

EFFECT OF METAL OXIDE-SUBSTITUTED LACOO3 PEROVSKITE SUPPORT ON THE CATALYTIC PROPERTIES OF NI/PEROVSKITE IN CARBON DIOXIDE REFORMING OF METHANE

A Thesis Submitted in Partial Fulfillment of the Requirements for Doctor of Engineering (CHEMICAL ENGINEERING) Department of CHEMICAL ENGINEERING Graduate School, Silpakorn University Academic Year 2018 Copyright of Graduate School, Silpakorn University

ผลของตัวรองรับแลนทานัมโคบอลไทต์เพอรอฟสไกต์ ที่ถูกแทนด้วยโลหะออกไซด์ ต่อ สมบัติการเร่งปฏิกิริยาของนิกเกิลบนเพอรอฟสไกต์ ในการรีฟอร์มมิ่งมีเทนด้วย การ์บอนไดออกไซด์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิศวกรรมศาสตรคุษฎีบัณฑิต สาขาวิชาวิศวกรรมเคมี แบบ 1.1 ระดับปริญญาคุษฎีบัณฑิต ภาควิชาวิศวกรรมเคมี บัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร ปีการศึกษา 2561 ลิขสิทธิ์ของบัณฑิตวิทยาลัย มหาวิทยาลัยศิลปากร

EFFECT OF METAL OXIDE-SUBSTITUTED LACOO₃ PEROVSKITE SUPPORT ON THE CATALYTIC PROPERTIES OF NI/PEROVSKITE IN CARBON DIOXIDE REFORMING OF METHANE

A Thesis Submitted in Partial Fulfillment of the Requirements for Doctor of Engineering (CHEMICAL ENGINEERING) Department of CHEMICAL ENGINEERING Graduate School, Silpakorn University Academic Year 2018 Copyright of Graduate School, Silpakorn University

Title	EFFECT OF METAL OXIDE-SUBSTITUTED LaCoO ₃
	PEROVSKITE SUPPORT ON THE CATALYTIC
	PROPERTIES OF Ni/PEROVSKITE IN CARBON
	DIOXIDE REFORMING OF METHANE
By	Phakampai AUNMUNKONG
Field of Study	(CHEMICAL ENGINEERING)
Advisor	CHOOWONG CHAISUK

Graduate School Silpakorn University in Partial Fulfillment of the Requirements for the Doctor of Engineering

\wedge
Dean of graduate school
(Associate Professor Jurairat Nunthanid, Ph.D.)
Approved by
(Assistant Professor VEERAYUT LERSBAMRUNGSUK, D.Eng.)
Advisor
(Assistant Professor CHOOWONG CHAISUK, D.Eng.)
Examiner
(Assistant Professor OKORN MEKASUWANDUMRONG, D.Eng.)
External Examiner
(Professor Navadol Laosiripojana, Ph.D.)
External Examiner
(Thana Sornchamni, Ph.D.)
้ 77 กยาลัยศิลปไป

56404802 : Major (CHEMICAL ENGINEERING)

MISS PHAKAMPAI AUNMUNKONG : EFFECT OF METAL OXIDE-SUBSTITUTED LACOO₃ PEROVSKITE SUPPORT ON THE CATALYTIC PROPERTIES OF NI/PEROVSKITE IN CARBON DIOXIDE REFORMING OF METHANE THESIS ADVISOR : ASSISTANT PROFESSOR CHOOWONG CHAISUK, D.Eng.

The effect of the Ni loading on the LaCoO₃ perovskites, the Ce substitution into La position and the transition metal (Cu, Mn and Zn) substitution into Co position on the LaCoO₃ perovskites structure in Ni/perovskites catalysts was investigated. First, the LaCoO3 perovskites (LC) were prepared by flame spray pyrolysis (FSP), and then the xNi (x = 0, 2, 5 and 10 wt%) was loaded by incipient wetness impregnation method. The catalysts were investigated using a quartz tubular reactor under the atmospheric pressure of 700 °C for 15h. The Ni loading maintains the perovskite structure. The 2NiLC shows the highest reducibility and intensity in the La₂O₂CO₃ phase. The LC catalyst was inactive due to the reduction temperature to 500 °C which was not enough to produce the Co metal dispered in the La₂O₃ support. The 2Ni/LC catalyst showed the highest CH4 and CO2 conversions and H2/CO ratio and stability for the 15 h conversion. When increasing the Ni loading by 5 and 10 wt%, the CH₄ conversion decreases due to the RWGS reaction which is favored a Ni-enriched surface found on the perovskite support. And then, the $2Ni/Ce_xLa_{1-x}CoO_3$ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were investigated. The Ce contents x = 0.2, was inserted into the perovskite structure. When increasing Ce more than 0.2 ratio, it appears segregated in the CeO₂ phase. CeO₂ can provide the stabilization of lattice oxygen O_2 on the surface which it gave the high catalytic activity and stability after the initial 3 hours. The substitution of the La site metal ion with Ce metal ion at x = 0.2, 0.4 and 0.6 show little change in the CO₂ and CH₄ conversion. At x=0.8 and 1.0, it shows an increase in the CO₂ conversion and CO yield due to the effect of RWGS reaction. Its insertion in the perovskite structure is also possible in the low Ce-content. Finally, the transition metal (Cu, Mn and Zn) substitution into Co position were investigated. The perovskite structures were formed when using Co and Mn metals but they did not forme when using Zn and Cu metal. All of the Mn/Co ratio maintains the perovskite structure. The Mn/Co ratio at 0.05 shows the highest CH₄ conversion, H₂ yield and H₂/CO ratio. The Mn and Co mix metals increase catalytic activity due to a change in oxygen mobility within the crystal lattice of the Co component. The Mn/Co ratio at 0.1-0.5 show a decrease in the CO₂ and CH₄ conversion after the 9 hr mark due to metals sintering.

ACKNOWLEDGEMENTS

I would like to thank you very much for my dissertation advisor, Assistant Professor Choowong Chaisuk for his useful suggestions and discussions throughout the course of this research. Not only this research, he also many other methodologies in life. This dissertation would not have been completed if I did not have support from him.

In addition, I would like to thank Synchorotron Light Research Institute for the characterize support (XPS and XAS technique) and grateful for the kind cooperation from Assistant Professor Veerayut Lersbamrungsuk as the chair person, Assistant Professor Okorn Mekasuwandumrong as the examiner, Professor Navadol Laosiripojana and Dr. Thana Sornchamni as the external examiner of the dissertation committee.

Finally, I would like to express my sincere thanks to my parents, my friends and my english teacher for their suggestions and help.

Phakampai AUNMUNKONG

TABLE OF CONTENTS

ABSTRACT	D
ACKNOWLEDGEMENTS	E
TABLE OF CONTENTS	F
LIST OF FIGURES	1
LIST OF TABLES	4
CHAPTER I INTRODUCTION	5
1.1 Objective of research	7
1.2 Scope of research	7
1.3 Contribution of research	8
CHAPTER II BACKGROUND AND LITERATURE REVIEW	9
2.1 DRM reaction and thermodynamics	9
2.2 Perovskite structure	11
2.3 Literature review of perovskite catalyst for DRM reaction	12
2.3.1 Preparation technique	12
2.3.2 Choice of support	13
2.3.3 Addition of promoter by partial substitution at site A	15
2.3.4 Addition of promoter by partial substitution at site B	16
CHAPTER III EXRERIMENTAL	
3.1 Catalyst preparation	18
3.2 Catalyst characterization	22

3.3 The catalytic activity test	.23
CHAPTER IV RESULTS AND DISCUSSION	.24
4.1 The effect of Ni loading on LaCoO ₃ perovskites	.25
4.2 Effect of the Ce partial substitution into La position	.31
4.3 Effect of the transition metals substitution into Co position	.39
CHAPTER V CONCLUSIONS AND RECOMMENDATION	.48
5.1 Conclusions	.48
5.1.1 The effect of Ni loading on LaCoO ₃ perovskites	.48
5.1.2 The effect of Ce partial substitution into La position	.48
5.1.2 The transition metal substitution into Co position	.49
APPENDIX A CALCULATION FOR CATALYST PREPARATION	.50
APPENDIX B CALCULATION OF THE CRSTALLITE SIZE	.52
APPENDIX C N2 ADSORTION/DESORPTION ISOTHERMS AND PORE SIZE	
DISTRIBUTION.	.56
APPENDIX D CALCULATION OF CH4 AND CO2 CONVERSION, H2 YIELD	
AND H ₂ /CO RATIO	.62
REFERENCES	.64
VITA	.69

LIST OF FIGURES

Figure 1 CH ₄ equilibrium conversion various temperatures of CO ₂ /CH ₄ ratio10
Figure 2 Schematic of perovskite compositions
Figure 3 XRD of Pd/LaCoO ₃ during calcination in 21%O ₂ /He at the indicated13
Figure 4 The CH ₄ and CO ₂ conversions of La _{1.x} Ba _x MnO ₃ catalysts for dry reforming
of methane; a) CH_4 conversion, b) CO_2 conversion, c) H_2 selectivity and d) CO
selectivity
Figure 5 XRD patterns of prepared catalysts before the reaction: (a) $LaNi_{0.5}Fe_{0.5}O_3$, 16
Figure 6 CH ₄ and CO ₂ conversions on unreduced LaNi _{1.x} Co _x O ₃ at 800 $^{\circ}$ C17
Figure 7 TGA oxidation curves of the used LaNi _{0.8} Zn _{0.2} O ₃ and LaNiO ₃ after 75 h of
reaction
Figure 8 Experimental set-up scheme of flame spray pyrolysis
Figure 9 The catalyst symbol of LaCoO ₃ catalyst with varying Ni20
Figure 10 The catalysts were prepared by FSP synthesis
Figure 11 The catalyst symbol of catalyst21
Figure 12 Scheme of CO ₂ reforming of CH ₄ reaction line23
Figure 13 XRD patterns of LaCoO ₃ with different temperatures during calcination .24
Figure 14 a)XRD patterns of samples xNi/LC (x = 2-10 wt.%),b) samples after
reduction at 500 °C and c) after test catalytic at 700 °C26
Figure 15 TPR profile of xNi/LC (x = 2-10 wt.%) catalysts28
Figure 16 XRD patterns of samples after test catalytic at 700 °C29
Figure 17 TG and DTG profile of Ni/LC catalysts

Figure 18 XRD patterns of samples 2Ni/LaC (x =2-10 wt%)(a), samples after
reduction at 500 °C(b)
Figure 19 The N ₂ adsorption/desorption isotherms of the 2Ni/Ce _x La _{1.x} CoO ₃ catalysts
Figure 20 The TPR profile for the catalysts different ratio Ce substitutions
Figure 21 Surface atomic ratios of $2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0.0-1.0) catalysts
Figure 22 XPS profile of Ce 3d of $2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0.0-1.0) catalysts
Figure 23 Experimental XANES spectra of $2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0.0-1.0) catalysts
at Co K-edge
Figure 24 CH ₄ and CO ₂ conversions at 15 h a) H ₂ yiled and b) H ₂ /CO ratio of
$2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0-1) catalysts in dry reforming of methane at 700 °C for 15 h37
Figure 25 XRD patterns of $2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0.0-1.0) spent catalysts in dry
reforming of methane at 700 °C for 15 h
Figure 26 TG and DTG profile of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0-1) spent catalysts in dry
reforming of methane at 700 °C for 15 h
Figure 27 XRD patterns of 2Ni/LaBO ₃ (B = Co, Mn, Zn and Cu) catalysts40
Figure 28 TPR profiles of 2Ni/LaBO ₃ (B = Co, Mn, Zn and Cu) catalysts41
Figure 29 CH ₄ and CO ₂ conversions at 15 h a) H ₂ yiled and b) H ₂ /CO ratio of the
catalysts different transition metals in dry reforming of methane at 700 °C for 15 h42
Figure 30 XRD patterns of $2Ni/LaB_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)
Figure 31 TPR profiles of $2Ni/LaB_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)44

LIST OF TABLES

4

CHAPTER I INTRODUCTION

Currently, the excessive use of natural gas and fossil fuels by rapidly industrial plants causes greenhouse gas, which include methane gas (CH₄), carbon dioxide (CO₂), nitrogen oxides (NO_x), ozone (O₃) and others. The major greenhouse gases are CO₂ and CH₄. By this reason, the carbon dioxide reforming of methane, known as dry reforming of methane (DRM) attracts interest because both CH₄ and CO₂ are readily available reactants. DRM not only helps in decreasing toxic airborne emissions, but it also allows for the production of syngas (CO/H₂). This syngas is the starting point of methanol synthesis and a raw material used in the Fischer-Tropsch synthesis (FTS) [1, 2].

