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ABSTRACT 

61404206 : Major (CHEMICAL ENGINEERING) 
Keyword : Artificial neural network, Neural network-based model predictive control, 
Heat exchangers, Parametric uncertainty 

MISS RATCHANEEKORN SROIPETCH : DESIGN OF NEURAL NETWORK BASED 
MODEL PREDICTIVE CONTROL FOR HEAT EXCHANGERS UNDER PARAMETRIC 
UNCERTAINTY THESIS ADVISOR : ASSISTANT PROFESSOR VEERAYUT 
LERSBAMRUNGSUK, D.Eng. 

Fouling is one of the main problems that often arise during the operation of 
heat exchangers. The presence of fouling results in a reduction of heat transfer 
efficiency and can cause a temperature control problem. To overcome this problem, 
the design of the controller for the heat exchanger under fouling is therefore 
essential. In this study, an artificial neural network (ANN) was used to predict the 
fouling factor and identify a system for heat exchangers under parameter uncertainty 
in a neural network-based model predictive control (NNMPC) design with a nonlinear 
autoregressive network with exogenous inputs (NARX). The ANN training dataset was 
obtained from a cell-based dynamic heat exchanger model integrated with the 
threshold fouling model. The inputs of the ANN model included the flow rates of 
hot and cold streams and the inlet temperatures of hot and cold streams while the 
outputs of the ANN model included the outlet temperatures of hot and cold 
streams and fouling factors. Effects of the number of hidden neurons and training 
algorithms to ANN topology were also studied. The statistical indices used to 
determine the best topology include the mean square error (MSE), the regression 
coefficient (R2), and processing time. In the controller design, the NNMPC and PID 
controller are used to control the temperature of the heat exchanger system. It has 
been shown that the NNMPC can control the temperature for the heat exchanger 
under fouling build-up better than the PID controller in terms of setpoint tracking 
and disturbance rejection. It can also use to predict the effect of fouling factors. 
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CHAPTER I  
INTRODUCTION 

1.1 Motivation 
Heat exchangers are equipment used for transferring the thermal energy 

between two or more fluids directly or indirectly for heating or cooling system. Heat 

exchangers are widely used in industries including petroleum refineries, power 

engineering, chemical industries, food factories, and others. The most common types 

of heat exchangers in industries are shell-and-tube type, suitable for systems that 

require large mass flows and the required pressures.  

One of the major problems that often arise during the operation of heat 

exchangers is fouling formation which is generally defined as the accumulation of 

undesired materials such as bacteria, algae, solid particles, corrosion agent, etc., on 

the heat transfer surface, resulting in reduced heat exchange efficiency as increase of 

the fouling layer, decrease of the thermal conductivity of the metal surface, and 

increase of the resistance to heat transfer. In terms of economy, there is a need for 

maintenance and cleaning, indicating that the process has to be shut down. This 

introduces a loss of production for a while, a loss of return on investment in 

production equipment and a decrease in profitability. 

The mechanisms of fouling is very complex. There was a large force acting 

that results in a more fouling layer in the heat exchanger. These are gravity, drag, 

buoyancy, Van der Waals forces, thermophoresis, Brownian motion, and 

adhesion/cohesion. These action forces were dependent on properties such as 

foulant diameter, foulant density, foulant type, Reynolds number, Prandtl number, 

etc. It also involved the shape and structure of the aggregates, such as the flow 

conditions of the heat exchanger and various environmental factors [1].  

There are several methods to detect a fouling including experimental 

methods such as simultaneous observations of pressure drops, temperature 
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measurements, electrical measurements, weighing of heat exchanger plates, etc. but 

these methods have limitation such as the value of interest must be constant and 

long enough for measurement or having an expensive cost. Other methods are 

numerical model-based methods such as extended kalman filter (EKF), artificial 

neural network (ANN).  

Several studies attempted to explain the fouling in heat exchangers in 

industries and to predict fouling factor. [2], [3], [4], and [5] proposed a method for 

predicting the crude oil fouling rate, known as the threshold model, by presenting it 

as a form of the Arrhenius equation. Some research groups [6], [7], and [8] proposed 

to use artificial neuron networks (ANN) to predict fouling factor. Experimental data 

collected from literatures were used in the ANN training. It has been proved that ANN 

is a powerful tool in the domain of prediction and analysis of data.  

As fouling can affect heat transfer efficiency in heat exchangers, this can make 

the temperature control of heat exchangers more difficult. Furthermore, fouling 

changes along operation time and this implies that temperature control of heat 

exchangers can be considered as control problem under parametric uncertainty. To 

handle this problem, a model-based control such as model predictive control is 

needed. 

      In this research, an artificial neural network (ANN) for fouling estimation was 

developed.  The data for ANN model was obtained from simulation of heat 

exchangers with a fouling model under various operating conditions. Then the 

proposed ANN model was incorporated into model predictive control (MPC), so 

called neural network model predictive control (NNMPC) for temperature control of 

heat exchangers under parametric uncertainty.  

1.2 Objective of Research 
1.2.1 To propose artificial neural network (ANN) model for fouling factor estimation. 
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1.2.2 To design a neural network based model predictive control for temperature 

control heat exchangers under parametric uncertainty. 

1.3 Scope of Research 
1.3.1 Perform simulation of heat exchangers under the threshold fouling model. 

1.3.2 Develop ANN model for fouling estimation in heat exchangers under fouling 

condition.  

1.3.3 Design PID controller for temperature control of heat exchangers under fouling 

condition.  

1.3.4 Design ANN based MPC control for temperature control of heat exchangers 

under fouling condition.  

1.4 Contribution of Research 
1.4.1 A proposed ANN model for fouling estimation in heat exchangers under fouling 

condition. 

1.4.2 A proposed neural networks-based model predictive control for temperature 

control of heat exchangers under fouling condition. 

1.5 Nomenclature 

Symbols  
𝑨𝑪𝒆𝒍𝒍 heat transfer surface (m2) 
𝑪𝒑 specific heat capacity (J/kg K) 
𝒅𝑹𝒇 𝒅𝒕⁄  fouling rate (m2 K/W) 
𝑬 activation energy (KJ/mol) 
𝒉 heat transfer coefficient (W/m2 K) 
𝒉𝒇 heat transfer coefficient include thermal resistance of fouling 

(W/m2 K) 
𝒎 mass flow rate 
𝒎𝒉𝑪𝒆𝒍𝒍 mass holdup of the fluid in a modeling cell tank 
𝒎𝒉𝑻𝒂𝒏𝒌 mass holdup of the fluid in a modeling cell tank 
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𝝆 density (kg/m3) 
𝝉𝒘 the shear stress at the heat transfer surface 
Subscripts  
𝒃 bulk 
𝑪 cold stream 
𝒇 film 
𝑯 hot stream 
𝑰𝒏 Inlet of the fluid in a modeling cell tank 
𝑶𝒖𝒕 outlet of the fluid in a modeling cell tank 
𝑾 tube wall 
 

 
 
 
 
 

𝑷𝒓 Prandtl number 
𝑸𝑪𝒆𝒍𝒍 the rate of heat transfer through the cell wall into or out from a 

modeling cell tank 
𝑹 gas constant (J/mol K) 
𝑹𝒆 Reynolds number 
𝒕 time (h) 
𝑻 temperature (°C) 
𝒗 volumetric flow rate (m3/h) 
𝑽𝑪𝒆𝒍𝒍 volume (m3) 
Greek letters  
𝜶 constant value 
𝜶𝑪𝒆𝒍𝒍 film heat transfer coefficient in a modeling cell tank 
𝜷 constant value 
𝜸 constant value 
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CHAPTER II 
LITERATURE REVIEWS 

2.1 Dynamics of heat exchanger model 
Mathisen et al. [9] investigated the process control and controllability of heat 

exchangers and heat exchanger networks using a cell modeling technique. However, 

critical model characteristics must be supplied. It distinguishes between significant 

and minor model characteristics based on the sequence of arguments, the 

comparison of controllability measures, and dynamic simulation. The series order, 

wall capacity, and compressibility of the fluid are critical elements of models for 

single heat exchangers, whereas the flow arrangement and temperature propulsion 

have little impact on the dynamics. For a heat exchanger network, the most critical 

model characteristic is the break time of the linked pipes. 

      Varga et al. [10] used cell modeling as a heat exchanger network model to 

investigate the structural control properties of the heat exchanger network using 

time-varying parameters such as control properties, i.e., stability, observability, and 

controllability, as determined from qualitative data on heat exchangers and their 

network topology. The extended Kalman type rating criteria for linear systems with 

time-varying parameters are used to derive the required and sufficient requirements 

for structural and observable control of the heat exchanger network. Determining a 

heat exchange network's structural control and observability needs just examining 

the network's input and output connectivity capabilities for static and time-varying 

parameter scenarios. The results are expanded to more realistic situations in which 

bypass ratios are utilized as control variables and state-space matrices contain many 

time-varying parameters. 

      Georgiadis et al. [11] used a sophisticated dynamic model to offer a 

mathematical model and simulation of a complicated plate heat exchanger 

configuration subjected to milk fouling. Complex fouling model based on 

reaction/mass transfer theory and a conventional plate heat exchanger thermal 
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dynamic model. The final model is composed of a sequence of partial differential 

equations, integrals, and a small amount of algebra. The analysis of parameters is 

conducted by the dynamic optimization solution. The simulation findings are 

consistent with those obtained from previous studies. To define fouling behavior, 

three distinct approaches involving complicated flow manipulation were investigated. 

The simulation results shed light on the critical aspects that contribute to milk 

fouling. 

     Roetzel et al. [12] established a generic model for a one-dimensional flow 

heat exchanger that uses the Laplace transform and a numerical inverse method to 

solve issues. This model applies to multi-stream multi-pass shell-and-tube and plate 

heat exchangers, as well as their networks. The time delays in the pipe connection 

are included in this model on the assumption that they are constant and the heat 

capacity of the pipes is insignificant. To circumvent these assumptions, one can use 

the pipe connection as an extra exchanger channel. To anticipate the temperature 

response of heat exchangers, a simplified form of the transfer function resulting from 

the lumped parameter model is proposed, where parameters are determined by 

experimental data or the findings of the distributed parameter model. 

      Ansari et al. [13] used a numerical technique based on an analytical solution 

of the energy equation to model the dynamic response of a counter-current heat 

exchanger. A simulation of a counter-current heat exchanger was created using the 

work of [14]. The heat exchanger consists of N cells. Each cell has components for 

the hot and cold fluids, as well as the tube wall. At all intervals, it is assumed that 

the energy equation coefficient of each cell is constant. The temperature distribution 

of hot and cold liquids and walls at various periods in all cells may be determined 

by solving the analytical power equations. A numerical approach may be used to 

apply this temperature distribution across all cells to all heat exchangers. 

Additionally, in two circumstances, the system's transitory behavior is evaluated. The 

first scenario examines the system's response to changes in the two fluids' intake 
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temperatures. The second scenario analyzes the effect of changing the incoming 

mass flow rate on the system's behavior. During the dynamic behavior of the system, 

the time constant is taken into account. 

      It demonstrates that in the flow direction, the fluid time constant at which 

the mass flow rate changes grows linearly. On the other hand, an undisturbed fluid's 

mass flow rate displays two distinct sorts of reactions. When the step change is 

minor, the time constant function is homogeneous across the heat exchanger. 

However, when the number of changes is increased, the time constant function 

becomes a line with an increasing slope in the direction of the flow. The results were 

compared to those obtained via analysis and to those obtained through 

experimentation. These findings demonstrated that the approach was valid and that 

the heat exchanger's transient behavior could be replicated. 

      Dobos et al. [15] employed a cell model technique to simulate the heat 

exchanger's dynamic behavior. Their objective was to model the spatial heating 

network while also incorporating it into a model predictive controller. It is utilized to 

satisfy the heating requirements of network consumers. It will prioritize two primary 

objectives. The first is dynamic modeling, which can be used to illustrate the primary 

characteristics of a decentralized heating network; the second is to develop a 

nonlinear model predictive controller (NLMPC) capable of meeting consumer heating 

needs in heat exchanger networks. Due to the model's predictive controllers' limited 

usage of objective functions, it is ideal to develop strategies to decrease redundant 

energy consumption and maximize the benefit of freely deployed industrial waste 

heat. Along with environmental concerns, conserving energy may also cut 

operational expenses. Following that, [16] must lower the transition time in DHN 

predicted by the nonlinear model stated above by modifying the parameters of the 

nonlinear MPC and simulating a heat exchanger using the cell model approach. The 

cost function is used to determine the controller's efficiency while considering the 

needed system restrictions. Utilize the simplex approach, a well-known test design 
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technique, to optimize this cost function. This optimization approach is capable of 

solving mixed-integer optimization problems, which are necessary since prediction 

and control horizons must be integer values. As a result of the periodic nature of 

heat demand, the suggested technique may readily be integrated into an iterative 

learning control system.  

      Varbanov et al. [17] proposed cell-based dynamic model to describe the 

dynamic heat exchanger and the visualization technique for determining the number 

of the modelling cells and their size. A simple heat exchange cell in their work 

consists of the two perfectly mixed tank, exchanging heat only with each other that 

are divided by the wall. Cell-based model proposed in their research was acquired 

from the energy balance of tank in a cell by some assumptions for easy to 

calculating. This method can calculate the cell number and heat transfer coefficient 

for a more general case, and also provide thermodynamic reasoning, which is 

important for implementing engineering tasks. 

      Zhang et al. [18] suggested a dynamic model that is suited for diagnostic 

purposes. The HEX/reactor under study and this model can assure the model's 

correctness by accounting for the effect of mass flow rate and fouling on the total 

heat transfer coefficient. As a model HEX/reactor, a cell is employed. This approach 

is capable of detecting, isolating, and identifying sensor, actuator, and process 

parameter-related faults. This is because it enables the source of a mistake in the 

total heat transfer coefficient to be determined (fouling or fluid flow rate). The 

simulation results indicate that the approach is capable of providing enough 

detection and diagnostic capabilities for the safety of HEX/reactor.   

2.2 Models for predicting fouling 
Based on an analysis of Exxon crude oil fouling data, Ebert and Panchal [2] proposed 

a ground-breaking approach called the threshold prediction model. They predicted 

the rate of deposition using film temperature, but in more recent studies, Heat 



  9 

Transfer Research Incorporated (HTRI) established the rate of deposition using skin 

temperature because it shows better trending than film temperature. High variability 

in activation energy, according to the study, is a challenge. Various researchers have 

proposed various figures. They tested a specific crude oil with an activation energy of 

69 kJ/mole. The modification proposed by Ebert and Panchal is written as 

d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑒𝑥𝑝 (

−𝐸

𝑅𝑇𝑓

) − 𝛾𝜏𝑊 

The first term is related to chemical reaction and film temperature, while the second 

term depends on the velocity and surface shear stress. Film temperature (𝑇𝑓) is 

described as follows. 

𝑇𝑓 = 𝑇𝑏 + 0.55(𝑇𝑤 − 𝑇𝑏) 

where 𝑇𝑏 and 𝑇𝑤 are the bulk temperature and the wall temperature, respectively.  

