

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES FROM MILIUSA SESSILIS CHAOWASKU \& KESSLER

A Thesis Submitted in Partial Fulfillment of the Requirements for Doctor of Philosophy ORGANIC CHEMISTRY

Department of CHEMISTRY
Graduate School, Silpakorn University
Academic Year 2019
Copyright of Graduate School, Silpakorn University

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาเคมีอินทรีย์ แบบ 2.1 ปรัชญาดุษฎีบัณฑิต ภาควิชาเคมี

บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร
ปีการศึกษา 2562
ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES FROM MILIUSA SESSILIS CHAOWASKU \& KESSLER

A Thesis Submitted in Partial Fulfillment of the Requirements for Doctor of Philosophy ORGANIC CHEMISTRY

Department of CHEMISTRY
Graduate School, Silpakorn University Academic Year 2019
Copyright of Graduate School, Silpakorn University

Title	Chemical constituents and biological activities from Miliusa sessilis Chaowasku \& Kessler
By	Yupa POOTAENG-ON
Field of Study	ORGANIC CHEMISTRY
Advisor	Assistant Professor Kanok-on Rayanil , Ph.D.

Graduate School Silpakorn University in Partial Fulfillment of the Requirements for the Doctor of Philosophy

Dean of graduate school
(Associate Professor Jurairat Nunthanid, Ph.D.)

58302803 : Major ORGANIC CHEMISTRY
Keyword : Miliusa sessilis, Annonaceae, Dihydro[b]benzofurans, 8-O-4'-Neolignans, Lanostane triterpenoids, Cytotoxicity

MISS YUPA POOTAENG-ON : CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES FROM MILIUSA SESSILIS CHAOWASKU \& KESSLER THESIS ADVISOR : ASSISTANT PROFESSOR KANOK-ON RAYANIL, Ph.D.

Bioassay-guided fractionation of the hexane and ethyl acetate extracts of the leaves of Miliusa sessilis Chaowasku \& Kessler sp. nov. (Annoaceae) led to the isolation of nine new neolignans including four dihydro[b]benzofuran neolignans: ($7 S, 8 R$)-5'-hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-acetate (MS12), (7S,8R)-3,4,5'-trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-ol (MS15), (7S,8R)-5'-hydroxy-3,4-dimethoxy-4',7-epoxy-8, 3^{\prime}-neolign- 8^{\prime}-en-9-ol (MS17) and ($7 R, 8 S$)-3,4,5'-trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-acetate (MS11), three $8-O-4^{\prime}$ neolignans: threo-($7 R, 8 R$)-3,3',4-trimethoxy-8, 4'-oxyneolign-8'-en-7-ol-9-acetate (MS16), threo($7 R, 8 R$)-3,3',4-trimethoxy-8,4'-oxyneolign-8'-en-7,9-diol (MS19) and threo-3,4-dihydroxy-3',5-dimethoxy-8,4'-oxyneolign-8'-en-7,9-diol (MS20), one dineolignan: $(7 R, 8 R)$-4'-hydroxy-3,4,5'-trimethoxy-8, 3^{\prime}-neolign-8'-en-7,9-diol (MS14) and one phenylpropanoid dimer: 4-hydroxy-3, 5-dimethoxy-3,4'-oxyneolign-7',8-dien-9'-ol (MS18), and four new triterpenes: ($3 \beta, 23 S$)-23-methoxy-24-methylenelanost-9-en-3ol (MS3), ($3 \beta, 23 S$)-23-methoxy-24-methylenenorlanost- 9 -en-3-ol (MS5), (3β)-24,24 ${ }^{1}$ -epoxy-lanost-9-en-3-ol (MS6) and ($3 \beta, 16 \beta$)-24-methylenelanost-9-en-3,16-diol (MS7), together with seven other known compounds, including, two neolignans: dehydrodieugenol A (MS10) and dehydrodieugenol B (MS13), two sesquiterpenes: (+)-spathulenol (MS1) and T-muurolol (MS4), phytol (MS2) and a mixture of stigmasterol (MS8) and β-sitosterol (MS9). Their (structures were elucidated by extensive spectroscopic analysis. The structures of MS12, MS3, MS5 and MS7 were further confirmed by X-ray crystallographic analysis. The absolute configurations were determined using circular dichroism (CD) data analysis and the modified Mosher's method. All isolated compounds were also evaluated for their cytotoxic activities against four human cancer cell lines (HeLa, HN22, HepG2 and HCT116), including one normal-type cell line (HaCaT) using MTT assay. MS17 was found to exhibit the most promising cytotoxic effect against Hela cells with the lowest IC_{50} value of 0.04 mM and the highest selective index of 187.8.

ACKNOWLEDGEMENTS

I would like to thank all professors from the Faculty of Science, Silpakorn University who taught me and gave me invaluable advice throughout my graduate study at Silpakorn University. Also, I would like to thank the Faculty of Animal Sciences and Agricultural Technology, Silpakorn University who gave me initial financial support and permit me to pursue my Ph.D. degree.

I would like to express my sincere thanks to Asst. Prof. Dr. Kanok-on Rayanil, my thesis advisor, for her invaluable help and constant encouragement throughout my research. I am most grateful for her teaching and advice, not only the research methodologies but also many other methodologies in life. I would not have achieved this far and my thesis would not have been completed without all the support that I have always received from her.

I am indebted to the thesis defense committee for the comments and suggestions, especially, Asst. Prof. Dr. Maneekarn Namsaaid, Department of Chemistry, Faculty of Science, Srinakharinwirot University, who spent valuable time as an external thesis committee and kindly understand my limitation.

I would like to thank Asst. Prof. Dr. Punlop Kuntiyong for material support, valuable discussion and answers concerning NMR interpreting the absolute stereochemistry by the modified Mosher's method.

I am grateful to Dr. Piya Chalermglin, Thailand Institute of Scientific and Technological Research and Assoc. Prof. Dr. Uma Prawat, Phuket Rajabhat University, for their support in collecting and identifying the plant material.

I am grateful to Dr.Purin Charoensuksai, Dr. Pawaris Wongprayoon and Ms. Suwadee Jiajaroen, Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University for enabling me to carry out the bioactivity assay in their laboratory and for their helpful suggestions.

Besides, I would like to thank Asst. Prof. Dr. Kittipong Chainok, Materials and Textile Technology, Faculty of Science and Technology, Thammasat University for collecting X-ray crystallographic data.

I gratefully acknowledge Chulabhorn Research Institute (CRI) for collecting HRESIMS data.

I am also grateful to the Graduate School, Silpakorn University for financial support.

A special acknowledgment is extended to the Department of Chemistry, Faculty of Science, Silpakorn University for providing research facilities.

I thank scientists at the Department of Chemistry, Faculty of Science, Silpakorn University for their helpful assistance in research facilities such as UV, IR and NMR experiments.

I also would like to acknowledge several partner laboratories, Ms. Wirunya Sutassanawichanna, Ms. Jintana Jantham, Asst. Prof. Sarinrat Chattiranan and others who I remember fondly because of their helpfulness, some very enjoyable experiences that we shared.

Finally, I am grateful to my family for their love, understanding, encouragement and support in everything throughout this research. This accomplishment would not have been possible without them. Thank you.

Yupa POOTAENG-ON

TABLE OF CONTENTS

Page

ABSTRACT D
ACKNOWLEDGEMENTS E
TABLE OF CONTENTS G
LIST OF TABLES K
LIST OF FIGURES N
CHAPTER 1 INTRODUCTION 2
1.1 The genus Miliusa 2
1.2 Morphological characters of Miliusa sessilis Chaowasku \& Kessler sp. nov 4
1.3 Chemical constituent investigation of the genus Miliusa 8
1.3.1 Miliusa cf. banacea 8
1.3.2 Miliusa velutina (DC.) Hook. f. \& Thomson 8
1.3.4 Miliusa sinensis Finet \& Gagnep 25
1.3.5 Miliusa mollis Pierre. 29
1.3.6 Miliusa fragrans Chaowasku \& Kessler sp. nov 32
1.3.7 Miliusa umpangensis Chaowasku \& Kessler sp. nov 34
1.3.8 Miliusa cuneata Craib 35
1.3.9 Miliusa thorelii Finet \& Gagnep 37
1.3.10 Miliusa sessilis Chaowasku \& Kessler sp. nov 39
CHAPTER 2 EXPERIMENTAL 1
2.1 Instrumentals and Chemicals 1
2.2 Plant materials 2
2.3 Chemical investigation of the leaves 3
2.3.1 Extraction and isolation 3
2.3.2 Chemical investigation of hexane extract fraction. 5
2.3.3 Chemical investigation of EtOAc extract fraction 15
2.4 Hydrolysis of MS12 20
2.5 Methylation of MS12 21
2.6 Dehydration of MS14 21
2.7 Preparation of S-(-)-MTPA ester MS16 and R-(+)-MTPA ester MS16 22
2.8 Hydrolysis of MS16 23
2.9 Acetylation of MS20. 23
2.10 X-ray crystallographic analysis of MS12, MS3, MS5 and MS7 24
2.10.1 Crystallographic data of ($7 S, 8 R$)-5'-hydroxy-3,4-dimethoxy-4',7-epoxy- 8,3'-neolign-8'-en-9-acetate (MS12) 25
2.11 Biological assays 25
2.11.1 Cell culture 25
2.11.2 Cytotoxicity evaluation 26
2.12 Physical and spectral properties of isolated compounds 27
2.12.1 MS1 28
2.12.2 MS2 29
2.12.3 MS3 30
2.12.4 MS4 31
2.12.5 MS5 32
2.12.6 MS6 33
2.12.7 MS7 69
2.12.8 a mixture of MS8 and MS9 70
2.12.9 MS10 71
2.12.10 MS11 72
2.12.11 MS12 73
2.12.12 MS13 74
2.12.13 MS14 75
2.12.14 MS15 76
2.12.15 MS16 77
2.12.16 MS17 78
2.12.17 MS18 79
2.12.18 MS19 80
2.12.20 MS20a 82
CHAPTER 3 RESULTS AND DISCUSSION 104
3.1 Structure elucidation and identification 104
3.1.1 Neolignans 105
3.1.1.1 (7S,8R)-5'-Hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'- en-9-acetate (MS12) 105
3.1.1.2 (7S,8R)-5'-Hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'- en-9-ol (MS17) 109
3.1.1.3 (7S,8R)-3,4,5'-Trimethoxy-4', 7-epoxy-8,3'-neolign-8'-en-9-ol (MS15) 111
3.1.1.4 ($7 R, 8 S$)-3,4,5'-Trimethoxy-4',7-epoxy-8, 3^{\prime} 'neolign- 8^{\prime}-en-9-acetate (MS11) 113
3.1.1.5 (7R,8R)-4'-Hydroxy-3,4,5'-trimethoxy-8,3'-neolign-8'-en-7,9-diol (MS14) 115
3.1.1.6 threo- $(7 R, 8 R)$-3,3',4-Trimethoxy-8,4'-oxyneolign-8'-en-7-ol-9- acetate (MS16) 117
3.1.1.7 threo-($7 R, 8 R$) -3, 3^{\prime},4-Trimethoxy-8,4'-ox yneolign-8'-en-7,9-diol (MS19) 120
3.1.1.8 threo-3,4-Dihydroxy-3',5-dimethoxy-8, 4'-oxyneolign-8'-en-7,9- diol (MS20) 123
3.1.2 Phenylpropanoid dimers 126
3.1.2.1 4-Hydroxy-3',5-dimethoxy-3,4'-oxyneolign-8,8'-dien (dehydrodieugenol B) (MS10) 126
3.1.2.2 4,4'-Dihydroxy-3,3'-dimethoxy-5,5'neolign-8,8'-dien, (dehydrodieugenol A) (MS13) 127
3.1.2.3 4-Hydroxy-3',5-dimethoxy-3,4'-oxyneolign-7',8-dien-9'-ol (MS18) 129
3.1.3 Triterpenes 131
3.1.3.1 (3 $\beta, 23 S$)-23-Methoxy-24-methylenenorlanost-9-en-3-ol (MS5) 131
3.1.3.2 (3 $\beta, 23 S$)-23-Methoxy-24-methylenelanost-9-en-3-ol (MS3) 134
3.1.3.3 ($3 \beta, 16 \beta$)-24-Methylenelanost-9-en-3,16-diol (MS7) 136
3.1.3.4 (3 β)-24, 24^{1}-Epoxy- lanost-9-en-3-ol (MS6) 138
3.2 Biological evaluation 139
CHAPTER 4 CONCLUSIONS 141
REFERENCES 142
APPENDIX A LIST OF ABBREVIATIONS 147
APPENDIX B LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS151
Neolignans 156
Phenylpropanoid dimer 213
Triterpenes 220
APPENDIX C LIST OF HRESIMS SPECTRUM OF ISOLATED COMPOUNDS
... 255 255
VITA 270

LIST OF TABLES

Page

Table 1.1 Antiherpetic activity and cytotoxicity of compounds isolated from the leaves and the stems of M. fragrans Chaowasku \& Kessler sp. nov 33
Table 2.1 Fractions obtained from hexane extract fraction 5
Table 2.2 Fractions obtained from H22 6
Table 2.3 Fractions obtained from hexane extract fraction 7
Table 2.4 Fractions obtained from H27.9 10
Table 2.5 Fractions obtained from H27.12 11
Table 2.6 Fractions obtained from H27.13 11
Table 2.7 Fractions obtained from H27.14 12
Table 2.8 Fractions obtained from H27:21 13
Table 2.9 Fractions obtained from H27.41. 13
Table 2.10 Fractions obtained from H27.59. 14
Table 2.11 Fractions obtained from ethyl acetate extract fraction 15
Table 2.12 Fractions obtained from E27 17
Table 2.13 Fractions obtained from E27.4 17
Table 2.14 Fractions obtained from E30 19
Table 2.15 Fractions obtained from E35. 20
Table $2.16{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS1 in CDCl_{3} (J in Hz in parentheses) 83
 Hz in parentheses) 84
Table $2.18{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS3 in CDCl_{3} (J in Hz in parentheses) 85
Table $2.19{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS4 86
Table $2.20{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS5 in CDCl_{3} (J in Hz in parentheses) 87
Table $2.21{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS6 in CDCl_{3} (J in Hz in parentheses). 88
Table $2.22{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS7 in CDCl_{3} (J in Hz in parentheses) 88
Table $2.23{ }^{1} \mathrm{H}$ NMR (300 Hz) data for a mixture of MS8 and MS9 in CDCl_{3} (J in Hz in parentheses). 91
Table $2.24{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS10 in CDCl_{3} (J in Hz in parentheses). 91
Table $2.25{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS11 in CDCl_{3} (J in Hz in parentheses) 92
Table $2.26{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})$ and HMBC NMR data for MS12 in CDCl_{3} (J in Hz in parentheses) 93
Table $2.27{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS13 in CDCl_{3} (J in Hz in parentheses). 94
Table $2.28{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS 14 in CDCl_{3} (J in Hz in parentheses). 95
Table $2.29{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS15 in CDCl_{3} (J in Hz in parentheses). 96
Table $2.30{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS16 in CDCl_{3} (J in Hz in parentheses), 97
Table $2.31{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS17 in CDCl_{3} (J in Hz in parentheses). 98
Table $2.32{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS18 in CDCl_{3} (J in Hz in parentheses). 99
Table $2.33{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS 19 in CDCl_{3} (J in Hz in parentheses) 100
Table $2.34{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS20 in CDCl_{3} (J in Hz in parentheses) 101
Table $2.35{ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS20a in CDCl_{3} (J in Hz in parentheses). 102
Table $2.36{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz})$ and $\Delta \delta$ values $\left[\Delta \delta(\mathrm{in} \mathrm{ppm})=\Delta \delta_{\mathrm{S}}-\Delta \delta_{\mathrm{R}}\right]$ for $S-(-)-$ MTPA ester MS16 and R-(+)-MTPA ester MS16 in CDCl_{3} (J in Hz in parentheses). 103

Table 3.1 Cytotoxic activity and selectivity index (SI) of compounds isolated from M. sessilis leaves.

LIST OF FIGURES

Page

Figure 1.1 Distribution of Miliusa A.DC.. 3
Figure 1.2 Miliusa sessilis sp.nov. (A) habit, (B) flower bud, (C) flower with two inner petals removed, (D) inside (adaxial surface) of an inner petal, (E) fruit. (A) - (E) van Beusekom and Santisuk 2807. .5
Figure 1.3 Miliusa sessilis Chaowasku \& Kessler sp. Nov (A) leaves and fruits (B) fruits. 6
Figure 1.4 Miliusa sessilis Chaowasku \& Kessler sp. Nov. (A, B and C) leaves, (D) stem. 7
Figure 1.5 Oxoaporphine alkaloids isolated from M. cf. banacea. 8
Figure 1.6 Chemical constituents isolated from M. velutina. 9
Figure 1.7 Goniothalamusin and partial structures of the principal constituents of mixtures of acetogenins- A and acetogenins- B isolated from the hexane extract of the stem bark of M. velutina. 10
Figure 1.8 Acetogenins isolated from the stem bark of M. velutina 11
Figure 1.9 Chemical constituents isolated from the leaves of M. velutina. 13
Figure 1.10 Some chemical constituents isolated from the hexane and ethyl acetate extracts of the fruits and flowers of M. velutina. 15
Figure 1.11 Chemical constituents isolated from the ethyl acetate extract of the leaves and branches of M. balansae Fin. \& Gagn. 17
Figure 1.12 Chemical constituents isolated from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn. 18
Figure 1.13 Chemical constituents isolated from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn 19
Figure 1.14 Glycosides isolated from the BuOH extract of the stems of M. balansae Fin. \& Gagn. 21
Figure 1.15 Chemical constituents isolated from the stems of M. balansae Fin. \& Gagn 22
Figure 1.16 Chemical constituents isolated from the methanol extract of the leaves of M. balansae Fin. \& Gagn. 24
Figure 1.17 Geranylated homogentisic acid derivatives contained γ-lactone spiro-ring system isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the leaves, twigs and flowers of M. sinensis Fin. \& Gagn26
Figure 1.18 Geranylated homogentisic acid derivatives contained the opening of γ - lactone spiro-ring system isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the leaves, twigs and flowers of M. sinensis Fin. \& Gagn 26
Figure 1.19 Geranylated homogentisic acid derivatives contained tetrahydrofuran ring system 27
Figure 1.20 Biogenetic pathways for miliusanes 27
Figure 1.21 Chemical constituents isolated from the methanol extract of the leaves of M. sinensis 29
Figure 1.22 Chemical constituents isolated from the MeOH extract of the twigs of M. mollis Pierre in 2010. 30
Figure 1.23 Chemical constituents isolated from the MeOH extract of the leaves of M. mollis Pierre in 2013 32
Figure 1.24 Lignans and neolignans isolated from the MeOH extract of the leaves and stems M. fragrans Chaowasku \& Kessler sp. nov 34
Figure 1.25 Geranylated homogentisic acid and flavonols isolated from the MeOH extract of the leaves of M. umpangensis Chaowasku and Kessler sp. nov 35
Figure 1.26 Chemical constituents isolated from the acetone extracts of leaves and the twigs of M. cuneata. 36
Figure 1.27 constituents isolated from the acetone extract of the stems, roots and leaves of M. thorelii. 38
Figure 2.1 Extraction and fractionation of Miliusa sessilis leaves. 4
Figure 2.2 Fractionation of the hexane extract of Miliusa sessilis 9
Figure 2.3 Fractionation of the EtOAc extract of Miliusa sessilis 18
Figure 2.4 Structures of MS1-MS20 27
Figure 3.1 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$ (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS12 107
Figure 3.2 X-ray ORTEP diagram of MS12. 108
Figure 3.3 Circular dichroism (CD) spectra of MS12. 108
Figure 3.4 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS17 110
Figure 3.5 CD spectra of MS17 110
Figure 3.6 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS15 112
Figure 3.7 CD spectra of MS15 112
Figure 3.8 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS11 114
Figure 3.9 CD spectra of MS11 114
Figure 3.10 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS14 116
Figure 3.11 CD spectra of MS14 compared with MS11, MS12, MS15 and MS17. 116
Figure 3.12 Structure, ${ }^{1} \mathrm{H}_{-1}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS16 119
Figure 3.13 Difference in the $\Delta \delta$ values $\left[\Delta \delta(\mathrm{in} \mathrm{ppm})=\Delta \delta_{\mathrm{S}}-\Delta \delta_{\mathrm{R}}\right]$ obtained from (S)- and (R)-MTPA esters of MS16 119
Figure 3.14 CD spectra of MS16. 120
Figure 3.15 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS19 121
Figure 3.16 CD spectra of MS16 122
Figure 3.17 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS20 125
Figure 3.18 CD spectra of MS20 compared with MS16 and MS19 125
Figure 3.19 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS10 127
Figure 3.20 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS13 128
Figure 3.21 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS18 130
Figure 3.22 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS5 133
Figure 3.23 X-ray ORTEP diagram of MS5 133
Figure 3.24 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS3 135

Figure 3.25 X-ray ORTEP diagram of MS3... 135
Figure 3.26 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of
MS7.. 137
Figure 3.27 X-ray ORTEP diagram of MS7.. 137
Figure 3.28 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS6

138

CHAPTER 1

INTRODUCTION

Natural products and traditional medicines are highly important as they have been recognized in term of a source of therapeutic agents and diversity of their structures. Natural products are various in multidimensional chemical structures; in the meantime, their biological function modifiers have also been in attention.

Natural products played an important role in this world because of the achievement of drug discovery. The existence of the medicinal plants on this earth has been globally important. The earth is full of medicinal herbs being rich of endurance. Each plant has its own different therapeutic properties following their active bioactive molecule. Natural drug substances play essential roles in the modern medical system. Natural products therapeutic roles are extremely useful for disease-inhabiting capabilities. They provide basic bioactive compounds which are less toxic but more effective. They also bring biological and chemical means of modification and extraction of natural products into potent drug.

1.1 The genus Miliusa

Miliusa was placed in the tribe Miliusae of the subfamily Malmeoideae, which belongs to the Annonacea family. The plant Miliusa is an Asian palaeotropical genus comprises about 60 species of shrubs and trees distributed from the Indian subcontinent through Indochina, Peninsular Malaysia, the Southeast Asian islands to New Guinea and northern Australia (Figure 1.1) [1, 2]. Miliusa is circumscribed by having four characters: 1) similarly-sized sepals and outer petals both of which are
much smaller than the inner petals, 2) a densely hairy torus, 3) miliusoid stamens, that are stamens with tiny connective prolongation not covering the thecae or without connective prolongation, and 4) fourpart lamelliform ruminations of the endosperm [3].

Figure 1.1 Distribution of Miliusa A.DC.
From Mols and Kessler (2003)
At least 20 species of Miliusa have been found in Thailand, including M. amplexicaulis Ridl., M. chantaburiana Damthongdee \& Chaowasku, M. campanulata Pierre, M. cuneata Craib, M. filipes Ridl., M. fragrans Chaowasku \& Kessler sp. nov., M. fusca Pierre, M. hirsuta Chaowasku \& Kessler sp. nov., M. horsfi eldii (Benn.) Baill. ex Pierre, M. intermedia Chaowasku \& Kessler sp. nov., M. longipes King, M. mollis Pierre, M. nakhonsiana Chaowasku \& Kessler sp. nov., M. parviflora Ridl., M. pumila Chaowasku, M. sclerocarpa (A. DC.) Kurz., M. sessilis Chaowasku \& Kessler sp. nov., M. thailandica Chaowasku \& Kessler sp. nov., M. thorelii Finet \& Gagnep., M. umpangensis Chaowasku \& Kessler sp. nov. and M. velutina (DC.) Hook. f. \& Thomson [2, 4]. Nine of the Miliusa genera growing worldwide have been investigated for their photochemistry and biological activity. Previous chemical
investigations of plants in this genus have disclosed different classes of natural products, including aporphine alkaloids and alkaloids [5-8], geranylated homogentisic acid derivatives [9-11], flavonoids [5, 6, 12], styryl compounds [12-14], lignans and neolignans [15-17], acetogenins $[12,18]$ and other aliphatic and aromatic compounds [19-23]. In particular, alkaloids [6, 8], geranylated homogentisic acid derivatives [6, 9, 11] and neolignan $[15,16]$ were showed antiherpetic activities and cytotoxic activities.

1.2 Morphological characters of Miliusa sessilis Chaowasku \& Kessler sp. nov.

Miliusa sessilis was reported first time in 2013 by Chaowasku and Kessler [2]. The plant was collect first time at Bang Saphan, Prachuab Khiri Khan, Thailand in Feb 1970, The name of M. sessilis refers to the nearly sessile monocarps (and also sessile leaves) and the name in Thai is "Bai-Biaw-Dam-Kwan". The morphological character (Figure 1.2-1.4) is shrubs, evergreen, 1-2 m high. The wood appeared yellow when fresh but became darker on exposure. The parenchyma is in fine tangential lines, forming a network with the narrow to moderately broad to broad rays, which is typical for Annonaceae [1]

Figure 1.2 Miliusa sessilis sp. nov. (A) habit, (B) flower bud, (C) flower with two inner petals removed, (D) inside (adaxial surface) of an inner petal, (E) fruit. (A) - (E) van Beusekom and Santisuk 2807.
From Chaowasku and Kessler (2013)
A.

B.

Figure 1.3 Miliusa sessilis Chaowasku \& Kessler sp. Nov (A) leaves and fruits (B) fruits.
Pootaeng-on, Y. [February, 2016]

Figure 1.4 Miliusa sessilis Chaowasku \& Kessler sp. Nov. (A, B and C) leaves, (D)
stem.
Pootaeng-on, Y. [February, 2016]

1.3 Chemical constituent investigation of the genus Miliusa

1.3.1 Miliusa cf. banacea

In 1994, phytochemical investigation of the methyl ethyl ketone extract from the root of Miliusa cf. banacea led to the isolation of two oxoaporphine alkaloids, lauterine (1) and 10-hydroxyliriodenine (2) (Figure 1.5). The structure of 10-hydroxyliriodenine (2), a novel oxoaprophine alkaloid, was determined by spectroscopic methods and chemical conversion to lauterine (1). Both lauterine (1) and 10-hydroxyliriodenine (2) are significantly toxic to the rad 52. top1 mutant and inhibit DNA topoisomerase II activity. [8]

Figure 1.5 Oxoaporphine alkaloids isolated from M. cf. banacea.

1.3.2 Miliusa velutina (DC.) Hook. f. \& Thomson

In 2000, five alkaloids were isolated from ethanolic extract of the stem bark of M. velutina by acid-base treatment followed by preparative silica gel TLC using chloroform-methanol-ammonia as the developing solvent. The structures were elucidated as benzulisoquinoline; reticuline (3), and aporphines; liriodenine (4), isocordine (5), nor-corydine (6), (+)-isocordine α-oxide (7), stigmasterol (8), spathulenol (9) and an ester, benzyl benzoate (10) (Figure 1.6) [7, 23].

4

5

Figure 1.6 Chemical constituents isolated from M. velutina.

In 2000, the purified acetogenin, goniothalamusin (11) and two acetogenine mixtures, the mixtures of acetogenins-A (12) and the mixtures of acetogenins-B (13) (Figure 1.7) were isolated from petroleum ether extract of the stem bark of M. velutina Hook. f. \& Thomson. Both goniothalamusin (11) and acetogenine mixturesA (12) showed moderate antibacterial activity, whereas the acetogenins mixtures-B (13) was slightly active against only Bacillus cereus [24].

Figure 1.7 Goniothalamusin and partial structures of the principal constituents of mixtures of acetogenins-A and acetogenins-B isolated from the hexane extract of the stem bark of M. velutina.

In 2011 and 2015, nine new C23 and C21 linear acetogenins, cananginones A-I (14-22) (Figure 1.8) were isolated from the hexane extract of the stem bark of M. velutina. Their structures were identified by 1D, 2D NMR as well as by intensive examination of EIMS fragmentation. The stereochemistry of the γ-lactone ring of the isolated compounds was assigned to be $2 R, 22 S\left(20 S^{*}\right)$ as reported for goniothalamusin (11). These compounds exhibited weak cytotoxicity (IC_{50}) against three cancer cell lines, including the epidermoid carcinoma (KB) cell lines with IC_{50} values in the range of $33.9-112.6 \mu \mathrm{M}$, human breast cancer (MCF7) cell lines with IC_{50} values in the range of $16.6-129.7 \mu \mathrm{M}$ and human small cell lung cancer (NCIH187) cell lines with IC_{50} values in the range of $27.0-66.7 \mu \mathrm{M}$. Compounds 21 and 22 also showed weak antifungal activity against Candida albicans with IC_{50} values of 37.4 and $75.2 \mu \mathrm{M}$, respectively. Only compound $\mathbf{1 8}$ showed antimalarial activity against P. falciparum with an IC_{50} value of $24.4 \mu \mathrm{M}$. [18, 24, 25].

14

15

19

20

21

22

Figure 1.8 Acetogenins isolated from the stem bark of M. velutina.

In 2011, a unique class of eight bicyclic lactones with a C18 carbons architecture, velutinoes A-H (23-30), three new dimeric styrylpyrones, velutinindimer A-C (31-33) and five known compounds including the kawapyrone, yangonin (34), three flavonoids (35-37) and an acetogenin, cananginone H (38) (Figure 1.9) were isolated from the hexane and ethyl acetate extracts of the leaves of M. velutina [12]. Velutinindimers A-C (31-33) are dimers occurring from symmetrical and asymmetrical $2+2$ cycloaddition of the isolated styrylpyrone, yangonin (34). The structures of velutinindimer B and C ($\mathbf{3 2}$ and 33) were isolated as a mixture which were confirmed by X-ray crystallographic, ECD, and specific rotation analyses. Velutinoes B-D (24-26), velutinoes G-H (29-30), and velutinindimer A-C (31-33)
exhibited antimalarial activity with IC_{50} values in the range of $5.4-10.0 \mu \mathrm{M}$. Moreover, velutinoes A-D (23-26) and velutinoes F-H (28-30) showed cytotoxicity against the KB, MCF7, and NCI-H187 cancer cell lines and Vero cell lines with IC_{50} values in the range of $4.0-24.1 \mu \mathrm{M}$ [12].

23

$24 R=$

$25 \mathrm{R}=$

$26 R=$

 Coseres)

30 R =

$29 \mathrm{R}=$

$28 \mathrm{R}=$

38

31

34

$35: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
$36: \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$

33

37

Figure 1.9 Chemical constituents isolated from the leaves of M. velutina.

Recently in 2019, five new rare homogentisic acid derivatives, miliusanal (39) and miliusanoned A-D (40-43) (Figure 1.10) were isolated from the hexane and ethyl acetate extracts of the fruits and flowers of M. velutina. In addition, the known compounds were identified by physical properties and spectroscopic data analysis, as well as two homogentisic acid derivatives, methyl-2-(1' β-geranyl- $5^{\prime} \beta$-hydroxy- $2^{\prime}-$ oxocyclohex-3'-enyl)acetate (44) and 2-(1' β-geranyl-5' β-hydroxy-2'oxocyclohex-3'eny) acetic acid (45), an isolated styrylpyrone, yanonin (34), two dimeric styrylpyrones, velutinindimer A (31) and velutinindimer B (32), two acetognins, cananginones $\mathrm{A}(\mathbf{1 4)}$ and cananginones H (38), three small phenolics, 4hydroxybenzonitrile (46), 4-hydroxybenzaldehyde (47), and isovanillin (48), three furfurals, 5-acetyloxymethylfurfural (49), (5-methoxyfurfural (50), and 5hydroxymethylfurfural (51), and two common phytosterols, β-sitosterol (52) and stigmasterol (53) (Figure 1.10). Compounds 39 and 44 showed moderate antibacterial activities against three Gram-positive bacteria tests, including Bacillus cereus DMST 5040, Staphylococcus aureus DMST 8013, and Methicillin resistant S. aureus, with MICs in the range of $32-64 \mu \mathrm{~g} / \mathrm{mL}$. Compounds 32, 34, 40, and 45 showed antibacterial against B. cereus with MICs in the range of $64-128 \mu \mathrm{~g} / \mathrm{mL}$ and $\mathbf{4 0}$ also showed antibacterial against S. aureus with an MICs of $128 \mu \mathrm{~g} / \mathrm{mL}$. Moreover, compounds 31, 32, 34, 39, 40, 44, and 45 showed antibacterial activities against Gram-negative bacteria Pseudomonas aeruginosa DMST 4739, with MICs in the range of $64-128 \mu \mathrm{~g} / \mathrm{mL}$. Compound 39 also exhibited antibacterial activity against Salmonella enterica serovar Typhimurium DMST 562 with an MICs of $128 \mu \mathrm{~g} / \mathrm{mL}$. It should be noted that the transformations at the terminal side chain of the geranyl group in $\mathbf{4 2}$ and $\mathbf{4 3}$ result in the lack of activities for all tests [26].