The studies on catalysts for DRM reaction are divided into 2 groups, noble and transition metals [1]. In the case of noble metal catalysts, such as Pt, Pd and Ru, they have been shown to exhibit high activity in methane and less sensitive to coking. However, the economy view, the noble metals aren⁻t suitable upscale for industrial level due to their high cost and restricted availability. On the other hand, the transition metals, such as Fe, Co and Ni based catalysts is commonly studied due to its low cost, stability and better availability. They show high activity but rapidly deactivate [3, 4]. However, the major problem in this reaction is the accumulation of carbon on the surface of the catalysts and sintering of the active site, resulting in catalyst deactivation [5].

Furthermore, the coke formation on the surface is to be remedied especially for Ni metal catalyst. The catalytic activity and stability of the nickel catalyst is effected by many factors such as nickel dispersion, basic supports, redox promoters, conditions for the catalysts preparation and the chemical interaction between nickel and the support [6]. This last factor occurs when nickel display disperses into well such as perovskite, spinel and fluorite. The reduction size of the Ni particles leads to a homogeneously distribution and small metal nanoparticles, which inhibits coke formation and enhances catalytic stability [7-9].

Perovskite-type oxides structures are general formula ABO₃. At site A there are lanthanides, such as Ce and La. At site B there are transition metals such as Fe, Co, Mn, Zn, etc. This structure shows particular promise for applications relating to high temperatures and high stability. In addition, partial replacement at the B sites can increase catalytic activity due to a change in oxygen mobility within the crystal lattice of the B component [10]. Another advantage of this structure, it can be added to a noble

metal by impregnation from an aqueous solution in preparation of the oxide support and partial substitution at A and B sites [11].

The LaCoO₃ perovskite invokes particular interest because it has versatile structures (ABO₃-type perovskites) and is produce in several methods such as solvothermal, sol-gel and flame spray pyrolysis (FSP)[12]. It is a major challenge for perovskites to suppress carbon formation maintain high thermal stability and to inhibit the sintering of the metal [13]. The catalyst formed after LaCoO₃ reduction showed high Co metal dispersion with La₂O₃-supported, which can react with the reactant of CO₂, with lead to La₂O₂CO₃ formation. It gave high activities and stabilities[14]. One way to prepare this structure is the flame spray pyrolysis (FSP). It can offer a continuous one-step production of a high intensity crystalline particle and creates high BET surface areas. Several studies have investigated the preparation of supported metal by this method [15-17].

A procedure to improve the activity and stability of LaCoO₃ is introducing structural modifications in the perovskite by partial substitution of Co site by other transition metals (Zn, Cu, Fe, Cr, Mn, etc). In addition, the La site was substituted by Ca or Sr are resistant to coke deposition in dry reforming[18, 19]. CeO₂ can provide the stabilization of lattice oxygen O_2 on the surface which gave it the high catalytic activity and stability [4]. Lima et al. [20] studied the effect of the Ce partial substitution into La position. The $La_{1x}Ce_xNiO_3$ catalyst (x = 0.00, 0.05, 0.04, and 0.70) were tested by DRM. This low amount (x = 0.05) are shown incorporation with perovskite structure confirm by XRD results. It shown the highest CH₄ and CO₂ conversion and stability. Gustavo et al.[21] investigated on the development perovskite catalysts. The LaNi1. $_xMn_xO_3$ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) catalysts were prepared by sol-gel method and tested in the DRM reaction. It was observed that the reduction step increases the Ni³⁺to Ni^o lead to Ni metal on MnO_x-La₂O₃ support. The catalysts at $x \le 0.8$ showed high activity and H₂/CO ratio due to the Ni metal disperse on La₂O₂CO₃-MnO-Mn₂O₃ phases, which it confirm the XRD signal of spent catalyst. These phase corresponds to high activity and stability.

In this work, the LaCoO₃ perovskites were prepared by flame spray pyrolysis (FSP), and then the Ni was loaded by incipient wetness impregnation method. We have studied effect of Ni loading, the Ce partial substitution into La position and the transition metal (Cu, Mn, Zn) substitution into Co position on the catalytic performance of Ni/LaCoO₃ based catalysts in the carbon dioxide reforming of methane.

1.1 Objective of research

The purpose of this work is to study effect of metal-substituted LaCoO₃ perovskite support on the catalytic properties of Ni/perovskite in carbon dioxide reforming of methane.

1.2 Scope of research

Scope of this work is divided into three parts.

1.2.1 Effect of Ni loading on the LaCoO3 perovskites

The LaCoO₃ perovskites are prepared by flame spray pyrolysis (FSP) and Ni is loaded by incipient wetness impregnation method. The nickel loading is varied at 0, 2, 5 and 10 wt%.

1.2.2 Effect of Ce partial substitution into La position

The appropriate nickel loading is selected. The La was substituted by Ce and the perovskite structure becomes Ni/Ce_xLa_{1,x}CoO₃ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0)

1.2.3 Effect of the transition metal substitution into Co position

The appropriate nickel loading is selected. The Co position was substituted by the transition metal (Mn, Zn and Cu). Finally, the transition metals (B=Mn, Zn and Cu) was selected and it partially substituted each into the Co position which resulted in Ni/LaB_yCo_{1,y}O₃(y=0, 0.05, 0.1, 0.5, and 1.0).

All catalysts were characterized and evaluated. The bulk crystal structure and chemical phase composition are determined by X-ray diffraction (XRD). The BET surface area and pore characteristics of catalysts are determined by N₂ physisorption. Temperature programmed reduction (TPR) is used to determine the reducibility of catalysts. The lanthanum oxide and cerium oxide of the catalysts were analyzed by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption (XAS), which these techniques were using for catalyst part 2. Finally, weight loss rates of catalyst determined by thermogravimetric analysis (TGA).

Lastly, the activity and stability of catalysts are tested by the carbon dioxide reforming of methane. This reaction is occurred in quartz tubular reactor under the atmospheric pressure of 700 °C for 15h. The reactant and product are analyzed by GC connecting with TCD detectors.

1.3 Contribution of research

The partial substitution of some metal oxides into La and Co sites on Ni/LaCoO₃ perovskite catalysts can improve the activity and stability for the carbon dioxide reforming of methane under atmospheric pressure at 700 °C. The perovskites catalysts can promote H_2 /CO yield ratio nearly 1. This syngas (H_2 /CO) is a raw material used in the other reaction.

CHAPTER II BACKGROUND AND LITERATURE REVIEW

2.1 DRM reaction and thermodynamics

The CO₂ reforming of CH₄ or dry reforming of methane (DRM) attracts interest because both CH₄ and CO₂ are inexpensive reactants and it, DRM, produces a syngas (H₂/CO). The DRM also allows for a lower production of syngas (H₂/CO = 1), which is the starting point of methanol synthesis and a raw material which is used in the technologies of Fischer-Tropsch synthesis (FTS)[22]. The use of syngas, produced by DRM, has also been considered for the storage of nuclear and solar energy [23]. The main reactions which may occur in DRM are considered in the equation 2.1 and other side reactions as shown in the equations 2.2-2.17.

CH ₄ +CO ₂		$2CO + 2H_2$	$\Delta H = 247 \text{ kJ mol}^{-1}$	2.1
CO ₂ + H ₂		$CO + H_2O$	$\Delta H = 41 \text{ kJ mol}^{-1}$	2.2
$2CH_4 + CO_2$	+	$C_2H_6+CO+H_2O$	$\Delta H = 106 \text{ kJ mol}^{-1}$	2.3
$2CH_4 + CO_2$		$C_2H_4 + 2CO + 2H_2$	$O\Delta H = 284 \text{ kJ mol}^{-1}$	2.4
C ₂ H ₆		$C_2H_4 + H_2$	$\Delta H = 136 \text{ kJ mol}^{-1}$	2.5
CO +2H ₂	\leftrightarrow	CH ₃ OH	$\Delta H = -90.6 \text{ kJ mol}^{-1}$	2.6
CO ₂ +3H ₂		$CH_3OH + H_2O$	$\Delta H = -49.1 \text{ kJ mol}^{-1}$	2.7
CH4		C + 2H ₂	$\Delta H = 74.9 \text{ kJ mol}^{-1}$	2.8
2CO	स्त	C + CO ₂	$\Delta H = -172.4 \text{ kJ mol}^{-1}$	2.9
$CO_2 + 2H_2$		$C + 2H_2O$	$\Delta H = -90 \text{ kJ mol}^{-1}$	2.10
$H_2 + CO$		$2H_2O + C$	$\Delta H = -131.3 \text{ kJ mol}^{-1}$	2.11
$CH_3OCH_3 + CO_2$	\longleftrightarrow	3CO + 3H ₂	$\Delta H = 258.4 \text{ kJ mol}^{-1}$	2.12
3H ₂ O +CH ₃ OCH ₃	\longleftrightarrow	$2CO_2+6H_2$	$\Delta H = 135 \text{ kJ mol}^{-1}$	2.13
$CH_3OCH_3 + H_2O$	\longleftrightarrow	$2CO + 4H_2$	$\Delta H = 204.8 \text{ kJ mol}^{-1}$	2.14
2CH ₃ OH	\longleftrightarrow	$CH_3OCH_3+H_2O\\$	$\Delta H = -37 \text{ kJ mol}^{-1}$	2.15
$CO_2 + 4H_2$	\longleftrightarrow	CH_4+2H_2O	$\Delta H = -165 \text{ kJ mol}^{-1}$	2.16
$CO + 3H_2$	$ \longleftrightarrow $	$CH_4 + H_2O$	$\Delta H = -206.2 \text{ kJ mol}^{-1}$	2.17

Primarily, dry reforming of methane (DRM) is used after steam reforming of methane (SRM). DRM consumes the residual methane and decreases the hydrogen concentration. In addition, both of the reactions are very endothermic and require high temperatures and an atmospheric pressure, which result in successful conversions of methane. The evaluation of the CO_2/CH_4 ratio in a DRM reaction can be observed

showing the values of the CH_4 equilibrium conversion which are relative to the various temperatures shown in Figure 1[24].

Figure 1 CH₄ equilibrium conversion various temperatures of CO₂/CH₄ ratio

Thermodynamic studies show that DRM reactions do not occur spontaneously at temperatures below 640 °C. Equation 2.1, shows a successful DRM reaction at temperatures > 723 °C₁25₁. Reverse water gas-shift (RWGS), as shown in equation 2.2, is greatly affected by the equilibrium in the temperature range of 650-850 °C. In this case, the DRM reactions are accompanied by the reaction of RWGS simultaneously. Equations 2.3-2.5 occur at temperatures > 850 °C. The hydrogenation of CO₂ and CO (equation 2.6-2.7) are much more favorable towards a RWGS reaction, especially at temperatures > 750 °C and increase as does the temperature up to and including 1,000 °C. Another side reaction, CH₄ decomposition, shown in equation 2.8, is the carbon formation at temperatures > 557 °C. This reaction will be influenced by equilibrium limitations at the higher temperatures. The DRM reaction is endothermic and accumulates carbon from the CH₄ decomposition side reaction. For this occurrence, the catalyst is used for lowering the activation energy and improving the performance of this reaction.