      Panchal [3] assumed that fouling removal is a matter of mass transfer rather 

than surface shear stress, as Crittenden [19] established in his work. Panchal adds the 

Prandtl number 𝑃𝑟 to Ebert and Panchal's model to increase the content of specific 

heat and thermal conductivity. According to the heat transfer relationship, the power 

value of 𝑃𝑟 is set at -0.33. Panchal's modification is denoted by the following: 

d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑓) − 𝛾𝜏𝑤 

      Polley et al. [4] compared Panchal's model predictions to Knudsen's [20] 

experimental fouling data and concluded that the anticipated threshold temperature 

is greater than the actual value due to the effect of flow velocity. The disparity 

between the anticipated and measured values of the threshold temperature 

increases fast as the flow velocity increases. As a result, they modify the Panchal 

model to create a new correlation. It's as follows: 

d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑊) − 𝛾𝑅𝑒0.8 

(2) 

(3) 

(4) 

(1) 
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      In the Arrhenius equation, the wall temperature 𝑇𝑊 is used to replace the 

film temperature. This study is an attempt to model measured physical parameters 

that resulted in no observable fouling. 𝛾𝑅𝑒0.8 is used to replace the surface shear 

stress in the mass transfer mechanism. Polley validated the predictive function by 

comparing the predicted value to the experimental results obtained by [20], [3], and 

[21] under the same operating conditions. 

      Brahim et al. [22] contributed to the prediction of fouling by predicting crystal 

formation on flat and structured surfaces of heat transfer equipment using a 

Computational Fluid Dynamics (CFD) solver. According to sources, the simulation 

does not validate what was referred to as the fouling process calculation. The 

numerical simulation yielded a forecast of fouling resistance over a specified period. 

However, the simulation tends to underestimate the fouling behavior in the majority 

of situations. The reason for this is that the CFD solver used computes temperatures 

at the phase boundary crystal layer/salt solution at unacceptably low values. 

      Liporace and de Oliveira [23] created a methodology for assessing the real-

time performance of a crude oil preheat train. The tool made extensive use of 

complex process simulations and intricate heat exchanger design to guarantee that 

the global heat transfer coefficient (operational and clean modes) and fouling factor 

could be analyzed accurately. This was accomplished with the use of a process 

simulator called Petrox from Petrobras and HTRI, which resulted in fouling factors 

that were similar to real-world values. This has increased the performance of heat 

exchanger design. 

      Nasr et al. [5] present a novel model for crude oil fouling in crude distillation 

units' preheat exchangers. We used experimental data from Australian light crude oil 

with tube side surface temperatures ranging between 200 and 260 °C and fluid 

velocity ranging between 0.25 and 0.4 m/s. The activation energy required has been 

computed as a function of the surface temperature. A novel model was suggested 
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that included terms for fouling development and fouling removal caused by 

chemical and tube wall shear stress, respectively. The main superiority of the model 

are independent to 𝑃𝑟 number, thermal fouling removal and determination of 𝛽 

based on experimental tests. Finally, the fouling rate of Australian light crude oil was 

computed using the suggested model, and threshold curves for identifying fouling 

and non-fouling formation zones were created. The following is a modified 

correlation:  

d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑓) − 𝛾𝑅𝑒0.4 

The model performs significantly better than others in forecasting deposit rates for 

various kinds of crude oil and under various scenarios. By providing a model, 

designers may readily establish whether the heat exchanger is positioned in the 

fouling zone and build threshold curves. Additionally, this curve aids in determining 

the location of the heat exchanger inside the fouling zone and how to push it out of 

there. 

      Haghshenasfard et al. [24] developed a two-component, multi-component 

fluid model in conjunction with a heat-flux partition wall model for the prediction of 

CaSO4 fouling in sub-cooled flow boiling circumstances. The authors investigate the 

effects of bulk and surface temperatures, roughness, and fluid velocity on fouling 

behavior, heat transfer coefficient, and fouling resistance. The models' predictions 

were evaluated and compared to the experimental data from [25]. The working 

conditions are as follows: fluid velocity between 0.5 and 2 m/s, surface temperature 

between 95 and 140oC, total temperature between 65 and 95°C, and concentration 

between 1.6 and 2.7 g/L. 

2.3 Artificial neural network modelling 
2.3.1 Estimation of heat exchangers parameters  

Jambunathan et al. [26] utilized a feed-forward neural network to estimate the 

convective heat transfer coefficients at a site in hot air-heated pipes based on 

(5) 



  12 

experimental data obtained using liquid crystal thermography (LCT). Three inputs are 

used in the network: non-dimensional temperature, thermal diffusivity, and time, 

while the output is the heat transfer coefficient. As a network training algorithm, the 

Gradient Descent approach is utilized. The configuration with 3-6-3-1 was chosen as a 

network for predicting heat transfer coefficients because it had a percent deviation of 

±2.7% from the experimental values. 

      Malayeri and Müller-Steinhagen [27] demonstrated how to employ neural 

network analysis to forecast fouling behavior during sub-cooled flow boiling. It 

discussed the benefits and drawbacks of neural network design when applied to 

fouling data. The predictability of the network has been demonstrated to be 

promising when dominating factors are understood and also appropriate data is 

supplied to the network. 

      Ghajar et al. [28] created a feed-forward neural network for the prediction of 

horizontal heat exchanger heat transfer coefficients (with three inlet configurations, 

i.e., reentrant, square-edged, and bell-mouth inlet under uniform wall heat flux 

boundaries condition). The network accepts five inputs: the Reynolds number, the 

Prandtl number, the Grashof number, the 𝑥/𝐷 value, and the μ ratio, and outputs 

the heat transfer coefficient. A total of 1290 data points were used as training data 

for the network (441 for reentry, 416 for rectangular edges, and 433 for bells). The 5-

11-1 feed-forward neural network is capable of accurately predicting the heat 

transfer coefficient to within a 5% deviation. 

      Romeo et al. [29] employed a hybrid approach of artificial neural networks 

and fuzzy logic to manage the fouling factor and maximize boiler performance while 

reducing the influence of fouling in biomass boiler heat exchangers. This hybrid 

system employs many neural networks for various tasks, including boiler monitoring, 

soiling prediction, boiler behavior prediction, and cleaning outcomes if a soot-

blowing cycle is started. The authors demonstrated that by utilizing a hybrid ANN 
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technique to regulate the fouling rate in boilers, power production may be increased 

by around 3.5%. Between the output of the hybrid system and the data supplied by 

the biomass boiler, the validation reveals considerable energy savings. 

      Aminian et al. [6] compared the ANN used to estimate the fouling factor to 

the fouling rates predicted by the three threshold models. The ANN model is trained 

using data from the literature. The training data set was created using experimental 

results published in the literature. Three inputs are used in the network: the tube 

diameter (dt), the crude velocity, and the tube surface temperature. To anticipate 

the fouling factor, they picked a network design with 3-5-6-1 structures. The overall 

mean relative error (OMRE) of the ANN model was determined to be the lowest 

when compared to the three threshold model fouling rates presented in Table 1. 

Additionally, they compared the ANN used to estimate the fouling factor to the 

fouling rates predicted by the threshold model. The fouling factor in crude oil may 

be predicted using three inputs: the Reynolds number (Re), the Prandtl number (Pr), 

and the tube surface temperature. The performance was attained using a three-layer 

network with 3-8-1 structures. The value of OMRE was determined to be 14.05%, 

22.47%, and 15.83%, respectively, for training, testing, and experimental findings [7]. 

 Lalot et al. [30] demonstrated how to use ANN to identify fouling in a cross-

flow heat exchanger. A numerical model was employed in their research to produce 

data for training under clean and fouling circumstances. The network's five inputs are 

the inlet and outlet temperatures of cold fluids, the inlet temperature of hot fluids, 

the mass flow rate of cold fluids, and the mass flow rate of hot fluids, with just the 

fouling factor as an output. It was revealed that ANN modeling is highly sensitive for 

forecasting the fouling factor while requiring less computing time than the standard 

technique. 
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Table  1.  Comparison of the OMRE value between the three threshold fouling rates 
and ANN model.   

Authors Model OMRE 
Panchal et al., 
1997 

Panchal model fouling rate: 
d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑓) − 𝛾𝜏𝑤 

 

47.90% 
 

Polley et al., 2002 Polley model fouling rate: 
d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑤) − 𝛾𝑅𝑒0.8 

 

75.36% 
 

Nasr et al., 2006 Nasr model fouling rate: 
d𝑅𝑓

dt
= 𝛼𝑅𝑒𝛽𝑃𝑟−0.33𝑒𝑥𝑝(−𝐸/𝑅𝑇𝑓) − 𝛾𝑅𝑒0.4 

 

60.68% 
 

Aminian et al., 
2008 

ANN model structure: 
3-5-6-1 

26.23% 
 

      Garcia [31] developed an ANN-based supervision technique to reduce the 

disadvantage of fouling in heat exchangers. Based on static and dynamic ANN 

approaches, the suggested supervision approach can identify, segregate, and 

accommodate defects in the closed-loop temperature management of a heat 

exchanger. The plan that was designed was broken into three sections. The first 

module examines the surveillance system's consistency. The second module 

continuously monitors the heat exchanger for fouling conditions and is capable of 

diagnosing potential fouling reasons. A third module forecasts the remaining 

operating time under acceptable circumstances, which is then used to arrange the 

supervisory flow chart. The developed supervision technique is a unique application 

of artificial neural networks for accurately detecting, separating, and forecasting heat 

exchanger fouling. 

      Vaferi et al. [32] introduced an artificial neural network (ANN) model for 

calculating the convection coefficient (HTC) of nanofluids flowing through spherical 
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tubes with varying wall conditions in various flow systems. A backpropagation 

learning approach was used to update the parameters of the ANN model using a 

variety of experimental datasets. The constructed ANN model has a mean squared 

error (MSE) of 1.7x10-5, a percent mean absolute relative deviation (AARD%) of 2.41, 

and a regression coefficient (R2) of 0.99966 when used to simulate the whole 

convective HTC experimental dataset. The suggested approach's prediction 

performance is compared to authoritative correlations proposed in the literature. The 

constructed MLP network's better predictive ability and empirical correlation 

superiority demonstrated that the suggested technique could be utilized to measure 

nanofluid convection HTC within a circular tube in real space. 

      Biyanto [33] modeled fouling resistance in shell-and-tube heat exchangers 

using Artificial Neural Networks (ANN) Multilayer Perceptron (MLP) with nonlinear 

autoregressive with exogenous (NARX) input structures. The input data includes the 

present flow rate and temperature of the heat exchanger, the physical parameters of 

the product, and coarse mixing data. This model is a prediction tool for optimizing 

shell and tube heat exchanger operating conditions and preventative maintenance. 

The findings indicated that the model accurately captured the complexity of fouling 

features in heat exchangers as a function of thermodynamic circumstances and 

variations in crude oil qualities (mixture). Root Mean Square Error (RMSE) was 

discovered to be an excellent indicator of the nonlinearity and complexity of shell-

and-tube heat exchangers that cause fouling throughout the training and validation 

processes. 

      Davoudi et al. [8] predicted the fouling factor in the yearly heated probe and 

single tube heat exchangers under a variety of operating situations using a multi-layer 

perceptron network. The ANN model was constructed and verified using a massive 

database consisting of 11626 experimental datasets from six distinct pieces of 

literature. Density, surface temperature, fluid temperature, the width of the fluid 

channel, the velocity of the fluid, the concentration of dissolved oxygen in fluid, and 



  16 

time are the seven inputs to the network. To estimate the fouling factor, the 

arrangement with 7-10-1 structures had the best performance. With an overall 

AARD% of 5.4, an MSE of 0.0013, an RMSE of 0.0355, and an R2 of 0.977819, this ANN 

model predicts the experimental values of the fouling factor. The simplicity of the 

generated ANN model and its low error rates across a large experimental dataset are 

two of their model's important characteristics. 

2.3.2 Modeling of heat exchanger  
Wang et al. [34] developed a feed-forward neural network model to forecast the 

performance of shell-and-tube heat exchangers with segmented or continuous 

helical baffles using sparse experimental data. The network contains eight inputs: 

Reynolds number on the oil and watersides, inlet temperature on the oil and 

watersides, tube and baffle count, baffle pitch, and tube center diameter, while the 

output is the heat transfer rate. For network training, backpropagation is utilized. The 

network configuration with the identifier 8-6-5-1 is chosen. The difference between 

anticipated and observed values was less than 2%. The results indicated that the 

ANN-predicted heat transfer rate was extremely similar to the experimental data. This 

demonstrates that the neural network methodology is superior to empirical 

correlations for forecasting heat transfer rates. 

      Xie et al. [35] employed ANN to simulate shell-and-tube heat exchangers 

(with oil and water as working fluids), comparing the findings and correlations. The 

network contains eight inputs, including the Reynolds number on the oil and 

watersides, the inlet temperature on the oil and watersides, the tube and baffles 

count, baffle pitch, and tube center diameter, and three outputs: heat transfer rate, 

the temperature differential between the oil and watersides. For network training, 

backpropagation is utilized. As the network configuration, 8-6-5-3 is chosen. This ANN 

model predicts experimental values with an evaluation factor of 1.089 for average 

accuracy and 0.1387 for scattering accuracy, with a maximum relative error of less 

than 1.5% when compared to experimental findings. 
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      Pandharipande et al. [36] modeled a shell-and-tube heat exchanger using a 

feed-forward neural network. The network comprises four inputs: temperatures of 

hot and cold fluids and the flow rates of hot and cold streams, and two outputs: 

temperatures of hot and cold streams at their outlets. For network training, the 

backpropagation algorithm is utilized. Network training is implemented in architecture 

4-15-15-15-2, which may achieve a high degree of accuracy (98-99.5%) for predicted 

values of training and test datasets. When applied to model heat exchangers, ANNs 

have been found to yield acceptable results. 

      Mandavgane et al. [37] modeled a shell-and-tube heat exchanger with a feed-

forward neural network. The network has four inputs: temperatures of hot and cold 

fluids and flow rates of hot and cold streams, and two outputs: outlet temperatures 

of hot and cold fluids. As with [36], the datasets are divided into two cases for 

training and testing: water-20% glycerin system and water-40% glycerin system. 

Backpropagation is used to train networks. The improved ANN design, 4-15-15-15-2, 

can predict the values of training and test datasets with a high degree of accuracy 

(98-99.5%). It has been demonstrated that when used to model heat exchangers, 

ANNs may yield satisfactory results. 

      Duran et al. [38] developed a feed-forward neural network for shell-and-tube 

heat exchanger cost calculation. This network topology has an input layer with five 

neurons representing tube pitch, shell diameter, tube diameter, rear head factor, and 

stationary head factor, and an output layer with one neuron representing the cost 

per exchange area. Their approach made use of the Levenberg-Marquardt algorithm 

and the log sigmoid transfer function. The network configurations 5-10-10-1 were 

found to be highly predictable, with an R-value of 0.97. 