39

42

40

43

$44 \mathrm{R}=\mathrm{Me}$
$45 \mathrm{R}=\mathrm{H}$

48

51

Figure 1.10 Some chemical constituents isolated from the hexane and ethyl acetate extracts of the fruits and flowers of M. velutina.

1.3.3 Miliusa balansae Finet \& Gagnep

Phytochemical analysis of Vietnamese and Chainese M. balansae Finet \& Gagnep from 2000 to 2015 had been found various of secondary metabolites, especially flavonoids, terpenoids, or geranylated homogentisic acid derivatives. In 2002, two styryl derivatives, 3,4-dimethoxy-6-styryl-pyran-2-one (54) and (2E,5E)-2-methoxy-4-oxo-6-phenyl-hexa-2,5-dienoic acid methyl ester (55) were isolated from the ethyl acetate extract of the leaves and branches of M. balansae. In addition, the known geranylated homogentisic acid derivative, miliusate (9-acetoxy-1-[(1E)-2,6-dimethyl-hepta-1,5-dienyl]-3,6-dioxo-2-oxa-spiro[4.5]dec-7-ene) (56) was also isolated. This compound has been previously reported as a chemical constituent in this species by Wu group [19] (Figure 1.11). Moreover, four known flavonoids, 4,5-hydroxy-7-methoxyflavanone (pinostrobin) (57), 4,5-hydroxy-7,4'dimethoxyflavanone (58), 5-hydroxy-7,8-dimethoxyflavanone (59) and 5-hydroxy-6,7-dimethoxyflavanone (onysilin) (60), and two known dihydrochalcones, $2^{\prime}, 6^{\prime}-$ dihydroxy-3',4'-dimethoxydihydrochalcone (dihydropashanone) (61) and 2',6'-dihydroxy-4'-methoxydihydrochalcone (62) [14] were isolated.

54

55

56

Figure 1.11 Chemical constituents isolated from the ethyl acetate extract of the leaves and branches of M. balansae Fin. \& Gagn.

In 2004, two new homogentisic acid derivatives, $\left(1^{\prime} E\right)-\left(1 R^{*}, 5 R^{*}, 9 S^{*}\right)-9$ -hydroxy-1-(2,6-dimethylhepta-1,5-dienyl)-3,6-dioxo-2-oxa-spiro[4.5]dec-7-ene (miliusol) and $\left.\quad 3 \mathrm{a}^{*}, 5 S^{*}, 7 \mathrm{a} R^{*}\right)$-5-benzoyloxy-3a,4,5,7a-tetrahydro-3H-benzofuran-2-one (miliusolide) (64) were isolated from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn. together with two known flavanones, $4^{\prime}, 5$-dihydroxy-3,3',7-trimethoxyflavone (pachypodol) (65) and 4',5,6-trihydroxy-3,3',7-trimethoxyflavone (chrysosplenol C) (66), the symmetric ether, bis(2-hydroxyphenyl)-methyl ether (67) (Figure 1.12) and sodium benzoate. The relative configuration of miliusol (63) was deduced from the NOESY spectrum [11].

$56 \mathrm{R}=\mathrm{Ac}$
$63 \mathrm{R}=\mathrm{H}$

64

Figure 1.12 Chemical constituents isolated from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn.

In 2005, Huong and co-workers reported the isolation of a new flavone, 8-(2-hydroxybenzyl)-5-hydroxy-2-(4-hydroxy-3-methyoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one or 8-C-(o)-hydroxybenzylpachypodol (miliufavol) (68) from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn. together with four known flavones, $3,3^{\prime}, 5$-trihydroxy-4',7-dimethoxyflavone (ombuine) (69), 4',5-dihydroxy-3,3',6,7-tetramethoxyflavone (chrysosplenol B) (70), pachypodol (65), and chrysosplenol C (66) (Figure 1.13). Among them, pachypodol (65) has strong activities against two cancer cell lines $\left(\mathrm{KB}: \mathrm{IC}_{50}=0.7 \mu \mathrm{~g} / \mathrm{ml}\right.$ and Hep-G2: $\mathrm{IC}_{50}=0.55$ $\mu \mathrm{g} / \mathrm{ml})$ [27].

In 2008, Huong et al. also reported the isolation of two new bis-styryls, miliubisstyryl A (71) and miliubisstyryl B (72), and octacosanoic acid (73) (Figure
1.13) from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn. [13]. Their structures are closely related to the structure of the styryl derivative (2E,5E)-2-methoxy-4-oxo-6-phenyl-hexa-2,5-dienoic acid methyl ester (55), which had been isolated from this plant and reported in the previous paper [14].

Figure 1.13 Chemical constituents isolated from the methanol- $\mathrm{H}_{2} \mathrm{O}$ extract of the leaves and branches of M. balansae Fin. \& Gagn.

In 2008, Lei and co-workers, the researcher group from China reported the isolation of three new glycosides together with five known glycosides from the BuOH extract of the stems of M. balansae Fin. \& Gagn. The three new glycosides were identified as 2-hydroxy-5-(2-hydroxymethyl)phenyl O - α-D-apiofuranosyl-(1 $\rightarrow 6$)-O- β -

D-glucopyranoside (mlilusoside A, 74), 2-(4-hydroxymethyl)ethyl O - α-D-apiofuranosyl$(1 \rightarrow 6)$-O- β-D-glucopyranoside (miliusoside $\mathrm{B}, 75$) and megastigm-7-ene-3,6,9-triol-9-O-α-D-apiofuranosyl-($1 \rightarrow 6$)-O- β-D-glucopyranoside (miliusoside C , 76) and the five known glycosides were 2-(4-hydroxyphenyl)ethyl- β-D-apiosyl-(1 $\rightarrow 6$)-O- β-Dglucopyranoside (osmanthuside H , 77), cuchiloside (78), 1-(α - L-rhamnosyl-($1 \rightarrow 6$)- β-D-glucopyranosyloxy)-3,4,5-trimethoxybenzene (79), D-glucopyranoside (80) and alangionoside $\operatorname{B(81)}$ (Figure 1.14). Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison with the spectra of related compounds [21].

74

75

76

77

$78 \quad 79$

Figure 1.14 Glycosides isolated from the BuOH extract of the stems of M. balansae Fin. \& Gagn.

In 2009, Lei and co-workers also reported the isolation of alkaloids and alkaloid pyranosides, including allantoin (82), coclaurine (83), 1-N-methylcoclaurine (84), liriodenine (85), adenine riboside (86) and uridine (87) (Figure 1.15). In addition, β-sitosterol (52), daucosterol (88) and two glucosides (sucrose (89) and glucose (90)) (Figure 1.15) were isolated from the stems of M. balansae Fin. \& Gagn. [22].

82

85

83

52

90

Figure 1.15 Chemical constituents isolated from the stems of M. balansae Fin. \& Gagn.
In 2015, Tao and co-workers, the researchers from Viet Nam, isolated three new megastigmane glycosides together with fifteen known compounds from the methanol extract of the leaves of M. balansae Fin. \& Gagn. The three new
megastigmane glycosides were elucidated as ($2 R, 3 S, 5 S, 6 S, 7 E$)-3,6-epoxy-7-megastigmen-9-one-2,5-diol 5-O- β-D-glucopyranoside (milbaside $\mathrm{A}, ~ 91$), ($2 R, 3 S, 5 S, 6 S, 7 E$)-3,6-epoxy-7-megastigmen-9-one-2,5-diol 5-O- β-D-(6'-O- β-Dapiofuranosyl)glucopyranoside (milbaside $\mathrm{B}, \mathbf{9 2}$) and ($3 S, 5 R, 6 R, 7 E$)-3,6-epoxy-7-megastigmen-9-one-5-ol 5-O- β-D-glucopyranoside (milbaside $\mathrm{C}, 93$). The fifteen known compounds were myrsinionoside D (94), ampelopsisionoside (95), myrsinionoside A (96), threo-1-C-syringylglycerol (97), erythro-1-C-syringylglycerol (98), threo-guaiacylglycerol (99), erythro-guaiacylglycerol (100), (L)-guaiacyl glycerol $2^{\prime}-O$ - β-D-glucopyranoside (101), curcolide (102), serralactone (103), β-Dglucopyranosyl (Z)-3-hexenol (104), 1-(3-methylbutyryl)phloroglucinol-glucopyranoside (105), epicatechin (106), chrysosplenol C (66) and rutin (107) (Figure 1.16) (Thao et al., 2015). Their chemical structures were elucidated using extensive spectroscopic analysis, including 1D and 2D NMR, HRESIMS, and CD analysis, as well as comparison with previously reported data. Compounds 91, 92, 93, 101, and 104 exhibited potently inhibitory activities on LPS-induced production of inflammatory mediator NO in RAW 264.7 cells with inhibition values of $98.5 \pm 1.6 \%, 90.9 \pm 7.8 \%$, $84.8 \pm 3.5 \%, 91.5 \pm 8.7 \%$ and $91.8 \pm 2.7 \%$ respectively, relatively compared to the positive control, sulfuretin ($81.3 \pm 4.9 \%$ at $20.0 \mu \mathrm{M}$). In addition, myrsinionoside D (94) and epicatechin (106) showed moderate or weak activity at 10.0 and $20.0 \mu \mathrm{M}$, but strong inhibitory effects at $40.0 \mu \mathrm{M}$ (with inhibition values of $82.0 \pm 5.9 \%$ and $91.8 \pm 5.6 \%$, respectively) [20].

$91 \mathrm{R}=\mathrm{Glc}$
$92 \mathrm{R}=\operatorname{Glc}(6 \rightarrow$ 1) Api

$93 \mathrm{R}=\mathrm{Glc}$

$94 \mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{Glc}, \quad \mathrm{R}_{3}=\alpha \mathrm{OH}$
$95 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{Glc}, \quad \mathrm{R}_{3}=0, \Delta^{7}$
$96 \mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{Glc}, \quad \mathrm{R}_{3}=\mathrm{O}$

Glc : β-D-glucopyranosyl

Api : β-D-apiofuranosyl

Rha : α-L-fhamnopyranosyl

Figure 1.16 Chemical constituents isolated from the methanol extract of the leaves of M. balansae Fin. \& Gagn.

1.3.4 Miliusa sinensis Finet \& Gagnep

In 2006, phytochemical investigation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract from the leaves, twig and flowers of M. sinensis Fin. \& Gagn by Zhang and co-workers, the researcher group from Viet Nam, led to the isolation of miliusate (56) and miliusol (63) and 20 new miliusanes, miliusanes I-XX (108-127) (Figure 1.17-1.19). All of these compounds belong to a C18 carbon skeleton, which a new class of potential anticancer lead molecule, had designated as miliusane [9]. The two known compounds, miliusate (56) and miliusol (63), were reported previously from M. balansae Fin. \& Gagn. [11, 14].

The absolute stereochemistry of miliusanes was determined using Mosher's method, various diagnostic chemical reactions and the X-ray crystallographic analysis. Distribution of the positive and negative δ values of the MTPA ester established the chiral centers of both $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$ in the R-configuration. Successful chemical conversions of miliusol (63) to miliusate (56) and (+)-milusane VIII (115), (+)-milusane IX (116) to miliusol (63), (+)-milusane I (108) to (+)-milusane VI (113) and (+)-milusane II (109) to (+)-milusane VII (114) confirmed that compounds 56, 109 and 113-116 occupy the same chiral centers at $\mathrm{C}-1$ and $\mathrm{C}-1^{\prime}$. Besides, the double bonds at $\Delta^{2^{\prime}, 3^{\prime}}$ of the miliusanes were established as E-configurated due to the observed ROE correlations between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-9^{\prime}$, between $\mathrm{H}-7 \beta$ and $\mathrm{H}-2^{\prime}$ and between $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-4^{\prime}$ in the ROESY spectra.

$56 \mathrm{R}=\mathrm{OAc}$
$63 \mathrm{R}=\mathrm{OH}$

116
115

123

108	$\mathrm{R}_{1}=\mathrm{OH}$,	$\mathrm{R}_{2}=\beta-O C H_{3}$
109	$\mathrm{R}_{1}=\mathrm{OH}$,	$\mathrm{R}_{2}=\alpha-O C H_{3}$
110	$\mathrm{R}_{1}=\mathrm{OH}$,	$\mathrm{R}_{2}=\beta-O H$
111	$\mathrm{R}_{1}=\mathrm{OH}$,	$\mathrm{R}_{2}=\alpha-O H$
112	$\mathrm{R}_{1}=\mathrm{OH}$,	$\mathrm{R}_{2}=\beta-N H A c$
113	$\mathrm{R}_{1}=\mathrm{OAc}$,	$\mathrm{R}_{2}=\beta-O C H_{3}$
114	$\mathrm{R}_{1}=\mathrm{OAc}, \mathrm{R}_{2}=\alpha-O C H_{3}$	

117/118 $\mathrm{R}=\mathrm{OH}$
119/120 $R=O A c$

124

Figure 1.17 Geranylated homogentisic acid derivatives contained γ-lactone spiro-ring system isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the leaves, twigs and flowers of M.

125

Figure 1.18 Geranylated homogentisic acid derivatives contained the opening of γ lactone spiro-ring system isolated from the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract of the leaves, twigs and flowers of M. sinensis Fin. \& Gagn.

Figure 1.19 Geranylated homogentisic acid derivatives contained tetrahydrofuran ring system.

Figure 1.20 Biogenetic pathways for miliusanes.

The miliusanes belong to a novel class of natural product comprising of 18 carbons in their skeletons, which were classified as geranylated homogentisic acid. A plausible biogenetic pathway for miliusanes was shown in figure 1.20. In the first
step, the precursor, homogentisic acid combined with geranyl diphosphate (geranyl PP) by electrophilic alkylation reaction to generate an intermediate cation (B), which would be combined with water to form compound \mathbf{C}. The C-5 carbonyl group in compound \mathbf{C} would be reduced to a hydroxyl group to afford compound \mathbf{D}. Compound \mathbf{D} could then be transformed to the γ-lactone spiro-ring system, miliusol (63) by the formation of a γ-lactone group between the $1^{\prime}-\mathrm{OH}$ group and the $7-\mathrm{COOH}$ group. Compounds $\mathbf{1 0 8}-114$ could then be produced from either $\mathbf{6 3}$ or its acetylated $\operatorname{analog}(\mathbf{5 6})$ through the Micheal type nucleophilic addition of a hydroxyl group, or an acetylamide group to an α, β-unsaturated ketone. The $5-\mathrm{OH}$ of milusol (63) could then be oxidized to afford $\mathbf{1 1 5}$, while the C-2 carbonyl carbon of miliusane (56) could then be reduced to provide 116. Besides, the $\Delta^{6^{\prime}, 7^{\prime \prime}}$ double bond in the side chain of $\mathbf{6 3}$ or 56 would then be oxidized to afford their corresponding analogs (117-124). Cyclization between the $5-\mathrm{OH}$ and the $1^{\prime}-\mathrm{OH}$ in 125 through the loss of a $\mathrm{H}_{2} \mathrm{O}$ molecule will then result in the tetrahydrofuran ring system, such as 126, whose dimethyl isomer would produce 127 by the Michael nucleophillic addition of a methoxy group to an α, β-unsaturated ketone [9].

In 2011, Thuy and coworkers reported the isolation of the hexane and the ethyl acetate extracts of the leaves and branches of M. sinensis. A new dihodrochalcone, $\quad 4^{\prime}, 6^{\prime}$-dihydroxy-2', $3^{\prime}, 4$-trimethoxydihodrochalcone (128), a dihydrochalcone, dihydropashanone (61), a charlcone, pashanone (129), five flavonoids, pinostrobin (57), 5-hydroxy-7,4'-dimethoxyflavanone (130), 5-hydroxy-6,7,-dimethoxyflavanone (60), 5-hydroxy-7,8-dimethoxyflavanone (59) and 3,5-dihydroxy-7, $3^{\prime}, 4^{\prime}$-trimethoxyflavone (131), an alkaloid, liriodenine (4), a triterpene,

24-methylencycloartane-3 β,21-diol (132) (Figure 1.21) were isolated. Among these isolated compounds, liriodenine (4) had a good activity against four human cancer cell lines, including MCF-7, KB, Hep-G2 and LU cancer cell lines with IC_{50} values in the range of 4.0-24.1 $\mu \mathrm{M}$ [28].

Figure 1.21 Chemical constituents isolated from the methanol extract of the leaves of M. sinensis.

1.3.5 Miliusa mollis Pierre.

In 2010, Sawasdee and co-workers, a researcher group from Thailand, investigated the MeOH extract of the twigs of M. mollis Pierre. They reported the isolation of two new neolignans, including ($2 S, 3 S$)-2,3-dihydro-2-(4-methoxyphenyl)-3-methyl-5-[1(E)-propenyl] benzofuran (133) and (7S,8S)-threo- $\Delta^{8^{\prime}-4-}$ methoxyneolignan (134), and a new glycosidic phenylpropanoid, tyrosol-1-O- β -xylopyranosyl-($1 \rightarrow 6$)-O- β-glucopyranoside (135). In addition, seven known compounds, including two neolignans, $(2 R, 3 R)$-2,3-dihydro-2-(4-hydroxy-3-
methoxyphenyl)-3-methyl-5-(E)-propenylbenzofuran (136) and conocarpan (137), a favonol, epicatechin (106), an oxoaporphine, liriodenine (4), two aporphine alkaloids, asimilobine (138) and (-)-norushinsunine (139) and a glycosidic phenylpropanoid, icarisside $\mathrm{D}_{2}(\mathbf{1 4 0})$ (Figure 1.22) were also isolated [17].

133

134

92
Ax (

140

139

Figure 1.22 Chemical constituents isolated from the MeOH extract of the twigs of M. mollis Pierre in 2010.

Sawasdee and co-workers (2013) also reported the isolation of six new neolignans (141-146) together with a known neolignan, decurrenal (147) (Figure 1.23) from the methanol extract of the leaves of M. mollis Pierre. The five new neolignans contained a dihydrobenzofuran skeleton, including (2S,3S)-5-allyl-2,3-
dihydro-2-(4-methoxyphenyl)-3-methylbenzofuran (4'-O-methylmiliumollin, 141), ($2 R, 3 R$)-5-allyl-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-methylbenzofuran (3'methyoxymiliumolin, 142), (2R,3R)-5-allyl-2,3-dihydro-2-(4-hydroxyphenyl)-3methylbenzofuran (miliumollin, 143), 7-methoxymiliumollin (144) and ($2 R, 3 R$)-2,3-dihydro-2-(4-hydroxyphenyl)-3-methyl-5-(2-oxopropyl)-benzofuran (miliumollinone,
 methoxy-8-O-4'-neolignan (miliusamollin, 146). Due to the limited amounts of the isolates, only neolignans $142,143,145$ and 147 were subjected to further biological activity evaluation. All of these compounds exhibited weak cytotoxicity against KB, MCF and NCI-H187 human cancer cells with IC_{50} values in the range of 27.2-137.4 $\mu \mathrm{M}, 71.9-169.1 \mu \mathrm{M}$ and 61.3-115.9 $\mu \mathrm{M}$, respectively. Compound 145 showed weak activity against herpes simplex virus types 1 and 2 with IC_{50} values of 155.3 and $222.0 \mu \mathrm{M}$, respectively (positive) control acyclovir: $\mathrm{IC}_{50} 1.9$ and $2.1 \mu \mathrm{M}$, respectively, whereas the remaining compounds were inactive at $100 \mu \mathrm{~g} / \mathrm{mL}$.

141

$142 \mathrm{R}_{1}=\mathrm{OCH}_{3} \mathrm{R}_{2}=\mathrm{OH} \mathrm{R}_{3}=\mathrm{H}$
$143 \mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{OH} \mathrm{R}_{3}=\mathrm{H}$
$144 \mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{OH} \mathrm{R}_{3}=\mathrm{OCH}_{3}$

145

Figure 1.23 Chemical constituents isolated from the MeOH extract of the leaves of M. mollis Pierre in 2013.

1.3.6 Miliusa fragrans Chaowasku \& Kessler sp. nov.

In 2013, Sawasdee and co-workers reported of the isolation of thirteen neolignans (148-154, 156-161), three lignans (155, 162-163), and a flavonoid (106) (Figure 1.24) from the MeOH extract from the leaves and stems M. fragrans Chaowasku and Kessle. Among these isolates, eight were new compounds, which included five 7.O.3',8.O.4'-neolignans, $\left((7 S, 8 R)-\Delta^{8^{\prime}}\right.$-3-hydroxy-4,5,5'-trimethoxy-7.O.3',8.O.4'-neolignan (148), (7S,8R)- $\Delta^{8^{\prime}-4-h y d r o x y-3,5,5 '-t r i m e t h o x y-7 . O .3 ', ~} 8 . O .4^{\prime}-$ neolignan (149), (7R,8R)- $\Delta^{8^{\prime}-4-h y d r o x y-3,5 '-d i m e t h o x y-7 . O .3 ', ~ 8 . O .4 '-n e o l i g n a n ~}$ (150), (7R,8R)- $\Delta^{8^{\prime}}-3,4,5^{\prime}$-trimethoxy-7.O.3',8.O.4'-neolignan (151) and (7S,8S)-benzodioxane-type (152), two 8.O.4'-neolignans, $\quad \Delta^{7^{\prime}}$ - 9^{\prime}-hydroxy-3,4, $3^{\prime} 5^{\prime}$ -tetramethoxy-8.O.4'-neolignan (153) and $\Delta^{8^{\prime}}$-4-hydroxy-3,5'-dimethoxy-8.O.4'neolignan (154) and one tetrahydrofuran lignin, (+)-3-hydroxyveraguensin (155). The
remaining nine known compounds were two 7.O.3', 8.O.4'-neolignans, eusiderin C (156) and eusiderin D (157), three 8.O.4'-neolignans, 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4dimethylphenoxy)propane (158), virolongin B (159) and (7S,8R)-7-hydroxy-3,4,3'-trimethoxy- $\Delta^{1,3,5,1^{\prime}, 3^{\prime}, 5^{\prime}, 8^{\prime}}$-8.O.4'-neolignan (160), a dihydrobenzofuran neolignan, licarin A (161), two tetrahydrofuran lignans, veraguensin (162) and ($7 S, 8 S, 7^{\prime} R, 8^{\prime} S$)3,4,5,3', 4^{\prime}-pentamethoxy-7,7'-epoxylignan (163) and a flavonoid, (-)-epicatechin (92). Compounds 149 and 161 showed recognizable anti-herpetic activity whereas compounds 148, 149, 150, 157, 160 and 161 possessed appreciable cytotoxicity against KB, MCF-7, and NCI-H187 cancer cells (Table 1.1) [15].

Table 1.1 Antiherpetic activity and cytotoxicity of compounds isolated from the leaves and the stems of M. fragrans Chaowasku \& Kessler sp. nov.

compounds	Antiherpetic activity (IC ${ }_{50}, \mu \mathrm{~g} / \mathrm{ml}$)		Cytotoxicty ($\mathrm{IC}_{50}, \mu \mathrm{~g} / \mathrm{ml}$)		
	HSV-	HSV-2	KB	MCF-7	NCl-H187
148	NA	NA	20.3	22.1	17.1
149	62.5	87.5		28.4	15.9
150	NA	NA	18.4	22.6	20.6
151	NA	NA	23.8	24.4	16.7
160		NA		13.0	12.7
161	66.7	87.5	12.9	45.6	16.7
acyclovir	0.6	0.6	-	-	-
tamoxifen	-	-	-	9.9	-
doxorubicin	-	-	0.5	8.6	0.2
ellipticine	-	-	0.8	-	0.4

$148 \mathrm{R}_{1}=\mathrm{OH}, \quad \mathrm{R}_{2}=\mathrm{OCH}_{3}$
$149 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$156 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$
$157 \mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{OCH}_{3}$

153

$150 \mathrm{R}=\mathrm{OH}$
$151 \mathrm{R}=\mathrm{OCH}_{3}$

152

Figure 1.24 Lignans and neolignans isolated from the MeOH extract of the leaves and stems M. fragrans Chaowasku \& Kessler sp. nov.

1.3.7 Miliusa umpangensis Chaowasku \& Kessler sp. nov.

In 2014, Sawasdee and co-workers reported the isolation of geranylated homogentisic acids and flavonols from the MeOH extract of the leaves of M. umpangensis Chaowasku and Kessler sp. nov. Theses geranylated homogentisic acids were identified as (+)-miliusate (56), (+)-miliusol (63), (+)-miliusane I (108) and methyl $2-\left(1^{\prime} \beta\right.$-geranyl-5' β-hydroxy-2'-oxocyclohex-3'-enyl) acetate (164) while, flavonols were identified as $7,3^{\prime}, 4^{\prime}$-trimethylquercetin (165), ayanin (166), ombuin (167), quercetin 3,7-dimethyl ether (168), chrysosplenol-D (169) and rutin (107) (Figure 1.25). Compounds $\mathbf{1 6 8}$ and $\mathbf{1 6 9}$ showed weak anti-viral activity against HSV-

1 ($\mathrm{IC}_{50} 94.7$ and $86.8 \mu \mathrm{M}$, respectively) and HSV-2 ($\mathrm{IC}_{50} 189.5$ and $86.7 \mu \mathrm{M}$, respectively) comparing with the positive control acyclovir ($\mathrm{IC}_{50} 1.9$ and $2.1 \mu \mathrm{M}$, respectively) [10].

Figure 1.25 Geranylated homogentisic acid and flavonols isolated from the MeOH extract of the leaves of M. umpangensis Chaowasku and Kessler sp. nov.

1.3.8 Miliusa cuneata Craib

In 2016, Promchai and co-workers reported the isolation of the acetone extract of the leaves and twigs of M. cuneata Craib. Separation of the acetone extract of the leaves provided five new alkaloids, miliusacunines A-E (170-174) along with five known compounds including, three flavones, 5-hydroxy-3,7-dimethoxy-3', $\mathbf{4}^{\prime}$ methylenedioxyflavone (175), pachypodol (65) and 4'-hydroxy-3,5,7,3'tetramethoxyflavone (176), a geranylated homogentisic acid, miliusol (63, Figure 1.12) and a lignan, (+)-syringaresinol (177). The acetone extract of the twigs afforded six known substances, including three flavones, 5-hydroxy-3,7-dimethoxy-3',4'methylenedioxyflavone (175), pachypodol (65), and chrysoplenetin (178) and three
amides, N-trans-feruloyltyramine (179), N-trans-caffeoyltyramine (180), and N-transcoumaroyltyramine (181) (Figure 1.26). Compound 63 exhibited cytotoxic activity against the KB cell line with an IC_{50} value of $10.2 \pm 0.1 \mu \mathrm{M}$ and showed antimalarial activity against P. falciparum both TM4 and K1 (multi-drug-resistant strains) strains with IC_{50} values of 11.1 ± 2.0 and $9.1 \pm 1.0 \mu \mathrm{M}$, respectively. However, this compound was relatively cytotoxic, with an IC_{50} value of $13.5 \pm 0.5 \mu \mathrm{M}$ against the normal Vero cells. Compounds 170-174, 176 and 178-180 displayed weaker antimalarial activity than compound 63, with IC_{50} values ranging from 19.3-41.4 and 10.8-54.9 $\mu \mathrm{M}$ against the TM4 and K1 strains, respectively [6].

Figure 1.26 Chemical constituents isolated from the acetone extracts of leaves and the twigs of M. cuneata.

1.3.9 Miliusa thorelii Finet \& Gagnep.

In 2018, Promchai and co-workers reported phytochemical investigation of the acetone extract of the combined stems, roots and leaves of M. thorelii Finet \& Gagnep., an analgesic and an aphrodisiac traditional medicine. Twenty five chemical constituents were isolated, including 2 new dihydrooxoprotoberberine alkaloids, miliusathorines A (182) and miliusathorines B (183), a new flavone, miliusathorone (184) (Figure 1.27) along with a known aporphine alkaloid, (-)-norushisunine (185), two known amines, N-trans-feruloyltyramine (186), N-trans-caffeoyltyramine (187) and nineteen known flavones, quercetagetin-3,5,7-trimethyl ether (188), 5,3',4'-trihydroxy-3,7-dimethoxyflavone (189), quercetagetin-3,5,7,3'-tetramethyl ether (190), 6,4'-dihydroxy-3,5,7-trimethoxyflavone (191), retusin (192), 5-hydroxy-3,6,7,4'-tetramethoxyflavone (193), dimethylmikanin (194), 3,5,7,3', $\mathbf{4}^{\prime}$ pentamethoxyflavone (195), 3-O-methylkaemferol (196), quercetin-3-O-methyl ether (197), quercetin-3,5,3'-trimethyl ether (198), 4'-hydroxy-3,5,6,7-tetramethoxyflavone (199), 5-hydroxy-3,7-dimethoxy-3',4'-methylene-dioxyflavone (200), melisimplexin (201), melisimplin (202), isokanugin (203), pachypodol (65), 3,5,6,7,3', 4'hexamethoxyflavone (204) and artemetin (205) (Figure 1.27) [5]. The isolated compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activities at $100 \mu \mathrm{M}$. The aporphine alkaloid $\mathbf{1 8 5}$ had the best exhibiting result with $50.17 \pm 0.07 \%$ inhibition, while the oxoprotoberberines $\mathbf{1 8 2}$ and 183 were less active ($40.70 \pm 0.70 \%$ and 27.93% enzyme inhibition, respectively). The flavones $\mathbf{1 8 4}$ and 188-204 showed AChE inhibition percentages ranging from <10 to $38.68 \pm 1.54 \%$.

$182 \mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$
$183 \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$

Figure 1.27 constituents isolated from the acetone extract of the stems, roots and leaves of M. thorelii.

1.3.10 Miliusa sessilis Chaowasku \& Kessler sp. nov.

In the present study, the hexane extract and the ethyl acetate extract prepared from the leaves of M. sessilis were test at the concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$, showed cytotoxicity against MCF7 (93.52 and 82.15\% inhibition, respectively) and NCI-H187 (98.82 and 98.37% inhibition, respectively) cancer cell. Moreover, no previous phytochemical studies have been carried out on this plant. According to these preliminary results, the chemical constituents responsible for the cytotoxic activity of the leaves of M. sessilis will be isolated. The objectives of this study were summarized as follows:

1. To isolate and identify the chemical constituents from the leaves of Miliusa sessilis Chaowasku \& Kessler.
2. To study the biological activities of crude extract and pure compounds.

CHAPTER 2

EXPERIMENTAL

2.1 Instrumentals and Chemicals

The following instruments were used to obtain physical data. Melting points were determined by a Kofler hot stage apparatus (uncorrected). Specific optical rotations were measured in chloroform solutions on KRÜSS OPTRONIC digital polarimeters P300 series. Ultraviolate spectra (UV) were obtained on a Hewlett Packard 8453 UV-vis spectrophotometer. Electronic circular dichroism spectra (ECD spectra) were recorded using MeOH on a JASCO J-815 spectropolarimeter. Principal bands ($\lambda \max$) were recorded as wavelengths (nm) in methanol solutions. Infrared spectra (IR) were recorded on a Perkin Elmer GX FT-IR spectrophotometer. ${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data were recorded in CDCl_{3} solutions on a Brüker AVANCE $300 \mathrm{MHz}\left(300 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 75 MHz for ${ }^{13} \mathrm{C}$ NMR) spectrometer. Chemical shifts are in $\delta(\mathrm{ppm})$ with tetramethylsilane (TMS) as an internal standard. Inverse-detected heteronuclear correlations were measured using HMQC and HMBC pulse field gradient. Mass spectrometric data (HRESIMS) were obtained using a Micro TOF, Brüker Daltonic mass spectrometer. X-ray data were recorded on a X8 APEX Single Crystal X-Ray Diffractometer.

