John Gimbel and L.V.Quintas (Eds.) Quo Vadis, Graph Theory, A Source Book for Challenges and Directions 55(1993) 191-200.
[14] P. Maschlanka and L. Volkmann, Independence number for n-extendable graphs, Discrete Mathematics, 154(1996) 167-178.
[15] M.D. Plummer, Degree sums, neighhorhood unions and matching extension in graphs. In: R. Bodendiek. ed., Contemporary Methods in Graph Theory (1990) 189-502.
[16] M.D. Plummer, On n-extendable graphs, Discrete Mathematics 31(1980) 201210.
[17] M. D. Plummer, Extending matchings in claw-free graphs, Discrete Mathematics 125(1994) 301-307.
[18] M. D. Plummer, Extending matchings in graphs: a survey, Discrete Mathematics 127(1994) 277-292.
[19] M. D. Plummer, Extending matchings in graphs: an update, Congressus Numerantium 116(1996) 3-32.
[20] M.D. Plummer, Recent Progress in Matching Extension, Bolyai Society Mathematical Studies $19(2008)$ 427-454.
[21] M.D. Plummer, Matching extension and the genus of a graph, Journal of Combinatorial Theory Series, B 44 (1988) (3) 329-337
[22] L. Vaughan, Double domination in complementary prisms, East Tennessee State University, Department of Mathematies, M.D. Thesis., (2008).
[23] Z. Wu, X. Yang and Q. Yu, On cartesian product of factor-critical graphs,Graphs and Combinatorics, 28(2012) 723-736.
[24] Q. Yu, Characterizations of various matching extensions in graphs, Australasian Journal of Combinatorics, 7(1993) 55-64.
[25] Q. Yu, Factor and Factor extensions, Simon Fraser University Depertment of Mathematics, Ph.D.Thesis., (1991).
[26] Q. Yu and G. Liu, Graph factors and matching extensions, Springer (2009).

Biography