As first reported in publications in the 1990's, the noble metals catalysts were used for dry reforming of methane. They have been shown to exhibit high activity in

methane and less sensitive to coking[x]. However, from an economic perspective, the noble metals aren⁻t suitable for industrial level usage due to their high cost and restricted availability. The next step was the usage of a transition metal, such as Co, Mn, Fe and others which were widely used due to the noble metal economic factors. The nickel based catalyst is the most effective metal due to its high activity in methane, low cost and is easily obtainable. However, the major problem in this reaction is the accumulation of carbon on the surface of the catalyst. The morphology of the carbon formation on Ni is unique, with carbon forming whiskers beginning at the Ni-support interface and growing outward. Moreover, the support has the effect of this reaction due to its interaction with metal. This catalyst was used with various oxides support such as Al₂O₃, La₂O₃, CeO₂, MgO, SiO₂, perovskite oxides, spinel[26-29].

2.2 Perovskite structure

The Russian mineralogist, Count Lev Aleksevich von Perovski, discovered the mineral perovskite (CaTiO₃) in the Ural Mountains in 1839 [30]. Much later, the first catalytic studies on perovskite catalysts were published in the beginning of the 1970s, reporting exceptional catalytic properties in oxidation reactions and NO reduction, when these catalysts were used instead the platinum-group metals in automotive exhaust catalytic convertors. Today, perovskites attract interest because their ease of preparation and low cost compared to noble metals and the advantage of this structure to accommodate a wide range of substituting and doping elements, allowing the tailoring of their properties to better target their applications [31].

Perovskite-type oxides are general formula ABO₃. the A cation is divalent and the B cation is tetravalent. At A cation there are lanthanides, such as Ce and La. At B cation there are thransition metal, such as Ni, Co, Mn and Fe. The ions occupying the A and B lattice sites are detailed in Figure 2.

Figure 2 Schematic of perovskite compositions

2.3 Literature review of perovskite catalyst for DRM reaction

Furthermore, numerous researches have been published regarding perovskite materials developed for high activity and stable catalysts for the dry reforming of methane. Several factors, such as conditions for the catalyst preparation, the preparation method, the basic supports and the addition of the promoter by partial substitution at site A and B were observed to improve the activity of catalysts and inhibit deactivation. Literature reviews of perovskite catalyst for DRM reaction are divided into four parts.

2.3.1 Preparation technique

The catalyst preparation methods have strong influence over physic chemical properties and performance of catalyst. Rivas et al. [32] prepared the LaNiO3 perovskites by co-precipitation, sol-gel, and wet impregnation. All samples were calcined at 750 °C for 5 h. After the reduction step (10% H₂/N₂ at 700 °C for 2 h), the metallic nickel particle size depended on the preparation method. The co-precipitiation method shows the nickel dispersion lower than the impregnation method. The perovskite, prepared by coprecipitation after DRM reaction at 400 and 650 °C for 24 h, shows the highest CH₄ and CO₂ conversion and H₂/CO molar ratio. The XRD pattern of spent of the catalyst shows the hexagonal lanthanum oxycarbonate phase La₂O₂CO₃ and nickel metal. The CH₄ and CO₂ conversion of LaNiO₃ perovskite without reduction didn't show differences with the reduced sample. Chawla et al.[33] studied the preparation method of LaNiO₃ and LaCoO₃ perovskites catalyst by sol gel (SG), co-precipitation (CP) and impregnation (IM) method of DRM compared with the Ni/Al₂O₃(IM). The Ni/Al₂O₃ catalyst was loaded with different types of promoters to improve activity, selectivity and stability during long-term reaction. The LaNiO₃(CP) perovskite showed the highest CH₄ and CO₂ conversion.

Valderrama et al. [7] investigated the use of perovskite-type solid solutions $La_{1,x}Sr_xCoO_3$ as precursors of highly dispersed Co nanoparticles to avoid coke formation during the dry reforming of methane under continuous flow of reactive gases. There catalysts were prepared by the auto combustion method and used as precursors for the catalytic methane dry reforming at 800 °C, atmospheric pressure under continuous flow of feed gases with a CH₄: CO₂ 1:1 ratio. Catalysts formation of LaSrCoO₃ solid solutions was confirmed by the more intense diffraction peaks. It was observed that the activation/reduction process occurred through intermediary species producing Co⁰ nano-size particles over the SrO and La₂O₃ phases, which were highly

dispersed in the La₂O₂CO₃-SrO solid matrix responsible for the high activity and low carbon formation after test catalytic. The display of Sr in doping quantities slightly promotes secondary reactions such as carbon formation and water gas shift retarding partially in this reaction.

In the recent past, Chiarello et al.[34] set up a flame-pyrolysis (FP) equipment for the one-step synthesis of perovskite mixed oxides LaCoO₃ perovskite and 0.5 wt% Pd/LaCoO₃ similar to that used for the preparation of different materials[35, 36]. The XRD pattern of Pd/LaCoO₃ during calcination in 21% O₂/ He at the indicated temperatures is also shown in Figure 3. At 600 °C, the surface area decreased to 20 m²/g. After calcination at 800 °C, the reflections of the perovskite became narrower and more intense, and the surface area decreased to 8 m²/g. Calcination at 800 °C caused sintering and substantial incorporation of Pd at the B-site of the ABO₃. Thermal resistance showed directly related to flame temperature, i. e. to the combustion enthalpy of the solvent, but a relatively high amount of residual organic matter can negatively affect this property.

Figure 3 XRD of Pd/LaCoO₃ during calcination in $21\%O_2$ /He at the indicated temperatures: (\Box) LaCoO₃; (+) Co₃O₄; (o) La₂CoO₄ phases

2.3.2 Choice of support

Perovskite material was also used as a catalyst support for the DRM reaction. Barros et al.[37] reported the nickel catalyst prepared by impregnation method using the BaTiO₃ as support for the DRM reaction. All catalysts were tested at 800°C. The Ni/BaTiO₃ shows a higher CH₄ and CO₂ conversion than Ni/ γ -Al₂O₃ catalyst. After the reduction step, the γ -Al₂O₃ showed a phase transition, but the Ni/ BaTiO₃ remained unaltered. However, the γ -Al₂O₃ wxhibites higher acidity than the BaTiO₃ and catalyst didn't promote a favorite of CO_2 absorption. Therefore, its activity was lower than $BaTiO_3$

Wang et al. [38] developed the LaNiO₃ perovskite catalysts supported by mesoporous SBA-15, MCM-41 and Silica carrier for Dry Reforming of Methane. The catalysts were prepared via filling the pores of mesoporous silica with citrate complex precursors of nickel and lanthanum. The LaNiO₃/MCM-41 showed the highest initial catalytic activity due to the high Ni dispersion. The LaNiO₃/SBA-15 was more stable than the LaNiO₃/MCM-41 in the long-term reaction. Inaddition, the stable silica matrix was inhibited by the agglomeration of nickel species. The carbon deposition shows a dramatic decrease of the catalytic activity for LaNiO₃/SiO₂ catalysts.

The LaNiO₃/SBA 15 was modified in the perovskite by the second cation in the A and/or B site. The incorporation of the oxides into the perovskite generated a higher metal-support interaction, increasing the Ni reduction temperature. The CH₄ and CO₂ conversions that form the dry reforming of methane reaction at 600 °C and 700 °C for 24 h are shown in table 1. The CH₄ and CO₂ conversion decrease when added to the A or B of the bulk perovskite as reported by Rivas et al.[13].

Хсн4 (%)	XCO2 (%)	H ₂ /CO (molar ratios)	
85	87	0.90	
55	71	0.80	
66	80	0.80	
7 7 88 7 9	91	0.90	
82	88	1.00	
86	88	1.00	
63	74	0.87	
69	70	1.04	
53	65	0.84	
	XcH4 (%) 85 55 66 88 82 86 63 69 53	XcH4 (%) XcO2 (%) 85 87 55 71 66 80 88 91 82 88 86 88 63 74 69 70 53 65	

Table 1 Catalytic results of perovskite oxides bulk and built-in a SBA-15.

1.017.2

a Treaction = 700 °C

b Treaction = 600 °C; CH₄:CO₂:Ar = 1:1:8; VE = 24 L⁻¹g⁻¹; m_{cat} = 200 mg; P = 1 atm; time = 24 h

2.3.3 Addition of promoter by partial substitution at site A

The important advantage of using perovskite-type structures is the possibility of total or partial substitution of A and B cations, which modify the redox properties of the catalyst and catalytic activity.Bhavani et al.[39] investigated barium substituted lanthanum manganite $La_{1,x}Ba_xMnO_3$ (x = 0.10-0.50) perovskite for dry reforming of methane. The Ba/Mn ratio of 0.10 and 0.15 showed a high surface area with uniform particle and pores. The catalytic activity shown in Figure 4. The $La_{0.85}Ba_{0.15}MnO_3$ showed a high CH₄ and CO₂ conversions, a H₂/CO ratio and a minute coke formation. It was better than more other Ni based catalysts of lanthanum manganite.

Figure 4 The CH₄ and CO₂ conversions of La_{1x}Ba_xMnO₃ catalysts for dry reforming of methane; a) CH₄ conversion, b) CO₂ conversion, c) H₂ selectivity and d) CO selectivity.

Mixed oxides $La_{1,x}Ce_xNiO_3$ (x = 0, 0.05, 0.4 and 0.7) was prepared by the citrate method and tested in the CH₄ dry reforming of methane with CO₂ reaction. The LaNiO₃ perovskite shows higher activity in CH₄ conversion, it undergoes a slow deactivation with time on stream. Yet, the substitution of the A site metal ion with Ce led to an increase in the CH₄ and CO₂ conversions and increased the stability of the catalysts with respect to the reforming reaction. These results were reported by Lima et al.[40]. Yang et al.[41] developed that $La_{0.9}M_{0.1}Ni_{0.5}Fe_{0.5}O_3$ (M = Sr and Ca) for CH₄ dry reforming with CO₂. Diffraction patterns of prepared LaNi_{0.5}Fe_{0.5}O₃ and La_{0.9}M_{0.1}Ni_{0.5}Fe_{0.5}O₃ (M = Sr and Ca) were presented in Figure 5. Since the substitution amount of the promoter metals (Ca/Sr) was very small, few changes in XRD patterns were observed. The effect of partial substitution of La with Sr/Ca was investigated in the dry reforming reaction of methane for H₂/CO ratio. The XRD patterns change slightly when the partial substitution of a small amount of the promoter metals (Ca/Sr). The La_{0.9}Ca_{0.1}Ni_{0.5}Fe_{0.5}O₃ catalyst exhibit the highest catalytic activity and resistances to carbon during the long-time reaction.

Figure 5 XRD patterns of prepared catalysts before the reaction: (a) LaNi_{0.5}Fe_{0.5}O₃, (b) La_{0.9}Sr_{0.1}Ni_{0.5}Fe_{0.5}O₃, (c) La_{0.9}Ca_{0.1}Ni_{0.5}Fe_{0.5}O₃. (P perovskite).

2.3.4 Addition of promoter by partial substitution at site B

The Co substituted nickel perovskite was also used for dry reforming of methane, focusing at better dispersing of the active nickel species at the surface of the support. Sierra et al.[42] obtained cobalt substituted lanthanum nickelate (LaNiO₃) in methane dry reforming. The evolution of CH₄ and CO₂ conversions were shown in Figure 6. The presence of cobalt showed a decrease of CH₄ and CO₂ activity due to Co-Ni alloy formation. Nevertheless, the stability of the carbon deposition was increased in the cobalt.