The following experimental conditions were used for chromatography. Normal phase silica gel column chromatography (CC) and flash CC were carried out using silica gel 60 (Merk, 0.063-0.200 and 0.015-0.040 mm). Reversed-phase CC was
carried out using silica gel RP-18 (Merk, 40-63 $\mu \mathrm{m}$). Preparative thin layer chromatography (PLC) was carried out on glass plates using silica gel $60 \mathrm{~F}_{254}$ (Merk, $20 \times 20 \mathrm{~cm}$, layer thickness, $0.25,0.5$, and 1.0 mm). Pre-coated thin layer chromatography (TLC) aluminum sheets of silica gel $60 \mathrm{~F}_{254}$ (Merk, layer thickness 0.2 mm , normal phase) and silica gel $\mathrm{RP}-18 \mathrm{WF}_{254 \mathrm{~s}}$ (Merk, layer thickness 0.2 mm , reversed-phase) were used for analytical purposes and the compounds were visualized under ultraviolet light (254 and 365 nm) or sprayed with $1 \% \mathrm{CeSO}_{4}$ in 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ following by heating. Organic solvents for extraction and chromatography were distilled at their boiling point ranges prior to use. Methanol and chloroform (analytical grade, Merck, Germany) were used for the ultraviolet, CD spectral data and optical rotation analysis.

2.2 Plant materials

The leaves of Miliusa sessilis Chaowasku \& Kessler sp. Nov. (Annonaceae) were collected in Tamot district, Phattalung province, Thailand (Coordinates: $7^{\circ} 18^{\prime}$ $15^{\prime \prime} \mathrm{N} 100^{\circ} 1^{\prime} 26^{\prime \prime} \mathrm{E}$) in February 2016. The identification of the plant was performed by Dr. Piya Chalermglin. A voucher specimen (van Beusekom \& Santisuk 2807) was deposited at The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Chatuchak, Bangkok, Thailand.

2.3 Chemical investigation of the leaves

2.3.1 Extraction and isolation

The dried, ground leaves of M. sessilis (1.8 kg) were extracted with n-hexane (20 $\mathrm{L} \times 2$) at room temperature. The residue was continuously extracted with ethyl acetate (EtOAc) (18 L×2), followed by dichlorometane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(18 \mathrm{~L} \times 2)$, and ethanol (EtOH) (18 L×3), respectively. The combined extract of each solvent was concentrated under vacuum to afford n-hexane ($103.0 \mathrm{~g}, 5.7 \%$), EtOAc (49.3 g , $2.7 \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}(22.5 \mathrm{~g}, 1.2 \%)$ and EtOH extracts $(144.0 \mathrm{~g}, 8.0 \%)$, respectively. The EtOAc extract (49.3 g) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract $(22.5 \mathrm{~g})$ were combined to dissolve in $\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}$ (1:1) and partitioned into hexane and EtOAc. Evaporation of the respective solvents gave the n-hexane (34.1 g) and EtOAc (17.1 g) extracts (Figure 2.1).

Ground leaves of M. sessilis 1.8 kg

Figure 2.1 Extraction and fractionation of Miliusa sessilis leaves.

2.3.2 Chemical investigation of hexane extract fraction.

The n-hexane extract (100 g) was subjected to silica gel flash column
chromatographic separation using a gradient system of n-hexane:EtOAc as the eluent.
On the basis of their TLC characteristics, similar fractions were combined to afford 37
fractions (H1-H37, Table 2.1).
Table 2.1 Fractions obtained from hexane extract fraction.

Fraction	Eluent	Weight (g)	Physical characteristic
		6.000	light yellow oil
H1	100% hexane		light yellow oil
H2	100% hexane	0.9000	red oil
H3	100% hexane	1.0230	Orang oil
H4	1% EtOAc in hexane	yellowish orange wax	
H5	1% EtOAc in hexane	1.8349	yellowish orange wax
H6	1% EtOAc in hexane	1.5397	yellowish orange wax
H7	1% EtOAc in hexane	0.8528	reddish orange wax
H8	1% EtOAc in hexane	0.4561	reddish orange wax
H9*	1% EtOAc in hexane	0.2820	reddish orange wax
H10	1% EtOAc in hexane	0.0743	reddish orange wax
H11	1% EtOAc in hexane	0.0548	reddish orange wax
H12	1% EtOAc in hexane	0.0833	reddish orange wax
H13	2% EtOAc in hexane	0.9698	red wax
H14	2% EtOAc in hexane	0.2059	red wax
H15	3% EtOAc in hexane	0.0930	red wax
H16	3% EtOAc in hexane	0.1394	red wax
H17	3% EtOAc in hexane	0.3546	red wax
H18	3% EtOAc in hexane	0.3675	red wax
H19	4% EtOAc in hexane	0.3081	red wax
H20	4% EtOAc in hexane	0.2762	red wax
H21	4% EtOAc in hexane	0.7057	red wax
H22*	4% EtOAc in hexane	2.9065	red wax
H23	5% EtOAc in hexane	0.8512	red wax
H24	5% EtOAc in hexane	1.1500	red wax
H25	5% EtOAc in hexane	0.4849	0.4312
H26	100% EtOAc	red wax	
H27*	1% MeOH in EtOAc	40.6401	dark green viscose solid
H28	2% MeOH in EtOAc	0.0911	dark green viscose solid

*TLC characteristics of these fractions showed major spots under UV and obviously color and their ${ }^{1} \mathrm{H}$ NMR spectra showed noticeable signal.

Table 2.1 Fractions obtained from hexane extract fraction (continued).

Fraction	Eluent	Weight (g)	Physical characteristic
H29	3\% MeOH in EtOAc		dark green viscose solid
H30	4\% MeOH in EtOAc	0.0532	dark green viscose solid
H31	5\% MeOH in EtOAc	0.0485	dark green viscose solid
H32	10\% MeOH in EtOAc	0.0576	dark green viscose solid
H33	15\% MeOH in EtOAc	0.0856	dark green viscose solid
H34	20\% MeOH in EtOAc	0.0592	dark green viscose solid
H35	$20 \% \mathrm{MeOH}$ in EtOAc	0.0823	dark green viscose solid
H36	$20 \% \mathrm{MeOH}$ in EtOAc	0.0687	dark green viscose solid
H37	$20 \% \mathrm{MeOH}$ in EtOAc	0.0429	dark green viscose solid

*TLC characteristics of these fractions showed major spots under UV and obviously color and their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra showed noticeable signal.

Subfraction H22 (2.91 g) was subjected to silica gel CC using 5\% EtOAc in n-
hexane:benzene (1:1) as the eluent to provide 10 fractions (H22.1-10, Table 2.2).

Table 2.2 Fractions obtained from H 22 .

Fraction H22.9 (122.0 mg) was purified by RP-18 CC using MeOH: $\mathrm{H}_{2} \mathrm{O}$ (10:1) as the eluent to obtain MS1 as colorless oil.

Subfraction H27 (40.64 g) was separated by silica gel flash CC using EtOAc in n hexane as gradient mixtures (1-45\% EtOAc in hexane) to afford 67 fractions (H27.1H27.67), Table 2.3).

Table 2.3 Fractions obtained from hexane extract fraction.

*Fractions were further investigated.

Table 2.3 Fractions obtained from hexane extract fraction (continued).

Fraction	Eluent	Weight (g)	Physical characteristic
H27.35	11% EtOAc in hexane	0.0977	dark green semisolid
H27.36	11% EtOAc in hexane	0.1180	dark green semisolid
H27.37	13\% EtOAc in hexane	0.0681	dark green semisolid
H27.38	13\% EtOAc in hexane	0.01671	dark green semisolid
H27.39	13% EtOAc in hexane	0.2464	dark green semisolid
H27.40	13\% EtOAc in hexane	0.2373	dark green semisolid
H27.41*	$13 \% \mathrm{EtOAc}$ in hexane	0.2514	dark green semisolid
H27.42*	15\% EtOAc in hexane	0.3537	dark green semisolid
H27.43*	$15 \% \mathrm{EtOAc}$ in hexane	0.2654	dark green semisolid
H27.44	$15 \% \mathrm{EtOAc}$ in hexane	0.2936	dark green semisolid
H27.45	$15 \% \mathrm{EtOAc}$ in hexane	0.3801	dark green semisolid
H27.46	15% EtOAc in hexane	0.4738	dark green semisolid
H27.47	17\% EtOAc in hexane	0.3740	dark green solid
H27.48	17% EtOAc in hexane	0.4884	dark green solid
H27.49	17% EtOAc in hexane	0.8275	dark green solid
H27.50	17% EtOAc in hexane	0.6234	dark green solid
H27.51	17% EtOAc in hexane	0.3937	dark green solid
H27.52	20% EtOAc in hexane	0/5381	dark green solid
H27.53	20% EtOAc in hexane	0.9482	dark green solid
H27.54	20% EtOAc in hexane	0.6806	dark green solid
H27.55	25% EtOAc in hexane	0.6935	dark green solid
H27.56	25\% EtOAc in hexane	0.8220	dark green solid
H27.57	25\% EtOAc in hexane	0.7726	dark green viscous solid
H27.58	30% EtOAc in hexane	1.2908	dark green viscous solid
H27.59*	30\% EtOAc in hexane	2.4150	dark green viscous solid
H27.60	30% EtOAc in hexane	1.1048	dark green viscous solid
H27.61	35% EtOAc in hexane	0.3654	dark green viscous solid
H27.62	$35 \% \mathrm{EtOAc}$ in hexane	0.3992	dark green viscous solid
H27.63	35% EtOAc in hexane	0.5035	dark green viscous solid
H27.64	40\% EtOAc in hexane	0.3997	dark green viscous solid
H27.65	40\% EtOAc in hexane	0.3626	dark green viscous solid
H27.66	40\% EtOAc in hexane	0.6192	dark green viscous solid
H27.67	45\% EtOAc in hexane	0.5051	dark green viscous solid

*Fractions were further investigated.
Hexane extract 100 g

Subfraction H27.9 (494.1 mg) was subjected to silica gel CC using 5\% EtOAc in n hexane:benzene (1:1) as the eluent to provide 14 fractions (H27.9.1-14, Table 2.4).

Table 2.4 Fractions obtained from H27.9.

Fraction	Weight (mg)	Physical characteristic
H27.9.1	-	-
H27.9.2	8.3	dark green semisolid
H27.9.3	5.4	dark green semisolid
H27.9.4	22.4	dark green semisolid
H27.9.5	9.7	dark green semisolid
H27.9.6	6.1	white-green semisolid
H27.9.7	83.5	white-green semisolid
H27.9.8	33.6	white-green solid
H27.9.9	23.0	white needle crystalline
H27.9.10*		white needle crystalline
H27.9.11	26.6	white needle crystalline
H27.9.12	15.6	white wax
H27.9.13	11.8	white wax
H27.9.14*	12.5	white powder
*Fractions		

Fraction H27.9.10 was separated by RP-18 CC using MeOH as the eluent to obtain MS2 as white powder (10.1 mg) and a white solid (43.3 mg) which was recrystallized from EtOH:EtOAc (8:1) to afford MS3 as colorless needles.

Fraction H27.9.14 was obtained as white powder which was recrystallized from EtOH:EtOAc (8:1) to afford MS4 as colorless needles.

Subfraction H27.12 (330.9 mg) was subjected to silica gel CC using 1-3\% EtOAc in n-hexane:benzene (1:1) as the eluent to afford 11 fractions (H27.12.1-11, Table 2.5).

Table 2.5 Fractions obtained from H27.12.

Fraction	Weight (mg)	Physical characteristic
H27.12.1	8.6	dark yellow wax
H27.12.2	24.8	dark yellow wax
H27.12.3	21.1	dark yellow solid
H27.12.4	17.4	dark yellow solid
H27.12.5*	43.2	dark yellow solid
H27.12.6	38.2	dark yellow solid
H27.12.7	27.9	dark yellow solid
H27.12.8	7.9	dark yellow wax
H27.12.9	9.0	dark yellow wax
H27.12.10	5.3	dark yellow wax
H27.12.11	9.6	dark yellow wax
*Fractions were further investigated.		

Fraction H27.12.5 was purified by RP-18 CC using acetonitrile: $\mathrm{H}_{2} \mathrm{O}$ (100:1) as the eluent to give a white powder (12.3 mg) which was recrystallized from EtOH:EtOAc (8:1) to afford MS5 as colorless needles.

Subfraction H27.13 (524.9 mg) was subjected to silica gel CC using (1-4\%) EtOAc in n-hexane:benzene (1:1) as the eluent to provide 7 fractions (H27.13.1-7, Table 2.6). Fraction H27.13.5 and H27.13.6 were combined to purify by RP-18 CC using MeOH$\mathrm{H}_{2} \mathrm{O}(10: 1)$ as the eluent to give MS6 (7.1 mg).

Table 2.6 Fractions obtained from H27.13.

Fraction	Weight (mg)	Physical characteristic
H27.13.1	24.4	
H27.13.2	10.9	Greenish-white solid
H27.13.3	67.3	Greenish-white solid
H27.13.4	116.5	White solid
H27.13.5*	11.5	White solid
H27.13.6*	19.1	White solid
H27.13.7	20.7	White solid

[^0]Subfraction H27.14 (489.6 mg) was subjected to silica gel CC using 1-5\% EtOAc in n-hexane:benzene (1:1) as the eluent to provide 9 fractions (H27.14.1-9, Table 2.7).

Table 2.7 Fractions obtained from H27.14.

Fraction	Weight (mg)	Physical characteristic
H27.14.1	13.1	
H27.14.2*	8.7	dark yellow semisolid
H27.14.3*	26.6	dark yellow solid
H27.14.4*	15.2	dark yellow solid
H27.14.5	36.1	dark yellow solid
H27.14.6	32.7	dark yellow solid
H27.14.7	61.8	dark yellow solid
H27.14.8	67.2	dark yellow semisolid
H27.14.9*		dr.0

*Fractions were further investigated.
The combined fraction H27.14.2, H27.14.3 and H27.14.4 (50.5 mg) were purified by PLC using 10% EtOAc in hexane:benzene (1:1) (2 runs) as the mobile phase to provide MS5 (12.5 mg)

Fraction H27.14.9 (78.0) was separated by PLC with 10% EtOAc in (1:1) n-hexanebenzene (3 times) as mobile phase to obtain two fractions (H27.14.9.1-2). Subfraction H27.14.9.1 (22.8 mg) was purified by RP-18 CC using MeOH: $\mathrm{H}_{2} \mathrm{O}$ (10:1) as the eluent to give MS7 (9.8 mg). Subfraction H27.14.9.2 (21.3 mg) was recrystallized with EtOH to yield MS8 and MS9 (14.2 mg)

Subfraction H27.21 (650.4 mg) was purified by silica gel CC using (5-10\%) EtOAc in n-hexane as the eluent to obtain 5 fractions (H27.21.1-5, Table 2.8). The pure fraction H27.21.5 gave a pale green oil as MS10 (310.4 mg)

Table 2.8 Fractions obtained from H27.21.

Fraction	Weight (mg)	Physical characteristic
H27.21.1	21.4	
H27.21.2	68.8	dark green oil
H27.21.3	58.3	dark green oil
H27.21.4	148.3	green oil
H27.21.5*	310.4	pale green oil

*Fraction was further investigated.

Subfraction H27.41 (870.5 mg) was separated by silica gel CC using 5-20\% EtOAc in n-hexane as the eluent to provide 8 fractions (H27.41.1-8, Table 2.9).

Table 2.9 Fractions obtained from H27.41.

Fraction H27.41.6 (160.2 mg) was purified by RP-18 CC using MeOH: $\mathrm{H}_{2} \mathrm{O}$ (10:1) as the eluent to give MS11 (69.0 mg) as pale green-brown viscous liquid.

Subfraction H27.59 (300.8 mg) was subjected to silica gel CC using 5-25\% EtOAc in n-hexane as the eluent to provide 4 fractions (H27.59.1-4, Table 2.10).

Table 2.10 Fractions obtained from H27.59.

Fraction	Weight (mg)	Physical characteristic
H27.59.1	6.0	dark green thick oil
H27.59.2	68.1	dark green thick oil
H27.59.3*	153.2	dark green solid
H27.59.4	10.2	dark green solid

*Fraction was further investigated.
Fraction H27.59.3 (153.2 mg) was purified by RP-18 CC using MeOH: $\mathrm{H}_{2} \mathrm{O}$ (5:1) as the eluent to give MS12 (118.8 mg), crystallization from hexane:EtOAc gave pale yellow crystals $(63.4 \mathrm{mg})$.

Subfraction H29 (142.1 mg) was purified by silica gel CC using 10-30\% EtOAc in n hexane as the eluent to obtain MS13 (29.0 mg), crystallization from hexane:EtOAc gave pale yellow needles (17.3 mg).

2.3.3 Chemical investigation of EtOAc extract fraction

The EtOAc extract (17.0 g) was chromatographed on a silica gel flash column
eluted with EtOAc in hexane (5-100\%) followed by MeOH in EtOAc (1-50\%)
gradient mixture to afford 66 fractions (E1-66, table 2.11).

Table 2.11 Fractions obtained from ethyl acetate extract fraction.

Fraction	Eluent	Weight (g)	Physical characteristic
E1	5\% EtOAc in hexane	0.0	pale greenish yellow solid
E2	5\% EtOAc in hexane	0.0067	pale greenish yellow solid
E3	5\% EtOAc in hexane	0.0176	pale greenish yellow solid
E4	10% EtOAc in hexane	0.0109	pale greenish yellow solid
E5	$10 \% \mathrm{EtOAc}$ in hexane	0.0152	pale greenish yellow solid
E6	10% EtOAc in hexane	0.0198	pale greenish yellow solid
E7	10% EtOAc in hexane	0.0878	dark green oil
E8	10% EtOAc in hexane	0.1103	dark green oil
E9*	15\% EtOAc in hexane	0.3289	dark green oil
E10	15\% EtOAc in hexane	0.2179	dark green oil
E11	15\% EtOAc in hexane	0.0852	dark green oil
E12	15\% EtOAc in hexane	0.0613	dark green oil
E13	15\% EtOAc in hexane	0.0731	dark green oil
E14	15\% EtOAc in hexane	0.0701	dark green oil
E15	$15 \% \mathrm{EtOAc}$ in hexane	0.0942	dark green oil
E16	20\% EtOAc in hexane	0.3353	dark green crystalline
E17	20\% EtOAc in hexane	0.614 .2	dark green crystalline
E18	20% EtOAc in hexane	0.3510	dark green crystalline
E19	20% EtOAc in hexane	0.3170	dark green crystalline
E20	20% EtOAc in hexane	0.6347	dark red thick oil
E21	20% EtOAc in hexane	1.3774	greenish brown crystalline
E22	20\% EtOAc in hexane	1.7195	greenish brown crystalline
E23	20\% EtOAc in hexane	1.2566	greenish brown crystalline
E24	20% EtOAc in hexane	0.8206	dark red thick oil
E25	$25 \% \mathrm{EtOAc}$ in hexane	0.5756	dark red thick oil
E26	$25 \% \mathrm{EtOAc}$ in hexane	0.2841	dark red thick oil
E27*	$25 \% \mathrm{EtOAc}$ in hexane	0.6497	dark red thick oil
E28	30% EtOAc in hexane	0.0866	dark red thick oil
E29	30% EtOAc in hexane	0.1764	dark red thick oil
E30*	30% EtOAc in hexane	0.5737	dark red thick oil
E31	30% EtOAc in hexane	0.2932	dark red thick oil
E32	30% EtOAc in hexane	0.2540	dark red thick oil

*Fraction was further investigated.

Table 2.11 Fractions obtained from ethyl acetate extract fraction (continued).

Fraction	Eluent	Weight (g)	Physical characteristic
E33	35% EtOAc in hexane	0.2519	dark red thick oil
E34	35\% EtOAc in hexane	0.0927	dark red thick oil
E35*	$35 \% \mathrm{EtOAc}$ in hexane	0.5615	dark greenish red thick oil
E36	40\% EtOAc in hexane	0.1546	dark greenish red thick oil
E37	$40 \% \mathrm{EtOAc}$ in hexane	0.1338	dark greenish red thick oil
E38	40\% EtOAc in hexane	0.0878	dark greenish red thick oil
E39	$40 \% \mathrm{EtOAc}$ in hexane	0.1051	dark greenish red thick oil
E40	40% EtOAc in hexane	0.1183	dark greenish red thick oil
E41	$50 \% \mathrm{EtOAc}$ in hexane	0.1510	dark greenish red thick oil
E42	50% EtOAc in hexane	0.1985	dark greenish red thick oil
E43	$50 \% \mathrm{EtOAc}$ in hexane	0.1309	dark greenish red thick oil
E44	$50 \% \mathrm{EtOAc}$ in hexane	0.1020	dark greenish red thick oil
E45	75\% EtOAc in hexane	0.1231	dark green thick oil
E46	75\% EtOAc in hexane	0.3661	dark green semi-solid
E47	$75 \% \mathrm{EtOAc}$ in hexane	0.3632	dark green semi-solid
E48*	100% EtOAc in hexane	0.5265	dark green semi-solid
E49	100% EtOAc in hexane	0.0867	dark green semi-solid
E50	$1 \% \mathrm{MeOH}$ in EtOAc	0.0816	dark green semi-solid
E51	$1 \% \mathrm{MeOH}$ in EtOAc	0.0798	dark green semi-solid
E52	$1 \% \mathrm{MeOH}$ in EtOAc	0.1513	dark green semi-solid
E53	3\%MeOH in EtOAc	0.1203	dark green semi-solid
E54	$3 \% \mathrm{MeOH}$ in EtOAc	0.1032	dark green semi-solid
E55	$3 \% \mathrm{MeOH}$ in EtOAc	0.0791	dark green semi-solid
E56	$5 \% \mathrm{MeOH}$ in EtOAc	0.1001	dark green semi-solid
E57	$5 \% \mathrm{MeOH}$ in EtOAc	0.1012	dark green semi-solid
E58	$5 \% \mathrm{MeOH}$ in EtOAc	0.1190	dark green semi-solid
E59	$10 \% \mathrm{MeOH}$ in EtOAc	0.1838	dark green semi-solid
E60	$10 \% \mathrm{MeOH}$ in EtOAc	d 0.2018	dark green semi-solid
E61	$10 \% \mathrm{MeOH}$ in EtOAc	0.1985	dark green semi-solid
E62	$30 \% \mathrm{MeOH}$ in EtOAc	0.2799	dark green semi-solid
E63	$30 \% \mathrm{MeOH}$ in EtOAc	0.1439	dark green semi-solid
E64	$50 \% \mathrm{MeOH}$ in EtOAc	0.1083	dark green semi-solid
E65	$50 \% \mathrm{MeOH}$ in EtOAc	0.0655	dark green semi-solid
E66	$50 \% \mathrm{MeOH}$ in EtOAc	0.0393	dark green semi-solid

*Fraction was further investigated.

Subfracton E27 (649.7 mg) was separated by silica gel CC using n-hexane:EtOAc (3:2) as the eluent to afford 7 fractions (E27.1-7, Table 2.12).

Table 2.12 Fractions obtained from E27.

Table 2.13 Fractions obtained from E27.4.

Fraction	Weight (mg)	Physical characteristic
E27.4.1	5.6	light brown viscous oil
E27.4.2	15.6	light brown viscous oil
E27.4.3*	32.4	light brown viscous oil
E27.4.4	21.8	light brown viscous oil
E27.4.5	28.1	light brown viscous oil
E27.4.6	10.1	light brown viscous oil
E27.4.7	2.4	light brown viscous oil
E27.4.8	5.4	light brown viscous oil
E27.4.9	4.4	light brown viscous oil

*Fraction was further investigated.
EtOAc extract 17.0 g

Figure 2.3 Fractionation of the EtOAc extract of Miliusa sessilis.

Fraction E.27.4.3 (32.4 mg) was separated by preparative TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (500:3:1) as the mobile phase to obtain MS15 (8.9 mg) and MS16 (11.8 mg).

Subfraction E30 (544.4 mg) was purified by silica gel CC using EtOAc in n-hexane (20-40\%) as the eluent to obtain 8 fractions (E30.1-8, Table 2.14). Fraction E30.3 was identified as MS 17 (201.0 mg).

Table 2.14 Fractions obtained from E30.

Subfraction E35 (561.5 mg) was separated by silica gel CC using 20-40\% EtOAc in n-hexane as the eluent to afford 11 fractions (E35.1-11, Table 2.15).

Fraction E35.4 (36.3 mg) was purified by RP-18 CC using MeOH: $\mathrm{H}_{2} \mathrm{O}$ (3:2) as the eluent to give MS18 (5.0 mg). Fraction E35.7 (57.0 mg) was separated by preparative TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (150:3:1) as the mobile phase to obtain MS19 (20.6 mg).

Table 2.15 Fractions obtained from E35.

Fraction	Weight (mg)	Physical characteristic
E35.1	6.2	light brown viscous oil
E35.2	11.5	light brown viscous oil
E35.3	9.7	light brown viscous oil
E35.4*	36.3	light brown viscous oil
E35.5	89.9	light brown viscous oil
E35.6	36.9	light brown viscous oil
E35.7*	57.0	light brown viscous oil
E35.8	49.6	light brown viscous oil
E35.9	45.6	light brown viscous oil
E35.10	38.5	light brown viscous oil
E35.11	29.7	light brown viscous oil

*Fractions were further investigated.

Subfraction E48 (422.4 mg) was subjected to silica gel CC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (120:3:1) as the eluent to provide 5 fractions (E48.1-5). Subfraction E48.4 (51.7 mg) was purified by RP-18 CC using $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (5:6) as the eluent to give MS20 $(24.1 \mathrm{mg})$.

2.4 Hydrolysis of MS12

$0.5 \mathrm{~N} \mathrm{NaOH}(0.5 \mathrm{~mL})$ was added into a stirred solution of MS12 $(21.4 \mathrm{mg})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$. The mixture was stirred at room temperature for 5 h . After the reaction was completed, the mixture was neutralized with $1 \mathrm{~N} \mathrm{HCl}(1.0 \mathrm{~mL})$, then 10.0 mL of water was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL} \times 3)$. The organic layers were separated and washed with water (10.0 mL). The organic phase was dried over anhydrous sodium sulfate and evaporated. The hydrolysis product was identified as MS17 by mean of TLC, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data and specific optical rotation $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+13.58, \mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)$.

2.5 Methylation of MS12

To a stirred suspension of $\mathrm{NaH}(1.5 \mathrm{mg}, 62.5 \mu \mathrm{~mol}, 1.2$ eq. $)$ in DMF (1.0 mL), was added a solution of MS12 $(20.0 \mathrm{mg}, 52.1 \mu \mathrm{~mol})$ in dry DMF $(1.0 \mathrm{~mL},[\mathbf{M S 1 2}]=$ $0.026 \mathrm{M})$. The mixture was stirred at $0-5{ }^{\circ} \mathrm{C}$ for 15 min . and then $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{I}(30 \mu \mathrm{~L}$, $0.06 \mathrm{mmol}, 1.15$ eq.) was added. The reaction mixture was continuously stirred at $0-5$ ${ }^{\circ} \mathrm{C}$ for 1 h . After reaction was completed, the mixture was added water $(30 \mathrm{~mL})$ and was extracted with EtOAc ($10.0 \mathrm{~mL} \times 3$). The combined organic layers were washed with water $(30 \mathrm{~mL})$ and followed by brine $(30 \mathrm{~mL})$. The organic layers were dried over anhydrous sodium sulfate and evaporated. The crude methylated product was purified by silica gel CC using hexane:ethyl acetate ($1: 100$ to $30: 70$) as the eluent to provide two compounds, which were identified as a methylated product of MS12 $\left(11.3 \mathrm{mg},\left(\left[\alpha_{\mathrm{D}}^{28}\right]+20.59^{\circ}\right.\right.$, c $\left.\left.0.03, \mathrm{CHCl}_{3}\right)\right)$ as colorless oil and a methylated and hydrolyzed product of MS12 $(11.3 \mathrm{mg})$ as colorless oil. The methylated product of MS12 was identified as an enantiomer of MS11 by mean of TLC, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data and specific optical rotation $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+46.18, \mathrm{c} 0.06, \mathrm{CHCl}_{3}\right)$.
ククยาลัยุละ

2.6 Dehydration of MS14

MS14 (10.5 mg) in $4.0 \mathrm{ml} 20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ was refluxed for overnight. After the reaction was completed, the reaction mixture was extracted with CHCl_{3}. The organic fraction was dried over anhydrous sodium sulfate and evaporated (Kawanishi, 1982). The crude dehydrated product (9.5 mg) was purified by PLC using hexane:ethyl acetate (7:3) as mobile phase to afford a pure compound (6.2 mg) which was
identified as MS15 by mean of TLC, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectral data and specific optical rotation $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+21.82, \mathrm{c} 0.05, \mathrm{CHCl}_{3}\right)$.

2.7 Preparation of S-(-)-MTPA ester MS16 and \boldsymbol{R}-(+)-MTPA ester MS16

R-(+)-MTPA ester MS16
MS16
S-(-)-MTPA ester MS16

A stirred solution of MS16 ($5.1 \mathrm{mg}, 12.0 \mu \mathrm{~mol}), N, N^{\prime}$-Dicyclohexylcarbodiimide (DCC, $19.9 \mathrm{mg}, 69.7 \mu \mathrm{~mol}, 8$ eq.), and 4-Dimethylaminopyridine (DMAP, $3.1 \mathrm{mg}, 25.4$ $\mu \mathrm{mol}$, 2.1 eq. $)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml},[\mathbf{M S 1 6}]=0.012 \mathrm{M})$ at room temperature and $S-(-)$ -α-methoxy- α-(trifluoromethyl)phenylacetic acetic acid $(S-(-)-\mathrm{MTPA}-\mathrm{OH}, 15.0 \mathrm{mg}$, $64.1 \mu \mathrm{~mol}, 5.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added. The reaction progress was monitored by thin-layer chromatography (TLC on silica gel, hexane: ethyl acetate (3:2)). After complete consumption of the MS16 (3 days), the reaction mixture was concentrated under vacuum. The crude mixture was purified by silica gel column, eluting with hexane:ethyl acetate (5:1) to afford the S-(-)-MTPA ester MS16 ($3.5 \mathrm{mg}, 46 \%$) as colorless oil. For ${ }^{1} \mathrm{H}$ NMR spectroscopic data of $S-(-)-\mathrm{MTPA}$ ester MS16, see Table 2.36.

The R-(+)-MTPA ester MS16 was prepared using $R-(+)-\mathrm{MTPA}-\mathrm{OH}$. A stirred solution of MS16 ($4.7 \mathrm{mg}, 12.0 \mu \mathrm{~mol}$), DCC ($14.7 \mathrm{mg}, 71.2 \mu \mathrm{~mol}, 5.9 \mathrm{eq}$.) and DMAP ($3.1 \mathrm{mg}, 25.4 \mu \mathrm{~mol}$, 2.1 eq .) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml},[\mathbf{M S 1 6}]=0.012 \mathrm{M}$) at room temperature and (R-(+)-MTPA-OH, $13.1 \mathrm{mg}, 55.9 \mu \mathrm{~mol}, 4.7$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{ml})$ was added. The reaction progress was monitored by thin-layer
chromatography (TLC on silica gel, hexane: ethyl acetate (2:3)). After complete consumption of the MS16 (3 days), the reaction mixture was concentrated under vacuum. The crude ester was purified by silica gel CC using hexane:ethyl acetate (5:1) as the eluent to provide the R-(+)-MTPA ester MS16 ($2.1 \mathrm{mg}, 28 \%$) as colorless oil. For ${ }^{1} \mathrm{H}$ NMR spectroscopic data of $R-(+)-$ MTPA ester MS16, see Table 2.36.

2.8 Hydrolysis of MS16

To a stirred solution of MS16 $(9.0 \mathrm{mg})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was added 0.5 N $\mathrm{NaOH}(0.5 \mathrm{~mL})$. The mixture was allowed to stir at room temperature for 5 h . Upon completion, the mixture was quenched with 1.0 mL of 1 N HCl . The resulting mixture was added 10.0 mL of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL} \times 4)$. The combined organic layers were separated, washed with water $(10.0 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated. The crude hydrolysis product was purified by CC using hexane: ethyl acetate ($5: 1$ to $3: 1$) as eluent to afford pure colorless oil (7.1 mg). The hydrolysis product was identified as MS19 by mean of TLC, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data and specific optical rotation $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+52.50, \mathrm{c} 0.04, \mathrm{CHCl}_{3}\right)$.