      Fadare et al. [39] modeled the heat transfer coefficient of a staggered multi-

row, multicolumn, cross-flow, tube-type heat exchanger using a feed-forward neural 

network. This airflow via copper pipes staggered in five rows and four columns at 
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varying air flow rates with a throttle opening of 10% to 100%. A network accepts two 

inputs: the Reynolds number and the row number, and produces the Nusselt 

number. It was stated that a feed-forward neural network with a 2-5-5-1 architecture 

was capable of predicting the Nusselt number and producing less than 1% and 4% 

MARE for the training and test datasets, respectively. 

      Kashani et al. [40] devised a model that enables operators and process 

engineers to forecast the complicated dynamic behavior of crude oil fouling in CDU 

industrial heat exchangers using only a few input variables and ANN moving windows. 

A critical component of this modeling methodology is that the ANN model is 

updated in real-time whenever a new block of data becomes available, which allows 

for effective capturing of the dynamics of slow-changing processes. It is quantifiable 

every day in all CDUs. Three inputs are used in the network: the tube side of crude 

oil flow rate and the tube and shell side input temperatures, while the output is the 

fouling factor. In-network training, factor backpropagation is used to modify weights 

so that the output vector's response to the input vector is as near to the intended 

response as feasible. They minimize computational burden by utilizing a modified 

leave-one-out cross-validation methodology combined with an early stop idea. The 

network was configured in a 3-5-1 to train the network. With an MRE of around 8%, 

this network is capable of anticipating the fouling factor two days in advance. These 

models' outputs were compared to relevant experimental data sets. The training and 

prediction subsets have a mean relative error (MRE) of roughly 6.61% and 8.06%, 

respectively. MRE has an accuracy of roughly 8% in forecasting fouling rates over the 

following 50 hours. 

2.4 Neural network based model predictive control 
Ławrynczuk [41] employed artificial neural networks to manage the temperature of a 

yeast fermentation biochemical reactor using model predictive control. To begin, the 

process's neural model was trained utilizing existing datasets obtained by the 

underlying model. Adjustment employs the optimal brain damage method to 
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simplify neural stimulation and enhance the neural network's prediction capabilities. 

Following that, a computationally efficient nonlinear model predictive control (MPC) 

method with nonlinear prediction and linearization (MPC-NPL) has been created. This 

approach requires an online solution for a quadratic programming problem. It was 

demonstrated that the approach achieves closed-loop control performance 

comparable to that of nonlinear MPCs using complete online non-convex 

optimization. The computational complexity of the MPC-NPL algorithm proved 

control precision, as well as the capacity to reject interference in the presence of 

noise and the resultant interference process. 

      Vasikaninová et al. [42] utilized a neural network predictive control (NNPC) 

structure to maintain a target outlet temperature and reduce energy consumption in 

a co-current tubular heat exchanger. The neural network was employed as a 

nonlinear process model in their work to forecast the future behavior of a controlled 

process with dispersed characteristics. Offline training of a neural network model with 

one hidden layer and six neurons is used to identify the system and forecast the 

future hot output temperature. To train the network, we used the Levenberg-

Marquardt algorithm. To compute the appropriate control input, a predictive control 

was constructed. Additionally, we compared neural network predictive control to 

traditional PID control. The outcome established that the NNPC was an effective 

instrument for controlling the heat exchanger successfully. In comparison to standard 

PID control, NNPC enables more stable control responses with a shorter settling 

period. Additionally, this strategy benefited from regulated input and limitations, as 

well as serving as a tool for almost perfect control process behavior. As a result, 

consumption is reduced as compared to conventional PID control. 

      Pazhooh et al. [43] employed an adaptive neural network predictive 

controller (ANNPC) to regulate a Vinyl Acetate monomer (VAM) production process. 

The framework of the proposed controller incorporates an observer-based neural 

network model for assessing the unknown state. After then, adaptive predictors are 
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customized for the observer and utilized to forecast non-measurable states. For 

plant-wide process control, a new partly centralized structure has been devised. 

Furthermore, the suggested controller's efficiency, notably in mitigating the influence 

of measurement delay, is demonstrated in silicon through numerical simulations of 

the VAM plant under control. The findings are compared to those obtained using a 

straightforward PI control system for a VAM process. 

      Kimaev et al. [44] developed a multi-scale thin-film coating process using a 

neural network predictive control (NNPC) framework. They created multi-input, 

single-input, multi-input, nonlinear neural networks with external inputs to forecast 

the reaction of a multi-scale stochastic chemical engineering system and then 

manage it (NMPC). The reactant temperature and molar reactant percentage were 

both considered as factors. Thin-film roughness and growth rate were selected as 

response variables. The generated profiles were tested with a stochastic multi-scale 

system and found to be highly consistent with the ANN predictions. ANNs appear to 

be a potential solution for online optimization and control of computationally 

intensive multi-scale process systems due to their reported computational efficiency, 

accuracy, and interference rejection capabilities. 

      Shin et al. [45] built a neural network model predictive control (NNMPC) 

system and compared it to a PID controller on a depropanizer column at an offshore 

facility. Initially, using Aspen HYSYS, a mathematical model of the distillation column 

was built. A dynamic convolutional neural network (DNN) model was utilized to 

forecast the propeller reducer's future behavior. Finally, the generated model is 

connected with the Model Predictive Control System (MPC), therefore replacing the 

old mathematical model and enabling the control system to achieve stable, rapid, 

and accurate optimization outcomes. The investigation revealed that the MPC 

performed better (i.e., had a faster settling time and a shorter rising time) than the 

PID control group. 
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      Jamil et al. [46] used the neural network predictive control (NNPC) as a novel 

technique for vibration control of tall structures employing a single degree of 

freedom active tuned mass damper (ATMD). The suggested approaches were 

compared to two contemporary control systems: adaptive neural inference 

regulators and terminal alignment regulators. The validity of the control 

methodology is confirmed using a scaled-down laboratory model. Nonlinear ARX 

models are used to develop neural network prediction controllers. The linear ARX 

model is used to construct polynomial and state-space pole-placement controllers. 

An adaptive neuro-fuzzy inference system is used to construct a fuzzy logic 

controller for structure and training (ANFIS). Each of these controllers was evaluated 

for vibration control using MATLAB and hardware-in-the-loop (HIL). The results 

indicated that the neural network prediction regulator significantly shortened the big 

damper's shock suppression time. Additionally, compared to the pole position 

controller, it takes extremely less control effort. As evidenced by the peak-to-peak 

control signal voltage being double that of the pole position regulator. 
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CHAPTER III 
THEORY 

3.1 Cell-based dynamic heat exchanger models 
The dynamic model with cells [17] is a simplified depiction of a heat exchanger, 

described as two completely mixed tanks that exchange heat solely through a wall, 

as shown in Figure 1). The cell model may generate an infinite number of equations. 

However, this method establishes a consistent framework and modeling flexibility 

that enables the incorporation of any type of surface heat exchanger in any flow 

arrangement. The model's complexity may be adjusted by the number of cells, 

allowing for trade-offs between accuracy and the model's capacity to handle large 

and complicated process systems, such as heat exchanger networks. The following 

assumptions were used in general when developing a cell-based dynamic model:  

(1) The two tanks in the heat exchanger cells are perfectly mixed, meaning that the 

temperature in each tank can be considered constant for space.  

(2) The fluid densities are constant. 

(3) The tank is filled with relevant or interest liquid.  

(4) This is because the model mainly aims at controlling the temperature of the fluid. 

Therefore, the stream is effectively assumed to have a limited constant specific heat 

capacity, excluding pure vaporization or condensation process streams. 

(5) The wall resistance to heat transfer is neglected as its temperature is considered 

uniform within the cell volume. 
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Figure  1. Modeling cell-based dynamic heat exchanger [17]. 

      The energy balance of the tank within the cell, assuming that assumptions (2) 

and (3) are irrelevant, therefore obviating any changes in the amount of liquid 

retained. Which is equivalent to Eq. 6 [17]. 

𝑚ℎ𝑇𝑎𝑛𝑘 ∙ 𝐶𝑝,𝐹𝑙𝑢𝑖𝑑 ∙
𝑑𝑇𝐹𝑙𝑢𝑖𝑑,𝑂𝑢𝑡

𝑑𝑡
= 𝑚𝐹𝑙𝑢𝑖𝑑 ∙ 𝐶𝑝,𝐹𝑙𝑢𝑖𝑑 ∙ 𝑇𝐹𝑙𝑢𝑖𝑑,𝐼𝑛 − 𝑚𝐹𝑙𝑢𝑖𝑑 ∙ 𝐶𝑝,𝐹𝑙𝑢𝑖𝑑 ∙ 𝑇𝐹𝑙𝑢𝑖𝑑,𝑂𝑢𝑡 ± 𝑄𝐶𝑒𝑙𝑙 

              𝑄𝐶𝑒𝑙𝑙 represents the rate of heat transfer through the cell wall between two 

tanks with the hot side tank lowered and the cold side tank raised. The heat transfer 

rates for the hot and cold side tanks are written as follows [17]. 

𝑄𝐻,𝐶𝑒𝑙𝑙 = 𝛼𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝐻,𝑂𝑢𝑡 − 𝑇𝑊) 

𝑄𝐶,𝐶𝑒𝑙𝑙 = 𝛼𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝑊 − 𝑇𝐶,𝑂𝑢𝑡) 

      By substituting 𝑄𝐶𝑒𝑙𝑙 in Eq. 6, the following energy balances for hot, cold, and 

wall tanks are obtained: 

𝑚ℎ𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐶𝑝,𝐻 ∙
𝑑𝑇𝐻,𝑂𝑢𝑡

𝑑𝑡
= 𝑚𝐻 ∙ 𝐶𝑝,𝐻 ∙ 𝑇𝐻,𝐼𝑛 − 𝑚𝐻 ∙ 𝐶𝑝,𝐻 ∙ 𝑇𝐻,𝑂𝑢𝑡 − 𝛼𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝐻,𝑂𝑢𝑡 − 𝑇𝑊) 

𝑚ℎ𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐶𝑝,𝐶 ∙
𝑑𝑇𝐶,𝑂𝑢𝑡

𝑑𝑡
= 𝑚𝐶 ∙ 𝐶𝑝,𝐶 ∙ 𝑇𝐶,𝐼𝑛 − 𝑚𝐶 ∙ 𝐶𝑝,𝐶 ∙ 𝑇𝐶,𝑂𝑢𝑡 + 𝛼𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝑊 − 𝑇𝐶,𝑂𝑢𝑡) 

 

𝑚ℎ𝑊 ∙ 𝐶𝑝,𝑊 ∙
𝑑𝑇𝑊

𝑑𝑡
= 𝛼𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝐻,𝑂𝑢𝑡 − 𝑇𝑊) − 𝛼𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙 ∙ (𝑇𝑊 − 𝑇𝐶,𝑂𝑢𝑡) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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      Since a single cell cannot adequately depict the complete heat exchanger, 

numerous cells are often mixed according to the device's real flow sequencing. As a 

result of dividing all heat exchangers, the cell size, film heat transfer coefficient, and 

other characteristics will be computed. As a result, referring to the volume of the cell 

tank rather than the mass is more convenient. Equations 12-14 were used to denote 

the following [10]. 

𝑑𝑇𝐻,𝑂𝑢𝑡

𝑑𝑡
=

𝑣𝐻

𝑉𝐻,𝐶𝑒𝑙𝑙

∙ (𝑇𝐻,𝐼𝑛 − 𝑇𝐻,𝑂𝑢𝑡) −
𝛼𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝐻,𝐶𝑒𝑙𝑙 ∙ 𝜌𝐻 ∙ 𝐶𝑝,𝐻

(𝑇𝐻,𝑂𝑢𝑡 − 𝑇𝑊) 

𝑑𝑇𝐶,𝑂𝑢𝑡

𝑑𝑡
=

𝑣𝐶

𝑉𝐶,𝐶𝑒𝑙𝑙

∙ (𝑇𝐶,𝐼𝑛 − 𝑇𝐶,𝑂𝑢𝑡) +
𝛼𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝐶,𝐶𝑒𝑙𝑙 ∙ 𝜌𝐶 ∙ 𝐶𝑝,𝐶

(𝑇𝑊 − 𝑇𝐶,𝑂𝑢𝑡) 

𝑑𝑇𝑊

𝑑𝑡
=

𝛼𝐻,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝑊 ∙ 𝜌𝑊 ∙ 𝐶𝑝,𝑊

(𝑇𝐻,𝑂𝑢𝑡 − 𝑇𝑊) −
𝛼𝐶,𝐶𝑒𝑙𝑙 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝑊 ∙ 𝜌𝑊 ∙ 𝐶𝑝,𝑊

(𝑇𝑊 − 𝑇𝐶,𝑂𝑢𝑡) 

3.2 Threshold fouling model 
The threshold fouling model is used for predicting fouling rates. It has been 

developed to several models for predicting the fouling rate at various crude types 

and conditions. The models are controlled by two competing mechanisms, the first 

involved in the chemical reaction as the term of fouling formation and the second 

involved in the fluid velocity on the fouling removal. In this work, the researchers are 

interested in the threshold fouling model developed by Nasr and Givi because it can 

predict the fouling rate for different crude types and conditions better than other 

models. It can explain the equation as follows [5]. 

𝑑𝑅𝑓

𝑑𝑡
= 𝛼𝑅𝑒𝛽𝑒𝑥𝑝 (

−𝐸

𝑅𝑇𝑓

) − 𝛾𝑅𝑒0.4 

where  𝛼=0.01098 m2K/J 

𝛽=-1.547 

𝛾=0.96×10-13 m2K/J  

  𝐸=22.618 kJ/mol  

(12) 

(13) 

  (8) 

(14) 

  (8) 

(15) 
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      These parameters are the constant values calculated from experimental data 

of the Australian crude oil measured by Seleh and colleagues whose laboratory 

experimental data is an experiment with a recirculation system with an annular test 

probe [47]. Experimental conditions were determined using the surface temperature 

between 200 and 260 °C and fluid velocity between 0.25 and 0.4 m/s. Film 

temperature (𝑇𝑓) is described as follows [4]. 

𝑇𝑓 = 𝑇𝑏 + 0.55(𝑇𝑤 − 𝑇𝑏) 

where 𝑇𝑏 and 𝑇𝑤 are the bulk temperature and the wall temperature, respectively.  

      The fouling model in the equation 15 are controlled by two competing 

mechanisms, the first involved in the chemical reaction as the term of fouling 

formation and the second involved in the fluid velocity on the fouling removal. This 

shows when the fluid velocity increases, the fouling deposition decreases while 

when the wall temperature increases, the fouling formation increases. This threshold 

fouling model is integrated with the cell-based dynamic heat exchanger model for 

simulation of heat exchangers. 

3.3 Artificial neural network 
The ANN model is a technique to imitate the human brain’s work and process 

information [48]. The fundamental concept of ANN is learning from data and making 

a prediction using the relationships between inputs and outputs data. By comparing 

the outputs with targets, the system can adjust the weights to match its target. With 

sufficient number of data, the network can be well trained. ANN model is widely 

used as the model to solve difficult and complex problems. 

3.3.1 Feed-forward neural network 
 Feed-forward neural networks were the first type of artificial neural networks 

constructed, and they function more efficiently than other forms of neural networks. 

They are a widely used type of artificial neural network that incorporate an input 

layer for receiving external inputs. The weight of each input is compounded. The 

(16) 
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input product is then multiplied by the bias and sent to the activation function, 

which computes and stores the signals in a hidden layer. The signals from the 

concealed layer are sent to the final output layer. As seen in Figure 2, the output 

layer is in charge of calculating the output signal.  