Figure 6 CH₄ and CO₂ conversions on unreduced LaNi_{1.x}Co_xO₃ at 800 °C.

Provendier et al.[43] studied the iron in LaFe_{1.x}Ni_xO₃ for DRM at 800 °C for 25 h. The addition of iron did not affect the catalytic activity, but strongly (increased) stability. It did not (create or affect) the carbon deposition during the reaction. Moradi et al.[44] showed good activity and stability of LaNi_{0.8}Zn_{0.2}O₃ perovskite for CO₂ reforming of CH₄. TPR results showed that partial substitution of Ni by Zn increased the temperatures of reduction peaks, leading to the more stable perovskite structure compared to LaNiO₃ structure. It indicated that Zn stabilizes the perovskite structure. In addition, TGA (Figure 7) results showed that LaNiO₈Zn_{0.2}O₃ was more resistant to coke formation in comparison with LaNiO₃ during 75 h time on stream stability test.

Figure 7 TGA oxidation curves of the used $LaNi_{0.8}Zn_{0.2}O_3$ and $LaNiO_3$ after 75 h of reaction.

CHAPTER III EXRERIMENTAL

This part is divided into three parts consisting of catalyst preparation, catalyst characterization and the catalytic activity test. The first part explains catalyst preparation by flame spray pyrolysis (FSP) and incipient wetness impregnation methods. The second part explains catalyst characterization using different techniques containing X-ray diffraction (XRD), N₂ physisorption, temperature programmed reduction (TPR), Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) and the X-ray absorption (XAS), which these techniques were using for catalyst part 2. Finally, a detailed procedure for catalyst evaluation in the carbon dioxide reforming of methane is explained.

3.1 Catalyst preparation

The catalysts were prepared by two methods. The LaCoO₃ perovskites were prepared by flame spray pyrolysis (FSP) and Ni was loaded by the incipient wetness impregnation method. The chemicals used in this research are shown in table 2.

Chemicals	Formula	Grade (%)	Manufacture
Lanthanum (III) nitrate hexahydrate	LaN ₃ O ₉ ·6H ₂ O	99	Sigma-Aldrich Cheme GmbH, Germany
Cobalt (II) nitrate hexahydrate	Co(NO ₃) ₂ 6H ₂ O	98	Ajax Finechem.Pty Ltd
Cerium(III) nitrate hexahydrate	Ce(NO ₃) ₃ ·6H ₂ O	99	Sigma-Aldrich Cheme GmbH, Germany
Manganese (II) nitrate tetrahydrate	Mn(NO3)24H2O	99	Ajax Finechem.Pty Ltd

Table 2 The details of chemicals used in the catalyst preparation

Chemicals	Formula	Grade (%)	Manufacture
Copper(II) nitrate trihydrate	$Cu(NO_3)_2 \cdot 3H_2O$	98	Sigma-Aldrich Cheme GmbH, Germany
Zinc (II) nitrate hexahydrate	$Zn(NO_3)_2 \cdot 6H_2O$	98	Ajax Finechem.Pty Ltd
Ethanol	C ₂ H ₅ OH	98	J.T.Baker

The FSP reactor is used for preparation of catalysis. Figure 8 shows scheme of flame spray. The LaCoO₃ perovskite-type oxides were prepared by flame spray pyrolysis. The cobalt (II) nitrate hexahydrate (Co(NO₃)₂·6H₂O) and lanthanum (III) nitrate hexahydrate (LaN₃O₉·6H₂O) were diluted with an ethanol solution to 0.5 M. After that, the solution was transferred to an ultrasonic bath for 30 min and stired. Using a specifically designed enclosed chamber the mixed liquid precursor was projected towards a CH₄/O₂ flame using a syringe pump and dispersed by O₂. The fine spray was created by the use of a capillary tip and evaporated into the flame. The LaCoO₃ material was collected on a glass microfiber filter utilizing a vacuum pump. These FSP-made LaCoO₃ oxides were divided into two parts. One was calcined in airflow at 800 °C for 4 h and denoted as LC. Another was the starting material for the catalyst preparation.

Figure 8 Experimental set-up scheme of flame spray pyrolysis

The preparation is divided into three parts. First, the Ni metal solution (nickel nitrate) was impregnated into the FSP-made LaCoO₃ support. The nickel loading is varied at 0, 2, 5 and 10 wt%. After the incipient wetness impregnation, the material was dried at 110 °C for 12 h and then calcined in airflow at 800 °C for 4 h. The catalyst and catalyst symbols are shown in Figure 9 and 10. The appropriate nickel loading is selected. It was used in part 2 and 3.

Figure 10 The catalysts were prepared by FSP synthesis

Next part, the $Ce_xLa_{1-x}CoO_3$ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0). catalysts were prepared by flame spray pyrolysis (FSP), Using the same condition as part 1. The catalyst symbols are shown in table 3.

	Catalyst	
	x = 0.0	
	x = 0.2	
	x = 0.4	
	x = 0.6	
	x = 0.8	
	x = 1.0	
<i>(</i> /)		

Table 3 The catalyst symbol of Ni/Ce_xLa_{1.x}CoO₃ catalyst with varying Ce/La ratio

Finally, the Co position was substituted by the transition metal (Mn, Zn and Cu). The catalysts were prepared by flame spray pyrolysis (FSP). And then, the transition metals were selected and it partially substituted each into the Co position which resulted in Ni/LaB_yCo_{1,y}O₃(y = 0, 0.05, 0.1, 0.5, and 1.0). The detail is shown in Figure 11.

Figure 11 The catalyst symbol of catalyst

3.2 Catalyst characterization

3.2.1 X-ray diffraction (XRD)

The bulk crystal structure, crystalline size, and chemical phase composition were analyzed using X-ray diffractometer SIEMENS D-5000 diffractometer with a Cu K α radiation source. The XRD patterns were recorded in the range 2 θ from 20 to 80°. The crystallite sizes are assessed from line broadening according to the Scherrer equation and α -Al₂O₃ is used as standard.

3.2.2 N₂ physisorption

The surface area and pore characteristics were determined using BET BELSORP MINI Π JAPAN. The samples were degasified in He gas flow of 50 ml/min at 150 °C for 3 h. The catalyst cell was dipped in the dewar containing liquid nitrogen. The N₂ adsorption-desorption was measured by the different partial pressure of N₂ at -196 °C.

3.2.3 Temperature programmed reduction (TPR)

Temperature programmed reduction (TPR) experiments were performed using a Micromeritics AutoChem 2910. A 0.1 g of a catalyst sample is placed in a quartz tubular reactor. Under nitrogen atmosphere at a flow rate of 30 ml/min, the catalyst sample is heated up to 150 °C at a heating rate of 10 °C/min. The catalyst samples in a quartz tubular reactor was reduced from 100 °C to 800 °C at a heating rate of 10 °C/min in 10% H₂/N₂ flow gas of 30 ml/min. During the reduction step, the water produced in the process was trapped by the liquid nitrogen.

3.2.4 Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was performed by SDT Q600 equipment. The sample was heated from room temperature up to 1000 °C in a heating rate of 10°C/min under a flow of air atmosphere to measure loss of the catalyst weight.

3.2.5 X-ray photoelectron spectroscopy (XPS)

The lanthanum oxide and cerium oxide of the catalysts were analyzed by Xray photoelectron spectroscopy (XPS) at the SLRI-XPS beamline (BL5.3) at the Synchrotron Research Institute (Public Organization), Nakhon Ratchasima, Thailand.

3.2.6 X-ray absorption (XAS)

The X-ray absorption (XAS)near edge spectra (XANES) of Ce and La were collected in transmission mode at the SLRI-XAS beamline (BL8) at the Synchrotron Research Institute (Public Organization), Nakhon Ratchasima, Thailand.

3.3 The catalytic activity test

The DRM was tested in a quartz tubular reactor under atmospheric pressure. A catalyst sample is packed in a quartz tubular reactor with placed in the furnace. Prior to the catalytic activity test, the catalyst sample was heated up to 500 °C in argon flow rate of 60 ml/min with a heating rate of 10 °C/min and the catalyst is reduced by hydrogen with flow rate of 60 ml/min at 500 °C for 2 h. After the reduction, the temperature was increased to 700 °C by argon flow and the CH₄ and CO₂ with the molar ratio of CH₄/CO₂ as 1 was introduced. The total volumetric flow rate was 40 ml/min to maintain GHSV wequal to 12,000 h⁻¹. The products of the reaction were collected hourly for 15 h. The composition of the product stream was analyzed on-line by gas chromatograph connecting with Porapak Q column and thermal conductivity detector (TCD). Schematic diagram of the reaction line shown in Figure 12.

Figure 12 Scheme of CO₂ reforming of CH₄ reaction line

CHAPTER IV RESULTS AND DISCUSSION

The results and discussion in this chapter are divided into three parts; the effect of Ni loading, the Ce partial substitution into La position and the transition metals (Cu, Mn and Zn) substitution into Co position. These are the results of physical and chemical properties of nickel based catalysts and the catalytic activity tests.

First, the LaCoO₃ perovskites were prepared by flame spray pyrolysis (FSP), it was studied effect of the temperatures during calcination. The LaCoO₃ was prepared by FSP method and show no calcination as shown LaCoO₃ symbol. The second sample was also prepared by FSP method and calcined at 500°C as shown LaCoO₃ 500°C symbol. The third samples were also prepared by FSP method and calcined at 800 °C as shown LaCoO₃ 800 °C. The X-ray diffraction spectra of samples with different temperatures during calcination are shown in Figure 13. The LaCoO₃ shows low crystallinity and the surface area was 27.4 m²/g. The LaCoO₃ 500 °C showed an increase in the intensity of the LaCoO₃ peaks, but the surface areas decreased 15.2 m²/g due to the metal sintering[11]. The LaCoO₃ 800 °C showed high, narrow and intense peaks, but the surface areas decrease to 6.1 m²/g. However, the perovskite catalysts are the crystallize oxide. The temperatures calcination at 800 °C was used for three part.

Figure 13 XRD patterns of LaCoO₃ with different temperatures during calcination

4.1 The effect of Ni loading on LaCoO₃ perovskites

The physical and chemical properties of the catalysts were focused on. The phase identification and the average crystalline size were determined using the X-ray diffraction technique. The BET surface area, the pore characteristics and the average particle size were determined by the nitrogen physisorption. The temperature programmed reduction (TPR) exhibited reduction behavior and reducibility of the catalysts. The weight loss and derivative weight loss of all spent catalysts were obtained after the DRM reaction was investigated by using TG.

The X-ray diffraction spectra of samples with different Ni loading are shown in Figure 14. All of the XRD patterns of the fresh catalysts show only LaCoO₃ crystalline phase as seen in Figure 14a. This phase was in agreement with the literature [45, 46]. These results showed that the preparation by FSP in the single step can generate the LaCoO₃ phase with a high purity crystallinity. The calcination after adding Ni can maintain the perovskite structure but decrease the degree of its crystallinity. Figure 14b shows the XRD pattern of the catalysts after reduction. For all catalysts, the XRD peaks of LaCoO₃ phase disappeared but the La₂O₃ phase were found. The CoO peak was clearly observed for only LC catalyst. This indicated that during the reduction step the LaCoO₃ perovskite structure was destroyed, which resulted in the cobalt species dispersed on the La₂O₃ phase[47]. The 2Ni/LC and 5Ni/LC showed high crystallinity of La₂O₃ compared to the LC. On the other hand, the intensity of La₂O₃ peaks in the 10Ni/LC was very low because the catalyst surface was covered by much more nickel species[48].