2.9 Acetylation of MS20

A mixture of MS20 $(19.3 \mathrm{mg})$ and acetic anhydride (1.0 mL) in pyridine (1.0 $\mathrm{ml})$ was refluxed at $110^{\circ} \mathrm{C}$ for 1 h . The reaction progress was monitored by thin-layer chromatography (TLC on silica gel, hexane: ethyl acetate (1:1)). After the reaction was completed, the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and then extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL×3). The combined organic layers were washed with water, dried over anhydrous sodium sulfate and evaporated under vacuum. The crude acetylated product (23.1 mg) was further purified by column chromatography using hexane:ethyl acetate (1:1) as mobile phase to provide pure acetylated product MS20a as colorless solid (10.7 mg).

2.10 X-ray crystallographic analysis of MS12, MS3, MS5 and MS7

The crystal data of MS12, MS3, MS5 and MS7 were collect on Bruker D8 QUEST CMOS PHOTON II with graphite monochromated $\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation at 296(2) K. Data collection, cell refinement and data reduction were perform using SAINT program and SADABS were used for absorption correction (Bruker, 2016). The integrity of the symmetry was checked by using PLATON (Spek, 2015). The structure was solved with the ShelXT structure solution program using combined Patterson and dual-space recycling methods (Sheldrick, 2015a). The structure was refined by least squares using ShelXL program packages (Sheldrick, 2015b). All non-H atoms were found from electron density maps and refined with anisotropic parameters. The $\mathrm{O}-\mathrm{H}$ hydrogen atoms were located in difference Fourier maps but refined with $\mathrm{O}-\mathrm{H}=0.82 \pm 0.01 \AA$. CCDC-1976013, containing the supplementary crystallographic data, can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
2.10.1 Crystallographic data of (7S,8R)-5'-hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-acetate (MS12)
pale yellow block shaped crystals obtained from a solution of EtOH , $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}, \mathrm{M}=384.41$, Monoclinic, Space group $P 2_{1}, a=11.3256(16) \AA, b=$ 8.4544(13) $\AA, c=11.8877(18) \AA, \alpha=\beta=90^{\circ}, \gamma=118.261(5)^{\circ}, V=1002.6(3) \AA^{3}, Z=$ $2, D_{\text {calcd }}=1.273 \mathrm{Mg} / \mathrm{m}^{3}$, Crystal size $0.30 \times 0.28 \times 0.28 \mathrm{~mm}^{3}, F(000)=408,36993$ Reflections collected, 5206 Independent reflections ($R_{\text {int }}=0.0408$), $R_{1}=0.0562$ $[I>2 \sigma(I)], w R_{2}=0.1320[I>2 \sigma(I)], R_{1}=0.0682$ (all data), $w R_{2}=0.1439$ (all data), Goodness of fit $=1.050$, Flack parameter $=-0.3(13)$.

2.11 Biological assays

2.11.1 Cell culture

HaCaT cancer cell line (Human immortalized keratinocyte) was obtained from Dr. Veerawat Teeranachaideekul, Faculty of Pharmacy, Mahidol University. HepG2 cell line (Hepatocellular carcinoma), HCT116 cancer cell line (colorectal), HN22 cancer cell line (head-and-neck cancer) and HeLa cancer cell line (cervical cancer cell line) were obtained from Professor Praneet Opanasopit, Faculty of Pharmacy, Silpakorn University. HeLa was maintained and cultured in Minimum Essential Medium Eagle (MEM, Gibco) while HN22, HCT116 and HepG2 were maintained and cultured in Dulbecco's modified Eagle's medium (DMEM, Gibco, Waltham, MA, USA). Media for all cancer cell lines were supplemented with fetal bovine serum (FBS, Gibco, 10\%), Pen-Strep (Gibco, 1\%), L-glutamine (Gibco, 1\%), and nonessential amino acid (Gibco, 1%) at $37{ }^{\circ} \mathrm{C}$. HaCaT was maintained and cultured in

DMEM supplemented with FBS (10\%) and Pen-Strep (1\%). All cells were incubated at $37^{\circ} \mathrm{C}$ in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$.

2.11.2 Cytotoxicity evaluation

Assay of the isolated compounds for cytotoxicity against the cancer cell lines were conduct by MTT assay and IC_{50} determination, In brief, cells were maintained and diluted to 8×10 cells/well onto 96 -well plate and incubated for 12 h . Onward, $100 \mu \mathrm{l}$ of serial 5 -fold diluted compounds are added to each well to the final concentration of $250 \mu \mathrm{~g} / \mathrm{mL}$ to $0.08 \mu \mathrm{~g} / \mathrm{mL}$. DMSO was used as vehicle control. Irinotecan (Fresenius Kabi, India), a cytotoxic drug, was used as positive control at $100 \mu \mathrm{M}$ for HeLa and $40 \mu \mathrm{M}$ for all other cell lines. After the incubation period for 72 h , cell viability were determined by MTT assay, Briefly, cells were washed with phosphate buffer saline (PBS) solution then incubated with $1 \mathrm{mg} / \mathrm{mL}$ thiazolyl blue tetrazolium bromide (Sigma-Aldrich, St. Louis, MO, USA) for 4 h . After removal of the supernatant, DMSO $(100 \mu \mathrm{~L})$ were add to each well to dissolve the formazan crystals. The absorbance was read by a microplate reader (Packard bioscience) at 550 nm . All the tests were repeated in three independent experiments. Data were expressed as the IC_{50} and 95% confidence interval. The IC_{50} was calculated by a nonlinear regression analysis using the scientific statistic software GraphPad Prism version 7 (GraphPad Software Inc., La Jolla, CA).

2.12 Physical and spectral properties of isolated compounds

MS3: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \quad \mathrm{R}_{3}=\mathrm{OCH}_{3}$ MS5: $\mathrm{R}_{1}=\mathrm{H}, \quad \mathrm{R}_{2}=\mathrm{H}, \quad \mathrm{R}_{3}=\mathrm{OCH}_{3}$ MS7: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$ MS7: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$

MS6

(

MS11

MS12: $R_{1}=H, \quad R_{2}=A c$
MS15: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
MS17: $R_{1}=H, \quad R_{2}=H$

MS18

MS16: $R_{1}=R_{2}=C H_{3}, R_{3}=R_{4}=H, R_{5}=A c$

MS20: $R_{1}=R_{2}=R_{4}=R_{5}=H, R_{3}=O C H_{3}$
MS20a: $R_{1}=R_{2}=R_{4}=R_{5}=A c, R_{3}=\mathrm{OCH}_{3}$

Figure 2.4 Structures of MS1-MS20.

2.12.1 MS1

IUPAC mame:
Common name: (+)-spathulenol
Appearance: colorless viscous liquid
Melting Point:
Optical rotation:
CD:
UV:

IR:
(thin film): $v_{\text {max }}, \mathrm{cm}^{-1}$;
3402, 3108, 2945, 1637, 919 and 888
HRESIMS:
Chemical Formula:

Exact Mass:
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.16
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.16
2.12.2 MS2

${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.17

2.12.3 MS3

IUPAC mame: $\quad(3 \beta, 23 S)$-23-methoxy-24-methylenelanost-9-en-

Common name:
Appearance:
Melting Point:

HRESIMS:	$\begin{aligned} & (\text { thin film }): v_{\max }, \mathrm{cm}^{-1} ; \\ & 3323,2917,2866,1639,1462,1369,1111 \text {, } \\ & 1087,1040,901 \text { and } 757 \\ & \mathrm{~m} / \mathrm{z} \text { (relative intensity), } 70 \mathrm{eV} \text {; } \\ & 488.4462\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} \text {(calcd. for } \mathrm{C}_{32} \mathrm{H}_{58} \mathrm{NO}_{2}, \\ & 488.4467 \text {, } \end{aligned}$
Chemical Formula:	$\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{2}$
Exact Mass:	$470.4124 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data	$\begin{aligned} & \delta \mathrm{ppm}, 300 \mathrm{~Hz} \text { in } \mathrm{CDCl}_{3} \\ & \text { see Table } 2.18 \end{aligned}$
${ }^{13} \mathrm{C}$ NMR spectroscopic data	$\delta \mathrm{ppm}$, 75 Hz in CDCl_{3} see Table 2.18

2.12.4 MS4

IUPAC mame:
Common name: T-muurolol
Appearance: colorless viscous liquid;
Melting Point:
Optical rotation:
CD:
UV:
IR:
(thin film): $v_{\max }, \mathrm{cm}^{-1}$;
$3326,2962,1670,1453,1374,1300,1238$,
1191,1144 and 1028

HRESIMS:

m / z (relative intensity), 70 eV ;
$205.1957\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$(calcd. for $\mathrm{C}_{15} \mathrm{H}_{25}$, 205.1956)

Chemical Formula:
$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$
Exact Mass:
$222.1984 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.19
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 19

2.12.5 MS5

2.12.6 MS6

IUPAC mame: $\quad(3 \beta)-24,24^{1}$-epoxy- lanost-9-en-3-ol
Common name:
Appearance:
Melting Point:
Optical rotation:
CD:
UV:
IR:
(thin film): $\mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$,
$3405,2933,2880,1641,1464,1384,1245$, 1170, 1157, 1117, 1096, 1041, 980 and 885

HRESIMS:
$[\alpha]_{\mathrm{D}}^{23}+48.6$ (c 0.04, CHCl_{3});
m / z (relative intensiy), 70 eV ;
$457.4023[\mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{2}$, 457.4045)

Chemical Formula:
$\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$
Exact Mass:
$456.3967 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.21
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.21

2.12.7 MS7

HRESIMS:
m / z (relative intensity), 70 eV ;
$474.4278\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$(calcd. for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{NO}_{2}$, 474.4310)

Chemical Formula
$\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$
Exact Mass
$456.3967 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\quad \delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.22
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.22

2.12.8 a mixture of MS8 and MS9

β-sitosterol

Stigmasterol

IUPAC mame:

Common name:
mixture of β-sitosterol and stigmasterol
Appearance:
Melting Point:
Optical rotation:
CD:
UV:

IR:
(thin film): $v_{\max }, \mathrm{cm}^{-1}$;
3492, 2937, 2867, 1641, 1464, 1373, 1096 and 1041
HRESIMS:
Chemical Formula

Exact Mass
$\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}$ for β-sitosterol, $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}$ for stigmasterol
$414.7180 \mathrm{~g} / \mathrm{mol}$ for β-sitosterol, $412.7020 \mathrm{~g} / \mathrm{mol}$ for stigmasterol
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.23
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.23

2.12.9 MS10

IUPAC mame:

Common name:
Appearance:
Melting Point:
Optical rotation:

CD

IR:
(thin film): $v_{\max }, \mathrm{cm}^{-1}$, $3439,1638,1597,1505,1454,1434,1314$, $1265,1213,1129,1083,1034,994,914$ and 832

HRESIMS:
4-hydroxy-3',5-dimethoxy-3,4'-oxyneolign-8, 8^{\prime} dien
dehydrodieugenol B
pale green-brown viscous liquid;
$(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon), \mathrm{nm}$;
205 (4.78), 230 (4.26), 277 (3.80)
m / z (relative intensity), 70 eV ;
$325.1442[\mathrm{M}-\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}$,
325.1440)

Chemical Formula
Exact Mass
$326.1518 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.24
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.24

2.12.10 MS11

2.12.11 MS12

2.12.12 MS13

IUPAC mame: 4,4'-dihydroxy-3,3'-dimethoxy-5,5'neolign-8,8'dien

Common name:
Appearance:
Melting Point:
Optical rotation:

CD
UV:
(MeOH) $\lambda_{\text {max }}(\log \varepsilon), \mathrm{nm}$;
219 (4.65), 253 (4.01), 290 (3.83)
IR:
(thin film): $v_{\max }, \mathrm{cm}^{-1}$
$3252,1639,1599,1490,1467,1454,1424$,
$1327,1257,1229,1145,1047,996,907$ and 852
HRESIMS:
m / z (relative intensity), 70 eV ;
$325.1447[\mathrm{M}-\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$, $325.1440)$

Chemical Formula
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$
Exact Mass
$326.1518 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.27
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.27

2.12.13 MS14

2.12.14 MS15

2.12.15 MS16

2.12.16 MS17

2.12.17 MS18

IUPAC mame: 4-hydroxy-3',5-dimethoxy-3,4'-oxyneolign-7',8-dien-9'-ol

Common name:
Appearance:
Melting Point:
Optical rotation:
CD
UV:
$(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon), \mathrm{nm}$;
205 (4.50), 230 (4.20), 299 (4.00)
IR:
(thin film): $v_{\max }, \mathrm{cm}^{-1}$;
$3450,1632,1597,1505,1454,1434,1314$, $1265,1213,1129,1083,1034,994$ and 914

HRESIMS:
pale green-brown viscous liquid
m / z (relative intensity), 70 eV ;
$341.1392[\mathrm{M}-\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}$, 341.1389)

Chemical Formula
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
Exact Mass
$342.1467 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3} see Table 2.32
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3} see Table 2.32

2.12.18 MS19

2.12.19 MS20

2.12.20 MS20a

IUPAC mame:

Common name:

Melting Point:
Optical rotation:
CD
UV:
$(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon), \mathrm{nm}$;
206(4.79), 230(4.37), 276(3.67)
IR:
(thin film): $v_{\text {max }}, \mathrm{cm}^{-1}$;
1036
HRESIMS:
m / z (relative intensity), 70 eV ;
$567.1840[\mathrm{M}+\mathrm{Na}]^{+}$(calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{11} \mathrm{Na}$, 567.1843)

Chemical Formula
$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{11}$
Exact Mass
$544.1945 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathrm{H}$ NMR spectroscopic data $\delta \mathrm{ppm}, 300 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.35
${ }^{13} \mathrm{C}$ NMR spectroscopic data $\delta \mathrm{ppm}, 75 \mathrm{~Hz}$ in CDCl_{3}
see Table 2.35
Table 2.16 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for $\mathbf{M S 1}$ in $\mathrm{CDCl}_{3}(\mathrm{~J}$ in Hz in parentheses).

Position	MS1				(+)-spathulenol ${ }^{\text {a }}$	
	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	${ }^{2} J$	$\begin{gathered} (\mathrm{H} \rightarrow \mathrm{C}) \\ { }^{3} \mathrm{~J} \\ \hline \end{gathered}$	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$
1	0.47 (1H, dd, 11.1, 9.9)	30.0	$\mathrm{C}-2, \mathrm{C}-11$	C-3, C-9, C-13	0.47 (1H, dd, 11.6, 9.6)	29.9
2	0.71 (1H, ddd,)	27.5	C-1, C-3,	C-10	0.71	27.5
3 a	0.99 (1H, m)	24.7	C-4		1.01	24.8
3 b	1.94 (1H, m)				1.96	
4a	2.01 (1H, overlapped)	38.0	3, C-5	$\mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-11$	2.05	38.9
4b	2.42 (1H, dd, 13.5, 6.3)				2.42 (1H, dd, 13.6, 5.2)	
5	-	153.4				153.5
6	2.19 (1H, m)	53.4	C-5, C-10	C-1, C-4, C-14	2.20	53.4
7a	1.61 (1H, m)	26.7	C-6, C-8	$\mathrm{C}-9, \mathrm{C}-9, \mathrm{C}-10$	1.64	
7 b	1.88 (1H, m)	-		-10	1.91	26.7
8 a	1.56 (1H, m)	41.8	-7, C-10	C-6, C-10, C-15	1.54	41.8
8 b	1.77 (1H, m)			-	1.77	
9	-	80.9			380	81.0
10	1.29 (1H, overlapped)	54.3	-1, C-6,	C-5, C-11	1.31	54.4
11	-	20.2				20.3
12	1.04 (3H, s)	28.7	-11	C-1, C-2, C-13	1.05	28.7
13	1.05 (3H, s)	16.3	C-11	C-1, C-2, C-12	1.04	16.3
14a	4.66 ($1 \mathrm{H}, b r \mathrm{~s}$)	106.3	C-5	C-4, C-6	4.66	106.3
14 b	4.69 (1H,, r s)				4.68	
15	1.28 (3H, br s)	26.1	C-9,	C-8, C-10,	1.28	26.1

Table 2.17 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~Hz} \mathrm{)} \mathrm{and} \mathrm{{ }}^{13} \mathrm{C}$ NMR (75 MHz) data for $\mathbf{M S} 2$ in $\mathrm{CDCl}_{3}(J$ in,$~$ Hz in parentheses).

Position	MS2		phytol ${ }^{\text {a }}$	
	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$
1	4.15 (d, 6.8)	59.4	4.16 (d)	59.30
2	5.41 (tq, 7.0, 1.3)	123.1	5.39 (t)	123.09
3	-	140.2		140.23
4	1.99 (m)	39.8	1.97 (m)	39.85
5	1.42 (m), 1.37 (m)	25.1	1.40 (m), 1.36 (m)	25.12
6	1.26 (m), 1.07 (m)	36.6	1.24 (m), 1.05 (m)	36.65
7	1.37 (m)	32.7	1.35 (m)	32.67
8	1.25 (m), 1.06 (m)	37.3	1.23 (m), 1.03 (m)	37.65
9	1.31 (m), 1.17 (m)	24.4	1.29 (m), 1.15 (m)	24.45
10	1.25 (m), 1.06 (m)	37.4	1.23 (m), 1.03 (m)	37.41
11	1.37 (m)	32.8	1.35 (m)	32.77
12	1.25 (m), 1.06 (m)	37.3	1.23 (m), 1.03 (m)	37.28
13	1.27 (m)	24.8	1.25 (m)	24.78
14	1.13 (m), 1.06(m)	39.4	1.11 (m), 1.03 (m)	39.35
15	1.52 (hp)	28.0	1.50 (hp)	27.95
16	0.87 (d, 6.6)	22.6	0.84 (d)	22.60
17	0.87 (d, 6.6)	22.7	0.84 (d)	22.69
18	0.85 (d, 6.5)	19.7	0.83 (d)	19.69
19	0.84 (d, 6.5)	19.7	0.82 (d)	19.72
20	1.67 (bs) $>=$	16.2	1.65 (s)	16.14
${ }^{a}$ [30]		$17 \text { ล }$	18	

Table 2.18 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS3 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	1.45 (m), 1.78(m)	36.2	C-10	C-19
2	1.33 (m), 1.65 (m)	28.1	C-1	
3	3.21, (overlapped)	78.9	C-2	C-28, C-29
4	-	39.1		
5	0.87 (m)	52.5	C-10, C-4	C-1, C-7, C-28, C-29
6	1.48 (m), 1.69 (m)	21.4	C-5, C-7	C-8, C-10
7	1.65 (m), 1.77 (m)	27.8	C-6	C-5, C-9
8	2.14 (m)	41.8	C-9	C-11, C-13, C-30
9	-	148.6	,	
10	-	$39.4=$,	
11	5.23, (br d, 5.9)	114.9	C-12	C-8, C-10, C-13
12	1.93 (m), 2.08 (m)	37.3	$\mathrm{C}-11$	C-9, C-14
13	-	44.6	1	
14	-	47.1		
15	1.34 (m) (m)	33.8	C-14, C-16)	C-13
16	1.33 (m), 1.87(m)	28.1	C-17	C-13, C-14
17	1.56 (m) 60	51.7	C-13, C-16, C-20	$\mathrm{C}-12, \mathrm{C}-15, \mathrm{C} 18$
18	0.68 (s)	14.5	$\mathrm{C}-13$	C-12, C-14, C-17
19	1.05 (s)	22.3	C-10	C-1, C-5, C-9
20	1.67 (m)	33.0	C-17	C-16
21	0.92 (d, 6.3)	18.3	C-20	C-17, C-22
22	1.01 (m), 1.66 (m)	43.2	C-23	C-24
23	3.59 (dd, 9.3, 1.0)	81.7	C-22, C-24	$\mathrm{C}-20, \mathrm{C}-24{ }^{1}, \mathrm{C}-25,23-\mathrm{OCH}_{3}$
24	-	156.6		
24^{1}	4.92 (s), 4.98 (s)	107.4	C-24	C-23, C-25
25	2.17 (m)	29.9	C-24, C-26, C-27	C-23, C-24 ${ }^{1}$
26	1.05 (d, 7.1)	23.5	C-25	C-24
27	1.07 (d, 7.1)	22.5	C-25	C-24
28	0.82 (s)	15.7	C-4	C-3, C-5
29	0.99 (s)	28.3	C-4	C-3, C-5
30	0.73 (s)	18.5	C-14	C-8, C-13, C-15
23 -OMe	3.22 (s)	56.3		C-23

Position	MS-4				T-muurolol ${ }^{\text {a }}$		T-cardinol ${ }^{\text {b }}$		${ }^{\alpha-\text { cardinol }^{\text {b }}}$	
	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)		$\delta_{\text {H }}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	$\delta_{H}(\mathrm{ppm})$	$\begin{gathered} \delta_{C} \\ (\mathrm{ppm}) \end{gathered}$	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$
			${ }^{2} \mathrm{~J}$	${ }^{3} \mathrm{~J}$						
1	1.58 (m)	45.8	C-2, C-10	C-7	1.47 (1H, m)	46.4		47.9		50.0
2a	1.11 (m)	21.6	$\mathrm{C}-1$,	$\mathrm{C}-6, \mathrm{C}-10$	1.43 (2H, m)	21.3		22.6		22.0
2b	1.51 (m)		\bigcirc	(0) ${ }^{\text {c }}$						
3a	2.00 (m)	31.1	-1	,	1.87 (2H, m)	31.6		30.9		31.0
3 b			\cdots	-	-					
4	-	134.4		,		133.5		134.4		134.9
5	5.52 (dd, 5.4, 1.5)	124.6	C-4, C-6	C-1, C-3,	5.68 (1H, d, 5.6)	125.8	5.52 (s)	122.6		122.4
6	2.01 (m)	36.8	C-1, C-5, C-7	C-3, C-8	$2.46(1 \mathrm{H}, \mathrm{m})$)	34.8		37.7		39.9
7	1.30 (m)	44.1	C-8	$\begin{aligned} & \mathrm{C}-1, \mathrm{C}-9, \mathrm{C}- \\ & 12 \end{aligned}$	$1.29(1 \mathrm{H}, \mathrm{~m})$	44.5		46.6		46.7
8 a	1.56 (m)	18.3			$1.28(1 \mathrm{H}, \mathrm{m})$ ninere	19.8		19.8		22.7
8 b	1.91(m)		C-3	cos	$1.50(1 \mathrm{H}, \mathrm{~m})$					
9a	1.51 (m)	35.3	$\mathrm{C}-8, \mathrm{C}-10$	$\begin{aligned} & \mathrm{C}-1, \mathrm{C}-7, \mathrm{C} \\ & 14 \end{aligned}$	$1.28(1 \mathrm{Hm})$	35.0		40.3		42.2
9 b	1.56 (m)		\bigcirc		$1.43(1 \mathrm{H}, \mathrm{~m})$					
10	-	72.5				72.4		70.7		72.5
11	1.97 (m)	26.4	$\begin{aligned} & \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-12, \\ & \mathrm{C}-13 \end{aligned}$		$\begin{aligned} & 2.08 \\ & (1 \mathrm{H}, \text { dsept, } J=6.9,2.7) \end{aligned}$	27.1	2.16 (m)	26.2		26.0
12	0.89 (d, 7.0)	21.7	C-11	C-7, C-13	0.91 (3H, d, 6.8)	21.9	0.88 (d, 7.0)	21.4	0.89 (d, 7.0)	21.5
13	0.81 (d, 7.0)	15.3	C-11	C-7, C-12	0.90 (3H, d, 6.7)	15.4	0.76 (d, 7.0)	15.2	0.74 (d, 7.0)	15.1
14	1.30 (s)	28.0	C-10	C-1, C-9	1.05 (3H, s)	29.6	1.19 (s)	28.4	1.08 (s)	20.8
15	1.66 (s)	23.6	C-4	C-3, C-5	1.64 (3H, s)	23.9	1.70 (s)	23.8	1.64 (s)	23.8

Table 2.20 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS5 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\text {H }}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	1.40 (m), 1.83 (m)	35.4	C-10	C-3, C-5, C-19
2	1.56 (m), 1.91 (m)	31.2	C-1, C-3	
3	3.08, (td, 11.5, 3.0)	76.5	C-2, C-4	C-5, C-28
4	1.32 (m)	39.4	C-3, C-5	C-10
5	0.80 (m)	49.3	C-4, C-6, C-10	C-1, C-3, C-7
6	1.21 (m), 1.79 (m)	24.0	C-5, C-7	C-4, C-8, C-10
7	1.31 (m), 1.63 (m)	27.4	C-6, C-8	C-5, C-9
8	2.17 (m)	41.3	C-7, C-9, C-14	C-11, C-13
9	-	146.5	\rightarrow	
10	-	$38.7=$		
11	5.23, (dd, 3.6, 2.8)	116.4	C-9, C-12	C-8, C-10, C-13
12	1.97 (m), 2.07(m)	37.5	$\mathrm{C}-11, \mathrm{C}-13$	C-9, C-14, C-18
13	- 1	44.4	ハ1	
14	- L	47.2		
15	1.37(m)	33.9	C-14, C-16	C-8, C-13, C-17
16	1.36 (m) , 1.90 (m)	28.1	C-15, C-17	C-13, C-14, C-20
17	1.55 (m)	51.7	C-13, C-16, C-20	C-12, C-15
18	0.69 (s)	14.6	C-13	C-12, C-14, C-17
19	0.99 (s)	20.5	C-10	C-1, C-5, C-9
20	1.67 (m)	33.0	C-17, C-22	C-21
21	0.92 (d, 6.4)	18.2	C-20	C-17, C-22
22	1.02 (m), 1.68 (m)	43.2	$\mathrm{C}-23$	C-24
23	3.60 (dd, 10.3, 1.4)	81.7	C-22, C-24,	$\mathrm{C}-20, \mathrm{C}-24{ }^{1}, \mathrm{C}-25,23-\mathrm{OCH}_{3}$
24	-	156.6		
24^{1}	4.92 (s), 4.98 (s)	107.4	C-24	C-23, C-25
25	2.17 (m)	29.9	C-24, C-26, C-27	C-23, C-24 ${ }^{1}$
26	1.05 (d, 7.0)	23.5	C-25	C-24
27	1.07 (d, 7.4)	22.5	C-25	C-24
28	0.97 (d, 6.3)	15.3	C-4	C-3, C-5
29	0.73 (s)	18.3	C-14	C-8, C-13, C-15,
23-OMe	3.21 (s)	56.4	C-23	

Table 2.21 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS6 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} \mathrm{~J}$
1	1.44 (m), 1.79 (m)	36.1	C-10, C-2	C-3, C-5, C-19
2	1.65 (m), 1.75 (m)	28.0	C-1, C-3	C-4, C-10
3	3.21, (m)	78.9	C-2, C-4	C-1, C-5, C-28, C-29
4		39.2		
5	0.88 (m)	52.5	$\begin{aligned} & \text { C-4, C-6, } \\ & \text { C-10 } \end{aligned}$	C-1, C-7
6	1.49 (m), 1.69 (m)	21.4	C-5, C-7	C-4, C-8, C-10
7	1.65 (m), 1.92 (m)	27.8	C-6, C-8	C-5, C-9
8	1.92 (m)	41.8	C-9, C-14	C-11, C-13, C-15
9	-	148.6		
10	- ${ }^{\text {d }}$	39.4		
11	5.21, (bd, 6.03)	114.9	C-9, C-12	C-8, C-10, C-13
12	1.89 (m), 2.07(m)	37.2	C-11, C-13	C-9, C-14, C-18
13	-	44.3	(
14	- (n)	47.0		
15	1.34 (m), 1.39 (m)	33.9	-14, C-16	C-8, C-13, C-17
16	1.32 (m), 1.65 (m)	28.1	C-15, C-17	C-13, C-14, C-20
17	1.62 (m)	50.8	C-20	
18	0.64 (s)	14.4	C-13	C-12, C-14, C-17
19	1.04 (s)	22.3	C-10	C-1, C-5, C-9
20	1.45 (m)	36.2	C-17, C-22	C-21
21	0.89 (d, 6.9)	18.3	C-20	C-17, C-22
22	1.04 (m), 1.47 (m)	30.7	C-20, C-23	C-24
23	1.46 (m), 1.68 (m)	28.5	C-22, C-24,	C-20, C-24 ${ }^{1}$
24	-	62.8		
24^{1}	2.54 (d, 4.6)	50.5	C-24	C-23, C-25
	2.59 (d, 4.6)			
25	1.79 (m)	31.7	$\begin{aligned} & \mathrm{C}-24, \mathrm{C}-26, \\ & \mathrm{C}-27 \end{aligned}$	$\mathrm{C}-23, \mathrm{C}-24^{1}$
26	0.96 (d, 6.8)	18.4	C-25	C-24, C-27
27	0.90 (d, 6.8)	17.7	C-25	C-24, C-26
28	0.82 (s)	15.7	C-4	C-3, C-5, C-29
29	0.99 (s)	28.3	C-4	C-3, C-5, C-28
30	0.73 (s)	18.5	C-14	C-8, C-13, C-15

Table 2.22 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS7 in $\mathrm{CDCl}_{3}(\mathrm{~J}$ in Hz in parentheses).

Position	$\delta_{\text {H }}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	1.44 (m), 1.79 (m)	36.1	C-10	C-3, C-5,
2	1.30 (m), 1.60 (m)	28.0	C-3,	
3	3.21, (td, 11.0, 4.3)	78.9	C-2, C-4	C-1, C-28, C-29
4	-	38.9		
5	0.87 (m)	52.4		C-3
6	1.50 (m), 1.70 (m)	21.3	C-5, C-7	C-4, C-8
7	1.67 (m), 1.77 (m)	27.8		C-5, C-8
8	2.25 (m)	41.7		C-30
9	-	148.6		
10		39.4		
11	5.21, (bd, 3.9, 2.0)	114.7	C-12	C-8, C-10, C-13
12	1.88 (m), 2.05 (m)	37.1	C-11, C-13	C-9, C-14
13		44.3	-	
14	-	44.9		
15	1.43 (m), 2.05 (m)	46.4	C-14, C-16	C-8, C-13, C-17
16	4.43 (dd, 12.4, 2.8)	72.7		C-13, C-14
17	1.70 (m) (${ }^{\text {d }}$	55.0	C-13, C-16	C-12, C-15, C-22
18	0.83 (s)	15.3	C-13	C-12, C-14, C-17
19	1.06 (s)	22.3	c-10	C-1, C-5, C-9
20	1.78 (m)	30.2	C-17	
21	0.98 (d, 6.2)	18.0	C-20	C-17, C-22
22	1.18 (m), 1.73 (m)	35.4	C-20, C-23	C-17
23	1.97 (m), 2.19(m)	31.6	C-22	C-20, C-25
24		157.0		
24^{1}	4.70 (s), 4.75 (s)	106.2	C-24	C-23, C-25
25	2.23 (m)	34.0	C-24	$\mathrm{C}-23, \mathrm{C}-24^{1}$
26	1.03 (d, 6.8)	21.9	C-25, C-27	C-24, C-24 ${ }^{1}$
27	1.03 (d, 6.8)	21.8	C-25, C-26	$\mathrm{C}-24, \mathrm{C}-24^{1}$
28	0.82 (s)	15.7	C-4	C-3, C-5, C-29
29	0.99 (s)	28.2	C-4	C-3, C-5, C-28
30	0.72 (s)	19.1	C-14	C-8, C-13

Table 2.23 ${ }^{1} \mathrm{H}$ NMR (300 Hz) data for a mixture of $\mathbf{M S 8}$ and $\mathbf{M S} 9$ in $\mathrm{CDCl}_{3}(J \mathrm{in} \mathrm{Hz}$ in parentheses).