 

 

 

 

 

 

 

 

Figure  2. Feed-forward neural network architecture. 

      The procedure for calculating the output signal (𝑦) for an artificial neuron can 

be expressed by Eq. 17.  

𝑦𝑗 = 𝑓 (∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏

𝑛

𝑖=1

) 

𝑤𝑖𝑗 refers the weight between the input neuron 𝑥𝑖 and 𝑗th output neuron and 𝑏 is 

the bias coefficient of neuron. The net output of each neuron is passed to activation 

or transfer function (𝑓(∙)). 𝑦𝑗 represents the output signal. 

3.3.2 Nonlinear autoregressive artificial neural network with exogenous inputs 
(NARX-ANN) 

 The NARX artificial neural network is a recurrent dynamic network with feedback 

links encompassing various levels of the network, as seen in Figure 3. The NARX-ANN 

(17) 
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model is derived from the linear ARX model, which is frequently used in time series 

analysis. The NARX-ANN model's defining equation is as follows: 

�̂�(𝑡) = 𝑓 (𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)) 

where 𝑦(𝑡) is the goal and �̂�(𝑡) is predicted output variables. 𝑢(𝑡) is the input 

variable of the network. The time delays of output and input variables are denoted 

by 𝑛𝑦 and 𝑛𝑢. The input is created from time 𝑡 to 𝑡 − 𝑛𝑦 (output of interesting 

process), whereas the control value is created from time 𝑡 to 𝑡 − 𝑛𝑢 (input of 

interesting process). The dependent output signal 𝑦(𝑡) is regressed on its prior values 

and those of an independent (exogenous) input signal. 

The hidden layer output at time 𝑡 is obtained as [49] 

𝐻𝑖(𝑡) = 𝑓1 (∑ 𝑤𝑖𝑟𝑢(𝑡 − 𝑟) + ∑ 𝑤𝑖𝑙𝑦(𝑡 − 𝑙) + 𝑏𝑖

𝑛𝑦

𝑙=1

𝑛𝑢

𝑟=0

) 

where 𝑤𝑖𝑟 denotes the weight of the connection between the input neuron 𝑢(𝑡 − 𝑟) 

and the 𝑖th hidden neuron, and 𝑤𝑖𝑙 denotes the weight of connection between the 

𝑖th hidden neuron and output feedback neuron 𝑦(𝑡 − 𝑙). 𝑏𝑖 and 𝑓1(∙) denote the 

bias of the 𝑖th hidden neuron and the activation function of hidden layer, 

respectively. 

The final prediction can be given by [49] 

�̂�𝑗(𝑡) = 𝑓2 (∑ 𝑤𝑗𝑖𝐻𝑖(𝑡)

𝑛ℎ

𝑖=1

+ 𝑏𝑗) 

where 𝑤𝑗𝑖 is the weight associated with the link between the 𝑖th hidden neuron and 

𝑗th predicted output 𝑛ℎ . 𝑏𝑗 is the bias of the 𝑗th predicted output. 𝑛ℎ is the number 

of hidden neurons, and 𝑓2(∙) is the activation function for the output layer. 

 

 

(19) 

(20) 

(18) 
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Figure  3. NARX artificial neural network architecture [49]. 

      NARX artificial neural network has a variety of applications. It is helpful as a 

predictor, predicting the value of the input signal when it is received again. It is an 

example of nonlinear filtering where the output is noise-free. The NARX-ANN model 

is demonstrated in another significant application, that of modeling nonlinear 

dynamic systems. Creating a NARX-ANN model with a series-parallel architecture 

(NARX-SP network; open-loop) is extremely beneficial for training (see Figure 4), as it 

allows for the use of the real output, the known goal value, rather than feeding back 

the estimated output in conjunction with exogenous inputs. This offers two benefits. 

The first advantage is that the feed-forward network's input is more precise. The 

second advantage is that the resultant network is entirely feed-forward and can be 

trained using static backpropagation. The NARX-ANN model is closed once the 

training is complete. The projected output from the series-parallel architecture is 

linked to the network's earlier point, referred to as the parallel architecture (see 

Figure 5), progressively quenching the prior input and output. Since series-parallel 

architectures can only anticipate one step ahead, they should be changed to parallel 

architectures to forecast many time steps. 
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Figure  4. Series-parallel architecture. 
 

 

 

 

 

Figure  5. Parallel architecture. 

3.3.3 Activation function 
Activation functions, also known as transfer functions, are a critical component of 

neural network architecture because they are utilized to determine the output of 

nodes in the network layer by converting the sum of all processing from all inputs to 

an output signal. The activation function used has a considerable influence on the 

neural network's capacity and efficiency. Technically, the activation function is called 

after each node in the network has completed its internal processing, even though 

the network is designed to employ the same activation function on all nodes in the 

layer. Two types of activation functions exist: 

1) Linear function 

- The linear activation function, also known as identity, is a simple function because 

the linear activation function does not change the weighted sum of the inputs in any 

way and returns a value directly. Both input and output values are in the range 

[−∝, ∝]. It is often used as an activation function in the output layer. 
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2) Non-linear function 

- The Sigmoid activation function, also known as the logistic function, is a function s 

curve, commonly used as the activation function in both the hidden and output 

layers, and is the same function used in the logistic regression classification algorithm. 

Both input and output values are in the range [ 0, 1 ] (see in Figure 6). 

 

 

 

   

 

  

Figure  6. Sigmoid activation function. 

- The hyperbolic tangent activation function, also known as tangent sigmoid 

activation function, is similar to sigmoid activation function and has the same s-

shape. Both input and output values are in the range [−1, 1 ]. It is commonly used as 

an activation function in the hidden layer (see in Figure 7). Which is mathematically 

written as follows: 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

- The rectified linear activation function, or ReLU activation function, is frequently 

used in hidden layers because of its ease of use and efficiency in network design, 

which outputs direct input if positive (see in Figure 8). 

 

 

(21) 
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Figure  7. Hyperbolic tangent activation function. 
 

 

 

 

 

 

Figure  8. Rectified linear activation function. 

- The softmax output activation function is a function that is different from other 

functions because the probability distribution is calculated where the sum of the 

results is equal to 1. Thus, the function's input is a vector of actual values, and the 

output is a vector of equal length with a sum of 1 . The softmax function is 

calculated as follows: 

𝑓(𝑥) =
𝑒𝑥

∑ 𝑒𝑥
 

3.3.4 Training algorithm 
The training algorithm is a sequential technique for determining the connections in a 

neural network. In supervised training, the network is presented with the proper 

(22) 
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expected outcome for the training set's input vector. Additionally, it may be required 

to modify the weight via several repetitions based on training data. In general, an 

ANN model learns a dataset using backpropagation, which adjusts the weights of 

neurons depending on the error rate between the goal and anticipated output. 

Numerous optimization strategies are utilized to train the ANN model, as shown 

below. 

1) Levenberg-Marquardt backpropagation 

The Levenberg-Marquardt algorithm sometimes referred to as the damped least-

squares technique, is a numerical approach for solving nonlinear function 

minimization problems. It is quick and steady in its convergence. This approach is 

well-suited for training neural networks on small and medium-sized issues. The 

Levenberg-Marquardt algorithm's fundamental principle is to perform a hybrid train 

process, i.e., around an area of complicated curvature. The Levenberg-Marquardt 

method shifts to the steepest descent mode when the local curvature is sufficient to 

provide a quadratic approximation. Then it is transformed into the Gauss-Newton 

method, which converges substantially faster. 

      The Levenberg-Marquardt algorithm is optimized for use with a loss function, 

alternatively referred to as a cost function, which is a sum of squared errors. It 

operates without calculating the actual Hessian matrix; instead, it uses gradient 

vectors and the Jacobian matrix. Eq. 23 is a representation of the loss function. 

𝑓 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

 

where 𝑛 is the number of training sample and 𝑒𝑖 is the error between actual and 

predicted output.  

     A loss function's Jacobian matrix can be defined as follows: 

𝐽𝑖,𝑗 =
𝜕𝑒𝑖

𝜕𝑤𝑗

 

(23) 

(24) 
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for 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑛. 

where 𝑚 is the number of training sample and 𝑛 is the number of parameters in the 

neural network. Therefore, the size of the Jacobian matrix is 𝑚 ×  𝑛. 

The gradient vector of the loss function can be calculated as follows. 

∇𝑓 = 2𝐽𝑇 ∙ 𝑒 

where 𝑒 is the vector of all error terms. 

Levenberg-Marquardt algorithm introduces another approximation to Hessian matrix: 

𝐻 = 2𝐽𝑇 ∙ 𝐽 + 𝜆𝐼 

where 𝜆 is always positive, called the combination coefficient and 𝐼 is the identity 

matrix. 

By combining Eq. 25 and 26, the update rule of Levenberg–Marquardt algorithm can 

be presented as  

𝑤𝑘+1 = 𝑤𝑘 − (2𝐽𝑇 ∙ 𝐽 + 𝜆𝐼)−1 ∙ (2𝐽𝑇 ∙ 𝑒) 

      When the damping parameter 𝜆 is zero, this is just Newton's method using 

the Hessian matrix to estimate the value. Conversely, when 𝜆 is large, this becomes 

gradient descent with a small training rate. The parameter 𝜆 is initialized to be large 

so that the first update is a small step in the direction of the gradient descent. If any 

iteration results in failure, 𝜆 is increased by some factor. Otherwise, as the loss 

decreases, 𝜆 is decreases so that the Levenberg-Marquardt algorithm approaches 

Newton's method, this process generally accelerates convergence to a minimized the 

sum of squared errors. 

2) Bayesian regularization backpropagation 

Bayesian regularization backpropagation is a network training algorithm that utilizes 

Levenberg-Marquardt optimization to update the weight and bias variables. The 

learning rule is to continually modify the network weight and bias using the steepest 

(25) 

(26) 

(27) 
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descent approach via backpropagation (BP) while minimizing the sum of squared 

errors. Backpropagation with Bayesian regularization consists of two components: the 

Bayesian approach and the regularization approach [50]. 

      Mackay developed a Bayesian neural network technique based on the 

Gaussian approximation, which was extensively used afterward. Bayesian networks 

offer two distinct benefits over traditional neural networks. The first is the training 

process's automated normalizing of coefficients. The second is to use probabilistic 

computations to modify the weights of the input variables automatically. The 

primary concept is to evaluate the model by utilizing current knowledge and data. 

The distinction between Bayesian and traditional statistics is the use of prior 

information [51], for which Bayesian formulae are as follows:  

𝑃(𝜃|𝑋) =
𝑃(𝑋|𝜃)𝑃(𝜃)

𝑃(𝑋)
 

The 𝑃(𝜃|𝑋) is the posterior probability of 𝜃 conditional on 𝑋, 𝑃(𝑋|𝜃) is the prior of 

𝑋 conditional on 𝜃, and 𝑃(𝑋) is the non-zero prior probability of event 𝑋. The 

Bayesian technique derives the goal function for network training from the probability 

function of the sample data used as input. Furthermore, the weight modification is 

determined using the probability distribution of the preceding weights and bias. Thus, 

using the input sample data, ensuing probabilistic distribution of weights and bias will 

be gradually adjusted. The parameters of the Bayesian network are named after the 

probability distribution of the input sample data. Thus, it is theoretically feasible to 

increase forecast accuracy. 

      The regularization approach is meant to increase the general ability of neural 

network training functions by modifying their performance. Normally, the neural 

network performance training function employs the mean squared error function, 

indicated by 𝐸𝐷, to describe the neural network model's training set, where 𝐷 =

(𝑥𝑖 , 𝑡𝑖) with 𝑖 =  1, 2, … , 𝑛 where 𝑛 is the total number of training samples. The 

(28) 
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network error 𝐸𝐷 is defined as the error sum of squares under the specified network 

framework 𝐻 and starting value of the network parameter 𝑊. 

𝐸𝐷 =
1

2
∑(𝑦(𝑥𝑖 , 𝑊, 𝐻) − 𝑡𝑖)

2

𝑛

𝑖

 

      To avoid overfitting during the network learning process, the standard way is 

to add the 𝐸𝑊 attenuation expression after the error function. 

𝐸𝑊 =
1

2
∑ 𝑊𝑖

2

𝑚

𝑖

 

where 𝑊 is the network parameter and 𝑚 is the number of parameters. Therefore, 

all error functions can be defined as follows: 

𝑀𝑊 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 

where 𝛼 and 𝛽 represent the hyperparameter, which is used to control the 

distribution of other parameters.   

      The objective function Eq. 31 must be minimized to determine the ideal 

weight area. As with Eq. 32, this is equal to maximizing the posterior probability 

function. 

𝑃(∝, 𝛽|𝐷, 𝑀) =
𝑃(𝐷|𝛼, 𝛽, 𝑀)𝑃(𝛼, 𝛽|𝑀)

𝑃(𝐷|𝑀)
 

where 𝐷 is the weight distribution, 𝑀 is the particular neural network architecture. 

3) Scaled conjugate gradient backpropagation 

 A scaled conjugate gradient backpropagation (SCG) [52] is a technique for avoiding 

time-consuming line searches. This method is far too sophisticated to summarize in a 

few sentences. The core concept is to combine the regional approach of the 

Levenberg-Marquardt algorithm's trustworthy model with a conjugate gradient 

technique. Equation 33 [52] illustrates how to estimate the Hessian matrix(s). 

𝑠𝑘 =
𝐸′(𝑤𝑘 + 𝜎𝑘𝑝𝑘) − 𝐸′(𝑤𝑘)

𝜎𝑘

+ 𝜆𝑘𝑝𝑘 

(29) 

(30) 

(31) 

(32) 

(33) 
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where 𝐸′ is the gradient of 𝐸 which is the total error function, 𝜆𝑘 is scaling factors, 

and 𝜎𝑘 are introduced to approximate the Hessian matrix and initialized by user at 

the beginning of the algorithm such that 0 < 𝜆𝑘 < 10−6 and 0 < 𝜎𝑘 < 10−4.  

      For SCG, factor calculation (𝛽𝑘) and direction of the new search are written as 

in Eq. 34 and 35 [52]. 

𝛽𝑘 =
(|𝑔𝑘+1|2 − 𝑔𝑘+1

𝑇𝑔𝑘)

𝑔𝑘
𝑇𝑔𝑘

 

𝑝𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑝𝑘 

3.4 Proportional-Integral-Derivation (PID) controller 
In industrial applications, the PID controller is a commonly used instrument for 

controlling process variables such as pressure, flow, temperature, and speed. It's 

simple to grasp and effective. A feedback control system is one of the most 

prevalent types of control systems. The error value utilized in the computation is the 

difference between the process variables' actual and desired values. By changing the 

process input signal, the controller will seek to reduce the error value. The PID 

controller employs three fundamental control characteristics, which are explained 

below: proportional, integral, and derivation. 