Figure 14 a)XRD patterns of samples xNi/LC (x = 2-10 wt.%),b) samples after reduction at 500 °C and c) after test catalytic at 700 °C

Y

The BET surface area and the average pore diameter obtained by N_2 physisorption are shown in table 4. The data of N_2 physisorption for the uncalcined LaCoO₃ oxides were also collected but not shown here. It was found that after calcination the BET surface area of the LaCoO₃ support was significantly decreased from 27.4 to 6.1 m²/g. This result indicated the metal sintering occurred by the calcination at high temperature [11]. The surface area decreases when the Ni loading is increased with the exception of 5Ni/LC due to LC was impregnated with Ni before calcination occurs at a temperature of 800 °C [49].

Catalyst	S _{BET} (m ² /g)	D _{pore} (nm)	XRD initial phase	XRD after reduction (500 °C)	XRD after reaction (700 °C)
LC	6.1	7.3	LaCoO ₃	CoO, La ₂ O ₃	$La_2O_2CO_3$
2Ni/LC	3.4	6.1	LaCoO ₃	La_2O_3	$La_2O_2CO_3$
5Ni/LC	8.7	6.1	LaCoO ₃	La_2O_3	$La_2O_2CO_3$
10Ni/LC	1.9	6.4	LaCoO ₃	La ₂ O ₃	$La_2O_2CO_3$

 $\label{eq:second} \begin{array}{l} \textbf{Table 4} \mbox{ The BET surface area} (S_{BET}), \mbox{ the average pore diameter} (D_{pore}), \mbox{ XRD data of Ni based} \end{array}$

Figure 15 shows the reduction characteristics of all catalysts. For the LC, there were two main reduction regions a t below and above 400 °C. The first region was assigned as overlap of two reduction steps. The LaCoO₃ was first reduced to form LaCoO_{2,75} and then La₄Co₃O₁₀ as shown in the equations (1) and (2). Valderrama et al. reported that the LaCoO₃ phase was destructed, which assured the mobility of oxide ions. The reduction of La₄Co₃O₁₀ to create La₂O₃ and Co metal was proceeded in the second region at high temperature as shown in the equation (3). This was implied to strong interaction of Co metal and La₂O₃ support [22]. In addition, a broad peak at 400-500 °C show the intermediate formation of La₂CoO₄ [14].

$$LaCoO_3 + 0.25H_2 \rightarrow LaCoO_{2.75} + 0.25H_2O$$
 (1)

$$4LaCoO_{2.75} + H_2 \rightarrow La_4Co_3O_{10} + Co + H_2O \tag{2}$$

$$La_4Co_3O_{10} + 4H_2 \rightarrow 2La_2O_3 + 3Co + 4H_2O \tag{3}$$

The introduction of Ni showed that both regions were shifted to higher temperature and their positions were closer. The percentage of reduction can be observed in table 5, indicating the 2Ni/LC shows the highest reducibility. When increasing the Ni loading by 5 and 10 wt%, the results decrease the reducibility due to having large Ni metal and decrease the formation of perovskite structure.

Figure 15 TPR profile of xNi/LC (x = 2-10 wt.%) catalysts

The CH₄ conversion of the xNi/LC catalysts for dry reforming of methane at 700 °C for 15 h were reported as shown in table 5. The LC catalyst was rather inactive for the DRM reaction. It was reminded that before the catalytic test the reduction of this catalyst was occurred at 500 °C. From the TPR profile (Figure 15), it was implied that at the reduction temperature of 500 °C the LaCoO₃ structure can be hardly reduced to produce the La₂O₃ structure, which was necessary for an initial activation of CO₂ to form La₂O₂CO₃ phase. When adding Ni in the perovskite support, the catalytic activity was very high. It was notable that conversion of CO₂ was higher than that of CH4. The Ni sites was more active than the Co sites in this reaction and therefore the CH₄ was first adsorbed and activated on the surface of Ni metal. The Ni active sites were well known to promote the reverse water gas shift reaction (RWGS) [50]. This resulted in more production of CO. The 2Ni/LC catalyst showed the highest CH₄ and CO₂ conversions and H₂/CO ratio as shown in table 5. Additionally, the CH₄ conversion was decreased with increasing Ni loading but the CO₂ conversion was rather constant. A high amount of Ni promoted the reverse water gas shift reaction and therefore the difference in the CH₄ and CO₂ conversions referred to the Co and Ni activities over the La₂O₃ support.
Catalyst	Initia	l (1h)		Final	(15h)	W	eight loss TG (%)	Reducibility (%)
	X _{CH4%}	$X_{CO2_{\%}}$	H ₂ /CO	$X_{CH4_{\%}}$	$X_{CO2_{\%}}$	H ₂ /CO		
2Ni/LC	31	64	0.57	66	77	0.86	23.2	86.7
5Ni/LC	34	67	0.61	58	79	0.74	36.7	67.0
10Ni/LC	13	57	0.43	39	71	0.63	49.5	42.3

Table 5 CH₄ and CO₂ conversion (%), H₂/CO ratios, weight loss determined in the TG oxidation tests and percentage of reduction of Ni based.

Figure 16 shows the XRD signal of this spent catalyst. For all spent catalysts the La₂O₂CO₃ phase was formed due to the La₂O₃ reacting with the CO₂ reactant during the DRM [50]. The 2Ni/LC shows the highest intensity La₂O₂CO₃ phase, which played a very important role in this reaction. It can inhibit carbon formation and improve the catalytic activity and stability [12]. The 5Ni/LC and 10 Ni/LC, the results were identical and showed a La₂O₂CO₃ phase and a La₂O₃ phase. This was due to having large Ni metal which it has high of carbon formation with relative with TGA results [14].

Figure 16 XRD patterns of samples after test catalytic at 700 °C

The weight loss and derivative weight loss of all spent catalysts obtained after DRM reaction at 700 °C for 15 h were investigated by using TGA as shown in Figure 17. The increase in LC catalyst weight in the temperature range of 380-820 °C was mainly due to the re-oxidation of metallic species [51]. This results can be calculated with TPR results. The elements in the catalyst can be found in table 6. When increase Ni loading, the La₂O₃ phase increased with the exception of 2Ni/LC due to the La₂O₃ can form together with Co to produce the highest amount of LaCoO₃ perovskite. All Ni based catalysts showed two regions of the weight loss (Figure 17). The first region occurred in the range of 300 and 550 °C. This weight loss has been attributed to the oxidation of the amorphous carbon, which is the active species in the formation of synthesis gas [40]. The second weight loss above 700 °C has been attributed to the decomposition of La carbonates [52]. The weight loss comparison can be seen in table 6. Since the 2Ni/LC catalyst resulted in only a 23.2 % weight loss, which causes less carbon formation, the La₂O₂CO₃ phase to be the preferred mechanism, confirming the XRD results. Subsequently, carbon is removed from the surface by the following reaction (Eq. (1)). The 5Ni/LC and 10 Ni/LC show higher weight loss, respectively due to high amorphous carbon.

Figure 17 TG and DTG profile of Ni/LC catalysts

Catalyst	$Co_3O_4(\%)$	NiO (%)	La ₂ O ₃ (%)	LaCoO ₃ (%)
LC	8.4	-	9.7	81.9
2Ni/LC	5.1	1.5	6.7	86.7
5Ni/LC	12.3	6.5	14.2	67.0
10Ni/LC	18.8	17.1	21.8	42.3

Table 6 Formation of catalysts from TPR & TG

4.2 Effect of the Ce partial substitution into La position

The physical and chemical properties of the catalysts were determined using different techniques containing X-ray diffraction (XRD), N_2 physisorption, temperature programmed reduction (TPR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and the X-ray absorption (XAS).

Figure 18 shows an X-ray diffraction spectra of samples with different ratio Ce substitutions. The XRD peak at 23.1, 32.8, 40.6, 47.3, 58.4, 69.6 and 79.1 were assisgned to be the LaCoO₃ perovskites phase as seen in Figure 18a [5 3]. The inserting Ce at x=0.2 can maintain the perovskite structure but decreases the degree of its crystallinity. Besides, the inserting of more than x=0.2 showed evidence of only CeO₂ peaks (table 7). This is because the dilution of perovskite structure by the ceria support[54]. The very sharp peak of CeO₂ phases clearly showed an increased ratio of Ce/La. Figure 18b shows the XRD pattern of the catalysts after reduction. The XRD peaks of LaCoO₃ phase disappeared, but the La₂O₃ phase was found with only x=0. During the reduction step, the LaCoO₃ perovskite structure was destroyed. This resulted in the cobalt species being dispersed in the La₂O₃ phase[47]. When increasing the ratio of Ce/La, the catalysts of more than x=0 disappear in La₂O₃ phase. However, the CeO₂ phase was found with an increase of the degree of CeO₂ crystallinity. The data of the phase, which was obtained by XRD spectra, was included in table 7.

Figure 18 XRD patterns of samples 2Ni/LaC (x =2-10 wt%)(a), samples after reduction at 500 °C(b).

Catalyst	S _{BET} (m ² /g)	Crystalline size (nm) Initial phase CeO ₂	- XRD initial phase	XRD after reduction (500 °C)	XRD after reaction (700 °C)
x =0.0	3.4	-	LaCoO ₃	La_2O_3	Ni, La ₂ O ₂ CO ₃
x = 0.2	6.3	-	LaCoO ₃	CeO ₂	Ni, La ₂ O ₂ CO ₃
x = 0.4	8.4	6.6	LaCoO ₃ ,CeO ₂	CeO_2	CeO_2
x = 0.6	8.1	20.3	CeO ₂	CeO_2	CeO_2
x = 0.8	11.5	30.8	CeO ₂	CeO ₂	CeO_2
x = 1.0	7.1	49.0	CeO ₂	CeO_2	CeO ₂

Table 7 The BET surface area (SBET) and XRD result of 2Ni/CexLa_{1.x}CoO₃

The BET surface area (S_{BET}) obtained by N₂ physisorption are shown in table 7. When increase inserting Ce were significantly increased from 3.4 to 11.5 m²/g. The surface area increases when the Ce inserting due to the Ce effect was supplemented with cobalt. The surface area at x= 1.0 shows 7.1 m²/g. The adsorption-desorption isotherms of all catalyst displayed IV type and a hysteresis loop of the H₂ hysteresis according to IUPAC classification as shown in Figure 19. This isotherm is mesoporous pores with tubular-shaped capillaries opening at both ends[55].

127 X FEIKO

Figure 19 The N₂ adsorption/desorption isotherms of the 2Ni/Ce_xLa_{1.x}CoO₃catalysts

The TPR profile for the catalysts different ratio Ce substitutions are shown in Figure 20. The 2Ni/LC catalyst shows the two reduction regions at below and above 500 °C. The first region was assigned as an overlap of three reduction steps. The LaCoO₃ was first reduced to form LaCoO_{2.75} and then La₄Co₃O₁₀ The final step shows the reduction of cobalt oxide and nickel oxide. At the region above 500°C, the reduction of La₄Co₃O₁₀ creates La₂O₃ and Co metal. The intensity of the first region was higher when the ratio of Ce/La 0.2, which corresponds with the reduction of Co³⁺ to Co²⁺ and Co^o. This indicates the Ce can be inserted into the perovskite structure and is confirmed with XRD Figure 18a.

For the substitution x=0.40-0.80, the perovskite structure has a lower intensity because the segregated CeO₂, which corresponds with the XRD results (Figure 18a). When, the intensity of the first region was increased respectively it causes the reduction of Co₃O₄ to CoO and CoO to Co metal, confirmed by XPS results (Figure 21). This indicates that increasing the ratio of Ce/La the reduction of cobalt oxides is easier. In second region, it shows the reduction of Ce⁴⁺ to Ce³⁺. For the catalyst at x = 1.0 is showed only CeO₂ phases which is confirm by the XRD, the peak at below 500°C was designed to overlap the reduction of Co³⁺ to Co²⁺ and Co⁰

Figure 20 The TPR profile for the catalysts different ratio Ce substitutions

Figure 21 Surface atomic ratios of 2Ni/Ce_xLa_{1.x}CoO₃ (x = 0.0-1.0) catalysts

Figure 21 shows the surface atomic ratio of the Ce/Co which was measured by XPS analysis. At a ratio of Ce/Co 0.2-1.0, the ratio in theory is close to the ratio for XPS results. It is confirmed that the cerium was inserted into the perovskite structure. When we increase the ratio of Ce/Co, the Co^{3+} ions decrease, respectively. These results imply that the segregation of the Ce₂O phase over the perovskite is due the large ionic radius of Ce⁴⁺ which is compatible with the XRD results (Figure 18). Figure 21 shows the XPS profile of Ce 3d of $2Ni/Ce_xLa_{1x}CoO_3$ (x = 0.2-1.0) catalysts. The eleven peaks were attributed to the Ce₂O₃ and CeO₂ ions in the crystal lattice[56]. At a ratio of Ce/Co 0.2-0.8, the results suggest that the substitution of Ce ions into La ions of 2Ni/LaCoO₃ perovskite creates a different size particle of Ce oxide.

Figure 22 XPS profile of Ce 3d of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0.0-1.0) catalysts

Figure 23 shows the XANES spectra for the $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0.0-1.0) catalysts at Co K-edge. When increase a ratio of Ce/Co led to the reduction of the catalyst, as evident from the shift of the absorption edge to lower energy but higher than that of CoO due to the cobalt has been only partially reduced to Co (II) species[56, 57].

Figure 23 Experimental XANES spectra of 2Ni/Ce_xLa_{1x}CoO₃ (x = 0.0-1.0) catalysts at Co K-edge

The CH₄ and CO₂ conversions that form the dry reforming reaction at 700°C for 15 h produce various ratios of Ce/Co as shown in Figure 24. At the ratio of Ce/Co 0.0-0.6, it was found that during the conversion of CH₄ and CO₂, the yield of H₂ and CO and the ratio of H₂/CO were relatively unchanged. These results showed that a lower Ce/Co ratio (0.0-0.6) produced a wide spread nickel species dispersion on the La₂O₃ phase. However, when the Ce was inserted into the perovskite, the XRD patterns show the perovskite phase at only x = 0.2. At x = 0.4-0.6, the result did not display a perovskite phase due to small size of the particle with in this phase. The Ni sites were more active than the Co sites in this reaction, therefore the CH₄ was first adsorbed and activated on the surface of the Ni metal. The Ni active sites were well known to promote the reverse water gas shift reaction (RWGS) [50]. This resulted a significant increasing of CH₄ and CO₂ conversions, but the yield of H₂ and CO decrease as compared to x = 0.0-0.6. These are the result of the CO methanates side reactions[58].

Figure 24 CH₄ and CO₂ conversions at 15 h a) H₂ yiled and b) H₂/CO ratio of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0-1) catalysts in dry reforming of methane at 700 °C for 15 h

Figure 25 XRD patterns of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0.0-1.0) spent catalysts in dry reforming of methane at 700 °C for 15 h

Figure 25 shows the x-ray diffraction spectra of spent catalysts. The XRD peak at x=0 and x=0.2 were assisgned to be the La₂O₂CO₃ phase due to the La₂O₃ reacting with the CO₂ reactant during the DRM. The XRD peak at x=0 shows the highest intensity La₂O₂CO₃ phase. This phase can inhibit carbon formation and improve the catalytic activity and stability. When the Ce/Co ratio (0.2-0.8) was increased, the intensity of the La₂O₂CO₃ phase gradually decreased but the CeO₂ increased, respectively. These results occurred due to the large size of the CeO₂ particles which correspond with table 8. The Ce/Co ratio 1.0 showed the highest intensity of CeO₂ phase.

Figure 26 TG and DTG profile of $2Ni/Ce_xLa_{1.x}CoO_3$ (x = 0-1) spent catalysts in dry reforming of methane at 700 °C for 15 h

Figure 26 shows the weight loss and derivative weight loss of all spent catalysts obtained after DRM reaction at 700 °C for 15 h were investigated by using TGA. At x=0.0-0.8, it showed two major steps of decomposition. The first steps occurred in the range of 300 and 550 °C. This weight loss has been attributed to the oxidation of the amorphous carbon, which is the active species in the formation of synthesis gas. The second weight loss about 800 °C has been attributed to the decomposition of La carbonates. The weight loss of all catalysts show range of 16-27 % weight loss. The weight loss comparison can be seen in table 8. The Ce/Co ratio 1.0 shows revealed another shoulder in the range of 400-500 °C. Inaddition, the lower-temperature (300-500°C) and higher-temperature (800-900°C) peaks can be assigned to the CH_x species and carbon filaments, respectively [59]. Coke deposition with DTA peak at higher temperature causes the catalyst deactivation.

Table 8 The weight loss of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0.0-1.0) catalysts

Catalyst	Weight loss TG after reaction(%)
x= 1.0	22.0
x = 0.8	20.8
x = 0.6	87 h218
x = 0.4	26.7
x = 0.2	16.5
x = 0.0	23.2
717	I (GAD) W

4.3 Effect of the transition metals substitution into Co position

Figure 27 shows the x-ray diffraction spectra of the transition metals substitution into Co position. The perovskite structures were formed when using Mn metal but they did not forme when using Zn and Cu metal. The 2Ni/LaMnO₃ catalyst decreases the intensity of the perovskite peaks when compared to the 2Ni/LaCoO₃ catalyst. The 2Ni/LaCuO₃ shows La₂CuO₄ spinel and CuO phase. The La₂CuO₄ is a perovskite-like type mixed oxide which is composed of alternating layers of (LaO)₂ rock salt and the caxis CuO₂ sheet. The catalytic properties of La₂CuO₄ also make it useful in various oxidation and reduction reactions. In addition, it has great potential to be used as electrode materials[60]. The 2Ni/LaZnO₃ shows a mixed phase of La₂O₃, ZnO and La(OH)₃.

Figure 27 XRD patterns of 2Ni/LaBO3 (B = Co, Mn, Zn and Cu) catalysts

The catalysts show BET surface area, ranging of 3.4 to 12.8 m^2/g . The 2Ni/LaMnO₃ catalyst shows the highest surface area at 12.8 m^2/g . When loading Mn, Cu and Zn metal, they increase the pore size diameter when compared to the 2Ni/LaCoO₃ catalyst. The BET surface area, pore size diameter and pore volume are shown table 9.

Table 9 The BET surface area(S_{BET}), the average pore diameter and pore volume

Catalyst	Sbet (m ² /g)	Pore size (nm)	Pore volume (cm ³ /g)
2Ni/LaCoO ₃	3.4	6.1	0.005
2Ni/LaMnO3	12.8	23.4	0.075
2Ni/LaCuO ₃	3.3	19.8	0.016
2Ni/LaZnO3	8.4	16.4	0.036

The TPR profile for the catalysts different transition metals are shown in Figure 28. The 2Ni/LaCoO₃ catalyst shows the two reduction regions a t below and above 500 °C. When replaced with Mn, Zn and Cu metals, the degree of reducibility decrease when compared to the 2Ni/LaCoO₃ catalyst. The 2Ni/LaMnO₃ catalyst shows two reduction regions. The lower temperature region (250-350 °C) was assigned to the reduction of Mn^{4+} to Mn^{3+} . The higher temperature region (650-800 °C) was assigned to the reduction of Mn^{4+} to Mn^{2+} [61]. The 2Ni/LaCuO₃ displays in two reduction regions, at 210 - 314 °C and 500 °C which results in the reduction of Cu³⁺ to Cu⁺. The second reduction region was completely reduced Cu⁺ to Cu metal [62]. The major reduction peaks obviously shift toward lower temperatures with the increasing amount of Cu mole fraction indicating that doping Cu and La₂Cuo₄ production would improve the sorbent reducibility.

Figure 28 TPR profiles of 2Ni/LaBO3 (B = Co, Mn, Zn and Cu) catalysts

From the DRM reaction results nas shown in Figure 29. The $2Ni/LaCoO_3$ catalyst shows the highest activity during the reaction and a higher conversion of CO_2 than CH₄ due to the effect of the RWGS reaction. The XRD pattern of the afterreaction shows the La₂O₂CO₃ phase. This phase inhibits carbon formation and improves the catalytic activity and stability. The $2Ni/LaMnO_3$ catalyst shows a higher CH₄ and CO₂ conversion when compared with the Zn and Cu metal. In addition, it also shows the perovskite phase and is confirmed with XRD Figure 27. The Mn/Co ratio at 0.05 shows the highest CH₄ conversion, H₂ yield and H₂/CO ratio. The Mn and Co mix metals increase catalytic activity due to a change in oxygen mobility within the crystal lattice of the Co component. The Mn/Co ratio at 0.1-0.5 show a decrease in the CO₂ and CH₄ conversion after the 9 hr mark due to metals sintering.

Figure 29 CH₄ and CO₂ conversions at 15 h a) H₂ yiled and b) H₂/CO ratio of the catalysts different transition metals in dry reforming of methane at 700 $^{\circ}$ C for 15 h

Since, the Mn metal substitution into Co metal shows maintain perovskite structure and show high CH₄ and CO₂ conversion when compare with the Zn and Cu metal. So, the effect of partial Mn metal substitution into Co metal was studied. Figure 30 shows XRD patterns of $2Ni/LaMn_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0). For all catalyst show the perovskite peak. The Mn/Co ratio 0.05 shows the same perovskite peaks with the Mn/Co ratio 0.0. The Mn/Co ratio 0.1-0.5 shows same dominant peaks with the Mn/Co ratio 1.0

Figure 30 XRD patterns of $2NiLaB_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)

The TPR profile of 2Ni/LaB_yCo_{1.y}O₃ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0) are shown in Figure 31. The Mn/Co ratio 0.0 and 0.05 show the two reduction regions at below and above 500 °C. The first region was assigned as an overlap of three reduction steps. The LaCoO₃ was first reduced to form LaCoO_{2.75} and then La₄Co₃O₁₀. The final step shows the reduction of cobalt oxide and nickel oxide. At the region above 500°C, the reduction of La₄Co₃O₁₀ creates La₂O₃ and Co metal. The Mn/Co ratio 0.5 and 1.0 show two reduction regions. The lower temperature region (250-350 °C) was assigned to the reduction of Mn⁴⁺ to Mn³⁺. The higher temperature region (650-800 °C) was assigned to the reduction of Mn³⁺ to Mn²⁺. At Mn/Co ratio 0.1 show the characteristic of reduction properties same both Co and Mn pure.

Figure 31 TPR profiles of 2Ni/LaByCo1.yO3 catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)

Figure 32 shows result DRM synthesis. The Mn/Co at 0.05 ratio shows the highest CH_4 conversion, H_2 yield and H_2/CO ratio. When increase the Mn/Co ratio at 0.1, the CH_4 conversion slightly decrease and is significant after 13 h. At Mn/Co ratio 0.5, the CH_4 and CO_2 conversion decreased significantly after 9 h due to it occur the catalyst deactivate. The Mn and Co mix metals increase catalytic activity due to a change in oxygen mobility within the crystal lattice of the Co component.

Figure 32 CH₄ conversion a) CO₂ conversion b)H₂ yiled c) and H₂/CO ratio d) of $2Ni/LaB_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0) in dry reforming of methane at 700 °C for 15 h

Figure 33 shows TG and DTG profile of $2Ni/LaMn_yCo_{1,y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)) spent catalysts in dry reforming of methane at 700 °C for 15 h. All of the Mn/Co ratio, it showed two major steps of decomposition. The first steps occurred in the range of 300 and 550 °C. This weight loss has been attributed to the cabonatation step of the La₂O₂CO₃ formation, which is the active species in the formation of synthesis gas. The second weight loss about 800 °C has been attributed to the decomposition of La carbonates. The weight loss comparison can be seen in table 10. The weight loss of y=0.05 show the lowest weight loss at 18.4 %. The Mn/Co at 0.1 and 0.5 show a high weigt loss. This causes shows show a decrease in the CO₂ and CH₄ conversion after the 9 hr mark.

Figure 33 TG and DTG profile of $2Ni/LaMn_yCo_{1.y}O_3$ catalysts (y = 0.0, 0.05, 0.1, 0.5 and 1.0)) spent catalysts in dry reforming of methane at 700 °C for 15 h

Catalyst	Weight loss TG after reaction(%)
y= 0.0	23.2
y = 0.05	18.4
y = 0.1	36.7
y = 0.5	37.1
v = 1.0	12.3

 $\label{eq:constraint} \begin{array}{l} \textbf{Table 10} \mbox{ The weight loss of } 2Ni/LaMn_yCo_{1.y}O_3\mbox{ catalysts } (y=0.0,\ 0.05,\ 0.1,\ 0.5\ \text{and }\ 1.0) \ \ catalysts \end{array}$

CHAPTER V

CONCLUSIONS AND RECOMMENDATION

The results and discussion in this chapter are divided into three parts, the effect of Ni loading, the Ce partial substitution into La position and the transition metal (Cu, Mn and Zn) substitution into Co position.

5.1 Conclusions

5.1.1 The effect of Ni loading on LaCoO₃ perovskites

The result of FSP method and calcined condition affects the formation of LaCoO₃ perovskite structure. However, Ni loading by impregnation method maintains the perovskite structure but decreases the degree of its crystallinity. The 2Ni/LC show highest reducibility. The LC catalyst shows poor CH₄ and CO₂ conversions due to the reduction temperature to 500°C which was not enough to produce the Co metal dispered in the La₂O₃ support. When increasing the Ni loading by 2, 5 and 10 wt%, they show high activity for the reaction and a higher conversion of CO₂ than CH₄. The H₂/CO ratio is less than 1 and results in the reverse water gas shift side reaction (RWGS). The result of 2Ni/LC show the highest CH₄ and CO₂ conversion. For the XRD pattern of the spent catalysts, it showed the highest intensity La₂O₂CO₃ phase. This phase removes carbon formation on the surface catalyst. For role nickel when adding more than 2 wt%, it decreases the loading of the perovskite structure due to higher amounts of Ni loading and a larger amount of sintering Ni metal. This causes low activity and an increase in the RWGS

5.1.2 The effect of Ce partial substitution into La position

The 2Ni/Ce_xLa_{1.x}CoO₃ (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were investigated. The XRD analyses confirmed that at Ce contents x = 0.2 maintained the perovskite structure but decreases the degree of its crystallinity. Which the insertion of Ce 0.4 and 0.6, the XRD pattern appear as segregated CeO₂ phase and interferes with the rate of perovskite structure formation. When increasing Ce to 0.8 and 1.0, they show CeO₂ and CoO₃ phase. The substitution of the La site metal ion with Ce metal ion at x= 0.2, 0.4 and 0.6 show little change in the CO₂ and CH₄ conversion. When increase to x=0.8 and 1.0 show slight increase CH₄ and CO₂ conversion but obvious decrease in H₂ and

CO yield due to the effect of RWGS reaction. Its insertion in the perovskite structure is also possible in the low Ce-content.

5.1.2 The transition metal substitution into Co position.

The perovskite structures were formed when using Co and Mn metals but they did not forme when using Zn and Cu metal. The BET surface area of catalysts show range of 3.4 to 12.8 m²/g. The 2Ni/LaMnO₃ catalyst shows the highest surface area at 12.8 m²/g. The 2Ni/LaMnO₃ catalyst decreases the intensity of the perovskite peaks when compared to the 2Ni/LaCoO₃ catalyst. The 2Ni/LaCuO₃ shows La₂CuO₄ spinel and CuO phase. The 2Ni/LaZnO₃ shows a mixed phase of La₂O₃, ZnO and La(OH)₃. All of the Mn/Co ratio maintains the perovskite structure. The conversion of CH₄ and CO₂, the yield of H₂ and CO and the ratio of H₂/CO show: 2Ni/LaCoO₃ > 2Ni/LaMnO₃ > 2Ni/LaZnO₃, respectively. The Mn/Co ratio at 0.05 shows the highest CH₄ conversion, H₂ yield and H₂/CO ratio. The Mn metal partial replacement at the Co sites can increase catalytic activity due to a change in oxygen mobility within the crystal lattice of the Co component. The Mn/Co ratio at 0.1-0.5 show a decrease in the CO₂ and CH₄ conversion after the 9 hr mark due to metals sintering.

APPENDIX A CALCULATION FOR CATALYST PREPARATION

Table A.1 Chemical Properties

Metal or Metal oxide	MW of metal	Formula	MW of Metal Precursor	Metal content (%)
La ₂ O ₃	325.8	LaN ₃ O ₉ ·6H ₂ O	432.4	99
Ce ₂ O ₃	328.2	Ce(NO ₃) ₃ ·6H ₂ O	434.2	99
Со	58.9	Co(NO ₃₎₂ 6H ₂ O	290.9	98
Mn	54.9	Mn(NO3)24H2O	250.9	99
Cu	63.5	$Cu(NO_3)_2 \cdot 3H_2O$	241.6	98
Zn	65.4	Zn(NO3)2·6H2O	297.4	98

Calculation of catalyst prepared by flame spray pyrolysis

July 6

0.5 M solution was used as precursor for catalyst preparation by flame spray pyrolysis is shown as follows:

Example: Calculation for the preparation of the LaCoO3 catalysts, 70 wt% of Lanthanum (III) nitrate hexahydrate and 30 wt% cobalt nitrate were used as precursor and diluted with ethanol to a 0.5 M in 300 ml of solution

Mole precurs	or $= 300$	$0ml \left \frac{0.1mole}{1000ml} \right =$	0.15 <i>mo</i>	le	
Mole Co	=	$\frac{30.00}{58.93}$	=	0.509	mole Co
Mole La ₂ O ₃	=	$\frac{70.00}{325.82} \times 2$	=	0.430	mole La ₂ O ₃

Total mole = 0.509 + 0.430 = 0.939 mole

$$\therefore \text{Co(NO}_{3})_{2}.6\text{H}_{2}\text{O} = \frac{0.15mole}{0.98} \left| \frac{0.509mole}{0.939mole} \right| \frac{290.9g}{mole} = 24.136 \qquad \text{g}$$

$$\therefore \text{LaN}_{3}\text{O}_{9} \cdot 6\text{H}_{2}\text{O} = \frac{0.15mole}{0.99} \left| \frac{0.430mole}{0.939mole} \right| \frac{432.91g}{mole} = 30.036 \qquad \text{g}$$

APPENDIX B CALCULATION OF THE CRSTALLITE SIZE

Calculation of the crystallite size by Debye-Scherrer equation

The crystallite size was calculated from the half-height width of the diffraction peak of XRD pattern using the Debye-Scherrer equation.

The Bragg's Law was derived to B.1

From Scherrer equation:

$$D = \frac{K\lambda}{\beta\cos\theta} \qquad (B.1)$$

- K = Crystallite-shape factor = 0.9
- λ = X-ray wavelength, 1.5418 Å for CuKa
- θ = Observed peak angle, degree
- β = Full-width at Half-Maximum (FWHM), radian

Figure B.2 The standard width of reference α-alumina sample

Figure B.3 The half-height width of $2Ni/Ce_xLa_{1,x}CoO_3$ (x = 0.8) catalysts at 28.33°.

The half-height width of 111 diffraction peak = 0.34° (from Figure A.3)

$$= 0.34 \times \frac{\pi}{180}$$
$$= 0.005931 \text{ radian}$$

The corresponding half-height width of peak of α -alumina (from the B_s value at the 2 θ of 28.33° in Figure A.2) = 0.0037 radian

The peak width,
$$\beta = \sqrt{B_M^2 - B_S^2}$$

= $\sqrt{0.005931^2 - 0.0037^2}$
= 0.00464 radian
 $2\theta = 28.33^\circ$
 $\theta = 14.165^\circ$

	λ	= 1.5418 Å	Å	
The crystallite size	=	0.9×1.5418	= 308.4 <i>Å</i> = 30.84 nm	
2		0.00464 cos14.165		

APPENDIX C N2 ADSORTION/DESORPTION ISOTHERMS AND PORE SIZE DISTRIBUTION

Figure C.1 The N₂ adsorption/desorption isotherms and the pore size distribution of the LaCoO₃ catalysts

Figure C.2 The N_2 adsorption/desorption isotherms and the pore size distribution of the 2Ni/LC catalysts

Figure C.3 The N₂ adsorption/desorption isotherms and the pore size distribution of the 5Ni/LC catalysts

Figure C.4 The N_2 adsorption/desorption isotherms and the pore size distribution of the 10Ni/LC catalysts

Figure C.5 The N₂ adsorption/desorption isotherms and the pore size distribution of the 2Ni/Ce_{0.2}La_{0.8}CoO₃catalysts

Figure C.6 The N_2 adsorption/desorption isotherms and the pore size distribution of the $2Ni/Ce_{04}La_{0.6}CoO_3catalysts$

Figure C.7 The N₂ adsorption/desorption isotherms and the pore size distribution of the 2Ni/Ce_{0.6}La_{0.4}CoO₃catalysts

Figure C.8 The N_2 adsorption/desorption isotherms and the pore size distribution of the $2Ni/Ce_{0.8}La_{0.2}CoO_3$ catalysts

 $\label{eq:Figure C.10} Figure \ C.10 \ The \ N_2 \ adsorption/desorption \ isotherms \ and \ the \ pore \ size \ distribution \ of \ the \ 2Ni/LaMnO_3 catalysts$

Figure C.12 The N_2 adsorption/desorption isotherms and the pore size distribution of the $2Ni/LaCuO_3$ catalysts

APPENDIX D CALCULATION OF CH4 AND CO2 CONVERSION, H2 YIELD AND H2/CO RATIO

The CH₄ and CO₂ conversions, H_2 and CO yield and H_2 /CO ratio were calculated by equation as follows:

CH4 Conversion (%)

H₂/CO ratio

= mole of H_{2out}

mole of COout

They are defined as moles of CH_4 , CO_2 , H_2 and CO converted with the calibration curve in figure E.2 with area of CH_4 , CO_2 , H_2 and CO gases from computer program based plot on TCD (GC-14B)

REFERENCES

- Budiman, A.W., et al., Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catalysis Surveys from Asia, 2012. 16(4): p. 183-197.
- 2. Basile, A., et al., *Membrane reactors for energy applications and basic chemical production*. 2015: Elsevier.
- 3. Wang, S., G. Lu, and G.J. Millar, *Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art.* Energy & Fuels, 1996. **10**(4): p. 896-904.
- 4. Abasaeed, A.E., et al., *Catalytic performance of CeO₂ and ZrO₂ supported Co catalysts for hydrogen production via dry reforming of methane*. International Journal of Hydrogen Energy, 2015. **40**(21): p. 6818-6826.
- 5. Jabbour, K., et al., *Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane.* Chemical Engineering Journal, 2015. **264**: p. 351-358.
- 6. Ikkour, K., et al., *Activity of Ni substituted Ca-La-hexaaluminate catalyst in dry reforming of methane.* Catalysis letters, 2009. **132**(1-2): p. 213-217.
- Valderrama, G., C.U. de Navarro, and M.R. Goldwasser, CO₂ reforming of CH₄ over Co-La-based perovskite-type catalyst precursors. Journal of Power Sources, 2013. 234: p. 31-37.
- 8. Lu, Y., et al., *Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation*. Catalysis today, 2013. **208**: p. 42-47.
- 9. Galinsky, N., et al., *Ca*_{1x}A_xMnO₃ (A= Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy, 2015. **157**: p. 358-367.
- 10. Wu, Q., et al., Fabrication of nanofibrous A-or B-sites substituted LaCoO₃ perovskites with macroscopic structures and their catalytic applications. Materials Research Bulletin, 2014. **51**: p. 295-301.
- 11. Chiarello, G.L., et al., *Flame-synthesized LaCoO₃-supported Pd: 1. Structure, thermal stability and reducibility.* Journal of Catalysis, 2007. **252**(2): p. 127-136.
- 12. Valderrama, G., C.U. de Navarro, and M.R. Goldwasser, *CO*₂ reforming of *CH*₄ over *Co*-*La*-based perovskite-type catalyst precursors. Journal of Power Sources, 2013. **234**: p. 31-37.
- Rivas, I., et al., *Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host*. Catalysis Today, 2010. 149(3): p. 388-393.
- 14. Zhu, Q., et al., Synthesis, characterization, and catalytic performance of La_0 $_6Sr_0 _4Ni_xCo_{1,x}O_3$ perovskite catalysts in dry reforming of coke oven gas. Chinese Journal of Catalysis, 2015. **36**(7): p. 915-924.
- 15. Rossetti, I., C. Biffi, and L. Forni, *Oxygen non-stoichiometry in perovskitic catalysts: Impact on activity for the flameless combustion of methane.* Chemical Engineering Journal, 2010. **162**(2): p. 768-775.
- Lu, Y., et al., Methane abatement under stoichiometric conditions on perovskitesupported palladium catalysts prepared by flame spray synthesis. Applied Catalysis B: Environmental, 2014. 144: p. 631-643.
- 17. Buchneva, O., et al., *La-Ag-Co perovskites for the catalytic flameless combustion of methane*. Applied Catalysis A: General, 2009. **370**(1-2): p. 24-33.
- 18. Chiarello, G.L., et al., *Flame-synthesized LaCoO₃-supported Pd: 1. Structure, thermal stability and reducibility.* Journal of Catalysis, 2007. **252**(2): p. 127-136.
- 19. Chang, J.-S., et al., *Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane.* Journal of Catalysis, 2000. **195**(1): p. 1-11.
- 20. Lima, S., et al., Structural features of La_{1x}Ce_xNiO₃ mixed oxides and performance for the dry reforming of methane. Applied Catalysis A: General, 2006. **311**: p. 94-104.
- Valderrama, G., et al., LaNi1xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane. Applied Catalysis A: General, 2018. 565: p. 26-33.
- 22. Arora, S. and R. Prasad, An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Advances, 2016. 6(110): p. 108668-108688.
- Usman, M., W.W. Daud, and H.F. Abbas, Dry reforming of methane: Influence of process parameters—A review. Renewable and Sustainable Energy Reviews, 2015. 45: p. 710-744.
- Nikoo, M.K. and N. Amin, *Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation*. Fuel Processing Technology, 2011. 92(3): p. 678-691.
- Kathiraser, Y., et al., *Kinetic and mechanistic aspects for CO₂ reforming of methane over Ni based catalysts*. Chemical Engineering Journal, 2015. 278: p. 62-78.
- 26. Al-Fatesh, A.S., A.H. Fakeeha, and A.E. Abasaeed, *Effects of selected promoters* on Ni/Y-Al₂O₃ catalyst performance in methane dry reforming. Chinese Journal of Catalysis, 2011. **32**(9-10): p. 1604-1609.
- 27. Sokolov, S., et al., *Effect of calcination conditions on time on-stream performance of Ni/La₂O₃-ZrO₂ in low-temperature dry reforming of methane. International Journal of Hydrogen Energy, 2013. 38(36): p. 16121-16132.*
- 28. Ay, H. and D. Üner, *Dry reforming of methane over CeO*₂ supported Ni, Co and Ni-Co catalysts. Applied Catalysis B: Environmental, 2015. **179**: p. 128-138.
- 29. Wang, X., et al., New route to CeO₂/LaCoO₃ with high oxygen mobility for total

benzene oxidation. Applied Surface Science, 2017. 396: p. 95-101.

- 30. Levy, M. R., *Crystal structure and defect property predictions in ceramic materials*. 2005, University of London.
- 31. Royer, S., et al., *Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality.* Chemical reviews, 2014. **114**(20): p. 10292-10368.
- 32. Rivas, M.E., et al., *Structural features and performance of LaNi*_{1x}*Rh*_x*O*₃ system for the dry reforming of methane. Applied Catalysis A: General, 2008. **344**(1): p. 10-19.
- 33. Chawl, S.K., et al., Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts. Procedia Engineering, 2013.
 51: p. 461-466.
- 34. Chiarello, G., et al., *Solvent nature effect in preparation of perovskites by flame-pyrolysis: 1. Carboxylic acids.* Applied Catalysis B: Environmental, 2007. **72**(3): p. 218-226.
- 35. Mota, N., et al., Hydrogen production by reforming of diesel fuel over catalysts derived from $LaCo_{1x}Ru_xO_3$ perovskites: Effect of the partial substitution of Co by Ru(x=0.01-0.1). Journal of Power Sources, 2011. **196**(21): p. 9087-9095.
- Phraewphiphat, T., et al., Syntheses, structures, and ionic conductivities of perovskite-structured lithium-strontium-aluminum/ gallium-tantalum-oxides. Journal of Solid State Chemistry, 2015. 225: p. 431-437.
- Barros, B., et al., CO₂ reforming of methane over La₂NiO₄-αAl₂O₃ prepared by microwave assisted self-combustion method. Applied Catalysis A: General, 2010.
 378(1): p. 69-75.
- Wang, N., et al., A comparison study on methane dry reforming with carbon dioxide over LaNiO₃ perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catalysis today, 2013. 212: p. 98-107.
- 39. Bhavani, A.G., W.Y. Kim, and J.S. Lee, *Barium substituted lanthanum manganite perovskite for CO*₂ *reforming of methane.* ACS Catalysis, 2013. **3**(7): p. 1537-1544.
- 40. Lima, S., et al., *Structural features of La*_{1x}Ce_xNiO₃ mixed oxides and performance for the dry reforming of methane. Applied Catalysis A: General, 2006. **311**: p. 94-104.
- 41. Yang, E.-h., et al., *The effect of promoters in La*_{0.9}*M*_{0.1}*Ni*_{0.5}*Fe*_{0.5}*O*₃, *M*= *Sr*, *Ca*) *perovskite catalysts on dry reforming of methane*. Fuel Processing Technology, 2015. **134**: p. 404-413.
- 42. Gallego, G.S., et al., *Dry reforming of methane over* $LaNi_{1,y}B_yO_{3\pm\delta}$ (*B*= *Mg*, *Co*) *perovskites used as catalyst precursor*. Applied Catalysis A: General, 2008. **334**(1): p. 251-258.
- 43. Provendier, H., et al., Dry reforming of methane. Interest of La-Ni-Fe solid solutions compared to LaNiO₃ and LaFeO₃. Studies in surface science and

catalysis, 1998: p. 741-746.

- 44. Moradi, G., M. Rahmanzadeh, and F. Khosravian, *The effects of partial* substitution of Ni by Zn in LaNiO₃ perovskite catalyst for methane dry reforming. Journal of CO₂ Utilization, 2014. **6**: p. 7-11.
- 45. Haas, O., R. Struis, and J. McBreen, *Synchrotron X-ray absorption of LaCoO₃ perovskite*. Journal of Solid State Chemistry, 2004. **177**(3): p. 1000-1010.
- 46. Ayodele, B. V., et al., *Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: kinetic and mechanistic studies.* international journal of hydrogen energy, 2016. **41**(8): p. 4603-4615.
- 47. Ao, M., et al., *Structure and activity of strontium substituted LaCoO₃ perovskite catalysts for syngas conversion*. Journal of Molecular Catalysis A: Chemical, 2016. **416**: p. 96-104.
- 48. Li, X., et al., Dry reforming of methane over Ni/La₂O₃ nanorod catalysts with stabilized Ni nanoparticles. Applied Catalysis B: Environmental, 2017. **202**: p. 683-694.
- Albarazi, A., M.E. Gálvez, and P. Da Costa, Synthesis strategies of ceria-zirconia doped Ni/ SBA-15 catalysts for methane dry reforming. Catalysis Communications, 2015. 59: p. 108-112.
- 50. Valderrama, G., C. Urbina de Navarro, and M.R. Goldwasser, *CO*₂ reforming of *CH4 over Co-La-based perovskite-type catalyst precursors*. Journal of Power Sources, 2013. **234**: p. 31-37.
- 51. Yang, E.-h., et al., *The effect of promoters in La*_{0.9}*M*_{0.1}*Ni*_{0.5}*Fe*_{0.5}*O*₃ (*M*= *Sr, Ca)* perovskite catalysts on dry reforming of methane. Fuel Processing Technology, 2015. **134**: p. 404-413.
- 52. Kathiraser, Y., et al., *Inverse NiAl₂O₄ on LaAlO₃-Al₂O₃: unique catalytic structure for stable CO₂ reforming of methane.* The Journal of Physical Chemistry C, 2013. **117**(16): p. 8120-8130.
- 53. Villoria, J., et al., Zirconia-supported LaCoO₃ catalysts for hydrogen production by oxidative reforming of diesel: Optimization of preparation conditions. Catalysis Today, 2008. **138**(3-4): p. 135-140.
- 54. Hammouda, S.B., et al., Reactivity of novel Ceria-Perovskite composites CeO₂-LaMO₃ (MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant 'Bisphenol F': Characterization, kinetic and mechanism studies. Applied Catalysis B: Environmental, 2017. 218: p. 119-136.
- Rivas, I., et al., Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catalysis Today, 2010. 149(3-4): p. 388-393.
- 56. Lukashuk, L., et al., Operando XAS and NAP-XPS studies of preferential CO oxidation on Co₃O₄ and CeO₂-Co₃O₄ catalysts. Journal of Catalysis, 2016. **344**: p. 1-15.

- 57. Hueso, J.L., et al., *Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study.* Materials Chemistry and Physics, 2015. **151**: p. 29-33.
- 58. Benrabaa, R., et al., *Sol-gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane*. Catalysis Communications, 2015. **58**: p. 127-131.
- 59. Nair, M. M., S. Kaliaguine, and F. Kleitz, Nanocast LaNiO₃ perovskites as precursors for the preparation of coke-resistant dry reforming catalysts. ACS Catalysis, 2014. **4**(11): p. 3837-3846.
- 60. Li, Y., et al., Optical properties of La₂CuO₄ and La_{2x}Ca_xCuO₄ crystallites in UV-vis-NIR region synthesized by sol-gel process. Materials Characterization, 2012.
 64: p. 36-42.
- 61. Hou, Y.-C., et al., *Ni-substituted LaMnO₃ perovskites for ethanol oxidation*. RSC Advances, 2014. **4**(11): p. 5329-5338.
- 62. Touahra, F., et al., Enhanced catalytic behaviour of surface dispersed nickel on LaCuO₃ perovskite in the production of syngas: an expedient approach to carbon resistance during CO₂ reforming of methane. international journal of hydrogen energy, 2016. **41**(4): p. 2477-2486.

VITA

Bangkok, Thailand. University, Nakhon Phathom, Thailand. Thailand, 73120. *ระหว่าวิท*ยาลัยศิลปาก

NAME

MissPhakampai Aunmunkong

DATE OF BIRTH

PLACE OF BIRTH

INSTITUTIONS ATTENDED

HOME ADDRESS

25 March 1987

Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn House No.118, Village No.5, Watlamud sub-district, Nakhon Chai Si District, Nakhonpathom Province,