Position	$\begin{gathered} \text { a mixture of } \\ \text { MS8 and MS9 } \end{gathered}$		β-sitosterol ${ }^{a}$		stigmasterol $^{\text {b }}$	
	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$
1	-	37.6	-	37.5	-	37.4
2	-	32.0	-	31.9	-	28.4
3	3.53 (m)	72.1	3.49 (, m)	72.0	3.54 (m)	72.0
4	-	42.6	-	42.6	-	39.0
5	-	140.9		140.9	-	140.9
6	5.35 (m) (A)	121.9	5.31 (, d, 5.2)	121.9	5.36(t)	121.9
7	- 88	32.3		32.2	-	31.9
8	-	32.3	-	32.2	-	32.1
9	- 0	50.5		50.4	-	50.3
10	-	36.9	cos	36.8	-	36.7
11	- 1	21.4		21.4	-	21.3
12	-	40.0		40.0	-	40.1
13	-			42.6	-	39.8
14	Pmen	57.1	今1	57.0	-	57.0
15	(b)	24.6	-	24.6	-	24.5
16	-	28.6	-	28.5	-	29.2
17	-	56.4	9	56.3	-	56.1
18	0.68 (s)	12.3	0.64 (s)	12.2	0.63 (s)	12.1
19	$1.01(\mathrm{~s})$	19.8	0.97 (s)	19.7	1.06 (s)	19.1
20		36.5	-	36.4	-	40.7
21	$\begin{aligned} & 0.92(\mathrm{~d}, 6.3), \\ & 1.02(\mathrm{~d}, 6.6) \end{aligned}$	19.2	$0.88(\mathrm{~d}, 6.4)$	19.1	0.97 (d)	21.4
22	5.16 (dd, 15.3, 8.4)	$\begin{aligned} & 138.6, \\ & 34.3 \end{aligned}$		34.2	5.15 (m)	138.5
23	5.01 (dd, 15.3, 8.4)	$\begin{aligned} & \text { 129.6, } \\ & 26.4 \end{aligned}$		26.3	5.01 (m)	129.5
24	-	46.2	-	46.1	-	51.4
25	-	29.5	-	29.4	-	30.1
26	0.83 (m)	20.3	0.80 (d, 7.2)	20.1	0.88 (d)	19.9
27	0.80 (d, 6.6)	19.4	0.77 (d, 6.8)	19.3	0.78 (d)	22.3
28	-	23.6	-	23.6		25.6
29	0.82 (m)	12.4	0.81 (t, 7.2)	12.3	0.81 (t,)	12.1

Table 2.24 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS10 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	131.0		
2	6.42 (1H, d, 1.5)	111.8	C-1, C-3	C-4, C-6, C-7
3	-	144.4		
4		135.2		
5	(A)	47.9		
6	$6.51(1 \mathrm{H}, \mathrm{d}, 1.5)$	107.3	C-1, C-5	C-2, C-4, C-7
7	$3.24(2 \mathrm{H}, \mathrm{~d}, 6.6)$	39.9	C-1, C-8	C-2, C-6, C-9
8	$5.93(1 \mathrm{H}, \mathrm{ddt}, 16.1,9.4,6.6)$			
9a	$5.05(1 \mathrm{H}, \mathrm{dd}, 16.1,1.4)$			
9 b	$5.04(1 \mathrm{H}, \mathrm{dd}, 9.4,1.4)$	115.7		C-7
1^{\prime}	- 4 (c)	36.4)	
2^{\prime}	$6.81(1 \mathrm{H}, \mathrm{d}, 1.8)-$)		C-3'	C-4', C-6', C-7'
3^{\prime}	2, -	150.4		
4^{\prime}				
5^{\prime}	$6.91(1 \mathrm{H}, \mathrm{d}, 8.1)$ d	119.5	C-4', C-6'	C-1', C-3'
6^{\prime}	6.72 (1H, dd, 8.1, 1.8)	120.8		C-2', C-4', C-7'
7^{\prime}	3.38 (1H, d, 6.6)	39.9	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	5.99 (1H, ddt, 17.0, 10.4, 6.6)	137.3	C-7'	
9'a	5.11 (1H, dd, 17.0, 1.5)			
9 b	5.10 (1H, dd, 10.4, 1.5)	115.9	C-7'	C-8'
$\mathrm{OCH}_{3}-5$	3.89 (3H, s)	56.2		C-5
$\mathrm{OCH}_{3}-3^{\prime}$	3.86 (3H, s)	56.0		C-3'

Table 2.25 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS11 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{C}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	133.2		
2	6.93 (1H, d, 1.8)	109.3	C-1, C-3	C-6, C-7
3	-	149.1		
4	-	149.1		
5	6.83 (1H, d, 8.8)	111.0	C-4	C-1
6	$6.94(1 \mathrm{H}, \mathrm{dd}, 8.8,1.8)$	118.8	C-1	C-2, C-4, C-7
7	$5.46(1 \mathrm{H}, \mathrm{~d}, 7.4)$	88.4	$\mathrm{C}-1, \mathrm{C}-8$	$\begin{aligned} & \mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-9, \mathrm{C}-4^{\prime}, \\ & \mathrm{C}-3^{\prime} \end{aligned}$
8	$3.78(1 \mathrm{H}, \mathrm{pq}, 5.6) \mathrm{V}^{\text {a }}$ -	50.5	C-7, C-9	C-1, C-4', C-2'
9a	4.45 (1H, dd, 11.1, 5.5)	∞		
9b	$4.29(1 \mathrm{H}, \mathrm{dd}, 11.1,7.7$	65.5	C-8	$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$
1^{\prime}	L)	33.7		
2^{\prime}	6.66 (11 , s)	112.7	C-1', $\mathrm{C}-3^{\prime}$	C-8, C-6', C-4', C-7'
3^{\prime}	(-)	127.3		
4^{\prime}	- ce	146.4		
5^{\prime}	16	144.2		
6^{\prime}	$5.66(1 \mathrm{H}, \mathrm{~s})$	116.4	C-1', C-5'	C-2', C-7'
7^{\prime}	$3.35(2 \mathrm{H}, b r \mathrm{~d}, 6.7)$	40.1	C-1', C-8'	C-2', C-6', C-9 ${ }^{\prime}$
8^{\prime}	5.96 (1H, ddt, 16.9, 10.1, 6.7)	137.7	C-7'	$\mathrm{C}-1^{\prime}$
9'a	5.10 (1H, dd, 16.9, 1.8)			
9 b	5.06 (1H, dd, 10.1, 1.8)	115.7	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.86 (3H, s)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.86 ($3 \mathrm{H}, \mathrm{s}$)	55.9		C-4
$\mathrm{OCH}_{3}-5{ }^{\prime}$	3.89 (3H, s)	56.0		C-5'
$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	-	170.8		
$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	$2.03(3 \mathrm{H}, \mathrm{s})$	20.8	$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	

Table 2.26 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS12 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{C}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	132.9		
2	6.92 (1H, d, 1.8)	109.1	C-1, C-3	C-6, C-7
3	-	149.3		
4		149.3		
5	6.85 (1H, d, 8.1)	11.1	C-4, C-6,	
6	6.94 (1H, dd, 8.1, 1.8)	118.8	C-1	C-2, C-4, C-7
7	$5.43(1 \mathrm{H}, \mathrm{d}, 7.8)$	88.7	C-1, C-8	C-2, C-6, C-9, C-3'
8	$3.80(1 \mathrm{H}, \mathrm{pq}, 5.7){ }^{\text {a }}$)	50.8	C-9, C-3',	C-1, C-2', C-4'
9 a	$4.45(1 \mathrm{H}, \mathrm{dd}, 11.1,5.7)$,		
9b	$4.30(1 \mathrm{H}, \mathrm{dd}, 11.1,7.5)$		C-8,	$\mathrm{C}-7, \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$
1^{\prime}		34.2		
2^{\prime}	6.68 (1H, br s $)$	16.3	C-3	C-8, C-4', C-6', C-7'
3^{\prime}	$\xrightarrow{+}$	139.9		
$4 '$	-	144.		
5^{\prime}		127.2		
6^{\prime}	$6.61(1 \mathrm{H}, b r \mathrm{~s})$	116.1		C-4', C-2', C-3'
$7{ }^{\prime}$	3.30 (2H, d, 6.6)	39.8	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	5.94 (1H, ddt,16.8, 9.9, 6.6)	137.7	C-1', C-7'	
9'a	5.08 (1H, dd, 16.8, 1.8)			
$9{ }^{\prime} \mathrm{b}$	5.06 (1H, dd, 9.9, 1.8)	115.7	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.86 (3H, s)	56.0		C-3
$\mathrm{OCH}_{3}-4$	3.88 (3H, s)	56.0		C-4
$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	-	170.9		
$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	$2.02(3 \mathrm{H}, \mathrm{s})$	20.8	$\mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}-9$	C-9

Table 2.27 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS13 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	131.2		
2	6.78 (1H, d, 1.8)	110.7	C-1, C-3,	C-4, C-6, C-7
3	-	147.2		
4	-	140.9		
5	-	124.4		
6	6.75 (1H, d, 1.8) $)$	123.4	C-5	C-2, C-7, C-5'
7	3.35 (2H, d, 6.6)	40.0	C-1, C-8	C-2, C-6, C-9
8	$6.01(1 \mathrm{H}, \mathrm{ddt}, 16.8,9.9,6.6)$	137.7		C-1
9a	$5.14(1 \mathrm{H}, \mathrm{dd}, 16.8,1.6)$			
9b	5.10 (1H, dd, 9.9,1.6)	115.7		C-7
1^{\prime}		131.9		
2^{\prime}	6.78 (1H, d, 1.8)	110.7	$\mathrm{C}-1, \mathrm{C}-3$	C-4', C-6', C-7'
3^{\prime}	\cdots	47.2		
4^{\prime}	-	140.9)	
5^{\prime}		124.4		
6	$6.75(1 \mathrm{H}, \mathrm{d}, 1.8)$	123.4	C-	C-5, C-2', C-7'
$7{ }^{\prime}$	3.35 (2H, d, 6.6)	40.0	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	6.01 (1H, ddt, 16.8, 9.9, 6.6)	137.7		$\mathrm{C}-1^{\prime}$
9'a	5.14 (1H, dd, 16.8, 1.6)			
$9{ }^{\prime} \mathrm{b}$	5.10 (1H, dd, 9.9, 1.6)	115.7	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.94 (3H, s)	56.1		C-3
$\mathrm{OCH}_{3}-3^{\prime}$	3.94 (3H, s)	56.1		C-3'
OH-4	$6.08(1 \mathrm{H}, \mathrm{br} \mathrm{s})$		C-4	C-3, C-5
OH-4'	$6.08(1 \mathrm{H}, b r \mathrm{~s})$		C-4'	C-3', C-5'

Table 2.28 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS14 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{C}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	129.2		
2	$7.20(1 \mathrm{H}, b r \mathrm{~s})$	109.5	C-1, C-3	C-4, C-6, C-7
3	-	149.1		
4	-	148.9		
5	6.87 (1H, d, 8.4)	111.1	C-4, C-6	C-1, C-3,
6	7.01 (1H, dd, 8.4, 1.7)	118.7	C-1, C-5	C-2, C-4, C-7
7	$5.83(1 \mathrm{H}, \mathrm{d}, 8.4)$	87.0	C-1, C-8	C-2, C-6, C-9, C-3'
8	3.67 (1H, pq, 5.8)	49.6	$\mathrm{C}-9, \mathrm{C}-3^{\prime}$	C-1, C-2', C-4'
9a	3.53 (1H, dd, 11.5, 7.0)			
9b	$3.82(1 \mathrm{H}, \mathrm{dd}, 11.5,5.8)$. 0		C-7, C-3'
1^{\prime}		133.8		
2^{\prime}	6.67 (1H, br s $)$	112.6	C-3'	C-8, C-4', C-6', C-7'
3^{\prime}	\cdots	129.2		
4^{\prime}	-	146.4)	
5^{\prime}		144.3		
6^{\prime}	$6.72(1 \mathrm{H}, \mathrm{br} \mathrm{s})$	117.1	C-1', $\mathrm{C}-5^{\prime}$	C-2', C-4', C-7'
$7{ }^{\prime}$	3.35 ($1 \mathrm{H}, \mathrm{d}, 6.7$)	40.0	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	5.97 (1H, ddt, 16.8, 10.0, 6.7)	137.7	C-7'	$\mathrm{C}-1^{\prime}$
9'a	5.11 (1H, dd, 16.8, 1.7)			
9 b	5.08 (1H, dd, 10.0, 1.7)	115.7	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.88 (3H, s)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.89 (3H, s)	56.0		C-4
$\mathrm{OCH}_{3}-5^{\prime}$	3.91 (1H, s)	56.1		C-5'

Table 2.29 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS15 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} \mathrm{~J}$
1	-	133.6		
2	$6.95(1 \mathrm{H}, b r \mathrm{~s})$	109.4	C-1, C-3	C-4, C-6, C-7
3	-	149.2		
4	-	149.0		
5	6.83 (1H, d, 8.8)	111.1	C-4, C-6	C-1, C-3,
6	6.96 (1H, dd, 8.8, 1.9)	118.7	C-1, C-5	C-2, C-4, C-7
7	$5.58(1 \mathrm{H}, \mathrm{~d}, 7.4)$	87.8	$\mathrm{C}-1, \mathrm{C}-8$	$\begin{aligned} & \mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-9, \\ & \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime} \end{aligned}$
8	$3.62(1 \mathrm{H}, \mathrm{pq}, 5.6)$)	53.8	C-9, C-3'	$\mathrm{C}-1, \mathrm{C}-4^{\prime}, \mathrm{C} 2^{\prime}$
9a	$3.98(1 \mathrm{H}, \mathrm{dd}, 11.0,6.0)$	0		
9b	$3.91(1 \mathrm{H}, \mathrm{dd}, 11.0,5.2)$	64.0		C-7, C-3'
1^{\prime}				
2^{\prime}	$6.66(1 H, b r s)$	112.7	$\mathrm{C}-1^{\prime}, \mathrm{C}-3^{\prime}$	$\begin{aligned} & \text { C-8, C-6', C-4', } \\ & \text { C-7' } \end{aligned}$
3^{\prime}	(127.7		
4^{\prime}	- C	146.8		
5^{\prime}		144.3		
6^{\prime}	$6.66(1 \mathrm{H}, b r \mathrm{~s}) \quad \int$	116.1	C-1', C-5'	C-4', C-2', C-7'
$7{ }^{\prime}$	3.35 (1H, br d, 6.8)	40.1	C-1', C-8'	C-2', C-6', C-9'
8'	5.97 (1H, ddt, 16.8, 10.0, 6.8)	137.8	C-7'	C-1'
9'a	5.11 (1H, dd, 16.8, 1.8)			
$9{ }^{\text {'b }}$	5.07 (1H, dd, 10.0, 1.8)	115.7	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.85 ($3 \mathrm{H}, \mathrm{s}$)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.87 (3H, s)	55.9		C-4
$\mathrm{OCH}_{3}-5^{\prime}$	3.89 (3H, s)	56.0		C-5'

Table 2.30 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS16 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\text {H }}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	131.8		
2	6.92 (1H, d, 1.8)	109.8	C-1, C-3	C-4, C-6, C-7
3	-	149.2		
4	-	149.1		
5	6.82 (1H, d, 7.7)	111.0	C-4	C-1, C-3,
6	6.90 (1H, dd, $7.7,1.8)$	119.8	C-1	C-2, C-4, C-7
7	4.86 (1H, d, 8.2$)$	74.3	C-1, C-8	C-2, C-6, C-9
8	4.16 (1H, ddd, 8.2, 5.3, 3.3)	86.4	C-7	C-4'
9a	$3.99(1 \mathrm{H}, \mathrm{dd}, 11.9,5.3)$			
9b	$4.24(1 \mathrm{H}, \mathrm{dd}, 11.9,3.3)$	63.3	C-8	$\mathrm{C}-7, \underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}-9$
1^{\prime}	W)	136.2		
2^{\prime}	6.76 (1H, d, 1.9)	112.5	C-3'	C-4', C-6', C-7'
3^{\prime}		150.'		
4^{\prime}	-	146.3		
5^{\prime}	7.06 (1H, d, 7.9)	120.5		C-1', C-3'
$6{ }^{\prime}$	6.74 (1H, dd, 7.9, 1.9)	121.2	-5	C-2', C-4', C-7'
$7{ }^{\prime}$	3.35 (2H, d, 6.7)	40.0	C-1', C-8'	C-9'
8^{\prime}	5.96 (1H, ddt, 16.0, 10.8, 6.7)	137.2	C-7'	
9'a	5.11 (1H, dd, 16.0, 1.7)			
9'b	5.09 (1H, dd, 10.8, 1.7)	116.0	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.86 (3H, s)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.86 (3H, s)	55.9		C-4
$\mathrm{OCH}_{3}-3{ }^{\prime}$	3.90 (3H, s)	55.8		C-3'
$\mathrm{C}(\mathrm{O}) \underline{\mathrm{C}}_{3}{ }_{3}-9$	$2.04(3 \mathrm{H}, \mathrm{s})$	20.8	$\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}-9$	
$\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}-9$	-	170.6		

Table 2.31 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS17 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	$\operatorname{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$	
			${ }^{2} J$	${ }^{3} J$
1	-	133.6		
2	6.88 (1H, d 1.2)	109.2	C-1, C-3	C-4, C-6, C-7
3	-	149.2		
4	-	149.0		
5	$6.78(1 \mathrm{H}, \mathrm{d}, 8.8)$	111.2	C-4, C-6	C-1, C-3
6	6.90 (1H, dd, 8.8, 1.2)	118.6	$\mathrm{C}-1, \mathrm{C}-5$	C-2, C-4, C-7
7	$5.49(1 \mathrm{H}, \mathrm{~d}, 7.1)$	87.9	C-1, C-8	$\begin{aligned} & \text { C-2, C-6, C-9, } \\ & \text { C-3', C-4' } \end{aligned}$
8	$3.54(1 \mathrm{H}, \mathrm{pq}, 5.7)$	54.0	C-7, C-9,	$\mathrm{C}-1, \mathrm{C}-2^{\prime} \mathrm{C}-4^{\prime}$
9	$3.87(2 \mathrm{H}, \mathrm{m})$	63.8		C-7, C-3'
1^{\prime}		134.1	()	
2^{\prime}	$6.64(1 \mathrm{H}, \mathrm{~d}, 1.1)$	0.7	-3	$\begin{aligned} & \mathrm{C}-8, \mathrm{C}-4^{\prime}, \mathrm{C}-66^{\prime}, \\ & \mathrm{C}-7^{\prime} \end{aligned}$
3^{\prime}	C	127.5		
4^{\prime}	-	145.1		
5^{\prime}		140.1		
6^{\prime}	$6.56(1 \mathrm{H}, \mathrm{br} \mathrm{s})$	115.8	C-5'	C-2', C-4', C-7'
$7{ }^{\prime}$	3.26 (1H, br d, 6.8)	39.8	C-1', ${ }^{\prime}-8^{\prime}$	C-2', C-6', C-9'
8^{\prime}	5.91 (1H, ddt, 16.8, 10.0, 6.8)	137.7	C-7'	C-1'
$9{ }^{\prime} \mathrm{a}$	5.06 (1H, dd, 16.8, 1.8)	115.6	C-8'	C-7'
9 b	5.02 (1H, dd, 10.0, 1.8)			
$\mathrm{OCH}_{3}-3$	3.79 (3H, s)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.83 (3H, s)	55.9		C-4

Table $2.32{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS18 in CDCl_{3} (J in Hz in parentheses).

Table 2.33 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS19 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\delta_{\text {C }}(\mathrm{ppm})$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	132.2		
2	6.99 (1H, br s)	110.0	C-1, C-3	C-4, C-6, C-7
3	-	149.1		
4	-	148.9		
5	6.84 (1H, d, 8.4)	111	C-4	C-1, C-3
6	6.98 (1H, dd, 8.4, 1.9)	119.6	C-1	C-2, C-4, C-7
7	$4.98(1 \mathrm{H}, \mathrm{d}, 8.1)$)	73.9	C-1, C-8	C-2, C-6, C-9
8	$3.98(1 \mathrm{H}, b r \mathrm{dt}, 8.1,3.5)$	89.6	C-7	C-4'
9 a	$3.62(1 \mathrm{H}, \mathrm{dd}, 12.5,3.1)$			
9b	3.46 (1H, dd, 12.5, 3.5)	61.0		C-7
1^{\prime}	(1) -	136.2		
2^{\prime}	$6.76(1 \mathrm{H}, \mathrm{br} \mathrm{s})$	12.5	$\mathrm{C}=3^{\prime}, \mathrm{C}-1^{\prime}$	C-4', C-6', C-7'
3^{\prime}	-	151.1		
4^{\prime}	- 20 -	145.8		
5^{\prime}	$7.04(1 \mathrm{H}, \mathrm{d}, 7.9)$	121.0	-4	C-1', C-3'
6^{\prime}	6.75 ($1 \mathrm{H}, \mathrm{dd}, 7.9,2.0$)	121.5	C-1', C-5'	C-2', C-4', C-7'
$7{ }^{\prime}$	3.35 (2H, d, 6.7)	40.0	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	5.95 (1H, ddt, 16.0, 11.4, 6.7)	137.2	C-7'	C-1'
9'a	5.10 (1H, dd, 16.0, 1.7)			
9 b	5.09 (1H, dd, 11.4, 1.7)	116.1	C-8'	C-7'
$\mathrm{OCH}_{3}-3$	3.88 (3H, s)	55.9		C-3
$\mathrm{OCH}_{3}-4$	3.87 (3H, s)	55.9		C-4
$\mathrm{OCH}_{3}-3^{\prime}$	3.90 (3H, s)	55.9		C-3'

Table 2.34 ${ }^{1} \mathrm{H}$ NMR (300 Hz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and HMBC NMR data for MS20 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	131.8		
2	6.48 (1H, br s)	110.2	C-1, C-3	C-4, C-6, C-7
3	-	144.3		
4		136.7		
5	- (A)	148.2		
6	$6.64(1 \mathrm{H}, b r \mathrm{~s})$	105.3	C-1, C-5	C-2, C-4, C-7
7	4.40 (1H, d, 6.5) ${ }^{\text {a }}$	74.6	C-1, C-8	C-2, C-6, C-9
8	$3.60(1 \mathrm{H}, \mathrm{m})$ (1)	75.9	C-7, C-9	
9a	3.34 (1H, overlapped)			
9b	$3.43(1 \mathrm{H}, \mathrm{br} \mathrm{~d})$	63.		C-7
1^{\prime}	af	3.5		
2^{\prime}	$6.73(1 \mathrm{H}, \mathrm{d}, 1.1)$	113.0	$\mathrm{C}-1$,	C-4', C-6', C-7'
3^{\prime}		50.1		
4^{\prime}	- 77 -	143.9		
5'	6.78 (1H, d, 8.1)	119.1	C-4', C-6'	C-1', C-3'
6^{\prime}	6.62 (1H, dd, 8.1, 1.1)	121.0	C-1'	C-2', C-4', C-7'
$7{ }^{\prime}$	3.30 (1H, d, 6.5)	40.0	C-1', $\mathrm{C}-8^{\prime}$	C-2', C-6', C-9'
8^{\prime}	5.91 (1H, ddt, 16.9, 10.3,6.7)	137.2	C-7'	$\mathrm{C}-1^{\prime}$
9'a	5.06 (1H, dd, 16.9, 1.4)			
9 b	5.05 (1H, dd, 10.3, 1.4)	116.1	C-8'	C-7'
$\mathrm{OCH}_{3}-5$	3.75 (3H, s)	55.9		C-5
$\mathrm{OCH}_{3}-3^{\prime}$	3.75 (3H, s)	56.3		C-3'

 MS20a in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$	$\begin{gathered} \delta_{\mathrm{C}} \\ (\mathrm{ppm}) \end{gathered}$	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	
			${ }^{2} J$	${ }^{3} J$
1	-	134.0		
2	6.38 (1H, d, 1.7)	109.0	C-1, C-3	C-4, C-6, C-7
3	-	150.8		
4	-	150.8		
5	-	152.8		
6	6.60 (1H, d, 1.7)	104.8	C-1, C-5	C-2, C-4, C-7
7	5.83 (2H, d, 7.4)	73.4	C-1, C-8	$\begin{aligned} & \mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-9, \\ & \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}-7 \end{aligned}$
8	5.29 (1H, ddd, 7.4,	72.2		
9a	3.75 (1H, dd, 12.2,	0		
9 b	4.23 (1H, dd, 12.3,		C-8	$\mathrm{C}-7, \underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}-9$
1^{\prime}		137.4		
2^{\prime}	$6.79(1 \mathrm{H}, \mathrm{d}, 1.8)$	113.2	C-3'	C-4', C-6', C-7'
3^{\prime}		151.0		
4^{\prime}	(ul)	142.8		
5^{\prime}	6.87 (1H, d, 8.1)	121.1	C-4', C-6	C-1', C-3'
6^{\prime}	6.73 (1H, dd, 8.1, 1.8	121.1	(-1')	C-2', C-4', C-7'
$7{ }^{\prime}$	3.38 (1H, d, 6.7)	40.0	C-1', C-8'	C-2', C-6', C-9'
8^{\prime}	5.97 (1H, ddt, 16.7, 1	137.1	$\mathrm{C}-7^{\prime}, \mathrm{C}-9^{\prime}$	C-1'
9'a	$5.11(1 \mathrm{H}, \mathrm{dd}, 17.1$,		C	
9 b	5.10 (1H, dd, 9.6, 1	16.	C-8	C-7'
$\mathrm{OCH}_{3}-5$	$3.85(3 \mathrm{H}, \mathrm{s})]$	56.3		C-4
$\mathrm{OCH}_{3}-3{ }^{\prime}$	3.78 (3H, s)	55.9		C-3'
$\mathrm{OCOCH}_{3}-3$	2.26 (3H, s)	20.4		$\mathrm{OCOCH}_{3}-3$
$\mathrm{OCOCH}_{3}-4$	$2.00(3 \mathrm{H}, \mathrm{s})$	20.7		$\mathrm{OCOCH}_{3}-4$
$\mathrm{OCOCH}_{3}-7$	2.05 (3H, s)	20.9		$\mathrm{OCOCH}_{3}-7$
$\mathrm{OCOCH}_{3}-9$	1.97 (3H, s)	20.6		$\mathrm{OCOCH}_{3}-9$
$\mathrm{OCOCH}_{3}-3$	-	168.2		
$\mathrm{OCOCH}_{3}-4$	-	170.0		
$\mathrm{OCOCH}_{3}-7$	-	169.5		
$\mathrm{OCOCH}_{3}-9$	-	170.3		

Table $2.36{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz})$ and $\Delta \delta$ values $\left[\Delta \delta(\right.$ in ppm $\left.)=\Delta \delta_{\mathrm{S}}-\Delta \delta_{\mathrm{R}}\right]$ for $\boldsymbol{S}-(-)$ MTPA ester MS16 and \boldsymbol{R}-(+)-MTPA ester MS16 in CDCl_{3} (J in Hz in parentheses).

Position	$\delta_{\mathrm{H}}(\mathrm{ppm})$		$\Delta \delta=\Delta \delta_{\mathrm{S}}-\Delta \delta_{\mathrm{R}}$
	S-(-)-MTPA ester MS16	\boldsymbol{R}-(+)-MTPA ester MS16	
1	-	-	
2	6.96 (1H, d, 1.7)	6.71 (2H, br s)	+0.25
3	-	-	
4		-	
5	6.85 (1H, d, 8.1)	6.80 (1H, d, 8.3)	+0.05
6	7.00 (1H, dd, 8.1, 1.7)	6.90 (1H, dd, 8.3, 1.8)	+0.10
7	$6.35(1 \mathrm{H}, \mathrm{d}, 7.2) \sim=$	6.28 (1H, d, 8.2)	+0.07
8	$4.59(1 \mathrm{H}, \mathrm{~m})$	4.61 (1H. ddd, 3.8, 4.6, 8.2)	-0.02
9 a	4.14 (1H, dd, 12.9, 4.0)	4.18 (1H, dd, 12.3, 3.8)	-0.04
9 b	$3.84(1 \mathrm{H}$, overlapped)	3.77 (1H, dd, 12.3, 4.6)	+0.07
1^{\prime}	$2 \times$		
2^{\prime}	6.67 (1H, d, 1.6)	. $71(2 \mathrm{H}, \mathrm{brs})$	-0.04
3^{\prime}	$\square(-1)$	-	
4^{\prime}	-		
5^{\prime}	6.72 (1H, d, 8.1$)$	6.91 (1H, d, 8.1)	-0.19
6^{\prime}	6.60 (1H, dd, 8.1, 1.6) $]$	6.68 (1H, dd, 8.1, 1.8)	-0.08
$7{ }^{\prime}$	3.31 (1H, d, 6.4)	3.33 (1H, d, 6.6)	-0.02
8^{\prime}	5.93 (1H, ddt, 16.4, 9.6, 6.4)	5.94 (1H, ddt, 16.1, 9.5, 6.5)	-0.01
9^{\prime}	5.08 (2H, m)	5.08 ($2 \mathrm{H}, \mathrm{m}$)	0.00
$\mathrm{OCH}_{3}-3$	3.89 (3H, s)	3.88 (3H, s)	+0.01
$\mathrm{OCH}_{3}-4$	3.84 (3H, s)	3.77 (3H, s)	+0.07
$\mathrm{OCH}_{3}-3^{\prime}$	3.75 (3H, s)	3.71 (3H, s)	+0.04
$\mathrm{C}(\mathrm{O}) \underline{\mathrm{C}}_{3}{ }_{3} 9$	1.94 (3H, s)	$2.01(3 \mathrm{H}, \mathrm{s})$	-0.07

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Structure elucidation and identification

The air-dried leaves of M. sessilis were ground into small particles and extracted at room temperature with hexane followed by $\mathrm{EtOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOH , respectively. The EtOAc extract and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined and partitioned successively with hexane and EtOAc. The hexane and EtOAc extracts prepared from the leaves of this plant were test at the concentration of $50 \mu \mathrm{~g} / \mathrm{ml}$, showed cytotoxicity against MCF7 (93.52 and 82.15% inhibition, respectively) and NCI-H187 (98.82 and 98.37% inhibition, respectively). The bioactive hexane and EtOAc extracts were purified using a combination of various chromatographic separations led to the isolation of nine new neolignans including four dihydro[b]benzofuran neolignans: MS12, MS15, MS17 and MS11, three $8-O-4^{\prime}$ neolignans: MS16, MS19 and MS20, one dineolignan: MS14 and one phenylpropanoid dimer: MS18, and four new triterpens: MS3, MS5, MS6 and MS7, together with seven other known compounds including, two neolignans: dehydrodieugenol A (MS13) [36] and dehydrodieugenol B (MS10) [36, 37], two sesquiterpenes: (+)-spathulenol (MS1) [29] and T-muurolol (MS4) [31, 32], phytol (MS2) [30] and a mixture of stigmasterol (MS8) [35, 38] and β-sitosterol (MS9) [33].