      Proportional controllers, or P-controllers, are proportional to the difference 

between the setpoint and process variable. The distinction is in the definition of the 

term "erroneous." The proportional gain (𝐾𝐶) specifies the output response's ratio to 

the error signal. The downside of this controller is that when used alone, the process 

variable will never reach the setpoint, i.e., there will always be an offset between the 

process variable and the setpoint, but the error will always remain stable. By and 

large, raising the proportional gain speeds up the reaction time of the control system. 

However, if the proportional gain is set to a value that is too great, the process 

variable will fluctuate. If 𝐾𝐶 is increased more, the oscillation becomes greater, the 

system becomes unstable, and it may oscillate out of control. 

(34) 

(35) 
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      The integral controller, or I-control, continuously analyzes all previous error 

histories by aggregating the areas under the error curve or summarizing the error 

terms across time. When a minor mistake occurs, which results in a gradual rise in the 

I-control, the integral response gradually grows over time. The controller drives the 

steady-state error signal to zero unless the error approaches zero. When a negative 

error occurs, the I-control typically reduces the output. Reduce the integral gain (𝐾𝐼) 

to increase the response speed. 

The derivative controller, abbreviated D-control, is capable of forecasting 

future error behavior. Its output is proportional to the rate at which the time error 

changes multiplied by the derivative constant. By increasing the derivative parameter 

(𝑇𝐷), the control system will be able to respond more harshly to changes in the error 

range and will also enhance the overall control system's reaction speed. Because the 

derivative response is very susceptible to noise in the process variation signal, the 

majority of practical control systems employ a modest amount of derivative time 

(𝑇𝐷). If the sensor feedback signal is noisy or the control loop rate is too slow, the 

response derivative may become unstable, causing the control system to fail. 

 A standard PID controller, commonly used in control, is shown by Eq. 36. 

𝑢(𝑡) = 𝑢0 + 𝐾𝐶 [𝑒(𝑡) +
1

𝑇𝐼

∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝐷

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

] 

 Transfer function of the PID controller is given by: 

𝐺(𝑠) = 𝐾𝐶 (1 +
1

𝑇𝐼𝑠
+ 𝑇𝑑𝑠) = 𝐾𝐶 + 𝐾𝐼

1

𝑠
+ 𝐾𝐷𝑠 

where 𝐾𝐶 = proportional gain, 𝐾𝐼 = integral gain, 𝐾𝐷 = derivative gain, 𝑇𝐼 = integral 

time constant, and 𝑇𝐷 = derivative time constant. 

3.4.1 Tuning method  
Before the PID controller, the controlled process's dynamics had to be adjusted, 

since the default P, I, and D values did not offer the necessary performance and 

(36) 

(37) 
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occasionally resulted in control instability and delayed response. Numerous tuning 

techniques need to be created to determine the optimal PID controller tuning, 

requiring operator attention to pick the optimal proportional, integral, and derivative 

gains. 

- The Zeigler-Nichols method is a widely used tuning technique. The PID controller 

works similarly to the trial and error technique, with I and D set to zero and P 

increasing incrementally until the loop begins to oscillate. When the oscillation 

begins, the final gain 𝐾𝑈 and the oscillation time, denoted by 𝑇𝑈, are recorded. P, I, 

and D are then modified in accordance with the table below. 

Table  2. Zeigler-Nichols table. 
Control type 𝐾𝑃 𝑇𝐼  𝑇𝐷 𝐾𝐼 = 𝐾𝑃 𝑇𝐼⁄  𝐾𝐷 = 𝑇𝐷 𝐾𝑃⁄  

P 0.5𝐾𝑈 - - - - 
PI 0.45𝐾𝑈 𝑇𝑈 1.2⁄  - 0.54𝐾𝑈 𝑇𝑈⁄  - 
PD 0.8𝐾𝑈 - 𝑇𝑈 8⁄  - 0.1𝐾𝑈𝑇𝑈 

PID (classic) 0.6𝐾𝑈 𝑇𝑈 2⁄  𝑇𝑈 8⁄  1.2𝐾𝑈 𝑇𝑈⁄  0.075𝐾𝑈𝑇𝑈 

- The internal model control (IMC) can be utilized to determine the optimal tuning 

value for the PID controller, as seen in Table 3. 𝜏𝑐 is a crucial decision parameter 

when the IMC technique is used to construct PID controllers. In general, when 𝐾𝐶 

drops and 𝑇𝐼 grows, the inclusion of 𝜏𝑐 results in a more conservative controller. 

      Numerous IMC recommendations have been given for choosing 𝜏𝑐 in the first 

order plus time delay (FOPTD) model. 

1) 𝜏𝑐 𝜃⁄ > 0.8 and 𝜏𝑐 > 0.1𝜏    (Rivera et al., 1986 [53]) 

2) 𝜏 > 𝜏𝑐 > 𝜃      (Chien and Fruehauf, 1990 [54]) 

3) 𝜏𝑐 = 𝜃      (Skogestad, 2003 [55]) 

where 𝜏 is time constant of a process and 𝜃 is time delay. 
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Table  3. IMC-based PID controller settings. 
Case Model 𝑲𝑪𝑲 𝑻𝑰 𝑻𝑫 

A 𝐾

𝜏𝑠 + 1
 

𝜏

𝜏𝑐

 𝜏 - 

B 𝐾

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 

𝜏1 + 𝜏2

𝜏𝑐

 𝜏1 + 𝜏2 
𝜏1𝜏2

𝜏1 + 𝜏2

 

C 𝐾

𝜏2𝑠2 + 2𝜉𝜏𝑠 + 1
 

2𝜉𝜏

𝜏𝑐

 2𝜉𝜏 
𝜏

2𝜉
 

D 𝐾(−𝛽𝑠 + 1)

𝜏2𝑠2 + 2𝜉𝜏𝑠 + 1
, 𝛽 > 0 

2𝜉𝜏

𝜏𝑐 + 𝛽
 2𝜉𝜏 

𝜏

2𝜉
 

E 𝐾

𝑠
 

2

𝜏𝑐

 2𝜏𝑐  - 

F 𝐾

𝑠(𝜏𝑠 + 1)
 

2𝜏𝑐 + 𝜏

𝜏𝑐
2

 2𝜏𝑐 + 𝜏 
2𝜏𝑐𝜏

2𝜏𝑐 + 𝜏
 

G 𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
 

𝜏

𝜏𝑐 + 𝜃
 𝜏 - 

H 𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
 

𝜏 +
𝜃
2

𝜏𝑐 +
𝜃
2

 𝜏 +
𝜃

2
 

𝜏𝜃

2𝜏 + 𝜃
 

I 𝐾(𝜏3𝑠 + 1)𝑒−𝜃𝑠

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 

𝜏1 + 𝜏2 − 𝜏3

𝜏𝑐 + 𝜃
 𝜏1 + 𝜏2

− 𝜏3 
𝜏1𝜏2 − (𝜏1 + 𝜏2 − 𝜏3)

𝜏1 + 𝜏2 − 𝜏3

 

3.5 Model predictive control 
Model predictive control is a type of control that utilizes dynamic model data from 

the system to forecast future reactions and select the optimal control signal to feed 

the system. The calculation finds the best value of the target function using the 

future forecast value and the measurement value at the present moment of the 

calculation. MPC's objective function is denoted by Eq. 38. 
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𝐽 =  ∑ (𝑦𝑟(𝑘 + 𝑗) −  �̂�(𝑘 + 𝑗))
2

𝑁𝑚𝑎𝑥

𝑗=𝑁𝑚𝑖𝑛

+  𝜌 ∑(𝑢(𝑘 + 𝑗 − 1) − 𝑢(𝑘 + 𝑗 − 2))2

𝑁𝑢

𝑗=1

 

where 𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑎𝑥 are minimum and maximum prediction horizons, 𝑁𝑢 is the control 

horizon. The 𝑢 variable is the control signal, 𝑦𝑟 is the desired response and �̂� is the 

network model response. The 𝜌 value determines the contribution that the sum of 

the squares of the control increments has on the performance index. The process 

constraints on the manipulated and controlled variables as follows: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗 − 1) ≤ 𝑢𝑚𝑎𝑥 ,   𝑗 = 1, 2, … , 𝑁𝑢  

The length of the control horizon 𝑁𝑢 must satisfy following constraints: 

0 < 𝑁𝑢 ≤ 𝑁𝑢𝑚𝑎𝑥
 

The value of 𝑁𝑢𝑚𝑎𝑥
 should cover the important part of the step response curve. 

Output variable constraint is given as: 

𝑦𝑚𝑖𝑛 ≤ �̂�(𝑘 + 𝑗) ≤ 𝑦𝑚𝑎𝑥 ,    𝑗 = 𝑁𝑚𝑖𝑛, … , 𝑁𝑚𝑎𝑥 

 

 

 

 

 

 

 

 

(38) 
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CHAPTER IV 
RESEARCH METHODOLOGY 

4.1 Equipment and software 
4.1.1 Laptop (ASUS Intel® Core™ i5-6200U CPU @ 2.30GHz 2.40 GHz, 12.00 GB) 

4.1.2 MATLAB 

4.2 Heat exchanger model 
4.2.1 Dynamic model of heat exchangers 

In simulation of shell-and-tube heat exchangers, the concept of cell-based dynamic 

models [17] was used. In the cell-based model as shown in Figure 9, a heat 

exchanger is assumed to composed of a series of mixing tanks where in each tank, 

heat is exchanged between hot and cold streams. Under the following assumptions: 

1) physical properties including density and heat capacity of fluid are constant, 2) all 

tank cells are perfectly mixed and full with the corresponding fluids, and 3) heat loss 

to the environment is neglected, cell-based model of heat exchangers can be 

written as the equations 39-41 with process parameters in Table 4, which these 

parameters are calculated from [56]. 

 

 

 

 

 

Figure  9. Cell-based model of heat exchangers. 

𝑑𝑇𝐻(𝑖)

𝑑𝑡
=

𝑣𝐻

𝑉𝐻,𝐶𝑒𝑙𝑙

∙ (𝑇𝐻(𝑖 − 1) − 𝑇𝐻(𝑖)) −
ℎ𝑓𝐻 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝐻,𝐶𝑒𝑙𝑙 ∙ 𝜌𝐻 ∙ 𝐶𝑝,𝐻

∙ (𝑇𝐻(𝑖) − 𝑇𝑊(𝑖)) 

𝑑𝑇𝐶(𝑖)

𝑑𝑡
=

𝑣𝐶

𝑉𝐶,𝐶𝑒𝑙𝑙

∙ (𝑇𝐶(𝑖 + 1) − 𝑇𝐶(𝑖)) +
ℎ𝑓𝐶 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝐶,𝐶𝑒𝑙𝑙 ∙ 𝜌𝐶 ∙ 𝐶𝑝,𝐶

∙ (𝑇𝑊(𝑖) − 𝑇𝐶(𝑖)) 

𝑑𝑇𝑊(𝑖)

𝑑𝑡
=

ℎ𝑓𝐻 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝑊 ∙ 𝜌𝑊 ∙ 𝐶𝑝,𝑊

∙ (𝑇𝐻(𝑖) − 𝑇𝑊(𝑖)) −
ℎ𝑓𝐶 ∙ 𝐴𝐶𝑒𝑙𝑙

𝑉𝑊 ∙ 𝜌𝑊 ∙ 𝐶𝑝,𝑊

∙ (𝑇𝑊(𝑖) − 𝑇𝐶(𝑖)) 

(39) 

(40) 

(41) 
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      For determining the influence of fouling on the heat transfer of a heat 

exchanger system, the heat transfer coefficient was calculated using a formula 

including the thermal resistance of the fouling layer in cold and hot streams as 

follows: 

ℎ𝑓𝐻 =
ℎ𝐻

1 + ℎ𝐻 ∙ 𝑅𝑓𝐻

 

ℎ𝑓𝐶 =
ℎ𝐶

1 + ℎ𝐶 ∙ 𝑅𝑓𝐶

 

Table  4. The process parameters of the cell-based dynamic model for shell-and-
tube heat exchanger. 
Process parameters Hot stream Cold stream 

Kerosene (42° API) Crude oil (34° API) 
Volumetric flow rate (m3/h) 20 35 
Inlet temperature (℃) 150 53 
Density (kg/m3) 730 820 
Specific heat capacity (J/kg K) 2470 2050 

Viscosity (Pa∙s) 0.00043 0.0032 

Volume (m3) 0.0568 0.0777 
Heat transfer coefficient, clean (J/m2 K) 940 680 
Heat transfer surface area (m2) 26.93 

4.2.2 Threshold fouling model 
In this work, the threshold fouling model developed by [5] as shown in the equation 

44 was used for predicting fouling rates. 

𝑑𝑅𝑓

𝑑𝑡
= 𝛼𝑅𝑒𝛽𝑒𝑥𝑝 (

−𝐸

𝑅𝑇𝑓

) − 𝛾𝑅𝑒0.4 

where  𝛼=0.01098 m2K/J 

𝛽=-1.547 

𝛾=0.96×10-13 m2K/J  

(42) 

(43) 

(44) 
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  𝐸=22.618 kJ/mol  

     These constants were calculated from experimental data of the Australian crude 

oil measured [47]. Film temperature (𝑇𝑓) is described by [4],   

𝑇𝑓 = 𝑇𝑏 + 0.55(𝑇𝑤 − 𝑇𝑏) 

where 𝑇𝑏 and 𝑇𝑤 are the bulk temperature and the wall temperature, respectively.  

      The fouling model in the equation 44 are controlled by two competing 

mechanisms, the first involved in the chemical reaction as the term of fouling 

formation and the second involved in the fluid velocity on the fouling removal. This 

shows when the fluid velocity increases, the fouling deposition decreases while 

when the wall temperature increases, the fouling formation increases. This threshold 

fouling model is integrated with the cell-based dynamic heat exchanger model for 

simulation of shell-and-tube heat exchangers. The shell and tube sides represent the 

hot and cold streams, respectively. 

4.3 Modeling with ANN 
In this research, the ANN model based on NARX artificial neural network was used to 

predict and control the dynamics of the heat exchanger under parameter 

uncertainty. The NARX artificial neural network is a recurrent dynamic network with 

reverse connections surrounding various layers of the network. The prediction of the 

independent output signal is regressed to the previous value of the output signal 

and the previous value of the exogenous input signal. In the architecture of the 

NARX-ANN model, a series-parallel architecture (open-loop architecture) was used to 

train the model by relying on the target output to estimate the output signal along 

with the exogenous input. And once the train is successful, the architecture is closed, 

i.e., the output signal from the series-parallel architecture is reconnected back to the 

network's earlier point or the network's feedback input to enable the NARX-ANN 

model to predict multiple steps. This step is called parallel architecture (closed-loop 

architecture) and is then used in the next step of NNMPC. In this work, the activation 

(45) 
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function used in the hidden layer is the sigmoid tangent function, while the output 

layer is the linear transfer function, which is the default in MATLAB software.      

      Due to dynamic neural networks are delayed. The input in the network must 

be a sequence of input vectors occurring in a certain order of time. The order in 

which the vector appears is critical to the approximation of the output signal, as the 

appropriate number of delays result in an accurate NARX-ANN model. In addition, 

the number of hidden neurons is significant for prediction as well. Although 

increasing the number of hidden neurons will result in a more accurate NARX-ANN 

model, it takes a lot of processing time and results in the model becoming overly 

complex due to a large number of parameters and its ineffectiveness. This event is 

called overfitting. To prevent this problem, finding the optimal number of delays and 

the optimal number of hidden neurons would allow the model to be effectively 

applied to previously unseen data. 

      In this work, trial-and-error was used as a method to study the effect of 

hyperparameters, i.e., the number of delays and the number of hidden neurons, 

wherein the delay numbers varied from 0 -4  for both the exogenous input and the 

feedback input, and the number of hidden neurons varied from one to twenty. 

Moreover, in the ANN training process, an optimization algorithm is required. Several 

algorithms, Bayesian regulation backpropagation, Levenberg-Marquardt 

backpropagation, and Scaled conjugate gradient backpropagation, were tested. 

Determination of the number of delays, the number of hidden neurons, and the 

training algorithm are decided to take into account the effect of a statistical index 

(such as MSE). 

4.3.1 Data generation 
Data are important for ANN modeling. In this research, the data for training and 

testing NARX-ANN model were collected from the simulation of cell-based heat 

exchangers integrated with the threshold fouling model as mentioned in section 2. 
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Under the simulation runs with random of the inlet temperatures (140-160 oC and 

40-60 oC for hot and cold streams) and the flow rates (0-30 m3/h and 30-40 m3/h for 

hot and cold streams), changes of outlet temperatures of hot and cold streams, and 

fouling factors of hot and cold sides along the time were observed. The data used 

for training is generated in four sets. Each set took the initial values of the fouling 

occurrences of each interval: clean, 1-month, 2-month, and 3-month intervals. Each 

interval of data took 4 hours for running. After the data were generated, the inlet 

temperatures and the flow rates were used as exogenous input of NARX-ANN model 

while outlet temperatures and fouling factors was used as the output. Therefore, the 

NARX-ANN model used to predict and control the dynamics of shell-and-tube heat 

exchangers under parameter uncertainty in the design of NNMPC has four models.     

4.3.2 Training  
The NARX-ANN model is used to predict future values based on previous inputs. 

Training is an iterative process that attempts to adjust the weights and bias of the 

ANN model based on optimization algorithms to reduce errors between target and 

actual data. This is the process of learning data of the model. 

      The data generated in section 4.3.1 is divided into three sections: 70% of 

training, 15% of validation, and 15% of testing datasets before starting to train the 

NARX-ANN model. During the training process, the NARX-ANN model starts with 

random values for weight and bias coefficients, and the training algorithm attempts 

to adjust them using the experimental data provided. The training algorithm adjusts 

these parameters by minimizing the deviation between the experimental value and 

the predicted output value. The general structure of the NARX-ANN model training is 

shown in Figure 10, where 𝑢(𝑡) is the exogenous input, 𝑦(𝑡) is the measure value or 

the plant model, �̂�(𝑡 + 1) is the predicted output or NN model output, the blocks 

TDL is the tapped delay lines that hold the past value of the input signal, 𝐼𝑊𝑖,𝑗  is 

weight matrix from 𝑗th input neuron to 𝑖th hidden layer and 𝐿𝑊𝑖,𝑗  is weight matrix 

from 𝑗th output neuron to 𝑖th hidden layer. The efficacy of the trained NARX-ANN 
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model should be verified by experimental datasets such as test subsets that were 

not used during the training process. The MSE was used to measure the efficiency of 

the NARX-ANN model since there were four output variables in this study. Therefore, 

before measuring the performance of the model, it is necessary to all normalization 

output variables first and then calculates the statistic index. The steps described 

above can only predict one step. A multistep ahead prediction can be created by 

reconnecting the output signal back to the network's feedback input of the network. 

 

 

 

 

 

 

 

 

 

Figure  10. NARX-ANN model training structure. 

4.4 Study the effect of fouling on the dynamics of PID-controlled heat 
exchangers 
PID control is a control algorithm commonly used in the industry and internationally 

recognized in industrial control. The popularity of PID controllers is partly due to 

their robust performance in a wide range of operating conditions. Another is due in 

part to the simplicity of use compared to other control algorithms, which allows 

engineers to operate straightforwardly. There is also no need for an accurate 
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mathematical model. Therefore, PID controllers are often used first in the design of 

control systems in various systems. However, the PID controller has to be properly 

tuned to achieve a good performance. 

      In the controlled PID of shell-and-tube heat exchangers, outlet temperature 

at cold stream (𝑇𝐶) is controlled variable, where the manipulated variable is flow rate 

at hot stream (𝑣𝐻) and disturbance variables are flow rate for cold stream (𝑣𝐶) and 

inlet temperatures of hot and cold streams (𝑇𝐻𝑖𝑛, 𝑇𝐶𝑖𝑛 )         

4.4.1 Identifying the system from the step response data 
 The First-order plus time delay (FOPTD) model is a simple approximation of the 

dynamic response (transient response or time response) of a process variable to 

influence, which is a reasonable approximation of the behavior of the process. It is 

often widely used in algorithm tuning for PID controllers to obtain default controller 

tuning constants. The FOPTD can be estimated using the unit step input and uses 2 

points in the high change rate region to force the model response to match the 

actual response. The general form of FOPTD is shown as follows. 

𝐺𝑝(𝑠) =
𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
 

      The two points is a simple and convenient method for adjusting the dynamic 

response of the system of the FOPTD transfer function. Parameter modeling, gain (𝐾), 

time constant (𝜏), and time delay (𝜃), was obtained for Eq. 46 by calculating time 

constants 𝑡1 and  𝑡2, the response to 28.3% and 63.2% of the difference between the 

first steady-state value and the last steady-state value. It is shown in Eq. 47-49 and 

Figure 11. 

𝐾 =
∆𝑦

∆𝑢
 

𝜏 = 3 2⁄ (𝑡2 − 𝑡1) 

𝜃 = 𝑡2 − 𝜏 

(47) 

(48) 

(46) 

(49) 
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4.4.2 Tuning the PID controller 
In this work, the IMC-based PID controller (see Table 3) was utilized for FOPTD 

systems to determine the optimal tuning value for the PID controller, including 𝐾𝐶 , 

𝑇𝐼 , and 𝑇𝐷 , of shell-and-tube heat exchanger under parametric uncertainty. The 

desired performance with IMC–PID is achieved using only the tuning parameter, 𝜏𝑐, 

which is related to the time constant of the process.  From Table 3, the tuning value 

of the PID controller can be calculated as follows: 

𝐾𝐶 =
2𝜏 + 𝜃

𝐾(2𝜏𝑐 + 𝜃)
, 𝑇𝐼 = 𝜏 +

𝜃

2
, 𝑇𝐷 =

𝜃𝜏

2𝜏 + 𝜃
  

Note that τc is closed-loop time constant.   

 

 

 

 

 

 

 

 

 

 

Figure  11. Step response of open loop process.  

4.5 Study the effect of fouling on the dynamics of NNMPC heat exchangers 
The neural network-based model predictive control uses a non-linear plant neural 

network model to predict plant performance. The controller then calculates the 

control inputs that will optimize the plant's performance at a specific time in the 

(50) 
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future. The first step in controlling model predictions is to define a neural network 

plant model. Next, the controller uses a factory model to predict future 

performance. These steps are described below. 

4.5.1 System identification 
The identification of the NNMPC system is to train the neural network to represent 

the plant's feed-forward dynamics. In this study, the network is trained in offline 

batch mode using data collected from plant operations. The neural network model 

uses previous input and previous plant output to predict future plant output values. 

The prediction error between the plant output and the neural network model 

output is used as a signal to train the neural network. In other words, the prediction 

error is sent to the training algorithm to adjust parameters, weight, and bias 

coefficient, with minimal deviations between the experimental value and the 

predicted output, making the neural network model a more accurate, controllable 

heat exchanger for effective results. This procedure can be performed as outlined in 

section 4.3. 

4.5.2 Neural network-based model predictive control 
The neural network-based model predictive control is used to control the outlet 

temperature of shell-and-tube heat exchangers under fouling occurrence. The 

NNMPC consists of a neural network model (NARX artificial neural network model) 

and numerical optimization software. A neural network model was used to predict 

plant responses over a specific time. The output futures predicted by the neural 

network model are then sent to the numerical optimization software to determine 

the control signal (𝑢) that minimizes the cost function (𝐽) over the specified horizon. 

MPC's cost function can be calculated from equation 38. The general control 

structure for the NNMPC is shown in Figure 12. 
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Figure  12. Neural network-based model predictive control.  
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CHAPTER V 
RESULTS AND DISCUSSION 

5.1 Open-loop of the heat exchanger with fouling 
Cell-based dynamic model of heat exchangers [20] with the threshold fouling model 

was used for simulation of heat exchanger. In fining the optimal number of cells, the 

number of cells was increased until there was no significant change in the outlet 

tempeature of heat exchangers. Based on the result, the 30 cell-model of heat 

exchangers was chosen and was used to study the behavior of changes in the output 

temperature of the cold stream from its steady-state value, ∆𝑇𝐶𝑜𝑢𝑡. 

 From Figure 13a,  it  was shown that after the step changes 5% of the flow 

rate at the hot stream (from 20 to 21 m3/h) was introduced, ∆𝑇𝐶𝑜𝑢𝑡 increased to 

0.5153 °C (from 85.28 °C reach 85.79 °C)with response time to a steady-state at 89.64 

seconds for the clean heat exchanger. As the fouling layer increases, the thermal 

conductivity of the metal surface decreases, and the heat transfer resistance 

increases, resulting in the output temperature at the cold stream being unable to 

maintain the same temperature as during the absence of fouling formation. It can be 

seen that after operating 1, 2 and 3 months of the heat exchanger, ∆𝑇𝐶𝑜𝑢𝑡 increased 

0.4864 °C (from 84.44 °C reach 84.92 °C), 0.4597 °C (from 83.63 °C reach 84.09 °C), and 

0.4352 °C (from 82.86 °C to 83.3 °C), respectively.  

Reducing the flow rate of hot fluids by 5% (20 to 19 m3/h), ∆𝑇𝐶𝑜𝑢𝑡 reduced to 

0.558 °C (from 85.28 °C to 84.72 °C) for the clean heat exchanger.  And after the heat 

exchanger operated for 1, 2, and 3 months, ∆𝑇𝐶𝑜𝑢𝑡 is reduced to 0.527 °C (from 84.44 

°C into 83.91 °C) , 0.4983 °C (from 83.63 °C reach 83.13 °C) and 0.4719 °C (from 82.86 

°C to 82.39 °C), respectively, as shown in Figure 13b. 

When increasing 5%  of inlet temperature of the hot stream (from 150 °C to 

157.5 °C), ∆𝑇𝐶𝑜𝑢𝑡 over the clean heat exchanger increased by 2.496 °C (from 85.28 °C 

to 87.77 °C), with response time to steady-state at 95.44 seconds. After operating the 
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heat exchanger for 1, 2 and 3 months continuously, ∆𝑇𝐶𝑜𝑢𝑡 increased 2.431 °C (from 

84.44 °C  to 86.87 °C), 2.368 °C (from 83.63 °C to 86 °C) and 2.309 °C (from 82.86 °C to 

85.17 °C), respectively (see Figure 14a). Reduction 5% of the inlet temperature from 

150 °C to 142 .5  °C showed that ∆𝑇𝐶𝑜𝑢𝑡 over the clean heat exchanger reduced to 

2.496 °C (from 85.28 °C reach 87.77°C). The heat exchanger operated over 1, 2, and 3 

months, ∆𝑇𝐶𝑜𝑢𝑡 decreased 2.431 °C (from 84.44 °C  reach 82.01 °C), 2.368 °C (from 

83.63 °C to 81.26 °C), and 2.309 °C (from 82.86 °C reach to 80.55 °C), respectively, as 

shown in Figure 14b.  

 

 

 

 

 

 

Figure  13. Open-loop responses of the heat exchanger with fouling to step change 
(a) +5% of flow rate of the hot stream and (b) -5% of flow rate of the hot stream. 
       

 

 

 

 

 

Figure  14. Open-loop responses of the heat exchanger with fouling to step change ± 
5% of inlet temperature at hot stream. 

(a) (b) 

(a) (b) 
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      It can be seen that an increase of 5% of the flow rate and the inlet 

temperature of the hot stream, the outlet temperature of cold stream response 

tends to increase accordingly. Meanwhile, when the flow rate and inlet temperature 

of the hot stream are reduced by 5%, the outlet temperature of the cold stream 

response tends to decrease as well. But when the heat exchanger was operated for a 

while, it was found that the formation of fouling resulted in a decrease in the 

efficiency of the heat exchanger. It can be noted that the outlet temperature on the 

cold side could not be maintained the same temperature as the clean heat 

exchanger. Hence, temperature control was needed.  

5.2 Topology of the NARX-ANN model 
 As the fouling changes along the operation or time, NARX-ANN model was chosen in 

design of ANN model for fouling estimation. Designing an NARX-ANN model requires 

finding the appropriate number of delays, number of hidden layers, and the number 

of neurons in each hidden layer to enable the model to predict values accurately.  

[57] proposed that feed-forward networks with a single hidden layer can approximate 

continuous functions. Therefore, this research selected one hidden layer to minimize 

the model complexity. In finding the optimum number of delays and the number of 

hidden neurons in the hidden layer, various number of delays and number of hidden 

neurons were tested and ranked using the statistical accuracy indices including mean 

square error (MSE) and regression coefficient (R2-value) as shown in the equations 51 

and 52, respectively. 

𝑚𝑠𝑒 =  
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 

𝑅2 =
∑ (𝑦𝑖 − �̅�𝑖)

2 − ∑ (𝑦𝑖 − �̂�𝑖)
2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)
2𝑁

𝑖=1

 

where 𝑁 is the number of data points, 𝑦𝑖 and �̂�𝑖 represent the actual values and the 

predicted values of fouling factor, respectively. �̅�𝑖 is the average value of actual 

values of fouling factor. 

(51) 

(52) 
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5.2.1 Number of delays 
In general, the trial and error method is widely used to quantify the optimal number 

of delays for constructing the NARX-ANN model because it is simple and easy. In the 

process of figuring out the proper number of delays, a three-step method were 

proposed; firstly, the number of delays for both the past exogenous input (nu) and 

the past actual output (ny) were varied from 0-4; secondly, varying structures were 

trained and tested, and then calculate the statistical accuracy indices; and thirdly, 

the optimal number of delays was selected from the smallest statistic accuracy 

indices. All procedures were performed under ten hidden neurons and Levenberg-

Marquardt backpropagation as a training algorithm. In this study, four NARX-ANN 

models were trained for four operation periods (clean, after 1-, after 2-, and after 3-

month operation) of heat exchangers. Determining the best topology of the NARX-

ANN models by a different number of delays was shown in Appendix A. The results 

of the NARX-ANN models with the optimal number of delays under fouling formation 

in the heat exchanger were summarized in Table 5.   

Table  5. The NARX-ANN models with the optimal number of delays under fouling 
formation. 
Fouling The number of 

delays 
Train Test 

(nu,ny) MSE R2 MSE R2 
clean 3,1 0.00000451 0.99999 0.00000756 0.99999 
1 month 2,1 0.00000726 0.99999 0.00000680 0.99999 
2 months 2,1 0.00000778 0.99999 0.00000649 0.99997 
3 months 2,1 0.00000807 0.99999 0.00000948 0.99999 

5.2.2 Number of hidden neurons 
A three-step method was proposed to find the optimal number of hidden neurons; 

firstly, the number of hidden neurons was varied from one to twenty; secondly, 

varying structures were trained and tested, and then calculate the statistical accuracy 
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indices; and thirdly, the optimal number of hidden neurons was selected from the 

smallest number of hidden neurons with an acceptable statistic accuracy indices.   

Determining the best architecture of the NARX-ANN models with a different number 

of hidden neurons was shown in Appendix B. Although increasing the number of 

hidden neurons resulted in a more accurate model, it took a lot of processing time 

and resulted in too complex models that could not be implemented in real life. 

Table 6 summarized the results of the NARX-ANN models with the optimal number 

of hidden neurons under fouling formation in the heat exchanger. The findings were 

carried out under the topology, number of delays, as given in section 5 .2 .1 .  The 

training algorithm used was Levenberg-Marquardt backpropagation.  

Table  6. The NARX-ANN models with the optimal number of hidden neurons in 
various fouling.  
Fouling The number of 

hidden neurons 
Train Test 

MSE R2 MSE R2 
clean 10 0.00000451 0.99999 0.00000756 0.99999 
1 month 15 0.00000452 0.99999 0.00000514 0.99999 
2 months 15 0.00000398 0.99999 0.00000433 0.99999 
3 months 15 0.00000548 0.99999 0.00000788 0.99999 

5.2.3 Training algorithm 
Finding the best training algorithm to be used in the training process to create the 

NARX-ANN models was tested in this section. The steps are as follows: 1) define the 

training algorithm Bayesian regulation backpropagation, Levenberg-Marquardt 

backpropagation, and Scaled conjugate gradient backpropagation, 2) various training 

algorithm was trained and tested, and then calculate the statistical accuracy indices 

as the accuracy and computational time should be traded-off, the indices used for 

the comparison of algorithm performance includes MSE, R2, and processing time, and 

3) the best training algorithm was selected from the smallest statistic accuracy 

indices and low processing times. Determining the best architecture of the NARX-ANN 
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models with a different training algorithm as shown in Appendix C. The best training 

algorithm of the NARX-ANN models under fouling formation in the heat exchanger 

was shown in Table 7. The finding is performed under the topology, i.e., the number 

of delays and the number of hidden neurons, according to getting in section 5.2.1 

and section 5.2.2, respectively.  

Table  7. The best training algorithm of the NARX-ANN models under fouling 
formation.    
Fouling The training 

algorithm 
MSE R2 Processing 

time 
(s/epoch) 

clean Bayesian regulation 
backpropagation 

0.00000237 0.99999 0.12515 

1 month Bayesian regulation 
backpropagation 

0.00000392 0.99999 0.21800 

2 months Bayesian regulation 
backpropagation 

0.00000307 0.99999 0.17946 

3 months Bayesian regulation 
backpropagation 

0.00000380 0.99999 0.19101 

5.3 Temperature control of heat exchangers using PID controller 
In temperature control of heat exchanger here, the output temperature of the cold 

stream and the flow rate of hot stream were considered as controlled variable and 

manipulated variable, respectively. Four PID controllers were designed corresponding 

with a FOPTD transfer-function model specified from four period operation (clean, 

after 1-, after 2-, and after 3-month operation).  The FOPTD form of heat exchangers 

was derived from the approximation of the response of the outlet temperature of 

the hot side under a step-change of the input (flow rate of the cold stream). The 

two-point method of [58] that use the times that the outputs reach 28.3% and 

63.2% of the final value was used for fitting of the FOPTD models. 



  57 

 The values of the tuning parameters of the PID controllers for each period of 

operation were determined using the IMC method.  The results were shown in Table 

8. Periodic revision of the PID controller was required to compensate for deposits on 

the heat transfer surface to allow satisfactory of the output temperature. 

Table  8. PID controller parameters designed by the internal model control method. 
Heat exchanger 
fouling 

𝐾𝐶 𝐾𝐼 𝐾𝐷 

clean 2.7211 468.7481 0.0019 
1 month 3.3081 564.0387 0.0024 
2 months 3.4868 588.9887 0.0026 
3 months 3.6638 611.6577 0.0028 

      PID controller parameters designed according to Table 8 were implemented 

for control of heat exchangers under parametric uncertainty. Fouling was considered 

as parametric uncertainty because it changed along the operation of heat 

exchangers. The robustness of the designed PID was checked under setpoint tracking 

and disturbance rejection.  

 Figure 15a illustrated the response of a step-setpoint-change of the outlet 

temperature of cold stream (𝑇𝐶𝑜𝑢𝑡) of each period of fouling accumulation within the 

heat exchanger. When the +5% of the setpoint change (from 80 °C to 84 °C) at the 

time 100 seconds, the control output response could be well controlled to the 

setpoint. The settling time to the desired setpoint was approximately 106.49 

seconds. Despite the overshoot response, they could  be controlled to the desired 

setpoint with the ISE value = 160.18, which refers to the ISE of the clean heat 

exchanger and 1, 2, and 3 months of the heat exchanger operating period. The 

associated manipulated variable profile is shown in Figure 15b.  

Figure 16a shows the 𝑇𝐶𝑜𝑢𝑡 response of each heat exchanger operating period 

to step change -5% of setpoint change varied from 80 °C reach 76 °C at 100 seconds 
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with parameter tuning shown in Table 8. It shows that the control response obtained 

from the IMC-based PID controller can be controlled to the desired setpoint, 

although it took a long time on average convergence compared to step change +5% 

of setpoint shown in Figure 15a. There is an overshoot and oscillation response at all 

operating intervals. And they tend to increase with the use of heat exchangers for 

more than three months continuously. The associated manipulated variable profile is 

shown in Figure 16b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  15. Control response of IMC-PID controller: (a) step change +5% of setpoint 
tracking in outlet temperature of the cold stream; (b) the associated manipulated 
variable profile.    
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Figure  16. Control response of IMC-PID controller: (a) step change -5% of setpoint 
tracking in outlet temperature of the cold stream; (b) the associated manipulated 
variable profile.    

 Figure 17a and b show the clean heat exchanger's 𝑇𝐶𝑜𝑢𝑡 control response to 

±5%  disturbance rejection changes, i.e., the flow rate of the cold stream and inlet 

temperatures of hot and cold streams and manipulated variable, respectively. A +5% 

increase in the flow rate of the cold stream results in a decrease in outlet 

temperature at the cold stream. The controller then adjusts the manipulated 

variable and returns the controlled variable to the setpoint value. When the inlet 

temperature of the hot stream is increased by 5%, the outlet temperature at the 

cold stream increased. The controller then reduces the controlled variable to reject 

the disturbance of inlet temperature at the hot side. The increased inlet temperature 

(a) 

(b) 
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of the cold stream by 5% increased the outlet temperature of cold fluid. The 

manipulated variable is then adjusted by the controller and the controlled variable is 

returned to the setpoint value. These results show that the controller can effectively 

reject disturbance. Since the inlet temperature at the cold stream is one of the 

disturbance variables that affect control more difficult than others, inlet temperature 

at the cold stream is used for disturbance rejection for 1 , 2 , and 3 months of heat 

exchanger operation period.   

 

 

  

 

 

  

 

 

 

 

  

  

Figure  17. Control response of IMC-PID controller for clean heat exchanger 
operation: (a) step change ±5% of disturbances rejection in the flow rate of the cold 
stream and inlet temperatures of hot and cold streams; (b) the associated 
manipulated variable profile. 

(a) 

(b) 
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   Figure 18a and b show the control response output temperature of the 

cold stream at 1, 2, and 3 months heat exchanger operation with a step change +5% 

of inlet temperature at cold fluid and manipulated variable, respectively. When an 

increase of 5% inlet temperature of cold fluid at 100 seconds resulted in the 

controlled variable of each operating period increases. The controller then adjusts 

the manipulated variable and returns the controlled variable to the setpoint value.  

 

 

 

 

  

  

 

 

 

 

  

 

Figure  18. Control response of IMC-PID controller at 1, 2 and 3 months heat 
exchanger operation: (a) step change +5% of disturbances rejection in the flow rate 
of the cold stream; (b) the associated manipulated variable profile.    

Figure 19a and b show the control response output temperature of the cold 

stream at 1, 2, and 3 months heat exchanger operation with a step change -5% of 

inlet temperature at cold fluid and manipulated variable, respectively. When the 

(a) 

(b) 
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inlet temperature of the cold stream was reduced by 5% at 100 seconds, the outlet 

temperature of the cold stream for each period of operation increased. The 

controller then decreases the controlled variable to reject the disturbance of inlet 

temperature at the cold fluid. These results indicate that the controller can control 

the outlet temperature of each operating range even with the disturbance to the 

system.  

 

 

  

 

 

 

 

 

 

 

 

 

Figure  19. Control response of IMC-PID controller at 1, 2 and 3 months heat 
exchanger operation: (a) step change -5% of disturbances rejection in the flow rate 
of the cold stream; (b) the associated manipulated variable profile.    

5.4 Temperature control of heat exchangers using NNMPC controller 
In the system identification, the NARX-ANN models obtained from section 5.2 were 

applied in the MPC algorithm. It was shown that the results of network predictions 

(a) 

(b) 
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were nearly close to those generated by the model since the process had few errors 

in the forecasting and the ANN's output was also suitable for the validation data. The 

NNMPC started after the ANN model has been sufficiently trained.  

 The trial and error method is implemented as the procedure for selecting 

tuning parameters: control horizon (𝑀), prediction horizon (𝑃), and the weight 

coefficients of the input (𝑤) for NNMPC. In general the control horizon (𝑀) and 

prediction horizon (𝑃) is suggested as 𝑀 ≤ 𝑃. The tuning parameters and ISE value of 

the NNMPC used to control the controlled variable for each heat exchanger 

operating period are shown in Table 9, which is obtained from the setpoint tracking 

test. 

Table  9. The tuning parameters with ISE values of the NNMPC. 
Heat exchanger 
fouling 

𝑀 𝑃 𝑤 ISE 

clean 6 9 0.01 307.485 
1 month 6 10 0.01 324.880 
2 months 6 10 0.01 338.963 
3 months 6 10 0.01 350.776 

 The NNMPC parameters designed according to Table 9 are employed to 

adjust the controller to test the controls of the heat exchanger system under fouling 

build-up for setpoint tracking and disturbance rejection. The NNMPC is also used to 

monitor for fouling inside the heat exchanger. This is an advantage for the NNMPC 

that can control the heat exchanger meanwhile can monitor fouling. 

 Figure 20a shows the outlet temperature of cold stream response of each 

fouling range with step changes +5% of setpoint tracking from 80 °C to 84 °C with 

NNMPC tuning parameters shown in Table 9. When setpoint tracking is increased by 

5% at 100 seconds, the outlet temperature of the cold stream response of each 

period can be well controlled into the setpoint value. They have the lowest 
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overshoot response and shortest time to enter the setpoint value compared with the 

control response from the PID controller shown in Figure 15a. Even the average ISE 

value of the control response obtained with the NNMPC was rather than the PID 

controller's average ISE value. The associated manipulated variable profile is shown 

in Figure 20b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  20. Control response of NNMPC: (a) step change +5% of setpoint tracking in 
outlet temperature of the cold stream; (b) the associated manipulated variable 
profile.  

 Figure 21a and b show the outlet temperature of cold stream response of 

each fouling range with step changes -5% of setpoint and manipulated variable, 

respectively. When setpoint change is reduced from 80 °C to 76 °C at 100 s, the 

control response of the controlled variable of each operating range obtained by 

(a) 

(b) 
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NNMPC, shown in Table 9, can be controlled into the setpoint value. They have the 

smallest overshoot and oscillation response compared with the control response 

obtained with the PID controller shown in Figure 16a. They also take a shorter time 

to enter the setpoint value. These results indicated that NNMPC was able to control 

the controlled variable better than the PID controller when step the setpoint 

tracking. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure  21. Control response of NNMPC: (a) step change -5% of setpoint tracking in 
outlet temperature of the cold stream; (b) the associated manipulated variable 
profile.    

 Figure 22a and b show the control response of the controlled variable for the 

clean heat exchanger operation with step change ±5% of the flow rate of the cold 

stream and the inlet temperatures of hot and cold streams and manipulated 

(a) 

(b) 
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variable, respectively. When the flow rate of the cold stream was increased by 5% at 

100 s, the controlled variable decreased. NNMPC then adjusted the manipulated 

variable, and the controlled variable returned to the setpoint with a smaller ISE 

value than the PID controller. When inlet temperatures of hot and cold streams were 

increased by 5% at 100 seconds, the outlet temperature of both disturbances 

increased. The NNMPC then reduces the controlled variable to reject both 

disturbances in the system with a shorter time reached the setpoint and less ISE than 

the PID controller.  

 

      

 

  

 

 

 

 

 

 

 

 

Figure  22. Control response of NNMPC for clean heat exchanger operation: (a) step 
change ±5% of disturbances rejection in the flow rate of the cold stream and inlet 
temperatures of hot and cold streams; (b) the associated manipulated variable 
profile. 

(a) 

(b) 
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 Figure 23a and b show the control response of the outlet temperature of 

cold stream in the 1, 2, and 3 months heat exchanger operation with step change 

+5% of the inlet temperature of the cold stream and manipulated variable, 

respectively. When the inlet temperature of the cold stream was increased by 5% at 

100 seconds for each operating period, the controlled variable decreased and 

returned to the setpoint value after NNMPC adjusted the manipulated variable. The 

time entered the setpoint for control response of the NNMPC was shorter than the 

PID controller.  

 

 

  

 

 

 

 

 

 

 

  

 

Figure  23. Control response of NNMPC at 1, 2 and 3 months heat exchanger 
operation: (a) step change +5% of disturbances rejection in the flow rate of the cold 
stream; (b) the associated manipulated variable profile.    

(a) 

(b) 
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 Figure 24a and b show the control response of the outlet temperature of 

cold stream in the 1, 2, and 3 months heat exchanger operation with step change of 

-5% in the inlet temperature of the cold stream and manipulated variable, 

respectively. The controlled variable increased when the inlet temperature of the 

cold stream of each operating period was decreased by 5% after the manipulated 

variable was adjusted by NNMPC and the controlled variable returned to the 

setpoint value. They took a shorter time to enter the setpoint than the control 

response received from the PID controller. These show that NNMPC can reject 

disturbances better than the PID controller. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure  24. Control response of NNMPC at 1, 2 and 3 months heat exchanger 
operation: (a) step change -5% of disturbances rejection in the flow rate of the cold 
stream; (b) the associated manipulated variable profile.    

(a) 

(b) 
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 Figure 25 and Figure 26 show the prediction results of fouling formation at 

cold and hot sides for each heat exchanger operating period, respectively, based on 

the prediction of NARX-ANN model in ±5% step the setpoint tracking. It has been 

shown that NARX-ANN model can use to monitor fouling formation. 

  

 

 

 

 

 

 

Figure   25. The results fouling formation prediction at the cold side for each heat 
exchanger operating period between plant (blue) and NNMPC (red). 
 

 

 

  

 

 

 

Figure   26. The results fouling formation prediction at the hot side for each heat 
exchanger operating period between plant (blue) and NNMPC (red). 
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CHAPTER VI 
CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 
Fouling is one of the main problems that often arise during the operation of heat 

exchangers. The presence of fouling results in a reduction of heat transfer efficiency 

and can cause a temperature control problem. To overcome this problem, the 

design of the controller for the heat exchanger under fouling is therefore essential. In 

this study, an artificial neural network (ANN) was used to predict the fouling factor 

and identify a system for heat exchangers under parameter uncertainty in a neural 

network-based model predictive control (NNMPC) design with a nonlinear 

autoregressive network with exogenous inputs (NARX). The ANN training dataset was 

obtained from a cell-based dynamic heat exchanger model integrated with the 

threshold fouling model. The inputs of the ANN model included the flow rates of 

hot and cold streams and the inlet temperatures of hot and cold streams while the 

outputs of the ANN model included the outlet temperatures of hot and cold 

streams and fouling factors. Effects of the number of hidden neurons and training 

algorithms to ANN topology were also studied. The statistical indices used to 

determine the best topology include the mean square error (MSE), the regression 

coefficient (R2), and processing time. In the controller design, the NNMPC and PID 

controller are used to control the temperature of the heat exchanger system. It has 

been shown that the NNMPC can control the temperature for the heat exchanger 

under fouling build-up better than the PID controller in terms of setpoint tracking 

and disturbance rejection. It can also use to predict the effect of fouling factors. 

6.2 Recommendations 
Since the NARX-ANN model is trained offline, it is necessary to create 4  NARX-ANN 

models, namely NARX-ANN of the clean heat exchanger and 1 , 2 , and 3 months of 

heat exchanger operating period, to be used as a prediction model for the MPC. An 
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online ANN may reduce the time it takes to create and reduce the number of ANN 

models for the heat exchanger. 
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APPENDIX 
APPENDIX A 

DETERMINING THE OPTIMAL NUMBER OF DELAYS 

Table   A1. Determination of the best topology of the NARX-ANN model by the 

different number of delays for a clean heat exchanger. 

Number of delays Train Test 
(nu,ny) MSE R2 MSE R2 

0,1 0.00125000 0.99959 0.00062474 0.99987 
1,1 0.00006690 0.99999 0.00013667 0.99997 
2,1 0.00000951 0.99999 0.00001556 0.99999 
3,1 0.00000451 0.99999 0.00000756 0.99999 
4,1 0.00000523 0.99999 0.00000344 0.99999 
1,2 0.00052700 0.99987 0.00034885 0.99992 
2,2 0.00004410 0.99999 0.00008212 0.99998 
3,2 0.00003460 0.99999 0.00054070 0.99999 
4,2 0.00000471 0.99999 0.00000288 0.99999 
1,3 0.00143000 0.99966 0.00102220 0.99976 
2,3 0.00026100 0.99994 0.00021988 0.99995 
3,3 0.00003430 0.99999 0.00005760 0.99999 
4,3 0.00001050 0.99999 0.00001011 0.99999 
1,4 0.00249000 0.99942 0.00157730 0.99965 
2,4 0.00066700 0.99985 0.00049566 0.99989 
3,4 0.00013900 0.99997 0.00012676 0.99997 
4,4 0.00002120 0.99999 0.00002674 0.99999 
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Table  A2. Determination of the best topology of the NARX-ANN model by the 

different number of delays for operating a month of the heat exchanger. 

Number of delays Train Test 
(nu,ny) MSE R2 MSE R2 

0,1 0.00120000 0.99956 0.00036224 0.99990 
1,1 0.00007800 0.99998 0.00008529 0.99998 
2,1 0.00000726 0.99999 0.00000680 0.99999 
3,1 0.00001820 0.99999 0.00001657 0.99999 
4,1 0.00000802 0.99987 0.00000649 0.99992 
1,2 0.00044200 0.99987 0.00032540 0.99992 
2,2 0.00004180 0.99999 0.00005457 0.99999 
3,2 0.00001030 0.99999 0.00000833 0.99999 
4,2 0.00000758 0.99999 0.00000635 0.99999 
1,3 0.00120000 0.99966 0.00072669 0.99981 
2,3 0.00023200 0.99994 0.00016920 0.99996 
3,3 0.00003000 0.99999 0.00003284 0.99999 
4,3 0.00000968 0.99999 0.00000937 0.99999 
1,4 0.00195000 0.99944 0.00136560 0.99963 
2,4 0.00058800 0.99984 0.00043139 0.99989 
3,4 0.00013400 0.99996 0.00011538 0.99997 
4,4 0.00002310 0.99999 0.00002141 0.99999 

 

 

 

 

 

 



  80 

Table  A3. Determination of the best topology of the NARX-ANN model by the 

different number of delays for operating 2 months of the heat exchanger. 

Number of delays Train Test 
(nu,ny) MSE R2 MSE R2 

0,1 0.00134000 0.99948 0.00053187 0.99985 
1,1 0.00004400 0.99999 0.00009975 0.99997 
2,1 0.00000778 0.99999 0.00000649 0.99997 
3,1 0.00001210 0.99999 0.00000960 0.99999 
4,1 0.00000888 0.99999 0.00000719 0.99999 
1,2 0.00053000 0.99985 0.00048054 0.99986 
2,2 0.00003280 0.99999 0.00006393 0.99998 
3,2 0.00000992 0.99999 0.00000903 0.99999 
4,2 0.00000784 0.99999 0.00000758 0.99999 
1,3 0.00135000 0.99963 0.00086545 0.99977 
2,3 0.00025700 0.99993 0.00020167 0.99995 
3,3 0.00003090 0.99999 0.00004760 0.99999 
4,3 0.00001340 0.99999 0.00001559 0.99999 
1,4 0.00237000 0.99936 0.00129390 0.99966 
2,4 0.00063400 0.99983 0.00042812 0.99989 
3,4 0.00021200 0.99994 0.00021589 0.99994 
4,4 0.00002160 0.99999 0.00002100 0.99999 
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Table  A4. Determination the best topology of the NARX-ANN model by the different 

number of delays for operating 3 months of the heat exchanger. 

Number of delays Train Test 
(nu,ny) MSE R2 MSE R2 

0,1 0.00133000 0.99952 0.00051139 0.99986 
1,1 0.00005350 0.99998 0.00010377 0.99997 
2,1 0.00000807 0.99999 0.00000948 0.99999 
3,1 0.00001710 0.99999 0.00001383 0.99999 
4,1 0.00000875 0.99999 0.00000745 0.99999 
1,2 0.00060200 0.99984 0.00039684 0.99991 
2,2 0.00003080 0.99999 0.00005770 0.99999 
3,2 0.00001410 0.99999 0.00001814 0.99999 
4,2 0.00000810 0.99999 0.00000307 0.99999 
1,3 0.00160000 0.99959 0.00074841 0.99983 
2,3 0.00027400 0.99993 0.00017690 0.99996 
3,3 0.00003310 0.99999 0.00003867 0.99999 
4,3 0.00001550 0.99999 0.00001261 0.99999 
1,4 0.00268000 0.99929 0.00117510 0.99972 
2,4 0.00074700 0.99982 0.00045115 0.99989 
3,4 0.00017100 0.99996 0.00011589 0.99997 
4,4 0.00002890 0.99999 0.00002249 0.99999 
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APPENDIX B 

DETERMINING THE OPTIMAL NUMBER OF HIDDEN NEURONS 

Table  B1. Determination the best architecture of the NARX-ANN models with a 

different number of hidden neurons for a clean heat exchanger. 

Number of 
hidden neurons 

Train Test 
MSE R2 MSE R2 

1 0.10100000 0.97746 0.10042000 0.97729 
2 0.00593000 0.99884 0.00544350 0.99895 
3 0.00117000 0.99992 0.00105460 0.99996 
4 0.00023200 0.99993 0.00012410 0.99997 
5 0.00015200 0.99995 0.00005156 0.99999 
6 0.00002680 0.99999 0.00002341 0.99999 
7 0.00001220 0.99999 0.00001566 0.99999 
8 0.00000910 0.99999 0.00001432 0.99999 
9 0.00000454 0.99999 0.00000654 0.99999 
10 0.00000451 0.99999 0.00000756 0.99999 
11 0.00000506 0.99999 0.00000982 0.99999 
12 0.00000454 0.99999 0.00000498 0.99999 
13 0.00000168 0.99999 0.00000459 0.99999 
14 0.00000138 0.99999 0.00000275 0.99999 
15 0.00000292 0.99999 0.00000815 0.99999 
16 0.00000223 0.99999 0.00000542 0.99999 
17 0.00000105 0.99999 0.00000164 0.99999 
18 0.00000115 0.99999 0.00000272 0.99999 
19 0.00000089 0.99999 0.00000204 0.99999 
20 0.00000140 0.99999 0.00000307 0.99999 
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Table  B2. Determination the best architecture of the NARX-ANN models with a 

different number of hidden neurons for operating a month of the heat exchanger. 

Number of 
hidden neurons 

Train Test 
MSE R2 MSE R2 

1 0.11400000 0.96480 0.10895000 0.96613 
2 0.00572000 0.99866 0.00572100 0.99865 
3 0.00080300 0.99993 0.00071641 0.99996 
4 0.00020000 0.99993 0.00011966 0.99997 
5 0.00011600 0.99996 0.00006782 0.99998 
6 0.00004290 0.99999 0.00003229 0.99999 
7 0.00002380 0.99999 0.00002093 0.99999 
8 0.00000873 0.99999 0.00005322 0.99999 
9 0.00000838 0.99999 0.00000733 0.99999 
10 0.00000726 0.99999 0.00000680 0.99999 
11 0.00000670 0.99999 0.00000943 0.99999 
12 0.00000543 0.99999 0.00000478 0.99999 
13 0.00000510 0.99999 0.00001461 0.99999 
14 0.00000502 0.99999 0.00000384 0.99999 
15 0.00000452 0.99999 0.00000514 0.99999 
16 0.00000651 0.99999 0.00000839 0.99999 
17 0.00000486 0.99999 0.00000517 0.99999 
18 0.00000488 0.99999 0.00000520 0.99999 
19 0.00000448 0.99999 0.00000852 0.99999 
20 0.00000336 0.99999 0.00000336 0.99999 
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Table  B3. Determination the best architecture of the NARX-ANN models with a 

different number of hidden neurons for operating 2 months of the heat exchanger. 

Number of 
hidden neurons 

Train Test 
MSE R2 MSE R2 

1 0.11300000 0.96478 0.10791000 0.96621 
2 0.00664000 0.99874 0.00652320 0.99877 
3 0.00191000 0.99992 0.00184860 0.99996 
4 0.00022300 0.99993 0.00014327 0.99996 
5 0.00012000 0.99996 0.00007069 0.99998 
6 0.00003440 0.99999 0.00002703 0.99999 
7 0.00002590 0.99999 0.00001882 0.99999 
8 0.00002120 0.99999 0.00000786 0.99999 
9 0.00001610 0.99999 0.00004163 0.99999 
10 0.00000978 0.99999 0.00000649 0.99999 
11 0.00000977 0.99999 0.00000793 0.99999 
12 0.00000650 0.99999 0.00000481 0.99999 
13 0.00000545 0.99999 0.00000466 0.99999 
14 0.00000498 0.99999 0.00000489 0.99999 
15 0.00000398 0.99999 0.00000433 0.99999 
16 0.00000707 0.99999 0.00000765 0.99999 
17 0.00000391 0.99999 0.00000417 0.99999 
18 0.00000372 0.99999 0.00000400 0.99999 
19 0.00000324 0.99999 0.00000442 0.99999 
20 0.00000300 0.99999 0.00000309 0.99999 
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Table  B4. Determination the best architecture of the NARX-ANN models with a 

different number of hidden neurons for operating 3 months of the heat exchanger. 

Number of 
hidden neurons 

Train Test 
MSE R2 MSE R2 

1 0.11900000 0.96578 0.11113000 0.96774 
2 0.00610000 0.99868 0.00598690 0.99870 
3 0.00074600 0.99993 0.00067793 0.99996 
4 0.00018000 0.99994 0.00010407 0.99997 
5 0.00011300 0.99997 0.00006952 0.99998 
6 0.00003950 0.99999 0.00003876 0.99999 
7 0.00003760 0.99999 0.00003405 0.99999 
8 0.00001930 0.99999 0.00002033 0.99999 
9 0.00001200 0.99999 0.00001560 0.99999 
10 0.00001107 0.99999 0.00000948 0.99999 
11 0.00001060 0.99999 0.00001329 0.99999 
12 0.00000919 0.99999 0.00001498 0.99999 
13 0.00000845 0.99999 0.00000951 0.99999 
14 0.00000608 0.99999 0.00000534 0.99999 
15 0.00000548 0.99999 0.00000788 0.99999 
16 0.00000570 0.99999 0.00000933 0.99999 
17 0.00000598 0.99999 0.00000698 0.99999 
18 0.00000549 0.99999 0.00000836 0.99999 
19 0.00000718 0.99999 0.00000858 0.99999 
20 0.00000519 0.99999 0.00000831 0.99999 
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APPENDIX C 

DETERMINING THE BEST TRAINING ALGORITHM 

Table  C1. Determination the best architecture of the NARX-ANN models with a 

different training algorithm for a clean heat exchanger. 

The training algorithm MSE R2 Processing 
time (s/epoch) 

Bayesian regulation 
backpropagation 

0.00000237 0.99999 0.12515 

Levenberg-Marquardt 
backpropagation 

0.00000451 0.99999 0.12143 

Scaled conjugate gradient 
backpropagation 

0.00010800 0.99997 0.00748 

Table  C2. Determination the best architecture of the NARX-ANN models with a 

different training algorithm for operating a month of the heat exchanger. 

The training algorithm MSE R2 Processing 
time (s/epoch) 

Bayesian regulation 
backpropagation 

0.00000392 0.99999 0.21800 

Levenberg-Marquardt 
backpropagation 

0.00000452 0.99999 0.17413 

Scaled conjugate gradient 
backpropagation 

0.00009810 0.99998 0.00870 
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Table  C3. Determination the best architecture of the NARX-ANN models with a 

different training algorithm for operating 2 months of the heat exchanger. 

The training algorithm MSE R2 Processing 
time (s/epoch) 

Bayesian regulation 
backpropagation 

0.00000307 0.99999 0.17946 

Levenberg-Marquardt 
backpropagation 

0.00000398 0.99999 0.17949 

Scaled conjugate gradient 
backpropagation 

0.00017300 0.99995 0.00858 

Table  C4. Determination the best architecture of the NARX-ANN models with a 

different training algorithm for operating 3 months of the heat exchanger. 

The training algorithm MSE R2 Processing 
time (s/epoch) 

Bayesian regulation 
backpropagation 

0.00000380 0.99999 0.19101 

Levenberg-Marquardt 
backpropagation 

0.00000548 0.99999 0.18000 

Scaled conjugate gradient 
backpropagation 

0.00013500 0.99996 0.00920 
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