3.1.1 Neolignans

3.1.1.1 (7S,8R)-5'-Hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-

8'-en-9-acetate (MS12)

MS12 was obtained as an optically active pale yellow crystalline, $\left[\alpha_{\mathrm{D}}^{28}\right]$ $+43.4^{\circ}\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right)$. The molecular formula of MS12 was determined to be $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$ by HRESIMS, consistent with the molecular ion peak at m / z $407.1462[\mathrm{M}+\mathrm{Na}]^{+}$(calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}, 407.1471$). The UV spectrum of MS12 showed absorption bands at $\lambda_{\max }$ 277, 230 and 204 nm and the IR spectrum showed absorption bands at $3421,1740,1610,1516,1238,1139$ and $1028 \mathrm{~cm}^{-1}$, suggesting the presence of hydroxyl, ester carbonyl, aromatic and ether functionalities. The ${ }^{13} \mathrm{C}$ NMR, DEPT and HMQC spectra revealed 22 carbons (Table 2.26), including a carbonyl carbon ($\delta_{\mathrm{C}} 170.9$), twelve aromatic carbons [$\delta_{\mathrm{C}} 149.3$ ($\mathrm{C}-3$), $149.3(\mathrm{C}-4), 144.8\left(\mathrm{C}-4^{\prime}\right), 139.9\left(\mathrm{C}-3^{\prime}\right), 134.2\left(\mathrm{C}-1^{\prime}\right)$, 132.9 (C-1), 127.2 (C-5'), 118.8 (C-6), 116.3 (C-2'), 116.1 (C-6'), 111.1 (C-5) and $109.1(\mathrm{C}-2)$, two methoxy groups $\left[\delta_{\mathrm{C}} 56.0(2 \times)\right]$, three methylenes $\left[\delta_{\mathrm{C}}\right.$ 115.7 (C-9'),65.4 (C-9), $\left.39.8\left(\mathrm{C}^{\prime} 7^{\prime}\right)\right]$, three methines ($\delta_{\mathrm{C}} 137.7\left(\mathrm{C}-8^{\prime}\right), 88.7$ (C7) and 50.8 (C-8)] and a methyl group ($\delta \mathrm{c}$ 20.8). The ${ }^{1} \mathrm{H}$ NMR spectrum of MS12 (Table 2.26) exhibited two set of aromatic rings. The aromatic ring A showed two broad singlets at $\delta_{\mathrm{H}} 6.68\left(1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$ and $6.61\left(1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$ indicated the presence of two meta aromatic hydrogens (Figure 3.1). For the aromatic ring C, the appearance of a typical ABX system at $\delta_{\mathrm{H}} 6.85(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, $\mathrm{H}-5), 6.94(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, \mathrm{H}-6)$ and $6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2)$ corresponded to a 1,3,4-trisubstituted phenyl moiety. In addition, the ${ }^{1} \mathrm{H}$ NMR
signals reviewed the presence of an allylic group $\left[\delta_{\mathrm{H}} 3.30(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}\right.$, H-7'), $5.94\left(1 \mathrm{H}, \mathrm{ddt}, J=16.8,9.9,6.6 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right)$ and $\delta_{\mathrm{H}} 5.08(1 \mathrm{H}, \mathrm{dd}, J=16.8$, $\left.1.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime} \mathrm{a}\right)$ and $5.06\left(1 \mathrm{H}, \mathrm{dd}, J=9.9,1.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime} \mathrm{b}\right)$], two methoxy groups $\left[\delta_{\mathrm{H}} 3.86(3 \mathrm{H}, \mathrm{s}, \times 2 \mathrm{OMe})\right]$ and an acetoxyl methyl group $\left[\delta_{\mathrm{H}} 2.02(3 \mathrm{H}, \mathrm{s}\right.$, $\mathrm{OCOMe})$]. The remaining ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals also showed $\mathrm{O}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}$ spin systems at $\delta 5.43(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-7), 3.80(1 \mathrm{H}, \mathrm{pq}, J=5.7 \mathrm{~Hz}, \mathrm{H}-8)$, $\delta 4.45(1 \mathrm{H}, \mathrm{dd}, J=11.1,5.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$ and $4.30(1 \mathrm{H}, \mathrm{dd}, J=11.1,7.5 \mathrm{~Hz}, \mathrm{H}-$ 9b), which was supported by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation (Figure 3.1), indicating a characteristic of dihydrobenzofuran-type neolignans. Our assumption was supported by important long-rang HMBC correlations which were observed between $\mathrm{H}-7\left(\delta_{\mathrm{H}} 5.43\right)$ and $\mathrm{C}-1\left(\delta_{\mathrm{C}} 132.9\right), \mathrm{C}-2\left(\delta_{\mathrm{C}} 109.1\right)$, $\mathrm{C}-6$ ($\delta_{\mathrm{C}} 118.8$), $\mathrm{C}-8\left(\delta_{\mathrm{C}} 50.8\right), \mathrm{C}-9\left(\delta_{\mathrm{C}} 65.4\right)$ and $\mathrm{C}-5^{\prime}\left(\delta_{\mathrm{C}} 127.2\right) ; \mathrm{H}-8\left(\delta_{\mathrm{H}} 3.80\right)$ and $\mathrm{C}-1\left(\delta_{\mathrm{C}} 132.9\right), \mathrm{C}-9\left(\delta_{\mathrm{C}} 65.4\right), \mathrm{C}-4^{\prime}\left(\delta_{\mathrm{C}} 144.8\right), \mathrm{C}-5^{\prime}\left(\delta_{\mathrm{C}} 127.2\right)$ and $\mathrm{C}-6^{\prime}\left(\delta_{\mathrm{C}}\right.$ 116.1) and H-9 ($\delta 4.30$ and 4.45) and $\mathrm{C}-7\left(\delta_{\mathrm{C}} 88.7\right.$) and $\mathrm{C}-8\left(\delta_{\mathrm{C}} 50.8\right)$. The methyl singlet at $\delta 2.02$, showed HMBC correlation to carbonyl carbon $\left(\delta_{\mathrm{C}}\right.$ 170.9), confirming the presence of an acetyl group. Additionally, the HMBC correlation between oxygenated methylene proton at $\delta_{\mathrm{H}} 4.30$ and 4.45 (H-9) and carbonyl carbon at $\delta_{\mathrm{C}} 170.9$ suggested that the acetyl group was linked to C-9. In ring C, the long range HMBC correlations were observed signals of the methoxy groups at $\delta_{\mathrm{H}} 3.86$ to $\delta_{\mathrm{C}} 149.3$ and at $\delta_{\mathrm{H}} 3.88$ to $\delta_{\mathrm{C}} 149.3$ (Figure 3.1 and Table 2.26), indicating that these methoxy groups should be placed at $\mathrm{C}-3$ and $\mathrm{C}-4$, respectively in the ring C .

In ring A, the key HMBC correlations of allylic methylene group at δ_{H} 3.30 ($\mathrm{H}-7^{\prime}$) and $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{C}} 134.2\right), \mathrm{C}-2^{\prime}\left(\delta_{\mathrm{C}} 116.3\right)$ and $\mathrm{C}-6^{\prime}\left(\delta_{\mathrm{C}} 116.1\right)$ and olefinic methine group at $\delta_{\mathrm{H}} 5.94\left(\mathrm{H}-8^{\prime}\right)$ and $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{C}} 134.2\right)$ suggested that the allyl moiety was linked to $\mathrm{C}-1^{\prime}$. Moreover, the HMBC correlation between $\mathrm{H}-$ 6^{\prime} and C-5' ($\delta_{\mathrm{C}} 139.9$) suggested the location of a hydroxyl group at $\mathrm{C}-5^{\prime}$. The relative configuration at C-7 and C-8 was elucidated as trans by the large vicinal coupling constant $\left(J_{7,8}=7.5 \mathrm{~Hz}\right)$ [39, 40]. In addition, the X-ray analysis of MS12 (Figure 3.2) confirmed its structure and relative configuration. The absolute configurations of MS12 were determined by CD analysis. The CD spectrum shōwed a positive Cotton effect at $292 \mathrm{~nm}(\Delta \varepsilon$ +2.14, Figure 3.3), indicating $7 S$ configuration [41, 42]. Thus, the absolute configurations of M12 at C-7 and C-8 were assigned as $7 S$ and $8 R$ which was in accordance with its positive optical rotation $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+43.4^{\circ}\right)$ [43]. Thus, MS12 was characterized as ($7 S, 8 R$)-5'-hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-acetate.

Figure 3.1 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS12.

Figure 3.2 X-ray ORTEP diagram of MS12.

Figure 3.3 Circular dichroism (CD) spectra of MS12.

3.1.1.2 (7S,8R)-5'-Hydroxy-3,4-dimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-ol (MS17)

MS17 was obtained as a colorless viscous liquid with positive specific rotation $\left(\left[\alpha_{D}^{28}\right]+9.14^{\circ}\left(c 0.09, \mathrm{CHCl}_{3}\right)\right)$. The HRESIMS of MS17 showed a molecular ion peak at $\mathrm{m} / \mathrm{z} 365.1634[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}$, 365.1365) and the molecular formula of MS17 was determined as $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$. The UV spectrum of MS17 supported aromatic ring functionalities, which showed absorption bands at $\lambda_{\text {max }}$ 277, 230 and 205 nm . The IR spectrum showed strong bands of hydroxyl ($3436 \mathrm{~cm}^{-1}$), aromatic ($1609,1516,1334$, and $1025 \mathrm{~cm}^{-1}$) and ether ($1263,1139 \mathrm{~cm}^{-1}$) functionalities. From the ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC spectroscopic data (Table 2.31 and Figure 3.4), indicated that MS17 was a neolignan containing a dihydrobenzofuran skeleton, resembled closely those of MS12 (Table 2.26 and Figure 3.1), except for the lack of an acetyl group. The plácement of a hydroxyl moiety at C-9 was based upon the observation of upfield shifts assigned to $\mathrm{H}-9\left[\delta_{\mathrm{H}} 3.87(2 \mathrm{H}\right.$, $m)$] and C-9 ($\delta_{\mathrm{C}} 63.8$) while comparing the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of M17 with those of M12. The absolute configuration of MS17 was established as $7 S$ and $8 R$ based on its positive optical rotation and the CD spectrum (positive Cotton effect at $292 \mathrm{~nm}(\Delta \varepsilon+1.85)$, Figure 3.5). Our conclusion was confirmed by hydrolysis of MS12 under mild acid condition to obtain compound MS12 ($\left[\alpha_{\mathrm{D}}^{28}\right]+13.6^{\circ}$ in CHCl_{3}). Consequently, the absolute stereostructure of MS17 was elucidated as ($7 S, 8 R$)-5'-hydroxy-3,4-dimethoxy -4',7-epoxy-8,3'-neolign-8'-en-9-ol.

Figure 3.4 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS17.

Figure $\mathbf{3 . 5} \mathrm{CD}$ spectra of MS17.

3.1.1.3 (7S,8R)-3,4,5'-Trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-ol

 (MS15)MS15 was isolated as a colorless viscous liquid with positive specific optical rotation $\left(\left[\alpha_{D}^{28}\right]+16.2^{\circ}\right.$ (c $\left.0.07, \mathrm{CHCl}_{3}\right)$). The molecular formula was determined to be $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 379.1526$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{5}, 379.1522$) in the HRESIMS. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data (Table 2.29) of MS15 were identical to those of dihydrocarinatinol, 5-allyl-7-methoxy-3-hydroxymethyl-2-(3', $\mathbf{4}^{\prime}$ dimethoxyphenyl) dihydrobenzofuran, previously isolated from Virola carinata (Kawanishi et al., 1982). The relative configuration and the absolute configuration were determined as those in M12 and M17 by the same experiments. The relative configuration of C-7 and C-8 was determine to be threo by its large coupling constant at $\mathrm{H}-7$ and $\mathrm{H}-8\left(J_{7,8}=7.4 \mathrm{~Hz}\right)$. The absolute configurations were assigned as $7 S, 8 R$ base upon the positive cotton effect at $293 \mathrm{~nm}(\Delta \varepsilon+1.10$, Figure 3.7). However, the absolute configurations of dihydrocarinatinol have not been reported. MS15 has a positive optical rotation, which was the opposite sign as that of dihydrocarinatinol ($\left[\alpha_{D}^{25}\right]$ 12.3° in CHCl_{3}) [44]. Therefore, MS15 was elucidated as an enantiomer of dihydrocarinatinol. Thus, compound MS15 was identified as ($7 S, 8 R$)-3,4,5'-trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-ol. In addition, the absolute configurations of dihydrocarinatinol should be assigned as $7 R, 8 S$.

Figure 3.6 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS15.

Figure 3.7 CD spectra of MS15.

3.1.1.4 (7R,8S)-3,4,5'-Trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9acetate (MS11)

MS11 was isolated as a colorless viscous liquid with negative specific rotation $\left(\left[\alpha_{D}^{28}\right]-10.5^{\circ}\left(\mathrm{c} 0.07, \mathrm{CHCl}_{3}\right)\right)$. The molecular formula was determined to be $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{6}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 421.1626[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{6}, 421.1627$) in the HRESIMS. The IR spectrum of MS11 also showed strong bands of ester carbonyl ($1726 \mathrm{~cm}^{-1}$), aromatic (1605 and 1516 cm^{-1}) and ether (1252, 1218 and $1143 \mathrm{~cm}^{-1}$) functionalities. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13}$ C NMR spectroscopic data of MS11 (Table 2.25) were characterized as a dihydrobenzofuran lignan, closely similar to those of MS12 (Table 2.26), except for the presence of an additional methoxy group in MS11. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of MS11 showed the methoxy signal at $\delta_{\mathrm{H}} 3.89$ (s) and ($\delta_{C}(144.2)$ which was located at C-5 based upon the HMBC correlation between the $\mathrm{OCH}_{3}-5^{\prime}$ protons and $\mathrm{C}-5^{\prime}\left(\delta_{\mathrm{C}} 144.2\right)$ (Figure 3.8). The coupling constant ($J_{7,8}=7.4 \mathrm{~Hz}$) between H-7 and H-8 suggested the transconfiguration in this structure [40]. The CD spectrum of MS11 (Figure 3.9) showed the opposite curve comparing those of MS12, MS15 and MS17 (Figure 3.3, 3.7 and 3.5, respectively), in turn, indicating the opposite absolute configuration. Therefore, the absolute stereochemistry of MS11 was assigned as $7 R, 8 S$. Thus, MS11 was proposed as $(7 R, 8 S)-3,4,5^{\prime}$-trimethoxy-4',7-epoxy-8,3'-neolign-8'-en-9-acetate.

Figure 3.8 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS11.

Figure $\mathbf{3 . 9}$ CD spectra of MS11.

3.1.1.5 (7R,8R)-4'-Hydroxy-3,4,5'-trimethoxy-8,3'-neolign-8'-en-

7,9-diol (MS14)

MS14 was isolated as a pale yellow oil with negative optical rotation $\left([\alpha]_{D}^{28}-86.9^{\circ}\right.$, c $\left.0.05, \mathrm{CHCl}_{3}\right)$. The HRESIMS of MS14 showed a molecular ion peak at $\mathrm{m} / \mathrm{z} 379.1513\left[\mathrm{M}+\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}, 379.1522$) and the molecular formula of MS14 was determined to be $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of MS14 showed a lignan characteristic as deduced before for 7,8-dihydro[b]benzofuran (Table 2.28).

However, the CD spectrum pattern of MS14 was different from those of compounds MS11, MS12, MS15 and MS17 (Figure 3.11), this suggested that MS14 occupied 1,3-propane diol unit instead of dihydrobenzofuran skeleton. The presence of the propanoid moiety was observed in ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta_{\mathrm{H}} 5.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-7), 3.67(1 \mathrm{H}, \mathrm{pq}, J=5.8 \mathrm{~Hz}, \mathrm{H}-8)$, $3.53(1 \mathrm{H}, \mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$ and $3.82(1 \mathrm{H}, \mathrm{dd}, J=11.5,5.8 \mathrm{~Hz}, \mathrm{H}-$ 9b), which in accordance with HMBC correlations between $\mathrm{H}-7\left(\delta_{\mathrm{H}} 5.86\right)$ to $\mathrm{C}-1\left(\delta_{\mathrm{C}} 129.2\right), \mathrm{C}-6\left(\delta_{\mathrm{C}} 118.7\right), \mathrm{C}-9\left(\delta_{\mathrm{C}} 63.0\right)$ and $\mathrm{C}-3{ }^{\prime}\left(\delta_{\mathrm{C}} 129.2\right)$ (Figure 3.10). From the above information indicated that MS14 had a same planar structure to that of 2-(1-allyl-4-hydroxy-5-methoxyphenyl)-1-(3,4-dimethoxyphenyl)propane-1,3-diol which was a synthetic compound obtained from a reduction of carinatonol [44]. The relative stereochemistry of C-7 and C-8 of MS14 was determined to be threo (syn) by a comparison of the coupling constant between H-7 and H-8 $\left(J_{7,8}=8.4 \mathrm{~Hz}\right)$ with those of the related threo and erythro isomers [45, 46]. The acid dehydration of compound MS14 afforded a dihydrobenzofuran derivative, which was identical MS15 by
means of the optical rotation value $\left(\left[\alpha_{\mathrm{D}}^{28}\right]+21.8\right.$, c $\left.0.05, \mathrm{CHCl}_{3}\right)$ and NMR spectroscopic data. This result encouraged us to conclude the absolute configurations of MS14 as $7 R, 8 R$. Accordingly, the structure of MS14 was established as $(7 R, 8 R)$-4'-hydroxy-3,4,5'-trimethoxy-8,3'-neolign-8'-en-7,9diol.

Figure 3.10 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS14.

Figure 3.11 CD spectra of MS14 compared with MS11, MS12, MS15 and MS17.
3.1.1.6 threo-(7R,8R)-3,3',4-Trimethoxy-8,4'-oxyneolign-8'-en-7-ol-9-acetate (MS16)

MS16 was obtained as an optically active pale green-brown viscous liquid, $\left[\alpha_{\mathrm{D}}^{28}\right]-58.8^{\circ}$ (c $0.08, \mathrm{CHCl}_{3}$) and its molecular formula was determined to be $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 439.1729[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}$, 439.1733) in HRESIMS. The IR spectrum showed absorption bands of hydroxyl $\left(3486 \mathrm{~cm}^{-1}\right)$, ester carbonyl $\left(1740 \mathrm{~cm}^{-1}\right)$, ether $(1264,1140$ and $1029 \mathrm{~cm}^{-1}$) and aromatic (1591and $1464 \mathrm{~cm}^{-1}$) moieties. The UV spectrum contained absorption bands at $\lambda_{\max }$ 281, 230 and 203 nm , suggesting the presence of aromatic ring. The ${ }^{1} H$ NMR data revealed two sets of $A B X$ aromatic rings at $\delta_{\mathrm{H}} 6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2), 6.82(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-5)$ and $6.90(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, \mathrm{H}-6)$ and at $\delta_{\mathrm{H}} 6.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime}\right), 7.06(1 \mathrm{H}, \mathrm{d}$, $J=7.9 \mathrm{~Hz},\left(\mathrm{H}-5^{\prime}\right)$ and $6.74(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, \mathrm{H}-6)$, represented two 1,3,4-trisubstituted phenyl moieties (Table 2.30). The ${ }^{1} \mathrm{H}$ NMR spectrum also showed three methoxy groups at $\delta_{\mathrm{H}} 3.86(3 \mathrm{H}, \mathrm{s}, \times 2 \mathrm{OMe})$ and $3.90(3 \mathrm{H}, \mathrm{s})$. The ${ }^{13} \mathrm{C}$ NMR (Table 2.30), DEPT and HMQC spectra exhibited resonances of twelve aromatic carbons including six methines [$\delta_{\mathrm{C}} 109.8$ (C-2), 111.0 (C-5), 119.8 (C-6), 112.5 (C-2'), 120.5 (C-5') and 121.3 (C-6')], two quaternary [131.8 (C-1) and $136.2\left(\mathrm{C}-1^{\prime}\right)$] and four oxygenated quaternary carbons [δ_{C} 149.0 (C-3), 149.2 (C-4), $150.7\left(\mathrm{C}-3^{\prime}\right)$ and $\left.\left.146.3(\mathrm{C}-4)^{\prime}\right)\right]$. The ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra of MS16 showed the signals at $\delta_{\mathrm{c}} 40.0$ (C-7'), 137.2 (C-8') and 116.2 (C-9') and allylic methylene protons at $\delta_{\mathrm{H}} 3.35\left(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right)$, olefinic methine proton at $\delta_{\mathrm{H}} 5.96\left(1 \mathrm{H}, \mathrm{ddt}, J=16.0,10.8,6.7 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right)$ and
vinylic methylene proton at $\delta_{\mathrm{H}} 5.11(1 \mathrm{H}, \mathrm{dd}, J=16.0,1.7 \mathrm{~Hz}, \mathrm{H}-9$ 'a $)$ and 5.09 $\left(1 \mathrm{H}, \mathrm{dd}, J=10.8,1.7 \mathrm{~Hz}, \mathrm{H}-9^{\prime} \mathrm{b}\right)$, indicating the occurrence of allyl moiety, which was supported by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment (Figure 3.12), Additionally, the ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR spectra exhibited the signals at $\delta_{\mathrm{c}} 74.3$ (C-7), 86.4 (C-8) and $63.3(\mathrm{C}-9)$ and an oxygenated methine proton at $\delta_{\mathrm{H}} 4.86(1 \mathrm{H}, \mathrm{d}, J=$ $8.2 \mathrm{~Hz}, \mathrm{H}-7)$, an oxygenated methine proton at $\delta_{\mathrm{H}} 4.16(1 \mathrm{H}, \mathrm{ddd}, J=8.2,5.3$, $3.3 \mathrm{~Hz}, \mathrm{H}-8)$ and two oxygenated methylene protons at $\delta_{\mathrm{H}} 4.24(1 \mathrm{H}, \mathrm{dd}, J=$ $11.9,3.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b})$ and $3.99(1 \mathrm{H}, \mathrm{dd}, J=11.9,5.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$, indicating the occurrence of C 3 unit, -OCHCHOHCH 2 O -, which was supported by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment (Figure 3.12). In addition, the H NMR experiments of MS16 exhibited a singlet at $\delta_{\mathrm{H}} 2.04(3 \mathrm{H}, \mathrm{s})$, which showed HMQC connectivity with the carbon at $\delta_{\mathrm{C}} 20.8$ and HMBC correlation with a carbonyl carbon at δ_{C} 170.6, confirming the presence of an acetyl group. From above mentioned NMR data indicated MS16 was an 8-O-4' neolignan similar to threo-1-($3^{\prime}, 4^{\prime \prime}$-dimethoxyphenyl)-2-($2^{\prime \prime}$-methoxy-4"-allylphenoxy)propane diol (carinatidiol) [47]. The main difference was an additional acetyl group in MS16. The HMBC correlation of the oxygenated protons at $\mathrm{H}-9$ ($\delta_{\mathrm{H}} 3.99$, 4.24) to carbonyl carbon (δ_{c} 170.6) indicated that the acetyl group was attached to C-9. The relative configurations of MS16 was verified to be 7,8threo due to its large coupling constant between H-7 and H-8 ($J_{7,8}=8.2 \mathrm{~Hz}$) [48]. The assignment of the absolute configuration was determined via the modified Mosher's ester method [49, 50]. MS16 was then subsequently esterified by (S) - and (R)-MTPA-OH to yield the (S) - and (R)-MTPA esters,
respectively. Analysis of ${ }^{1} \mathrm{H}$ NMR chemical shift difference between (S) - and (R)-MTPA esters $\left(\Delta \delta_{\mathrm{H}}=\delta_{\mathrm{S}}-\delta_{\mathrm{R}}\right)$ of MS16 is shown in figure 3.13 and table 2.36, indicating a $7 R$ configuration. Thus, the absolute configuration of MS16 was assigned as $7 R, 8 R$. Our conclusion was confirmed by CD spectrum of MS16 which showed a cotton effect at 238 nm ($\Delta \varepsilon-1.41$, Figure 3.14) indicating an $8 R$ configuration. This was also in accordance with its negative optical rotation by comparing with those of related 8-O-4'-neolignans reported in literature [48]. Therefore, the structure of MS16 was elucidated as threo$(7 R, 8 R)$-3,3',4-trimethoxy-8,4'-oxyneolign- 8^{\prime}-en- 7 -ol-9-acetate.

Figure 3.12 Structure, ${ }^{1} \mathrm{H}_{-}^{1} \mathrm{H} \operatorname{COSY}$ (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS16.

Figure 3.13 Difference in the $\Delta \delta$ values [$\Delta \delta($ in ppm $\left.)=\Delta \delta_{\mathrm{S}}-\Delta \delta_{\mathrm{R}}\right]$ obtained from (S)and (R)-MTPA esters of MS16.

Figure 3.14 CD spectra of MS16.

3.1.1.7 threo-(7R,8R)-3,3',4-Trimethoxy-8,4'-oxyneolign-8'-en-7,9-

 diol (MS19)MS19 was separated as an optically active pale green-brown viscous liquid, $\left[\alpha_{D}^{28}\right]-66.2^{\circ}\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right)$ with a molecular formula $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$ from the HRESTMS ion at $\mathrm{m} / \mathrm{z} 397.1622[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}$, 397.1627). The IR spectrum showed absorption bands of hydroxyl ($3473 \mathrm{~cm}^{-}$ ${ }^{1}$), ether (1263,1139 and $1028 \mathrm{~cm}^{-1}$) and aromatic (1592 and $1464 \mathrm{~cm}^{-1}$) moieties and the UV spectrum contained absorption band at $\lambda_{\max } 281,230$ and 204 nm which supported the presence of aromatic ring. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of MS19 are similar to those of MS16 except for disappearance of signals due to an acetyl group and the up field shift signals of an oxygenated methylene group at $\delta_{\mathrm{H}} 3.62,3.46(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$ and $\delta_{\mathrm{C}} 61.0(\mathrm{C}-9)$. The relative configuration of C-7 and C-8 was determine to be threo by its large coupling constant at H-7 and H-8 ($J_{7,8}=7.4 \mathrm{~Hz}$). The absolute configurations were assigned as $8 R$ based upon a negative cotton effect at $237 \mathrm{~nm}(\Delta \varepsilon-4.25$, Figure
3.7). Furthermore, the comparison of the optical rotation values between MS19 ($\left[\alpha_{\mathrm{D}}^{23}\right]-66.2^{\circ}$) and threo-($7 R, 8 R$)-3,3',4-trimethoxy-8,4'-oxyneolign- 8^{\prime} -en-7-ol-9-acetate (MS16) ($\left[\alpha_{D}^{28}\right]-58.8^{\circ}$) suggested that MS19 and MS16 should have the same absolute configuration. Our conclusion was confirmed by hydrolysis of MS16 under mild alkaline condition to provide hydrolyzed product which provided ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectral data and optical rotation value ($\left[\alpha_{\mathrm{D}}^{23}\right]-52.5^{\circ}$ in CHCl_{3}) identical with MS19. Therefore, MS19 was elucidated as threo-(7R,8R)-3, $3^{\prime}, 4$-trimethoxy-8,4'-oxyneolign- 8^{\prime}-en- 7,9 -diol. The planar structure of MS19 was identical to carinatidiol [47]. However, MS19 had a negative optical rotation which was opposite to that of carinatidiol $\left([\alpha]_{\mathrm{D}}+97.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. Thus MS19 was defined as an enantiomer of carinatidiol.

Figure 3.15 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS19.

Figure 3.16 CD spectra of MS16.

3.1.1.8 threo-3,4-Dihydroxy-3',5-dimethoxy-8,4'-oxyneolign-8'-en-

7,9-diol (MS20)

MS20 was separated as a colorless viscous liquid, $\left[\alpha_{\mathrm{D}}^{28}\right]+1.5^{\circ}$ (c 0.13 , CHCl_{3}) with a molecular formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7}$ from the HRESIMS ion at m / z $399.1411[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{Na}, 399.1420$). The IR spectrum showed absorption bands of hydroxyl ($3400 \mathrm{~cm}^{-1}$), ether (1264, 1130 and 1086 cm^{-1}) and aromatic (1596 and $1454 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ NMR spectra (Table 2.34) of MS20 showed the signals of one 1,3,4,5-tetrasubstituted aromatic ring [$\delta 6.48(1 \mathrm{H}, b r \mathrm{~s}, \mathrm{H}-2)$ and $6.64(1 \mathrm{H}, b r \mathrm{~s}, \mathrm{H}-6)]$, one 1,3,5trisubstituted aromatic ring $16.73\left(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right)$, and $6.62\left(1 \mathrm{H}, \mathrm{dd}, J^{-}=8.1,\left(1.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)\right.$], one 1,2,3-propane-triol moiety $[\delta 4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-7), 3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 3.34(1 \mathrm{H}$, overlapped, $\mathrm{H}-9 \mathrm{~b}$) and $3.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}-9 \mathrm{a})]$ and one allyl moiety $[3.30(1 \mathrm{H}$, d, $J=6.5 \mathrm{~Hz}, \mathrm{H}^{-7}$), $5.91\left(1 \mathrm{H}, \mathrm{ddt}, J=16.9,10.3,6.7 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.06(1 \mathrm{H}, \mathrm{dd}$, $J=16.9,1.4 \mathrm{~Hz}, \mathrm{H}^{\prime}-9^{\prime} \mathrm{a}$) and $\left.5.05\left(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, \mathrm{H}-9^{\prime} \mathrm{b}\right)\right]$. Additionally, two methoxyl groups attached to aromatic ring at $\delta 3.75(3 \mathrm{H}, \mathrm{s}$, $\times 2$ OMe) were observed. The ${ }^{13} \mathrm{C}$ NMR spectrum of MS20 showed twenty carbon signals. Aside from the two methoxy carbon signals the remaining eighteen carbon signals, including twelve aromatic and six aliphatic carbons. The HMBC correlations (Figure 3.17 and Table 2.34) of $\mathrm{H}-7$ at $\delta_{\mathrm{H}} 4.40$ to $\mathrm{C}-1$ ($\delta_{\mathrm{c}} 131.8$), C-2 ($\delta_{\mathrm{c}} 110.2$), C-6 ($\delta_{\mathrm{c}} 105.3$) C-8 ($\delta_{\mathrm{c}} 74.6$) and C-9 ($\delta_{\mathrm{c}} 63.2$) and of H-7' at $\delta_{\mathrm{H}} 3.30$ to $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{c}} 136.5\right), \mathrm{C}-2^{\prime}\left(\delta_{\mathrm{c}} 113.0\right), \mathrm{C}-6^{\prime}\left(\delta_{\mathrm{c}} 121.0\right), \mathrm{C}-8^{\prime}\left(\delta_{\mathrm{c}}\right.$ 137.2) and $\mathrm{C}-9^{\prime}\left(\delta_{\mathrm{c}}\right.$ 116.1) confirmed that the presence of two phenyl
propanoid units. These NMR spectroscopic data indicated MS20 was an 8-O4^{\prime} neolignan. The position of two methoxyl groups at $\mathrm{C}-5\left(\delta_{\mathrm{C}} 148.2\right.$) and $\mathrm{C}-3^{\prime}$ ($\delta_{\mathrm{C}} 150.1$) were confirmed by HMBC correlations (Figure 3.15, Table 2.34). The substituents at C-3 ($\delta_{\mathrm{C}} 144.3$), C-4 ($\delta_{\mathrm{C}} 136.7$), C-7 ($\delta_{\mathrm{C}} 74.6$) and C-9 (δ_{C} 63.2) were identified as hydroxyl groups due to its relatively downfield ${ }^{13} \mathrm{C}$ NMR chemical shifts. The four hydroxyl groups were further confirmed by acetylation of MS20 by treatment with acetic anhydride and pyridine at room temperature to obtain an acetated product (MS20a). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of MS20a (Table 2.35) exhibited four acetate signal groups at $\delta_{\mathrm{H}} 2.26$, $2.00,2.05$ and 1.97 , which showed one bond ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ connectivity with the carbon at $\delta_{\mathrm{C}} 20.4,20.7,20.9$ and 20.6, respectively and HMBC correlation with carbonyl signals at $\delta_{\mathrm{C}} 168.2,170.0,169.5$ and 170.3 , respectively, confirmed the presence of four acetyl groups. For the MS20a, the HMBC correlation of $\mathrm{H}-7\left(\delta_{\mathrm{H}} 5.83\right)$ to carbonyl carbon ($\delta_{\mathrm{C}} 169.5$) and of $\mathrm{H}-9\left(\delta_{\mathrm{H}} 4.23\right.$, 3.75) to carbonyl carbon ($\delta_{\mathrm{C}} 170.3$) indicated that two acetyl groups were placed on C-7 and C-9, respectively. The HMBC correlation of $\mathrm{H}-2$ to $\mathrm{C}-1$ (δ_{C} 133.9), $\mathrm{C}-3\left(\delta_{\mathrm{C}} 150.8\right), \mathrm{C}-4\left(\delta_{\mathrm{C}} 150.8\right)$ and $\mathrm{C}-7\left(\delta_{\mathrm{C}} 73.4\right)$ and of $\mathrm{H}-6$ to $\mathrm{C}-1\left(\delta_{\mathrm{C}}\right.$ 134.0), $\mathrm{C}-5\left(\delta_{\mathrm{C}} 152.8\right)$ and $\mathrm{C}-7\left(\delta_{\mathrm{C}} 73.4\right)$ (Table 2.35) indicated that two aromatic acetyl groups were located at C-3 and C-4, respectively. The threo configuration between two chiral centers at C-7 and C-8 was determined by its large coupling constant ($J_{7,8}=6.5 \mathrm{~Hz}$). Since the specific rotation of MS20 was nearly zero comparing to those of optically pure compounds MS16 and MS19. In addition, there was no cotton effect on the CD spectrum (Figure
3.18), indicating that compound MS20 was obtained as a racemic mixture.

Therefore, the structure of MS20 was defined as threo-3,4-dihydroxy-3',5-dimethoxy-8,4'-oxyneolign-8'-en-7,9-diol.

Figure 3.17 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of

Figure 3.18 CD spectra of MS20 compared with MS16 and MS19.

3.1.2 Phenylpropanoid dimers

3.1.2.1 4-Hydroxy-3',5-dimethoxy-3,4'-oxyneolign-8,8'-dien (dehydrodieugenol B) (MS10)

MS10 was obtained as pale green-brown viscous liquid and its molecular formula was determined to be $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 325.1442[\mathrm{M}-\mathrm{H}]^{+}$(calcd for 325.1440, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}$) in the HRESIMS. The IR spectrum showed the presence of a hydroxyl $\left(3439 \mathrm{~cm}^{-1}\right)$, aromatic (1597 and $1454 \mathrm{~cm}^{-1}$), alkene ($1638 \mathrm{~cm}^{-1}$) and ether (1129 and 1083 cm^{-1}) moieties. The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC spectra (Table 2.24 and Figure 3.19) of MS10 showed the signals of one 1,3,4,5-tetrasubstituted aromatic ring $\left[\delta_{\mathrm{H}} 6.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-2), \delta_{\mathrm{C}} 111.8(\mathrm{C}-2)\right.$ and $6.51(1 \mathrm{H}$, d, $\mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-6), 107.3$ (C-6)], one 1,3,5-trisubstituted aromatic ring [6.81 $\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}^{\prime} 2^{\prime}\right), 113.0\left(\mathrm{C}-2^{\prime}\right) ; 6.91\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 119.5$ $\left(\mathrm{C}-5^{\prime}\right)$ and $\left.6.72\left(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 120.8, \mathrm{C}-6^{\prime}\right]$ and two allylic groups $\left[\delta_{\mathrm{H}} 3.24(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-7), 39.9(\mathrm{C}-7) ; 5.93(1 \mathrm{H}, \mathrm{ddt}, J=16.1\right.$, $9.4,6.6 \mathrm{~Hz}, \mathrm{H}-8), 137.4(\mathrm{C}-8) ; 5.05(1 \mathrm{H}, \mathrm{dd}, J=16.1,1.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$ and 5.04 $(1 \mathrm{H}, \mathrm{dd}, J=9.4,1.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 115.7(\mathrm{C}-9)$ and $3.38\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right)$, 39.9 (C-7'); 5.99 (1H, ddt, $\left.J=17.0,10.4,6.6 \mathrm{~Hz}, \mathrm{H}^{\prime} 8^{\prime}\right), 137.3$ (C-8); 5.11 (1H, dd, $\left.J=17.0,1.5 \mathrm{~Hz}, \mathrm{H}-9^{\prime} \mathrm{a}\right)$ and $5.10(1 \mathrm{H}, \mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 115.9$ (C-9)]. In addition, The ${ }^{1} \mathrm{H}$ NMR spectroscopic data showed two methoxyl groups at $\delta_{\mathrm{H}} 3.89(3 \mathrm{H}, \mathrm{s}, \times 2 \mathrm{OMe})$ were observed. From the information above indicated that MS10 was dehydrodieugenol B (1-(8-propenyl)-3-[1'-(8'-propenyl)-3'-methoxyphenoxy]-4-hydroxy-5-methoxybenzene or 4-hydroxy-3',5-dimethoxy-3,4'-oxyneolign-8, 8^{\prime}-dien) [36, 37].

Figure 3.19 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS10.

3.1.2.2 4,4'-Dihydroxy-3, $\mathbf{3}^{\prime}$-dimethoxy-5,5'neolign-8,8'-dien, (dehydrodieugenol A) (MS13)

MS13 was isolated as pale yellow crystals and its molecular formula was determined to be $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 325.1447$ $[\mathrm{M}-\mathrm{H}]^{+}$(calcd for $325.1440, \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}$) in the HRESIMS. The IR spectrum showed the presence of hydroxyl ($3452 \mathrm{~cm}^{-1}$), aromatic (1599 and $1467 \mathrm{~cm}^{-1}$), alkene $\left(1639 \mathrm{~cm}^{-1}\right)$ and ether (1145 and $1047 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra (Table 2.27) of MS13 showed the signals of one $1,3,4,5$ tetrasubstituted aromatic ring $\left[\delta_{\mathrm{H}} 6.78(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2), \delta_{\mathrm{C}} 110.7(\mathrm{C}-2)\right.$ and $6.75(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-6), 123.4(\mathrm{C}-6)]$ and one allyl moiety $[3.35(2 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}, \mathrm{H}-7), 40.0(\mathrm{C}-7) ; 6.01(1 \mathrm{H}, \mathrm{ddt}, J=16.8,9.9,6.7 \mathrm{~Hz}, \mathrm{H}-8)$, 137.7 (C-8); $5.14(1 \mathrm{H}, \mathrm{dd}, J=16.8,1.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$ and $5.10(1 \mathrm{H}, \mathrm{dd}, J=9.9$, $1.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 115.7$ (C-9). Additionally, ${ }^{1} \mathrm{H}$ NMR spectrum of MS13 exhibited one methoxy group at $\delta 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and one hydroxy group at $\delta 6.08(1 \mathrm{H}, b r \mathrm{~s})$. The HMBC correlation of methoxy protons ($\delta_{\mathrm{H}} 3.94$) to $\mathrm{C}-3$ ($\delta_{\mathrm{C}} 147.2$) and of hydroxy group ($\delta_{\mathrm{H}} 6.08$) to $\mathrm{C}-3\left(\delta_{\mathrm{C}} 147.2\right), \mathrm{C}-4\left(\delta_{\mathrm{C}} 140.9\right)$ and C-5 ($\delta_{\mathrm{C}} 148.2$) indicated that methoxy and hydroxy groups were located
on C-3 and C-4, respectively. Up to now, a part of structure of MS13 had been deduced as the ring A with the chemical formula of $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$. The exact molecule formula of MS13 $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}\right)$ suggested that MS13 in fact a dimer. From the above evidence, the structure of MS5 was defined as 4-hydroxy-3',5-dimethoxy-3,4'-oxyneolign-8,8'-dien (dehydrodieugenol B) [36].

Figure 3.20 Structure, ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS13.

3.1.2.3 4-Hydroxy-3',5-dimethoxy-3,4'-oxyneolign-7',8-dien-9'-ol (MS18)

MS18 was obtained as pale yellow oil and its molecular formula was determined to be $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$ from its molecular ion peak at $\mathrm{m} / \mathrm{z} 342.1467$ [M $\mathrm{H}]^{+}$(calcd for $341.1389, \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}$) in the HRESIMS. The IR spectrum showed the presence of hydroxyl ($3450 \mathrm{~cm}^{-1}$), aromatic (1597 and $1454 \mathrm{~cm}^{-1}$), alkene ($1632 \mathrm{~cm}^{-1}$) and ether (1129 and $1083 \mathrm{~cm}^{-1}$) moieties. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra (Table 2.32) of MS18 showed the signals of one 1,3,4,5tetrasubstituted aromatic ring $\left[\delta_{\mathrm{H}} 6.41(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2), \delta_{\mathrm{C}} 112.2(\mathrm{C}-2)\right.$ and $6.51(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-6), 107.5(\mathrm{C}-6)]$, one $1,3,5$-trisubstituted aromatic ring $\left[7.01\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}^{\prime} 2^{\prime}\right), 110.3\left(\mathrm{C}-2^{\prime}\right) ; 6.87(1 \mathrm{H}, \mathrm{d}, J=5.4\right.$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 118.9$ (C-5') and $\left.6.88\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4,1.6 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 119.5, \mathrm{C}-6^{\prime}\right]$ and one allylic moiety [$3.25(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-7), 39.9(\mathrm{C}-7) ; 5.89(1 \mathrm{H}$, ddt, $J=16.2,9.5,6.6 \mathrm{~Hz}, \mathrm{H}-8), 137.4(\mathrm{C}-8) ; 5.05(1 \mathrm{H}, \mathrm{dd}, J=16.2,1.3 \mathrm{~Hz}, \mathrm{H}-$ 9 a) and $5.02(1 \mathrm{H}, \mathrm{dd}, J=9.5,1.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{~b}), 115.8(\mathrm{C}-9)]$. In addition, two methoxyl groups at $\delta 3.89(3 \mathrm{H}, \mathrm{s}, \times 2 \mathrm{OMe})$ were observed. The NMR spectra of MS18 closely resembled those of the known dehydrodieugenol B (MS10) [36, 37], also isolated from this plant, established that they were closely related. The main difference was the observation of signal attributed of a $\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ in ${ }^{1} \mathrm{H}$ NMR of MS18 at $\delta_{\mathrm{H}} 6.57\left(1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right)$, $6.29\left(1 \mathrm{H}, \mathrm{dt}, J=15.8,5.8 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right)$ and $4.32\left(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime}\right)$. The ${ }^{13} \mathrm{C}$ NMR data also displayed two olefinic methine carbons at $\delta_{\mathrm{C}} 130.8$ (C-7') and $\delta_{\mathrm{C}} 127.9\left(\mathrm{C}-8^{\prime}\right)$ and an oxygenated methelene carbon at $\delta_{\mathrm{C}} 63.7$ (C-9')
confirming the presence of the $-\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}$ moiety which was supported by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data (Figure 3.21). The HMBC spectrum showed correlations between the signals at $\delta_{\mathrm{H}} 6.29\left(\mathrm{H}-8^{\prime}\right)$ and $\mathrm{C}-1^{\prime}\left(\delta_{\mathrm{C}} 133.0\right), \mathrm{C}-7^{\prime}$ and $\mathrm{C}-9^{\prime}$ and at $\delta_{\mathrm{H}} 6.57\left(\mathrm{H}-7^{\prime}\right)$ and $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}\left(\delta_{\mathrm{C}} 110.3\right), \mathrm{C}-6^{\prime}\left(\delta_{\mathrm{C}} 119.5\right), \mathrm{C}-8^{\prime}$ and C-9' (Figure
3.21). This suggested that the 3-hydroxypropenyl moiety was placed at $\mathrm{C}-1$ '.

Therefore, the structure of MS18 was defined as 4-hydroxy-3',5-dimethoxy-

Figure 3.21 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS18.

3.1.3 Triterpenes

3.1.3.1 (3 β,23S)-23-Methoxy-24-methylenenorlanost-9-en-3-ol (MS5)

MS5 was obtained as a colorless crystalline from ethanol/ethyl acetate with a positive optical rotation, $\left[\alpha_{\mathrm{D}}^{23}\right]+88.5^{\circ}\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed the presence of hydroxyl ($3371 \mathrm{~cm}^{-1}$), alkene ($1647 \mathrm{~cm}^{-1}$) and ether (1085 and $1108 \mathrm{~cm}^{-1}$) functionalities. The molecular formula was established as $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$ from the pseudomolecular HRESIMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ion peak at 474.4296 (cald for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{NO}_{2}, 474.4310$). The ${ }^{1} \mathrm{H}$ NMR spectrum of MS5 (Table 2.20) indicated the presence of three tertiary methyls $\left[\delta_{\mathrm{H}} 0.69(3 \mathrm{H}, \mathrm{s}\right.$, Me-18), $0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-29)$ and $0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19)]$, four secondary methyls $\left[\delta_{\mathrm{H}} 0.92(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{Me}-21), 0.97(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{Me}-28), 1.05\right.$ $(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Me}-26)$ and $1.07(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{Me}-27)]$, a methoxy group at $\delta_{\mathrm{H}} 3.21(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-23)$, two methylenes at $\delta_{\mathrm{H}} 4.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24^{1}\right)$ and $4.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24^{1}\right)$, a vinyl methine at $\delta_{\mathrm{H}} 5.23(1 \mathrm{H}, \mathrm{dd}, J=3.6,2.8 \mathrm{~Hz}, \mathrm{H}-$ $11)$ and two oxygenated methine protons $\left[\delta_{\mathrm{H}} 3.08(1 \mathrm{H}, \mathrm{td}, J=11.5,3.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $3)$ and $3.60(1 \mathrm{H}$, dd, $J=10.3,1.4 \mathrm{~Hz}, \mathrm{H}-23)$. The ${ }^{13} \mathrm{C}$ NMR spectral data (Table 2.20) indicated 31 carbons resonances which were classified by DEPT and HMQC experiments as one trisubstituted double bond [$\delta_{\mathrm{C}} 146.5$ (C-9) and 116.4 (C-11)] and one terminal double bond [$\delta_{\mathrm{C}} 156.6$ (C-24) and 107.4 (C$\left.24^{1}\right)$] carbons. The remaining 27 carbons were assigned to seven methyl carbons [$\delta_{\mathrm{C}} 23.5$ (C-26), 22.5 (C-27), 20.5 (C-19), 18.3 (C-29), 18.2 (C-21), 15.3 (C-28) and 14.6 (C-18)], an oxygenated methyl carbon ($\delta_{\mathrm{C}} 56.4, \mathrm{C}-23-$

OMe), two oxygenated methine carbons [$\delta_{\mathrm{C}} 81.7$ (C-23) and 76.5 (C-3)], six methine carbons [$\delta_{\mathrm{C}} 51.7$ (C-17), 49.3 (C-5), 41.3 (C-8), 39.4 (C-4), 33.0 (C20) and 29.9 (C-25)], three quaternary carbons [$\delta_{\mathrm{C}} 47.2$ (C-14), 44.4 (C-13) and 38.7 (C-10)] and eight methylene carbons [$\delta_{\mathrm{C}} 43.2$ (C-22), 37.5 (C-12), 35.4 (C-1), 33.9 (C-15), 31.2 (C-2), 28.1(C-16), 27.4 (C-7) and 24.0 (C-6)]. From the molecular formula $\left(\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}\right)$ of MS5 indicated six degrees of unsaturation together with the above NMR data, suggesting MS5 to be a tetracyclic triterpene with two olefinic groups. The structure of MS5 was determined from HMBC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra (Figure 3.22). The HMBC spectrum of MS5 indicated long-range correlations of $\mathrm{CH}_{3}-19\left(\delta_{\mathrm{H}} 0.99\right)$ to C $1, \mathrm{C}-5, \mathrm{C}-9$ and $\mathrm{C}-10 ; \mathrm{CH}_{3}-18\left(\delta_{\mathrm{H}} 0.69\right)$ to $\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-14$ and $\mathrm{C}-17$ and $\mathrm{CH}_{3}-29\left(\delta_{\mathrm{H}} 0.73\right)$ to $\mathrm{C}-8, \mathrm{C}-13, \mathrm{C}-14$ and $\mathrm{C}-15$. The HMBC correlations of olefinic methine proton at $\delta_{\mathrm{H}} 5.23(\mathrm{H}-11)$ to $\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-12$ and $\mathrm{C}-13$ indicated that an olefinic group positioned on C-9 and C-11. Significant crosspeak were observed from oxygenated methine proton at $\delta_{\mathrm{H}} 3.08$ to $\mathrm{C}-2, \mathrm{C}-4$, C-5 and methyl protons at $\delta_{\mathrm{H}} 0.97$ to $\mathrm{C}-3, \mathrm{C}-4$, and $\mathrm{C}-5$ in the HMBC experiment, indicating a hydroxyl group and a methyl group placed on C-3 and C-4, respectively. The hydroxyl-bearing methine proton signal at $\delta_{\mathrm{H}} 3.08$ was assigned to $\mathrm{H}-3$ and the β configuration of the $\mathrm{C}-3$ hydroxyl group was confirmed by its large coupling constant (td, $J=11.5,3.0 \mathrm{~Hz}$) (Li et al., 1993). The spectrotopic data above suggested that the structure of MS5 was a 29 -nor-$9(11)$-en-lanost- 3β-ol skeleton [51-53]. The position of an exomethylene group was established by the observation of the HMBC correlations between
the exomethylene proton signals ($\delta_{\mathrm{H}} 4.92$ and 4.98) and $\mathrm{C}-22\left(\delta_{\mathrm{C}} 43.2\right), \mathrm{C}-23$ $\left(\delta_{\mathrm{C}} 81.7\right), \mathrm{C}-25\left(\delta_{\mathrm{C}} 29.9\right), \mathrm{C}-26\left(\delta_{\mathrm{C}} 23.5\right)$ and $\mathrm{C}-27\left(\delta_{\mathrm{C}} 22.5\right)$. The position of a methoxy group was suggested on C-23 by the observation of the HMBC correlation from the methoxyl protons ($\delta_{\mathrm{H}} 3.21$) to C-23 ($\delta_{\mathrm{C}} 81.7$). The relative configuration of MS5 was confirmed by X-ray crystallographic analysis, which was shown in figure 3.23. Thus, structure MS5 was established as (3 $\beta, 23 S$)-23-methoxy-24-methylenenorlanost-9-en-3-ol.

Figure 3.22 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of

Figure 3.23 X-ray ORTEP diagram of MS5.

3.1.3.2 (3ß,23S)-23-Methoxy-24-methylenelanost-9-en-3-ol (MS3)

MS3 was provided as a colorless needle from ethanol/ethyl acetate with a positive optical rotation, $\left[\alpha_{\mathrm{D}}^{23}\right]+84.2^{\circ}\left(\mathrm{c} 0.06, \mathrm{CHCl}_{3}\right)$ and its IR spectrum presented of hydroxyl ($3323 \mathrm{~cm}^{-1}$), alkene ($1639 \mathrm{~cm}^{-1}$) and ether (1111 and $1087 \mathrm{~cm}^{-1}$) groups. The molecular formula of MS3 was determined to be $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{2}$ from the pseudomolecular HRESIMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ion peak at 488.4462 (cald for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{NO}_{2}, 488.4467$). The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HMBC spectra of MS3 indicated the presence of five tertiary methyls [$\delta_{\mathrm{H}} 1.05$ (3H, s, H-19), $\delta_{\mathrm{C}} 22.3$ (C-19); 0.99 (3H, s, H-29), 28.3 (C-29); 0.82 (3H, s, H28), $15.7(\mathrm{C}-28) ; 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 18.5(\mathrm{C}-30)$ and 0.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$), 14.5 (C-18);], three secondary methyls [$\delta_{\mathrm{H}} 1.05(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}-26), \delta_{\mathrm{C}} 23.5$ $(\mathrm{C}-26) ; 1.07(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}-27), 22.5(\mathrm{C}-27)$ and $0.92(3 \mathrm{H}, \mathrm{d}, J=6.3$ $\mathrm{Hz}, \mathrm{H}-21), 18.3(\mathrm{C}-21)]$, a vinyl methylene $\left[\delta_{\mathrm{H}} 4.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24^{1}\right), 4.98(1 \mathrm{H}\right.$, s, $\mathrm{H}-24^{1}$) and $\left.\delta_{\mathrm{C}} 107.4\left(\mathrm{C}-24^{1}\right)\right]$ and two oxygenated methines $\left[\delta_{\mathrm{H}} 3.21(1 \mathrm{H}\right.$, overlapped, $\mathrm{H}-3$), $\delta_{\mathrm{C}} 78.9$ (C-3) and 3.59 (dd, $J=9.3,1.0 \mathrm{~Hz}, \mathrm{H}-23$), 81.7 (C23)] (Table 2.18). The molecular formula indicated the presence of six degrees of unsaturation concomitant with the NMR spectral data, suggesting MS3 to be a tetracyclic triterpene with two olefinic groups. The NMR spectroscopic data pattern of MS3 resembled those of MS5 except for the appearance of an additional methyl group in MS3. The ${ }^{1} \mathrm{H}$ NMR spectrum of MS3 show two tertiary methyl singlets at $\delta_{\mathrm{H}} 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-28)$ and $0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-29)$ which showed one bond ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ connectivity with the carbons at $\delta_{\mathrm{C}} 28.3$ and 15.7, respectively. The HMBC spectrum showed long-range correlation from

Me-28 and Me-29 to $\mathrm{C}-3$ ($\delta_{\mathrm{C}} 78.9$), $\mathrm{C}-4$ and $\mathrm{C}-5\left(\delta_{\mathrm{C}} 52.5\right)$ (Figure 3.24), indicating that both methyl groups were placed at C-4. The relative configuration of MS3 was also confirmed by X-ray crystallographic analysis (Figure 3.25). Therefore, structure MS3 was established as $(3 \beta, 23 S)$-23-methoxy-24-methylenelanost-9-en-3-ol.

Figure 3.24 Structure, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of

Figure 3.25 X-ray ORTEP diagram of MS3.

3.1.3.3 (3ß,16 $\boldsymbol{\beta}$)-24-Methylenelanost-9-en-3,16-diol (MS7)

MS7 was provided as a colorless needle from ethanol/ethyl acetate with a positive optical rotation, $\left[\alpha_{\mathrm{D}}^{23}\right]+67.2^{\circ}\left(\right.$ c $\left.0.046, \mathrm{CHCl}_{3}\right)$ and its IR spectrum presented of hydroxyl (3406 cm^{-1}) and alkene (1639 cm^{-1}) absorptions. The molecular of MS7 was determined to be $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$ from the pseudomolecular HRESIMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ion peak at 474.4278 (cald for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{NO}_{2}, 474.4310$). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of MS7 indicated the presence of five tertiary methyls $\left[\delta_{\mathrm{H}} 1.06(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), \delta_{\mathrm{C}} 22.3(\mathrm{C}-19)\right.$; $0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29), 28.2(\mathrm{C}-29) ; 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 15.3$ (C-18); $0.82(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-28), 15.7(\mathrm{C}-28)$ and $0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30), 19.1(\mathrm{C}-30)$], three secondary methyls [$\delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-26), \delta_{\mathrm{C}} 21.9(\mathrm{C}-26) ; 1.03(3 \mathrm{H}, \mathrm{d}, J=$ $6.8 \mathrm{~Hz}, \mathrm{H}-27), 21.8(\mathrm{C}-27)$ and $0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{H}-21), 18.0(\mathrm{C}-21)]$, a vinyl methylene $\left[\delta_{\mathrm{H}} 4.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24^{1}\right), 4.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-24^{1}\right)\right.$ and $\delta_{\mathrm{C}} 106.2(\mathrm{C}-$ $\left.24^{1}\right)$] and two oxygenated methines $\left[\delta_{\mathrm{H}} 3.21(\mathrm{td}, J=11.0,4.3 \mathrm{~Hz}, \mathrm{H}-3), \delta_{\mathrm{C}}\right.$ $78.9(\mathrm{C}-3)$ and $4.43(\mathrm{dd}, J=12.4,2.8 \mathrm{~Hz}, \mathrm{H}-16), 72.7(\mathrm{C}-16)]$ (Table 2.22). From the above information suggested that the structure of MS7 similar to MS3. The main difference were the absence of the C-23 methoxy substituent and the observation of an additional oxygenated methine proton at $\delta_{\mathrm{H}} 4.43$ (dd, $J=12.4,2.8 \mathrm{~Hz}$) in the ${ }^{1} \mathrm{H}$ NMR spectrum of MS7. From the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum and the HMBC correlations (Figure 3.26) from $\mathrm{H}-17$ ($\delta_{\mathrm{H}} 1.70$, m) and $\mathrm{H}-15\left(\delta_{\mathrm{H}} 1.43, \mathrm{~m}\right.$ and $\left.\delta_{\mathrm{H}} 2.05, \mathrm{~m}\right)$ to the oxygenated methine carbon at δ_{C} 72.7 indicated that the hydroxyl group was located at C-16. Furthermore, the relative configuration was also confirmed by X-ray crystallographic analysis.

A 3-D structure of molecule MS7 is shown in figure 3.24. On the basic of the spectroscopic evidence, the structure of MS7 was characterized as $(3 \beta, 16 \beta)$ -24-methylenelanost-9-en-3,16-diol.

Figure 3.26 Structure, ${ }^{1}{ }_{-}^{1}-{ }_{-}^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS7.

Figure 3.27 X-ray ORTEP diagram of MS7.

3.1.3.4 (3及)-24,24 ${ }^{1}$-Epoxy- lanost-9-en-3-ol (MS6)

MS6 was provided as a colorless needle from ethanol/ethyl acetate with a positive optical rotation, $\left[\alpha_{\mathrm{D}}^{23}\right]+48.6^{\circ}\left(\mathrm{c} 0.046, \mathrm{CHCl}_{3}\right)$ and its IR spectrum revealed absorptions for a hydroxyl group at $3405 \mathrm{~cm}^{-1}$, an alkener group at $1639 \mathrm{~cm}^{-1}$ and ether groups at 1245,1157 and $980 \mathrm{~cm}^{-1}$. The HRESIMS $[\mathrm{M}+\mathrm{H}]^{+}$ion peak at 457.4023 (cald for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{NO}_{2}, 457.4045$) suggested the molecular formula $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of MS6 were similar to those of MS3, except for the side chain data which lack of methoxy group. Furthermore, the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum showed an oxirane group $\delta_{\mathrm{H}} 2.54\left(1 \mathrm{H}, \mathrm{d}, J=4.6, \mathrm{H} 24^{1}\right), 2.59(1 \mathrm{H}, \mathrm{d}$ $\left.J=4.6, \mathrm{H}-24^{1}\right), \delta_{\mathrm{C}} 62.8(\mathrm{C}-24)$ and $\left.50.5\left(\mathrm{C}-24^{1}\right)\right]$ was attributed to the side chain. The presence of HMBC correlation from $\mathrm{H}-26\left(\delta_{\mathrm{H}} 0.96, \mathrm{~d}, J=6.8\right)$ to $\mathrm{C}-24\left(\delta_{\mathrm{C}} 62.8\right), \mathrm{H}-27\left(\delta_{\mathrm{H}} 0.90, \mathrm{~d}, \mathrm{~J}=6.8\right)$ to $\mathrm{C}-24\left(\delta_{\mathrm{C}} 62.8\right), \mathrm{H}-25\left(\delta_{\mathrm{H}} 1.79\right.$, m) to C 24 and $\mathrm{C}-24^{1}$ and also $\mathrm{H}-24^{1}$ to $\mathrm{C}-23, \mathrm{C}-24$ and $\mathrm{C}-25$, indicated the side chain of MS6 to be 24,24-epoxyl substituted (figure 3.28). Thus, structure of MS6 was established as (3β)-24,24 ${ }^{1}$-Epoxy- lanost-9-en-3-ol.

Figure 3.28 Structure, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (bold line) and of $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ correlation of MS6.

3.2 Biological evaluation

We measured the cytoxicities of all the isolated compounds against four tumor cell lines, including HeLa (human cervical carcinoma), HN22 (head and neck cancer), HepG2 (Hepatocellular carcinoma) and HCT116 (colorectal cancer) cell lines, as well as a normal cell line (HaCaT, human immortalized keratinocyte cell line). The results of their cytotoxic activities and selective index (SI) compared with a normal cell line HaCaT are shown in Table 3.1. Four dihydro[b]benzofuran neolignans (MS11, MS12, MS15 and MS17) exhibited significant cytotoxic activities against the HeLa cell line with IC_{50} values from 0.04 to $2.50 \mu \mathrm{M}$. Among them, MS17 displayed the most promising cytotoxic activity with the lowest IC_{50} value of $0.04 \mu \mathrm{M}$ and the highest SI value of 187.8. Compound MS12 exhibited strong cytotoxicity against both the HN22 and HeLa cell lines with IC_{50} values of 0.18 and $0.23 \mu \mathrm{M}$, however, these compounds showed poor selectivity towards both tested cell lines (8.2 and 6.4, respectively). Two 8-O-4' neolignans MS16 and MS19 showed lower cytotoxic activities against the HeLa cell line than compounds MS11, MS12, MS15 and MS17 with IC_{50} (SI) values of 4.06 (75.3) and $2.86(46.2) \mu \mathrm{M}$, respectively, whereas compound MS20 was inactive toward four cancer cell lines. Phenylpropanoid dimer MS10 had a strong cytotoxic effect against the HepG 2 cell line with $\mathrm{IC}_{50}=2.17 \mu \mathrm{M}$ and $\mathrm{SI}=20.4$, while compound MS18 exhibited moderate to weak cytotoxic activities against the four cell lines with the IC_{50} values ranging from 9.79 to $88.52 \mu \mathrm{M}$. On the other hand, dineolignan MS14 and dehydrodieugenol A (MS13) were inactive toward all cancer cell lines $\left(\mathrm{IC}_{50}>150 \mu \mathrm{M}\right)$

Cpd.	Cell Lines								
	HaCaT	HeLa		HN22		HepG2		HCT116	
	$\mathrm{IC}_{50}{ }^{a}$	IC_{50}	$\mathrm{SI}^{\text {b }}$	IC_{50}	SI	IC_{50}	SI	IC_{50}	SI
MS11	$\begin{gathered} 46.34 \\ (22.08-97.42) \end{gathered}$	$1.76 \text { (0.95-3.26) }$	26.	. 30 (19.94-67.83)	1.2	8.04 (5.42-11.85)	5.8	8.66 (6.25-11.98)	5.4
MS12	$\begin{gathered} 1.48 \\ (0.31-1.74) \end{gathered}$	$0.23 \text { (0.05-0.98) }$	6.	0.18 (0.05-0.57)	8.2	2.92 (2.06-4.11)	0.5	4.53 (2.63-7.84)	0.3
MS15	$\begin{gathered} 164.42 \\ (144.82-186.63) \end{gathered}$	$2.50(1.57-3.93)$	65.8			6.15 (2.86-13.11)	26.7	16.45 (11.48-23.61)	10.0
MS17	7.51 (3.43-16.44)	0.04 (0.01-0.13)	87.8	. 25 (25.08-49.54)		12.92 (6.43-25.90)	0.6	102.68 (65.80-162.71)	0.1
MS14	>500	>150	1	>150		>150	ND	>150	ND
MS16	$\begin{gathered} 305.87 \\ (255.90-365.46) \end{gathered}$	$4.06 \text { (3.20-5.17) }$	75.3	$.06(25.42-72.92)$		$47 \text { (32.17-76.12) }$	6.2	75.21 (48.54-116.51)	4.1
MS19	$\begin{gathered} 132.16 \\ (77.77-224.58) \end{gathered}$	$2.86 \text { (2.11-3.88) }$. 28 (24.75-65.56)		9.59 (3.96-23.20)	13.8	107.46 (74.91-154.10)	1.2
MS20	>500	150	ND	>150		>150	ND	>150	ND
MS10	$\begin{gathered} 55.16 \\ (36.79-82.66) \end{gathered}$	$11.31(5.18-24.71)$	$.9$. 45 (5.89-40.50)		2.71 (1.33-5.58)	20.4	52.66 (36.10-76.83)	1.0
MS13	>500	>150		>150		>150	ND	>150	ND
MS18	$\begin{gathered} 276.87 \\ (142.57-537.78) \end{gathered}$	18.09 (11.87-27.53)	15.3	9.79 (5.32-18.06)	28.3	8.52 (49.15-159.34)	3.1	40.20 (33.36-48.41)	6.9
$\mathbf{P C}^{\text {d }}$	6.14 (4.63-8.15)	97.25 (65.20-145.10)	0.1	3.23 (11.84-14.77)	0.5	6.96 (5.07-9.55)	0.9	6.30 (4.97-7.97)	0.1
${ }^{a} \mathrm{IC}_{50}$ (concentration inhibiting 50% growth) are expressed as $\mu \mathrm{M}$. ${ }^{b}$ Selectivity Index (SI) is the ratio of the treatments on HaCaT cells to those in the cancer cell lines. ${ }^{c}$ Not determine ${ }^{d}$ Positive control is irinotecan									

CHAPTER 4

CONCLUSIONS

The first investigation of the leaves extracts of Miliusa sessilis yielded neolignans, triterpenes and sesquiterpenes. Neolignans were the main second metabolites which complemented previous reports of the occurrence of neolignans in the Miliusa genus. Nine new neolignans (MS11, MS12, MS14-MS20) were first isolated from this plant, together with two known neolignans (MS10 and MS13) that were first isolated from this genus. Four new lanostane triterpenes (MS3, MS5-MS7) were isolated for the first time from this genus, together with two known sesquiterpenes (MS1 and MS4). Neolignans were estimated for their cytotoxicity activity against four cancer cell lines. Of all these compounds isolated, MS17 exhibited the most significant cytotoxic effect aganst-HeLa cells with IC_{50} in the micromolar range and high selectivity index over 180 fold against HeLa cells compare to non-cancer cell line HaCaT. Thus, MS17 may be a potential candidate for anticancer drug development.

REFERENCES

1. Mols, J.B. and P.J.A. Kessler, The genus Miliusa (Annonaceae) in the austroMalesian area. Blumea, 2003. 48(3): p. 421-462.
2. Chaowasku, T. and P.J.A. Kessler, Seven new species of Miliusa (Annonaceae) from Thailand. Nord. J. Bot., 2013. 31(6): p. 680-699.
3. Chaowasku, T. and P.J.A. Kessler, Miliusa lanceolata (Annonaceae), a new species from Papua New Guinea. Blumea, 2006. 51(3): p. 553-557.
4. Chaowasku, T. and P.J.A. Kessler, Miliusa cambodgensis sp. nov.(Annonaceae) from Cambodia and M. astiana, M. ninhbinhensis spp. nov. from Vietnam. Nord. J. Bot., 2014. 32(3): p. 298-307.
5. Promchai, T., T. Saesong, K. Ingkaninan, S. Laphookhieo, S.G. Pyne, and T. Limtharakul, Acetylcholinesterase inhibitory activity of chemical constituents isolated from Miliusa thorelii. Phytochem Lett. , 2018. 23: p. 33-37.
6. Promchai, T., A. Jaidee, S. Cheenpracha, K. Trisuwan, R. Rattanajak, S. Kamchonwongpaisan, S. Laphookhieo, S.G. Pyne, and T. Ritthiwigrom, Antimalarial oxoprotoberberine alkaloids from the leaves of Miliusa cuneata. J. Nat. Prod., 2016.79(4): p. 978-983.
7. Jumana, S., C.M. Hasan, and M.A. Rashid, Isocorydine- α - N-oxide: A new aporphine alkaloid from M. velutina. Nat. Prod. Lett, 2000. 14: p. 393-397.
8. Harrigan, G.G., A.L. Gunatilaka, D.G. Kingston, G.W. Chan, and R.K. Johnson, Isolation of bioactive and other oxoaporphine alkaloids from two annonaceous plants, Xylopia aethiopica and Miliusa cf. banacea. J. Nat. Prod., 1994. 57(1): p. 68-73.
9. Zhang, H.-J., C. Ma, N.V. Hung, N.M. Cuong, G.T. Tan, B.D. Santarsiero, A.D. Mesecar, D.D. Soejarto, J.M. Pezzuto, and H.H. Fong, Miliusanes, a class of cytotoxic agents from Miliusa sinensis. J. Med. Chem., 2006. 49(2): p. 693-708.
10. Sawasdee, K., T. Chaowasku, V. Lipipun, T.-H. Dufat, S. Michel, V. Jongbunprasert, and K. Likhitwitayawuid, Geranylated homogentisic acid derivatives and flavonols from Miliusa umpangensis. Biochem. Syst. Ecol, 2014. 54: p. 179-181.
11. Huong, D.T., C. Kamperdick, and T.V. Sung, Homogentisic acid derivatives from Miliusa balansae. J. Nat. Prod., 2004. 67(3): p. 445-447.
12. Wongsa, N., K. Kanokmedhakul, J. Boonmak, S. Youngme, and S. Kanokmedhakul, Bicyclic lactones and racemic mixtures of dimeric styrylpyrones from the leaves of Miliusa velutina. RSC advances, 2017. 7(41): p. 25285-25297.
13. Van, N.T.H., C. Kamperdick, N.T.H. Anh, and T. Van Sung, Two new bis-styryl compounds from Miliusa balansae. Z. Naturforsch. B, 2008. 63(3): p. 335-338.
14. Kamperdick, C., N.H. Van, and T. Van Sung, Constituents from Miliusa balansae (Annonaceae). Phytochemistry, 2002. 61(8): p. 991-994.
15. Sawasdee, K., T. Chaowasku, V. Lipipun, T.-H. Dufat, S. Michel, and K. Likhitwitayawuid, New neolignans and a lignan from Miliusa fragrans, and their anti-herpetic and cytotoxic activities. Tetrahedron Lett., 2013. 54(32): p. 4259-4263.
16. Sawasdee, K., T. Chaowasku, V. Lipipun, T.-H. Dufat, S. Michel, and K. Likhitwitayawuid, Neolignans from leaves of Miliusa mollis. Fitoterapia, 2013. 85: p. 49-56.
17. Sawasdee, K., T. Chaowasku, and K. Likhitwitayawuid, New neolignans and a phenylpropanoid glycoside from twigs of Miliusa mollis. Molecules, 2010. 15(2): p. 639-648.
18. Wongsa, N., S. Kanokmedhakul, and K. Kanokmedhakul, Corrigendum to "Cananginones $A-I$, linear acetogenins from the stem bark of Cananga latifolia"[Phytochemistry 72(14-15)(2011) 1859-1864]. Phytochemistry, 2015. 109: p. 154.
19. Wu, R., Q. Ye, N.Y. Chen, and G.L. Zhang, A new norditerpene from Miliusa balansae Finet et Gagnep. Chin Chem Lett., 2001. 12(3): p. 247-248.
20. Thao, N.P., B.T.T. Luyen, B.H. Tai, N.M. Cuong, Y.C. Kim, C. Van Minh, and Y.H. Kim, Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2015. 25(18): p. 3859-3863.
21. Lei, Y., L.J. Wu, H.M. Shi, and P.F. Tu, Three new glycosides from the stems of Miliusa balansae. Helv. Chim. Acta., 2008. 91(3): p. 495-500.
22. Lei, Y., L.-j. WU, D. BI, J.-w. SUN, and P.-f. TU, Isolation and identification of chemical constituents from stems of Miliusa balansae Fin. et Gag.[J]. Shenyang Yaoke Daxue Xuebao, 2009. 2.
23. Jumana, S., C.M. Hasan, and M.A. Rashid, Alakaloids from the stem bark of Miliusa velutina. Biochem. Syst. Ecol, 2000. 28(5): p. 483-485.
24. Jumana, S., C.M. Hasan, and M.A. Rashid, Antibacterial activity and cytotoxicity of Miliusa velutina. Fitoterapia, 2000. 71(5): p. 559-561.
25. Wongsa, N., S. Kanokmedhakul, and K. Kanokmedhakul, Cananginones A-I, linear acetogenins from the stem bark of Cananga latifolia. Phytochemistry, 2011. 72(14-15): p. 1859-1864.
26. Promgool, T., K. Kanokmedhakul, S. Tontapha, V. Amornkitbamrung, S. Tongpim, W. Jamjan, and S. Kanokmedhakul, Bioactive homogentisic acid derivatives from fruits and flowers of Miliusa velutina. Fitoterapia, 2019. 134: p. 65-72.
27. Huong, D.T., D.V. Luong, T.T.P. Thao, and T.V. Sung, A new flavone and cytotoxic activity of flavonoid constituents isolated from Miliusa balansae (Annonaceae). Pharmazie, 2005. 60(8): p. 627-629.
28. Thuy, T.T.T., T.D. Quan, N.T.H. Anh, and T. Van Sung, A new hydrochalcone from Miliusa sinensis. Nat. Prod. Res., 2011. 25(14): p. 1361-1365.
29. Ragasa, C.Y., J. Ganzon, J. Hofilena, B. Tamboong, and J.A. Rideout, A new furanoid diterpene from Caesalpinia pulcherrima. Chem. Pharm. Bull., 2003. 51(10): p. 1208-1210.
30. Arigoni, D., W. Eisenreich, C. Latzel, S. Sagner, T. Radykewicz, M.H. Zenk, and A. Bacher, Dimethylallyl pyrophosphate is not the committed precursor of isopentenyl pyrophosphate during terpenoid biosynthesis from 1-deoxyxylulose in higher plants. Proceedings of the National Academy of Sciences, 1999. 96(4): p. 1309-1314.
31. Rabe, P., T. Schmitz, and J.S. Dickschat, Mechanistic investigations on six bacterial terpene cyclases. Beilstein J. Org. Chem., 2016. 12(1): p. 1839-1850.
32. Chang, S.-T., S.-Y. Wang, C.-L. Wu, P.-F. Chen, and Y.-H. Kuo, Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung, 2000. 54(3): p. 241-245.
33. Kim, D.-H., M.-H. Bang, M.-C. Song, S.-U. Kim, Y.-J. Chang, and N.-I. Baek, Isolation of β-sitosterol, Phytol and Zingerone 4-O- β-D-glucopyranoside from Chrysanthemum Boreale Makino. Korean J. Medicinal Crop Sci., 2005. 13(5): p. 284-287.
34. Alam, M.S., N. Chopra, M. Ali, and M.J.P. Niwa, Oleanen and stigmasterol derivatives from Ambroma augusta. 1996. 41(4): p. 1197-1200.
35. Govindarajan, P. and D. Sarada, Isolation and characterization of stigmasterol and β-sitosterol from Acacia nilotica (L.) delile ssp indica (benth.) brenan. J. Pharm. Res, 2011. 4: p. 3601-3602.
36. de Diaz, A.M.P., H.E. Gottlieb, and O.R. Gottlieb, Dehydrodieugenols from Ocotea cymbarum. Phytochemistry, 1980. 19(4): p. 681-682.
37. Da Costa-Silva, T.A., S.S. Grecco, F.S. De Sousa, J.H.G. Lago, E.G.A. Martins, C.A. Terrazas, S. Varikuti, K.L. Owens, S.M. Beverley, A.R. Satoskar, and A.G.Tempone, Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from Nectandra leucantha. J. Nat. Prod., 2015.

78(4): p. 653-657.
38. Alam, M.S., N. Chopra, M. Ali, and M. Niwa, Oleanen and stigmasterol derivatives from Ambroma augusta. Phytochemistry, 1996. 41(4): p. 1197-1200.
39. Wang, Y.H., Q.Y. Sun, F.M. Yang, C.L. Long, F.W. Zhao, G.H. Tang, H.M. Niu, H. Wang, Q.Q. Huang, and J.J. Xu, Neolignans and caffeoyl derivatives from Selaginella moellendorffii. Helv. Chim. Acta. , 2010. 93(12): p. 2467-2477.
40. Pieters, L., T. De Bruyne, A. De Groot, G. Mei, R. Dommisse, G. Lemière, and A. Vlietinck, NMR study of some dihydrobenzofuran lignans. Magn. Reson. Chem, 1993. 31(7): p. 692-693.
41. Kim, T.H., H. Ito, K. Hayashi, T. Hasegawa, T. Machiguchi, and T. Yoshida, Aromatic Constituents from the Heartwood of Santalum album L. Chem. Pharm. Bull. , 2005. 53(6): p. 641-644.
42. Antus, S., T. Kurtan, L. Juhásž, L. Kiss, M. Hollósi, and Z. Májer, Chiroptical properties of 2, 3-dihydrobenzo [b] furan and chromane chromophores in naturally occurring O-heterocycles. Chirality, 2001. 13(8): p. 493-506.
43. Yuen, M.S.M., F. Xue, T.C.W. Mak, and H.N.C. Wong, On the absolute structure of optically active neolignans containing a dihydrobenzo [b] furan skeleton. Tetrahedron, 1998. 54(41): p. 12429-12444.
44. Kawanishi, K., Y. Uhara, and Y. Hashimoto, Neolignans of Virola carinata bark. Phytochemistry, 1982, 21(11): p. 2725-2728.
45. Wang, C.Z. and Z.J. Jia, Neolignan glycosides from Pedicularis longiflora. Planta Medica., 1997. 63(03): p. 241-244.
46. Park, S.Y., S.S. Hong, X.H. Han, J.S. Hwang, D. Lee, J.S. Ro, and B.Y. Hwang, Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Chem. Pharm. Bull., 2007. 55(1): p. 150-152.
47. Kawanishi, K., Y. Uhara, and Y. Hashimoto, The neolignans, carinatidin, dihydrocarinatidin, carinatidiol and dehydrodieugenol B from virola carinata. Phytochemistry, 1983. 22(10): p. 2277-2280.
48. Lu, Y., Y. Xue, J. Liu, G. Yao, D. Li, B. Sun, J. Zhang, Y. Liu, C. Qi, and M. Xiang, (\pm)-Acortatarinowins A-F, norlignan, neolignan, and lignan enantiomers from Acorus tatarinowii. J. Nat. Prod., 2015. 78(9): p. 2205-2214.
49. Hoye, T.R., C.S. Jeffrey, and F. Shao, Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc., 2007. 2(10): p. 2451.
50. Seco, J.M., E. Quinoá, and R. Riguera, The assignment of absolute configuration
by NMR. Chem. Rev., 2004. 104(1): p. 17-118.
51. Akihisa, T., T. Yokota, N. Takahashi, T. Tamura, and T. Matsumoto, 25Methylgramisterol and other 4 α-methylsterols from Phaseolus vulgaris seeds. Phytochemistry, 1989. 28(4): p. 1219-1224.
52. Hasan, C.M., S. Shahnaz, I. Muhammad, A.I. Gray, and P.G. Waterman, Chemistry in the Annonaceae, XXIII. 24-Methylene-lanosta-7, 9 (11)-dien-3 β-ol from Artabotrys odorotissimus stem bark. J. Nat. Prod., 1987. 50(4): p. 762-763.
53. Liu, H.-K., T.-H. Tsai, T.-T. Chang, C.-J. Chou, and L.-C. Lin, Lanostanetriterpenoids from the fungus Phellinus gilvus. Phytochemistry, 2009. 70(4): p. 558-563.

APPENDIX A

LIST OF ABBREVIATIONS

A	angstrom sign, ångström
α	alpha
$[\alpha]_{\mathrm{D}}{ }^{88}$	specific rotation
β	beta A
$b r \mathrm{~s}$	broad singlet
$b r$ d	broad doublet $x^{\prime}+x=E$
$b r$ dt	broad doublet of triplet
n-BuOH	normal butanol
${ }^{13} \mathrm{C}$ NMR	carbon-13 nuclear magnetic resonance
${ }^{\circ} \mathrm{C}$	degree celsius
CC	column chromatography
$\lambda_{\text {max }}$	wavelength at maxima absorption
CD	circular dichroism
CDCl_{3}	deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}$	deuteromethanol
CeSO_{4}	cerium sulfate
CHCl_{3}	Chloroform
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	Dichloromethane
cm	centimeter
cm^{-1}	reciprocal centimeter (wave number)
$\mathrm{CH}_{3} \mathrm{CN}$	acetonitrile
COSY	correlated spectroscopy
d	doublet

LIST OF ABBREVIATIONS (CONTINUED)

dd	doublet of doublet
ddd	doublet of doublet of doublet
ddt	doublet of doublet of triplet
δ	chemical shift relative to tetramethylsilane (TMS)
DEPT	Distortion Spectroscopy
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
ε	epsilon
EtOAc	ethyl acetate 5×2
eq.	equivalent an
g	gram
$\mathrm{g} / \mathrm{mol}$	gram per mole
h	hour
kg	kilogram
HaCaT	human immortalized keratinocyte cancer cell line
HCT116	colorectal cancer cell line
HeLa	cervical cancer cell line
HepG2	Hepatocellular carcinoma cell line
HN22	head-and-neck cancer-cell line
HMBC	Heteronuclear Multiple Bond Coherence
HMQC	Heteronuclear Multiple Quantum Coherence
${ }^{1} \mathrm{H}-\mathrm{NMR}$	Proton Nuclear Magnetic Resonance
$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphoric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid
HRESIMS	high resolution electrospray ionization mass spectrometry
Hz	hertz

LIST OF ABBREVIATIONS (CONTINUED)

IC_{50}	50\% Inhibition concentration
IR	Infrared absorption
IUPAC	International Union of Pure and Applied Chemistry
J	coupling constant
M	molar
$\mathrm{Me}_{2} \mathrm{CO}$	acetone
MeOH	methanol A
m	meter
m	multiplet $)^{\text {a }}$
mL	milliliter
mm	millimeter
m.p.	melting point
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
m / z	mass to charge ratio \square
MHz	Megahertz
$\mu \mathrm{g}$	icrogram
$\mu \mathrm{L}$	microliter 7780 ¢ै¢
$\mu \mathrm{M}$	micromolar
$\mu \mathrm{mol}$	micromole
$v_{\text {max }}$	frequency of the wave at maxima absorption
N	normality
NaH	sodium hydride
NaOH	sodium hydroxide
$\mathrm{NH}_{4} \mathrm{Cl}$	ammonium chloride
nm	nanometer
NMR	nuclear magnetic resonance

LIST OF ABBREVIATIONS (CONTINUED)

n-hexane normal hexane
PLC preparative layer chromatography
ppm
part per million
$\mathrm{pq} \quad$ pseudo quartet
RP-18 octadecyl carbon chain (C18)-bonded silica reversed-phase
t
td
TLC
UV
v/v
triplet
triplet of doublet
thin layer chromatography
ultraviolet
volumn by volumn

APPENDIX B
 LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS

Figure content Page
Neolignan
S1 ${ }^{1} \mathrm{H}$ NMR spectrum of MS11 (300 MHz, CDCl_{3}) 157
S2 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of MS11 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 158
S3 DEPT 135 spectrum of $\operatorname{MS11}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 159
S4 COSY spectrum of MS11 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160
S5 HMQC spectrum of MS11 161
S6 HMBC spectrum of MS11 162
S7 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M S 1 2}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 163
S8 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{MS} 12\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 164
S9 DEPT 135 spectrum of MS12 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 165
S10 COSY spectrum of MS12 (300 MHz, CDCl_{3}) 166
S11 HMQC spectrum of MS12 167
S12 HMBC spectrum of MS12 168
S13 ${ }^{1} \mathrm{H}$ NMR spectrum of MS14 (300 MHz, CDCl_{3}) 169
S14 ${ }^{13} \mathrm{C}$ NMR spectrum of MS14 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 170
S15 DEPT 135 spectrum of MS14 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 171
S16 COSY spectrum of MS14 (300 MHz, CDCl_{3}) 172
S17 HMQC spectrum of MS14 173
S18 HMBC spectrum of MS14 174
S19 ${ }^{1} \mathrm{H}$ NMR spectrum of MS15 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 175
S20 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M S 1 5}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 176

LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS

(CONTINUED)

Figure content Page
S21 DEPT 135 spectrum of MS15 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 177
S22 COSY spectrum of MS15 (300 MHz, CDCl_{3}) 178
S23 HMQC spectrum of MS15 179
S24 HMBC spectrum of MS15 180
S25 ${ }^{1} \mathrm{H}$ NMR spectrum of MS16 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 181
S26 ${ }^{13} \mathrm{C}$ NMR spectrum of MS16 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 182
S27 DEPT 135 spectrum of $\operatorname{MS16}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 183
S28 COSY spectrum of MS16 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 184
S29 HMQC spectrum of MS16 185
S30 HMBC spectrum of MS16 186
S31 ${ }^{1} \mathrm{H}$ NMR spectrum of $S-(-)$-MTPS ester of MS16 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$). 187
S32 ${ }^{1} \mathrm{H}$ NMR spectrum of R-(+)-MTPS ester of MS16 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 188
S33 ${ }^{1} \mathrm{H}$ NMR spectrum of MS17 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 189
S34 ${ }^{13} \mathrm{C}$ NMR spectrum of $\operatorname{MS17}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 190
S35 DEPT 135 spectrum of MS17 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 191
S36 COSY spectrum of MS17 (300 MHz, CDCl $_{3}$) 192
S37 HMQC spectrum of MS17 193
S38 HMBC spectrum of MS17 194
S39 ${ }^{1} \mathrm{H}$ NMR spectrum of MS19 (300 MHz, CDCl_{3}) 195
S40 $\quad{ }^{13} \mathrm{C}$ NMR spectrum of MS19 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 196
S41 DEPT 135 spectrum of MS19 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 197

LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS

(CONTINUED)

Figure content Page
S42 COSY spectrum of MS19 (300 MHz, CDCl_{3}) 198
S43 HMQC spectrum of MS19 199
S44 HMBC spectrum of MS19 200
S45 ${ }^{1} \mathrm{H}$ NMR spectrum of MS20 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 201
S46 ${ }^{13} \mathrm{C}$ NMR spectrum of MS20 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 202
S47 DEPT 135 spectrum of MS20 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 203
S48 COSY spectrum of MS20 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 204
S49 HMQC spectrum of MS20 205
S50 HMBC spectrum of MS20 206
S51 ${ }^{1} \mathrm{H}$ NMR spectrum of MS20a ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 207
S52 ${ }^{13} \mathrm{C}$ NMR spectrum of MS20a $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 208
S53 DEPT 135 spectrum of MS20a ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 209
S54 COSY spectrum of MS20a $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 210
S55 HMQC spectrum of MS20a 211
S56 HMBC spectrum of MS20a 212
Phenylpropanoid dimer
S57 ${ }^{1} \mathrm{H}$ NMR spectrum of MS18 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 214
S58 ${ }^{13} \mathrm{C}$ NMR spectrum of MS18 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 215
S59 DEPT 135 spectrum of MS18 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 216
S60 COSY spectrum of MS18 (300 MHz, CDCl_{3}) 217
S61 HMQC spectrum of MS18 218

LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS

(CONTINUED)

Figure content Page
S62 HMBC spectrum of MS18 219
Triterpenes
S63 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M S 3}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 221
S64 Zoom of the ${ }^{1} \mathrm{H}$ NMR spectrum of MS3 222
S65 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M S 3}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 223
S66 Zoom of the ${ }^{13} \mathrm{C}$ NMR spectrum of MS3 224
S67 DEPT 135 spectrum of MS3 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 225
S68 Zoom of the DEPT 135 spectrum of MS3 226
S69 COSY spectrum of MS3 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$). 227
S70 HMQC spectrum of MS3 228
S71 HMBC spectrum of MS3 229
S72 ${ }^{1} \mathrm{HNMR}$ spectrum of MS5 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 230
S73 Zoom of the ${ }^{1} \mathrm{H}$ NMR spectrum of MS5 231
S74 ${ }^{13} \mathrm{C}$ NMR spectrum of MS5 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 232
S75 DEPT 135 spectrum of MS5 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 233
S76 COSY spectrum of MS5 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 234
S77 HMQC spectrum of MS5 235
S78 HMBC spectrum of MS5 236
S79 ${ }^{1} \mathrm{H}$ NMR spectrum of MS6 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 237
S80 Zoom of the ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{M} 238
S81 ${ }^{13} \mathrm{C}$ NMR spectrum of MS6 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 239

LIST OF NMR SPECTRAL DATA OF ISOLATED COMPOUNDS (CONTINUED)

Figure content Page
S82 Zoom of the ${ }^{13} \mathrm{C}$ NMR spectrum of MS6 240
S83 DEPT 135 spectrum of MS7 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 241
S84 Zoom of the DEPT 135 spectrum of MS6 242
S85 COSY spectrum of MS6 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 243
S86 HMQC spectrum of MS6 244
S87 HMBC spectrum of MS6 245
S88 ${ }^{1} \mathrm{H}$ NMR spectrum of MS7 ($3 \overline{0} 0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 246
S89 Zoom of the ${ }^{1} \mathrm{H}$ NMR spectrum of MS7 247
S90 ${ }^{13} \mathrm{C}$ NMR spectrum of MS7 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 248
S91 Zoom of the ${ }^{13}$ C NMR spectrum of MS7 249
S92 DEPT 135 spectrum of MS7 $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 250
S93 Zoom of the DEPT 135 spectrum of MS7 251
S94 COSY spectrum of $\mathbf{M S 6}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 252
S95 HMQC spectrum of MS6 253
S96 HMBC spectrum of MS6 254

Figure S4 COSY spectrum of MS11 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]

Figure $\mathbf{S 1 9}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M S 1 5}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S22 COSY spectrum of MS15 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S28 COSY spectrum of MS16 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S36 COSY spectrum of MS17 ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure $\mathbf{S 3 7}$ HMQC spectrum of MS17

Figure S38 HMBC spectrum of MS17

§

Figure S43 HMQC spectrum of MS19

$\stackrel{\rightharpoonup}{\wedge}$

Figure S47 DEPT 135 spectrum of MS20 ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S48 COSY spectrum of MS20 $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S49 HMQC spectrum of MS20

$00 \cdot 0-=$

07.02
$\varepsilon 9.02$
$\varepsilon \cdot 02$
06.02

$00 \cdot 07=$
$16 \cdot 59 —$
$2 \varepsilon \cdot 99 \longrightarrow$
$70 \cdot 29=$
$02 \cdot 2 L=$

$\tau \cdot L \varepsilon \tau$

च

$\stackrel{\pi}{c}$

214

150	140	130	120	110	100	90	80	70	60	50	40	30	20	1	
				gure	${ }^{13} \mathrm{C}$	MR	ctr	f	(7	Hz	Cl_{3}		2		

219

ঞ্సి

[^2]

$9 \dagger Z$

$\underset{\text { N }}{\text { N }}$

${ }_{\text {Figure }} \mathbf{S 9 1}$ Zoom of the ${ }^{30}{ }^{13} \mathrm{C}$ NMR spectrum of MS7 ${ }^{25}{ }^{20} \quad 15 \mathrm{ppm}$

APPENDIX C
 LIST OF HRESIMS SPECTRUM OF ISOLATED COMPOUNDS

Figure content
Page

Neolignans
S97 HRESIMS spectrum of MS11 257
S98 HRESIMS spectrum of MS12 258
S99 HRESIMS spectrum of MS14 259
S100 HRESIMS spectrum of MS15 260
S101 HRESIMS spectrum of MS16 261
S102 HRESIMS spectrum of MS17 262
S103 HRESIMS spectrum of MS19 263
S104 HRESIMS spectrum of MS20 264
S105 HRESIMS spectrum of MS20a 265
Phenylpropanoid dimers
S106 HRESIMS spectrum of MS18 266
Triterpenes
S107 HRESIMS spectrum of MS3 267
S108 HRESIMS spectrum of MS5 268
S109 HRESIMS spectrum of MS6 269
S110 HRESIMS spectrum of MS7 270

Mass Spectrum List Report

Mass Spectrum List Report

Analysis Info

Analysis Nam Analysis Nethod Nitirat_ESI pos 2017-2.m Nitirat_E
ESIpos Sample Name

Acquisition Date Operator

Acquisition Parameter

Acquisition Parameter
Source Type ESI
Source Type
Scan Range
Scan Range n/a
Scan Begin $\quad 150 \mathrm{~m} /$
Scan End
n / a
$150 \mathrm{~m} / \mathrm{z}$
$850 \mathrm{~m} / \mathrm{z}$

Ion Polarity

Ion Polarity	Positive
Capillary Exit	90.0 V
Hexapole RF	145.0 V
Skimmer 1	30.0 V
Hexapole 1	22.9 V

$\begin{array}{ll}\text { Set Corrector Fill } & 64 \mathrm{~V} \\ \text { Set Pulsar Pull } & 405 \mathrm{~V}\end{array}$ Set Pulsar Push 405 V Set Reflector 1300 V Set Detector TOF 1985 V

$\#$	$\mathrm{~m} / \mathrm{z}$	Res.	R	
1	197.0784	2694	6642	
2	198.0631	2019	6467	
3	226.9515	32159	7404	
4	240.9670	8031	7589	
5	270.9765	3676	7881	
6	279.2280	2590	7873	
7	294.9389	6273	7914	
8	301.1410	3191	8216	
9	308.9544	1959	8256	
10	362.9264	8087	8803	
11	371.0964	2387	8519	

Figure S99 HRESIMS spectrum of MS14

Mass Spectrum List Report

Analysiş kinfo

Analmais Name Mathod

TOFSLP24297 Kanokon YPMS-12 E+.d Nitirat ESI pos 2018-1.m ESIpos

Acquisition Date 7/9/2018 3:11:22 AM Operator Administrator instrument micrOTOF
\qquad

$\#$	$\mathrm{~m} / \mathbf{z}$	I	Res.
1	216.9224	1906	8250
2	218.9193	585	8079
3	226.9510	4531	8384
4	240.9673	1462	8749
5	273.1673	793	8923
6	303.1792	717	8879
7	327.1612	1062	9509
8	335.1768	1160	9296
9	352.8972	626	10435
10	357.1670	4945	9097
11	358.1712	1180	8598
12	362.9288	925	10173
13	379.1526	19426	10147
14	380.1555	3956	9667
15	381.1667	852	6995
16	391.2837	928	10222
17	395.1370	601	7703
18	411.1655	1168	6398
19	413.2666	2555	9956
20	414.2709	786	10662
21	420.8848	607	10877
22	430.9153	658	10513
23	439.1710	573	9536
24	447.1386	2309	10825
25	497.2139	1221	10792
26	513.2435	1073	11326
27	601.2374	1189	10542
28	713.3127	557	10838
29	735.3097	2220	10793
30	736.3084	1015	11663

Figure S100 HRESIMS spectrum of compound MS15

Mass Spectrum List Report

Figure S101 HRESIMS spectrum of MS16

Mass Spectrum List Report

Analysis Info

Analysis Name Method
Sample Name

TOFSLP23405 Kanok-on YPMS-9 E+.d Nitirat_ESI pos 2017-2.m ESIpos

Acquisition Date Operator $\begin{array}{ll}\text { Operator } & \text { Administrator } \\ \text { Instrument } & \text { micrOTOF }\end{array}$ micrOTOF 74

\#	m/z	1	Res.	
1	199.0606	2160	6667	
2	216.9229	2930	7374	
3	219.0992	10263	6921	
4	226.9515	31252	7283	OCH_{3}
5	240.9673	8144	7376	
6	270.9780	3980	7849	3
7	271.0869	2387	4764	OH
8	279.2282	2531	7585	
9	294.9388	6505	8248	
10	301.1419	6399	8317	-
11	308.9550	2061	8415	
12	343.1574	2123	7798	
13	362.9265	6207	8562	-
14	365.1364	49594	8614	
15	366.1399	10631	8843	
16	376.9431	3177	8781	
17	397.1288	3205	8650	
18	413.2655	5782	9021	
19	425.2128	13425	8603	
20	426.2162	2903	8998	Chemical formula $\quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}$
21	430.9137	6490	9290	
22	433.1232	6765	9263	
23	439.1733	2604	8900	Exact mass 342.1467
24	444.9303	3470	9680	
25	498.9036	4183	9646	
26	501.1109	2912	9847	
27	512.9191	2433	9869	HRMS m/z [M+Na] 365.1364
28	566.8908	3229	9994	
29	634.8795	2006	9590	
30	707.2863	2439	10123	calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na} 365.1365$

Figure S102 HRESIMS spectrum of MS17

Mass Spectrum List Report

Figure S103 HRESIMS spectrum of MS19

Figure S104 HRESIMS spectrum of MS20

Mass Spectrum List Report

Figure S105 HRESIMS spectrum of MS20a

Figure S106 HRESIMS spectrum of MS18

QSLP1795 Kanokon YPMS4 E+.d
Bruker Compass DataAnalysis 4.3

Figure S107 HRESIMS spectrum of MS3

Figure S108 HRESIMS spectrum of MS5

내-7-31-1 Mass Spectrum List Report			
Analysis info	TOFSLP24961 Kanok-on YPMS-16 A+	Acquisition Date	11/21/2018 4:06:22 AM
Method	Nitirat APCI pos 2018-1.m	Operator	Administrator
Sample Name	APClpos	Instrument	microtof

	m/z	1	R
1	149.0240	450	652
2	153.1214	304	6575
3	163.0788	256	668
4	169.0876	45	6577
5	179.0862	267	08
6	183.0880	254	43
7	201.1741	306	53
8	203.1741	477	7708
9	205.1908	1373	899
10	206.1934	249	
11	219.1711	54	830
2	221.1525	261	3469
13	229.2119	537	753
14	253.1204	979	
15	257.2444	557	8316
,	271.2593	506	817
17	279.1579	316	755
18	281.0958	279	828
19	294.1031	261	32
0	295.1093	729	
21	297.2760	513	
22	308.9760	308	
23	391.2839	2126	10305
24	392.2860	592	9695
25	439.3933	3113	10528
26	440.3960	1034	1057
27	455.3844	312	
28	456.3954	337	1038
29	457.4023	1273	10427
30	458.4061	382	

Chemical formula	$\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{2}$
Exact mass	456.3967
HRMS m/z $[\mathrm{M}+\mathrm{H}]^{+}$	457.4023
calcd. for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{2}$,	$457.4045)$

Figure S94 HRESIMS spectrum of MS7

VITA

NAME

DATE OF BIRTH

PLACE OF BIRTH
INSTITUTIONS
ATTENDED HOME ADDRESS

Yupa Pootaeng-on
12 Dec 1977

Nakhon Pathom

Department of Chemistry, Faculty of Science, Silpakorn University
9/6 Village No. 6, Tupluang Sub-district, Mueang Nakhon Pathom District, Nakhon Pathom Province
PUBLICATION Pootaeng-on, Y., Charoensuksai, P., Wongprayoon, P., Jiajaroen, S., Chainok, K., Rayanil, K. 2020. Miliusins; cytotoxic neolignans from the leaves of Miliusa sessilis. Phytochemistry. 176: 112417.

[^0]: *Fractions were further investigated.

[^1]:

[^2]:

