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Arrowhead matrices are a special type of matrices that have been of

interest and extensively studied due to their nice algebraic structures and wide

applications. In this thesis, the enumeration of arrowhead matrices with prescribed

determinant over the rings Zp and Zp2 are studied, where p is a prime number. The

number of n×n arrowhead matrices over Zp of a fixed determinant a is determined

for all positive integers n and for all elements a ∈ Zp. This result is applied in

the enumeration of n× n singular and non-singular arrowhead matrices over Zp2 .

Moreover, the number of n×n non-singular arrowhead matrices over Zp2 of a fixed

determinant b is established for all positive integers n and for all units b ∈ Zp2 .

For singular arrowhead matrices over Zp2 , an upper bound for the number of n×n

arrowhead matrices over Zp2 with zero determinant and a lower bound for the

number of n × n arrowhead matrices over Zp2 with a non-zero determinant are

presented. Some illustrative enumerations are presented as well.
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Chapter 1

Introduction

Determinants of matrices have been known for their nice properties and

wide applications. Classically, determinants appear in the Heron’s formula for the

area of a triangle in [6] and in the calculation of the cross-product of vectors in R3

in [2]. Moreover, in [2], various applications of determinants are presented such

as the determination of the singularity of matrices, the existence of the solution

of linear systems, and the solution of linear systems using Cramer’s rule. There-

fore, properties of matrices and their determinants have been extensively studied.

Especially, matrices over fields and their determinants are interesting due to their

rich algebraic structures and wide applications. Singularity of matrices is useful in

applications (see, for example, [2] and [10]).

The number of n×n singular (resp., nonsingular) matrices over a finite

field Fq has been determined in [13]. As a generalization of the prime field Zp, the

number of n× n matrices over Zm of a fixed determinant has been first studied in

[1]. In [8], a different and simpler technique was applied to determine the number of

such matrices over Zm. Later, the number of n×nmatrices over commutative finite

chain rings of a fixed determinant has been completely determined in [3]. Diagonal

matrices are interesting subfamilies of the ones in [3]. As a special case of [3], the
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determinants of diagonal matrices over commutative finite chain rings of a fixed

determinant are presented in [4] and applied in the study of the determinants of

some circulant matrices over commutative finite chain rings.

An element a in a commutative ring R with identity 1 is called a unit

if there exists b ∈ R such that ab = 1. A nonzero element a in a commutative

ring R is call a zero-divisor if there exists a nonzero element b ∈ R such that

ab = 0. We note that a commutative finite chain ring is a disjoint union of the

zero, zero-divisors, and units. The results on diagonal matrices over commutative

finite chain rings in [4] and on matrices over commutative finite chain rings in [3] are

established based on the three types of the determinants, i.e., zero, zero-divisors,

and units.

Let R be a commutative ring with identity 1. For a positive integer n,

an n×n arrowhead matrix over R is defined to be a square matrix containing zeros

in all entries except for the first row, first column, and main diagonal. Precisely,

the arrowhead matrix is in the form of

A =



∗ ∗ ∗ ∗ · · · ∗

∗ ∗ 0 0 · · · 0

∗ 0 ∗ 0 · · · 0

∗ 0 0 ∗ · · · 0

...
...

...
...

. . .
...

∗ 0 0 0 · · · ∗



,

where ∗s are arbitrary elements in R and they are not necessarily the same. From

the definition, it is easily seen that an arrowhead matrix is a generalization of a
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diagonal matrix and it is a special case of a square matrix over R.

Arrowhead matrices are important for the computation of the eigen-

values via divide and conquer approaches in [9] as well as their application. In

[11], applications of the arrowhead matrices of large order, the infinite invertible

arrowhead matrices are given. In [14], a new algorithm for solving an eigenvalue

problem for a real symmetric arrowhead matrix is given. The algorithm computed

all eigenvalues and all components of the corresponding eigenvectors with high rel-

ative accuracy. Their results extended to Hermitian arrowhead matrices and other

forms of arrowhead matrices.

In this thesis, we generalize results on the enumeration of diagonal ma-

trices with prescribed determinant in [4] to arrowhead matrices. Alternatively, this

can be viewed as an interesting subfamily of matrices studied in [3]. The number

of n×n singular arrowhead matrices and the number of n×n non-singular arrow-

head matrices over R are completely determined for all positive integers n. The

complete enumeration is presented for n×n arrowhead matrices over Zp. For n×n

arrowhead matrices over Zp2 , the enumeration is given for n × n non-singular ar-

rowhead matrices whose determinant is a fixed unit in Zp2 . For singular arrowhead

matrices over Zp2 , an upper bound for the number of n×n arrowhead matrices over

Zp2 with zero determinant and a lower bound for the number of n× n arrowhead

matrices over Zp2 with a non-zero determinant are presented.

The thesis is organized as follows. In Chapter 2, definitions, basic con-

cepts, and preliminary results used in this thesis are recalled. The enumeration

of n× n arrowhead matrices of fixed determinant over Zp is presented in Chapter
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3. In Chapter 4, the enumeration of n × n singular and non-singular arrowhead

matrices over Zp2 is given together with the number of n× n non-singular arrow-

head matrices over Zp2 whose determinant is a fixed unit in Zp2 . Subsequently,

bounds for the number of n×n arrowhead matrices over Zp2 with a fixed non-unit

determinant are presented. Summary and discussion are given in Chapter 5.



 

Chapter 2

Preliminaries

In this chapter, basic concepts and elementary results in algebra used in

the thesis are recalled together with some illustrative examples. The reader may

refer to [12] for more details.

2.1 Rings

In this section, some properties of rings are reviewed. Especially, alge-

braic structures of the rings Zp and Zp2 are recalled, where p is a prime number.

Definition 2.1. A ring is an algebraic structure composed of a non-empty set R

and two binary operations on R, addition (+) and multiplication (·), satisfying the

following axioms:

1. Closure under addition [∀a, b ∈ R, a+ b ∈ R].

2. Associativity of addition [∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c)].

3. Identity element for addition [∃z ∈ R ∀a ∈ R, z + a = a = a+ z].

The element z is often denoted by 0 ∈ R.

4. Inverse elements for addition [∀a ∈ R ∃w ∈ R, a+ w = 0 = w + a].

The inverse of a is often denoted by −a ∈ R.
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5. Commutative of addition [∀a, b ∈ R, a+ b = b+ a].

6. Closure under multiplication [∀a, b ∈ R, a · b ∈ R].

7. Associativity of multiplication [∀a, b, c ∈ R, (a · b) · c = a · (b · c)].

8. Product is distributive over addition

[∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ b · a ].

For multiplication, we usually write ab instead of a · b.

A ring R is called a commutative ring if R satisfies the additional axiom

ab = ba for all a, b ∈ R, and it is called a ring with identity if R contains a

multiplicative identity element 1R such that 1Ra = a = a1R for all a ∈ R. A ring

R is called a commutative ring with identity if it is a commutative ring and it is a

ring with identity.

Example 2.2. Some examples of rings are given as follows.

1. Z,Q,R and C are commutative rings with identity under the usual addition

and multiplication of numbers.

2. For a prime number p, (Zp,+, ·) and (Zp2 ,+, ·) are commutative rings with

identity under the addition and multiplication modulo p and p2, respectively.

An element a in a commutative ring R with identity 1 is called a unit

if there exists b ∈ R such that ab = 1. Denote by U(R) = {a ∈ R | a is a unit in

R} the set of units in R.
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We mainly focus on the determinant of arrowhead matrices over Zp and

Zp2 , where p is a prime number. The set U(Zp) and U(Zp2) are presented in the

following lemma.

Lemma 2.3 ([12, Example 1.2.1 (5)]). Let p be a prime number. Then

U(Zp) = Zp ∖ {0} and |U(Zp)| = p− 1.

Lemma 2.4 ([5, Lemma 2.1]). Let p be a prime number. Then

U(Zp2) = {a ∈ Zp2 | p ∤ a} and |U(Zp2)| = p(p− 1).

A nonzero element a in a commutative ring R is call a zero-divisor if

there exists a nonzero element b ∈ R such that ab = 0. Denote by ZD(R) = {a ∈

R | a is a zero-divisor in R} the set of zero-divisors in R.

Clearly, Zp contains no zero-divisor. The zero-divisors in Zp2 are pre-

sented in the following lemma.

Lemma 2.5 ([5, Lemma 2.2]). Let p be a prime number. Then

ZD(Zp2) = {a ∈ Zp2 | p|a and a ̸= 0} and |ZD(Zp2)| = p− 1.

2.2 Matrices, Determinants, and Arrowhead Matrices

In this section, basic concepts and properties of matrices, determinants,

and arrowhead matrices are recalled.
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2.2.1 Matrices and Determinants

Let R be a commutative ring and let n be a positive integer. An n× n

matrix over R is an array of elements in R arranged in n rows and n columns. A

diagonal matrix is a square matrix where all the elements are 0 except for those

in the diagonal from the top left corner to the bottom right corner, denoted by

diag(a1, a2, a3, . . . , an).

A permutation π of n elements is a one-to-one and onto function on the

set {1, 2, . . . , n}.

Let π be a permutation on {1, 2, . . . , n}. An inversion pair (i, j) of π is

a pair of positive integers i, j ∈ {1, . . . , n} for which i < j but π(i) > π(j). Denote

by inv(π) the number of inversion pairs in π. The sign of π, denoted by sign(π),

is defined by

sign(π) = (−1)inv(π)

=


+1, if the number of inversions in π is even

−1, if the number of inversions in π is odd,

We call π an even permutation if sign(π) = +1, whereas π is called an odd permu-

tation if sign(π) = −1.

Definition 2.6. Given a square matrix A = [aij] over R, the determinantof A is

defined to be

det(A) =
∑
π∈Sn

sign(π)a1,π(1)a2,π(2)a3,π(3) . . . an,π(n),

where the sum is over all permutations of n elements.
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Let A be an n × n matrix over R. The i-j minor of A, denoted it by

Mij, is the determinant of the (n− 1)× (n− 1) matrix which results from deleting

the the ith row and the jth column of A. The i-j cofactor of A, denoted by Cij is

defined to be

Cij = (−1)i+jMij.

It is well known (see, for example, [12]) that the determinant of A can be given in

terms of cofactors of A of the form

det(A) =
n∑

i=1

aijCij =
n∑

j=1

aijCij

The first formula consists of expanding the determinant along the ith row and the

second expands the determinant along jth column of A.

For an n×n matrix A over R, an elementary row (resp., column) opera-

tion on A is defined to be any of the following three operations on the rows (resp.,

columns) of A.

1. Switching the ith and jth rows (resp., columns) of A;

denoted by Ri ↔ Rj (resp., Ci ↔ Cj).

2. Multiplying the ith row (resp., column) of A by a nonzero scalar k;

denoted by kRi → Ri (resp., kCi → Ci).

3. Adding a scalar k multiple of the jth (resp., column) of A to the ith row

(resp., column);

denoted by Ri + kRj → Ri (resp., Ci + kCj → Ci).
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Useful relations between the determinant and elementary row (resp.,

column) operations of matrices are given in the following theorems.

Theorem 2.7 ([7, Theorem 3.16]). Let A be an n×n matrix over a ring R and let

B be a matrix which results from swiching two rows of A. Then det(B) = − det(A).

Theorem 2.8 ([7, Theorem 3.18]). Let A be an n × n matrix over a ring R and

let B be a matrix which results from multiplying a row of A by a scalar k ∈ R.

Then det(B) = k det(A).

Suppose we were to multiply all n rows of A by k to obtain B, i.e.,

B = kA. We have the following property.

Theorem 2.9 ([7, Theorem 3.19]). Let A and B be n× n matrices over a ring R

and k a scalar, such that B = kA. Then det(B) = kn det(A).

Theorem 2.10 ([7, Theorem 3.21]). Let A be an n× n matrix over a ring R and

let B be a matrix which results from adding a multiple of a row to another row.

Then det(A) = det(B).

The determinant of a diagonal matrix can be easily computed as in the

following theorem.

Theorem 2.11 ([7, Theorem 3.13]). Let A be a diagonal matrix over a ring R.

Then det(A) is obtained by taking the product of the entries on the main diagonal.
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2.2.2 Arrowhead Matrices

Let R be a commutative ring with identity 1. For a positive integer n,

an n×n arrowhead matrix over R is defined to be a square matrix containing zeros

in all entries except for the first row, first column, and main diagonal. Precisely,

the arrowhead matrix is of the form

A =



∗ ∗ ∗ ∗ · · · ∗

∗ ∗ 0 0 · · · 0

∗ 0 ∗ 0 · · · 0

∗ 0 0 ∗ · · · 0

...
...

...
...

. . .
...

∗ 0 0 0 · · · ∗



,

where ∗s are arbitrary elements in R and they are not necessarily the same. From

the definition, it is easily seen that an arrowhead matrix is a generalization of a

diagonal matrix and it is a special case of a square matrix over R.

We note that for n ∈ {1, 2}, every n× n matrix over R is an arrowhead

matrix. For n ≥ 3, some examples of n × n arrowhead matrices are given in the

following example.

Example 2.12. Some examples of arrowhead matrices are given as follows.

1. A1 =


1 1 0

1 1 0

0 0 1

 is an arrowhead matrix over Z2 with det(A1) = 0.
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2. A2 =



1 2 0 1

1 1 0 0

2 0 2 0

1 0 0 1


is an arrowhead matrix over Z3 with det(A2) = 2.

For a positive integer n, let An(R) denote the set of n × n arrowhead

matrices over R. For each element a ∈ R, let

An(R, a) = {A ∈ An(R) | det(A) = a}.

be the set of all n× n arrowhead matrices over R whose determinant is a.

Let

IAn(R) = {A ∈ An(R) | det(A) ∈ U(R)}

be the set of all n× n non-singular arrowhead matrices over R. It follows that

IAn(R) =
∪

a∈U(R)

An(R, a).

We note that U(Zp) = Zp ∖ {0} by Lemma 2.3 and U(Zp2) = {b ∈ Zp2 | p ∤ b} is

given in Lemma 2.4. It follows that

IAn(Zp) =
∪

a∈Zp∖{0}

An(Zp, a) and IAn(Zp2) =
∪

a∈{b∈Zp2 | p∤b}

An(Zp2 , a).

From the definitions above, it is not difficult to see that An(R) is a

group under addition and IAn(R) is a group under multiplication.

For groups G and H, let φ : G → H be a group homomorphism. The

image of φ is defined to be the set

im(φ) = {φ(g) : g ∈ G}.
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The kernel of φ is defined to be

ker(φ) = {g ∈ G : φ(g) = eH},

where eH is the identity of H.

The following isomorphism theorem for groups is useful in the enumer-

ation of n× n non-singular arrowhead matrices over Zp2 in Section 4.1.

Theorem 2.13 ([12, Theorem 1.4.2]). Let G and H be groups and let φ : G→ H

be a group homomorphism. Then G/(kerφ) ∼= im(φ).



 

Chapter 3

Enumeration of Arrowhead Matrices with Prescribed

Determinant over Zp

In this chapter, the determinants of arrowhead matrices over Zp are

studied together with the determination of the number of arrowhead matrices over

Zp with a fixed determinant.

First, the number of n × n non-singular arrowhead matrices over Zp is

explicitly determined. A recursive formula for the number |IAn(Zp)| is derived in

the following proposition.

Proposition 3.1. Let p be a prime number. Then

|IA1(Zp)| = p− 1

and

|IAn(Zp)| = p2n−3(p− 1)n + p2(p− 1)|IAn−1(Zp)|

for all n ≥ 2.

Proof. Clearly, |IA1(Zp)| = p− 1. Let n ≥ 2 be an integer and let
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A =



a11 a12 a13 · · · a1,n−1 a1n

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

an1 0 0 · · · 0 ann



∈ IAn(Zp).

We consider the following two cases.

Case 1: ann ̸= 0. For convenience, for each i ∈ {1, 2, . . . , n}, denote by Ri (resp.,

Ci) the ith row (resp, ith column) of A. Applying the following elementary row

and column operations, it can be concluded that

R1 − a1nann
−1Rn → R1 A ∼



a11 − a1nan1ann
−1 a12 a13 · · · a1,n−1 0

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

an1 0 0 · · · 0 ann



C1 − an1ann
−1Cn → C1 ∼



a11 − a1nan1ann
−1 a12 a13 · · · a1,n−1 0

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

0 0 0 · · · 0 ann



.
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Let

C =



a11 − a1nan1ann
−1 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1


.

Then

det(A) = det





0

C
...

0

0 · · · 0 ann




= (−1)n+nann det(C) = ann det(C).

Let

S =





s11 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1


∈ An−1(Zp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det





s11 − a1nan1ann
−1 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1




̸= 0



.
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It follows that 

s11 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1


∈ S

if and only if



s11 − a1nan1ann
−1 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1


∈ IAn−1(Zp).

Hence, the map ψ : S → IAn−1(Zp) defined by



s11 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1


7→



s11 − a1nan1ann
−1 s12 s13 · · · s1,n−1

s21 s22 0 · · · 0

s31 0 s33 · · · 0

...
...

...
. . .

...

sn−1,1 0 0 · · · sn−1,n−1


is a bijection and it can be concluded that |S| = |IAn−1(Zp)|.
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Since 0 ̸= det(A) = ann det(C) if and only if det(C) ̸= 0, we have

a11 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1


∈ S

which has |S| = |IAn−1(Zp)| possibilities. Since a1n and an1 can be arbitrary

elements in Zp, the number of choices of a1n and an1 are p2. The number of

choices for ann is p − 1. In this case, the number of choices of A in IAn(Zp) is

p2(p− 1)|IAn−1(Zp)|.

Case 2: ann = 0. Since det(A) ̸= 0, it follows that a1n ̸= 0 and an1 ̸= 0. Applying

the following elementary row and column operations, we have

Ri − ai1an1
−1Rn → Ri A ∼



0 a12 a13 · · · a1,n−1 a1n

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1,n−1 0

an1 0 0 · · · 0 0
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C1 ↔ Cn ∼



a1n a12 a13 · · · a1,n−1 0

0 a22 0 · · · 0 0

0 0 a33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · an−1,n−1 0

0 0 0 · · · 0 an1



=: A′.

Since det(A′) = − det(A) ̸= 0 if and only if a1n, a22, . . . , an−1,n−1, an1 ̸= 0, the

number of matrices diag(a1n, a22, a33, . . . , an−1,n−1, an1) is (p − 1)n, a1j for each

j = 1, . . . , n − 1 has pn−1 possibilities, and ai1 for each i = 2, . . . , n − 1 has pn−2

possibilities. In this case, the number of A in IAn(Zp) is p
2n−3(p− 1)n.

From both cases, we have

|IAn(Zp)| = p2n−3(p− 1)n + p2(p− 1)|IAn−1(Zp)|

as desired.

From the recursive formula of |IAn(Zp)| given in Proposition 3.1, an ex-

plicit expression for the number |IAn(Zp)| can be derived using the mathematical

induction in the following theorem.

Theorem 3.2. Let p be a prime number. Then

|IAn(Zp)| = p2n−3(p− 1)n(p+ (n− 1))

for all positive integers n.
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Proof. The proof is given based on the mathematical induction. For n = 1, we

have

|IA1(Zp)| = p− 1

= p2(1)−3(p− 1)1(p+ (1− 1)).

Let k ≥ 2 be an integer. Assume that

|IAk−1(Zp)| = p2(k−1)−3(p− 1)k−1(p+ ((k − 1)− 1)).

From Proposition 3.1, we have that

|IAk(Zp)| = p2k−3(p− 1)k + p2(p− 1)|IAk−1(Zp)|

= p2k−3(p− 1)k + p2(p− 1)(p2(k−1)−3(p− 1)k−1(p+ ((k − 1)− 1)))

= p2k−3(p− 1)k + p2(p− 1)(p2k−5(p− 1)k−1(p+ (k − 2)))

= p2k−3(p− 1)k + p2k−3(p− 1)k(p+ (k − 2))

= p2k−3(p− 1)k(p+ (k − 1)).

By the mathematical induction, it can be concluded that

|IAn(Zp)| = p2n−3(p− 1)n(p+ (n− 1))

for all positive integers n.

The relation between |An(Zp, 1)| and |An(Zp, a)| for all a ∈ Zp ∖ {0}

in the following proposition is key to determine the number |An(Zp, a)| later in

Corollary 3.4.
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Proposition 3.3. Let p be a prime number and let n be a positive integer. Then

|An(Zp, a)| = |An(Zp, 1)|

for all a ∈ Zp ∖ {0}.

Proof. Let a ∈ Zp ∖ {0} and let f : An(Zp, 1) → An(Zp, a) be the function defined

by

f(A) = diag(a, 1, 1, . . . , 1)A.

Let

A =



a11 a12 a13 · · · a1n

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an1 0 0 · · · ann


∈ An(Zp, 1).

Then det(A) = 1 and

f(A) = diag(a, 1, 1, . . . , 1)A

=



aa11 aa12 aa13 · · · aa1n

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an1 0 0 · · · ann


. (3.1)
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It follows that f(A) ∈ An(Zp) and

det(f(A)) = det(diag(a, 1, 1, . . . , 1)A)

= det(diag(a, 1, 1, . . . , 1)) · det(A)

= a · 1

= a.

Hence, f(A) ∈ An(Zp, a).

Let A,B ∈ An(Zp, 1) be such that f(A) = f(B). Then diag(a, 1, 1, . . . , 1)A =

diag(a, 1, 1, . . . , 1)B. Since diag(a, 1, 1, . . . , 1) is invertible, we have that A = B.

Hence, f is injective.

Let X ∈ An(Zp, a). Since a is invertible, let A = diag(a−1, 1, 1, . . . , 1)X. Using

the argument similar to that of (3.1), it can be deduced that A ∈ An(Zp) and

det(A) = det(diag(a−1, 1, 1, . . . , 1)X) = a−1 · a = 1. Hence, A ∈ An(Zp, 1) and

f(A) = f(diag(a−1, 1, 1, . . . , 1)X) = diag(a, 1, 1, . . . , 1)diag(a−1, 1, 1, . . . , 1)X = X.

It follows that f is surjective.

All together f is a bijection. Therefore, |An(Zp, 1)| = |An(Zp, a)| as

desired.

From Proposition 3.3, it can be deduced that

|An(Zp, a)| = |An(Zp, 1)| = |An(Zp, b)|

for all a, b ∈ Zp ∖ {0}.

Using Theorem 3.2 and Proposition 3.3, we have the following corollary.
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Corollary 3.4. Let p be a prime number and let n be positive integer. Then

|An(Zp, a)| = p2n−3(p− 1)n−1(p+ (n− 1))

for all a ∈ Zp ∖ {0}.

Proof. From Proposition 3.3, we have |An(Zp, a)| = |An(Zp, 1)| for all a ∈ Zp∖{0}.

Since IAn(Zp) =
∪

a∈Zp∖{0}
An(Zp, a) is a disjoint union and |Zp ∖ {0}| = p − 1 by

Lemma 2.3, it follows that |IAn(Zp)| = |Zp∖ {0}||An(Zp, 1)| = (p− 1)|An(Zp, 1)|.

By Theorem 3.2 and and Proposition 3.3, we have

|An(Zp, a)| = |An(Zp, 1)|

=
|IAn(Zp)|
p− 1

=
p2n−3(p− 1)n(p+ (n− 1))

p− 1

= p2n−3(p− 1)n−1(p+ (n− 1))

as desired.

The number of n × n arrowhead matrices over Zp is |An(Zp)| = p3n−2

and the number of n× n non-singular arrowhead matrices over Zp is

|IAn(Zp)| = p2n−3(p− 1)n(p+ (n− 1))

given in Theorem 3.2. The number |An(Zp, 0)| of n×n singular arrowhead matrices

over Zp can be deduced in the following corollary.

Corollary 3.5. Let p be a prime number. Then

|An(Zp, 0)| = |An(Zp)| − |IAn(Zp)| = p3n−2 − p2n−3(p− 1)n(p+ (n− 1))
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for all positive integers n.

We note that |An(Zp)| = p3n−2 and the numbers |IAn(Zp)|, |An(Zp, a)|

for all elements a ∈ Zp ∖ {0}, and |An(Zp, 0)| are given in Theorem 3.2, Corollary

3.4, and Corollary 3.5, respectively. Some illustrative calculations are presented in

Table 3.1.

Table 3.1: Number of Arrowhead Matrices over Zp

p n |An(Zp)| |IAn(Zp)| |An(Zp, a)|, a ∈ Zp ∖ {0} |An(Zp, 0)|

2 3 128 32 32 96

2 4 1, 024 160 160 864

2 5 8, 192 768 768 7, 424

2 6 65, 536 3, 584 3, 584 61, 952

3 3 2, 187 1, 080 540 1107

3 4 59, 049 23, 328 11, 664 35, 721

3 5 1, 594, 323 489, 888 244, 944 1, 104, 435

3 6 43, 046, 721 10, 077, 696 5, 038, 848 32, 969, 025

5 3 78, 125 56, 000 14, 000 22, 125

5 4 9, 765, 625 6, 400, 000 1, 600, 000 3, 365, 625

5 5 1, 220, 703, 125 720, 000, 000 180, 000, 000 500, 703, 125

7 3 823, 543 666, 792 111, 132 156, 751

7 4 282, 475, 249 217, 818, 720 36, 303, 120 64, 656, 529



 

Chapter 4

Enumeration of Arrowhead Matrices with Prescribed

Determinant over Zp2

In this chapter, the enumeration of n× n arrowhead matrices with pre-

scribed determinant over Zp2 is focused on. The number of n × n non-singular

(resp., singular) arrowhead matrices over Zp2 is presented. For non-singular ar-

rowhead matrices, the number of n× n arrowhead matrices over Zp2 with a given

unit determinant is given. For singular arrowhead matrices, bounds on the number

of n× n arrowhead matrices with a fixed determinant over Zp2 are presented.

4.1 Non-Singular Arrowhead Matrices over Zp2

In this section, the number of n × n non-singular arrowhead matrices

over Zp2 is presented together with the number of n× n arrowhead matrices over

Zp2 whose determinant is a fixed unit in Zp2 .

An explicit formula for the number |IAn(Zp2)| of n × n non-singular

matrices is given in the following theorem.

Theorem 4.1. Let p be a prime number. Then

|IAn(Zp2)| = p5n−5(p− 1)n(p+ (n− 1))
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for all positive integers n.

Proof. By considering the two sets An(Zp2) and An(Zp) as additive groups, let

ϕ : An(Zp2) → An(Zp) be the group homomorphism defined by

A = [aij] 7→ [aij (mod p)].

For each X ∈ An(Zp), by abuse of notation, we have X + pIn ∈ An(Zp2) and

ϕ(X + pIn) = X. It follows that ϕ is a surjective homomorphism. By the First

Isomorphism Theorem for groups (see Theorem 2.13), it follows that An(Zp) ∼=

An(Zp2)/ ker(ϕ). Hence,

| ker(ϕ)| =
|An(Zp2)|
|An(Zp)|

=
p2(3n−2)

p3n−2
= p3n−2.

For A ∈ An(Zp2), we have det(ϕ(A)) = det(A) (mod p) since the congruence

modulo p is a ring homomorphism from Zp2 onto Zp. By Lemma 2.4, it follows

that det(A) is a unit in Zp2 if and only if det(ϕ(A)) ̸= 0 in Zp. Hence, A is

invertible over Zp2 if and only if ϕ(A) is invertible. It follows that the restriction

map ϕ|IAn(Zp2 )
: IAn(Zp2) → IAn(Zp) is surjective. From Theorem 3.2, we have

|IAn(Zp)| = p2n−3(p− 1)n(p+ (n− 1)).

Hence,

|IAn(Zp2)| = | ker(ϕ)||IAn(Zp)|

= p3n−2|IAn(Zp)|

= p3n−2p2n−3(p− 1)n(p+ (n− 1))

= p5n−5(p− 1)n(p+ (n− 1))
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as desired.

Since the number of n× n arrowhead matrices over Zp2 is p2(3n−2), the

next corollary follows immediately from Theorem 4.1.

Corollary 4.2. Let p be a prime number. Then the number of n × n singular

arrowhead matrices over Zp2 is

p5n−5
(
pn+1 − (p− 1)n(p+ (n− 1))

)
for all positive integers n.

For each a ∈ U(Zp2), the relation between |An(Zp2 , 1)| and |An(Zp2 , a)|

in the following proposition is key to determined the number |An(Zp2 , a)| in Corol-

lary 4.4.

Proposition 4.3. Let p be a prime number and let n be a positive integer. Then

|An(Zp2 , a)| = |An(Zp2 , 1)|

for all a ∈ U(Zp2).

Proof. Let a ∈ U(Zp2) and let φ : An(Zp2 , 1) → An(Zp2 , a) be the map defined by

φ(A) = diag(a, 1, 1, . . . , 1)A.

Using arguments similar to those in the proof of Proposition 3.3, it can

be concluded that φ is a bijection from An(Zp2 , 1) onto An(Zp2 , a). Therefore,

|An(Zp2 , 1)| = |An(Zp2 , a)| as desired.
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From Proposition 4.3, it can be deduced that |An(Zp2 , a)| = |An(Zp2 , 1)| =

|An(Zp2 , b)| for all units a, b ∈ U(Zp2).

For a fixed unit a ∈ Zp2 , the number of n× n arrowhead matrices over

Zp2 whose determinant is a will be given in Corollary 4.4.

Corollary 4.4. Let p be a prime number and let n be a positive integer. Then

|An(Zp2 , a)| = p5n−6(p− 1)n−1(p+ (n− 1))

for all a ∈ U(Zp2).

Proof. First, we note that IAn(Zp2) is disjoint union of An(Zp2 , a) for all a ∈

U(Zp2). Precisely,

IAn(Zp2) =
∪

a∈U(Zp2 )

An(Zp2 , a)

is a disjoint union. By Proposition 4.3, An(Zp2 , a) has the same number of elements

as An(Zp2 , 1), and hence,

|IAn(Zp2)| =

∣∣∣∣∣∣
∪

a∈U(Zp2 )

An(Zp2 , a)

∣∣∣∣∣∣
=

∑
a∈U(Zp2 )

|An(Zp2 , a)|

=
∑

a∈U(Zp2 )

|An(Zp2 , 1)|

= |U(Zp2)||An(Zp2 , 1)|.

From Lemma 2.4, we have |U(Zp2)| = p(p − 1). By Proposition 4.3, it can be
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deduced that

|An(Zp2 , a)| = |An(Zp2 , 1)|

=
|IAn(Zp2)|
|U(Zp2)|

=
p5n−5(p− 1)n(p+ (n− 1))

p(p− 1)

= p5n−6(p− 1)n−1(p+ (n− 1)).

The proof is completed.

The numbers |IAn(Zp2)| and |An(Zp2 , a)| for all a ∈ Zp ∖ {0} are given

in Theorem 4.1 and Corollary 4.4, respectively. Some illustrative calculations are

presented in Table 4.1.

Table 4.1: Number of Arrowhead Matrices over Zp2

p n |IAn(Zp2)| |U(Zp2)| |An(Zp2 , a)|, a ∈ U(Zp2)

2 3 4, 096 2 2, 048

2 4 163, 840 2 81, 920

2 5 6, 291, 456 2 3, 145, 728

2 6 234, 881, 024 2 117, 440, 512

3 3 2, 361, 960 6 393, 660

3 4 1, 377, 495, 072 6 229, 582, 512

4.2 Singular Arrowhead Matrices over Zp2

In this section, the number of n × n singular arrowhead matrices with

prescribed determinant over Zp2 are studied. Unlike the previous section, only
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bounds on the number of n× n arrowhead matrices over Zp2 with prescribed non-

unit determinant are given. Precisely, a lower bound on the number of n × n

arrowhead matrices with zero determinant over Zp2 and an upper bound on the

number of n × n arrowhead matrices over Zp2 with a fixed non-zero determinant

are presented.

From Corollary 4.2, the number of n × n singular arrowhead matrices

over Zp2 is

p5n−5
(
pn+1 − (p− 1)n(p+ (n− 1))

)
for all positive integers n. Lower and upper bounds on the number of n×n singular

arrowhead matrices over Zp2 with prescribed determinant are given in the following

subsections.

4.2.1 Singular Arrowhead Matrices over Zp2 with Zero De-

terminant

In this subsection, a lower bound on the number of n × n singular

arrowhead matrices over Zp2 with zero determinant is derived.

Proposition 4.5. Let p be a prime number. Then |A1(Zp2 , 0)| = 1 and

|An(Zp2 , 0)| ≥ p5(p− 1)|An−1(Zp2 , 0)|+ p6n−8(p2 + p− 1)

− p5n−8(p− 1)n(p2 + (p+ 1)n− 2)

for all n ≥ 2.
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Proof. Clearly, |A1(Zp2 , 0)| = 1. Let n ≥ 2 be an integer and let

A =



a11 a12 a13 · · · a1,n−1 a1n

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

an1 0 0 · · · 0 ann



∈ An(Zp2 , 0).

Consider the following two cases.

Case 1: a1n ∈ U(Zp2) or ann ∈ U(Zp2).

Case 1.1: ann ∈ U(Zp2). Using elementary row operations, we have that

ann
−1Rn → Rn A ∼



a11 a12 a13 · · · a1,n−1 a1n

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

an1ann
−1 0 0 · · · 0 1



R1 − a1nRn → R1 ∼



a11 − a1nan1ann
−1 a12 a13 · · · a1,n−1 0

a21 a22 0 · · · 0 0

a31 0 a33 · · · 0 0

...
...

...
. . .

...
...

an−1,1 0 0 · · · an−1,n−1 0

an1ann
−1 0 0 · · · 0 1



.
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Let

C =



a11 − a1nan1ann
−1 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1


.

Then

det(A) = det





0

C
...

0

an1ann
−1 · · · 0 1




= (−1)n+n(1) det(C) = det(C). (4.1)

Let

T =





t11 t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1


∈ An−1(Zp2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det





t11 − a1nan1a
−1
nn t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1




= 0



.
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Since 

t11 t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1


∈ T

if and only if

t11 − a1nan1a
−1
nn t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1


∈ An−1(Zp2 , 0).

The map φ : T → An−1(Zp2 , 0) be defined by

t11 t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1


7→



t11 − a1nan1a
−1
nn t12 t13 · · · t1,n−1

t21 t22 0 · · · 0

t31 0 t33 · · · 0

...
...

...
. . .

...

tn−1,1 0 0 · · · tn−1,n−1


is a bijection. It follows that |T | = |An−1(Zp2 , 0)|. From (4.1), det(A) ≡ 0 ( mod p2)

if and only if det(C) ≡ 0 ( mod p2). The number of matrices C with determi-

nant 0 is |T | = |An−1(Zp2 , 0)|. The number of choices for a1n, an1 is p4. The

number of choices for ann is p(p − 1) by Lemma 2.4. In this case, there are

p5(p− 1)|An−1(Zp2 , 0)| possibilities for A.
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Case 1.2: ann /∈ U(Zp2) and a1n ∈ U(Zp2). We note that

det(A) =(−1)1+na1n det





a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1

an1 0 0 · · · 0





+ (−1)n+nann det





a11 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1





=(−1)1+na1n(−1)n+1an1 det





a22 0 · · · 0

0 a33 · · · 0

...
...

. . .
...

0 0 · · · an−1,n−1





+ ann det





a11 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1
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=a1nan1 det





a22 0 · · · 0

0 a33 · · · 0

...
...

. . .
...

0 0 · · · an−1,n−1





+ ann det





a11 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1




.

If an1 = 0 and

det





a11 a12 a13 · · · a1,n−1

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an−1,1 0 0 · · · an−1,n−1




/∈ U(Zp2)

which has p2(3n−5)−|IAn−1(Zp2)| choices, then det(A) = 0. The number of choices

for a1n is p(p− 1) by Lemma 2.4. The number of choices for an1 is 1. The number

of choices for ann is p2 − p(p− 1) by Lemma 2.5. In this case, there are at least

p2(p− 1)(p2(3n−5) − |IAn−1(Zp2)|)

possibilities for A.

Case 2: ann /∈ U(Zp2) and a1n /∈ U(Zp2). Then the elements in the last column

are divisible by p. Let B = [bij] be the matrix in An(Zp2) be defined by b1n = a1n
p
,
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bnn = ann

p
, and bij = aij for all i = 1, . . . , n and j = 1, . . . , n − 1. Let C = [cij]

be the matrix in An(Zp) defined by cij ≡ bij (mod p). We note that det(A) =

p det(B) ∈ Zp2 . Then det(A) = 0 ∈ Zp2 if and only if det(B) ≡ 0(mod p) which

is equivalent to det(C) = 0 ∈ Zp. For each matrix C ∈ An(Zp, 0), there are p3n−4

corresponding matrices B ∈ An(Zp2 , 0). Since the number of possible matrices C

is |An(Zp, 0)| and the matrix A is uniquely determined by B by multiplying the

last column by p, A has p3n−4|An(Zp, 0)| possibilities.

Summarizing the two cases above, it can be concluded that

|An(Zp2 , 0)| ≥ p5(p− 1)|An−1(Zp2 , 0)|+ p2(p− 1)(p2(3n−5) − |IAn−1(Zp2)|)

+ p3n−4|An(Zp, 0)|.

From Theorem 4.1 and Corollary 3.5, we have

|IAn−1(Zp2)| = p5n−10(p− 1)n−1(p+ (n− 2))

and

|An(Zp, 0)| = p3n−2 − p2n−3(p− 1)n(p+ (n− 1)).

A lower bound for |An(Zp2 , 0)| can be summarized in the following recursive form

|An(Zp2 , 0)| ≥ p5(p− 1)|An−1(Zp2 , 0)|+ p6n−8(p2 + p− 1)

− p5n−8(p− 1)n(p2 + (p+ 1)n− 2).

This completes the proof.

The above recursive lower bound for |An(Zp2 , 0)| is key to determine an

explicit lower bound in the next corollary.
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Corollary 4.6. Let p be a prime number. Then |An(Zp2 , 0)| = 1 and

|An(Zp2 , 0)| ≥ (p5(p− 1))n−1 + p5n−6(p2 + p− 1)

(
n−2∑
i=0

pi(p− 1)n−i−2

)

− p5n−8(p− 1)n((n− 1)p2 +
1

2
(n2 + n− 2)p+

1

2
(n2 − 3n+ 2))

for all n ≥ 2.

Proof. The statement will be proved by the mathematical induction. For n = 2,

we have

|A2(Zp2 , 0)| ≥ p5(p− 1)|A1(Zp2 , 0)|+ p6(2)−8(p2 + p− 1)

− p5(2)−8(p− 1)2(p2 + (p+ 1)(2)− 2)

=p5(p− 1) + p4(p2 + p− 1)− p2(p− 1)2(p2 + 2p)

=(p5(p− 1))2−1 + p5(2)−6(p2 + p− 1)

(
2−2∑
i=0

pi(p− 1)2−i−2

)

− p5(2)−8(p− 1)2((2− 1)p2 +
1

2
(22 + 2− 2)p+

1

2
(22 − 3(2) + 2))

by Proposition 4.5.

Let k ≥ 3 be an integer. Assume that

|Ak(Zp2 , 0)| ≥ (p5(p− 1))k−1 + p5k−6(p2 + p− 1)

(
k−2∑
i=0

pi(p− 1)k−i−2

)

− p5k−8(p− 1)k((k − 1)p2 +
1

2
(k2 + k − 2)p+

1

2
(k2 − 3k + 2)).
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By Proposition 4.5 and the induction hypothesis, it can be deduced that

|Ak+1(Zp2 , 0)| ≥ p5(p− 1)|Ak(Zp2 , 0)|+ p6(k+1)−8(p2 + p− 1)

− p5(k+1)−8(p− 1)k+1(p2 + (p+ 1)(k + 1)− 2)

≥ p5(p− 1)((p5(p− 1))k−1 + p5k−6(p2 + p− 1)

(
k−2∑
i=0

pi(p− 1)k−i−2

)

− p5k−8(p− 1)k((k − 1)p2 +
1

2
(k2 + k − 2)p+

1

2
(k2 − 3k + 2)))

+ p6(k+1)−8(p2 + p− 1)

− p5(k+1)−8(p− 1)k+1(p2 + (k + 1)p+ (k + 1− 2))

= (p5(p− 1))k + p5k−1(p2 + p− 1)(p− 1)

(
k−2∑
i=0

pi(p− 1)k−i−2

)

− p5k−3(p− 1)k+1((k − 1)p2 +
1

2
(k2 + k − 2)p+

1

2
(k2 − 3k + 2))

+ p6k−2(p2 + p− 1)− p5k−3(p− 1)k+1(p2 + (k + 1)p+ (k + 1− 2))

= (p5(p− 1))k + p5k−1(p2 + p− 1)((p− 1)

(
k−2∑
i=0

pi(p− 1)k−i−2

)
+ pk−1)

− p5k−3(p− 1)k+1(((k − 1)p2 +
1

2
(k2 + k − 2)p+

1

2
(k2 − 3k + 2))

+ (p2 + (k + 1)p+ (k + 1− 2)))

= (p5(p− 1))k + p5k−1(p2 + p− 1)

(
k−1∑
i=0

pi(p− 1)k−i−1

)

− p5k−3(p− 1)k+1((k)p2 +
1

2
(k2 + 3k)p+

1

2
(k2 − k))

= (p5(p− 1))(k+1)−1 + p5(k+1)−6(p2 + p− 1)

(k+1)−2∑
i=0

pi(p− 1)(k+1)−i−2


− p5(k+1)−8(p− 1)k+1(((k + 1)− 1)p2 +

1

2
((k + 1)2 + (k + 1)− 2)p

+
1

2
((k + 1)2 − 3(k + 1) + 2)).
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By the mathematical induction, it follows that

|Ak(Zp2 , 0)| ≥ (p5(p− 1))k−1 + p5k−6(p2 + p− 1)

(
k−2∑
i=0

pi(p− 1)k−i−2

)

− p5k−8(p− 1)k((k − 1)p2 +
1

2
(k2 + k − 2)p+

1

2
(k2 − 3k + 2))

for all n ≥ 2.

Illustrative computation of lower bounds for |An(Zp2 , 0)| is presented in

Table 4.2.

Table 4.2: Lower Bounds for |An(Zp2 , 0)|

p n Lower Bounds for |An(Zp2 , 0)|

2 3 6, 272

2 4 471, 040

2 5 33, 816, 576

3 3 723, 897

3 4 629, 757, 585

4.2.2 Singular Arrowhead Matrices over Zp2 with Non-Zero

Determinant

In this subsection, an upper bound on the number of n × n singular

arrowhead matrices over Zp2 with a fixed non-zero determinant are presented.

The following proposition, a relation between |An(Zp2 , p)| and |An(Zp2 , b)|

is given for all b ∈ ZD(Zp2). This relation is key to determine the upper bound

for |An(Zp2 , b)| in Corollary 4.8.
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Proposition 4.7. Let p be a prime number and let n be a positive integer. Then

|An(Zp2 , b)| = |An(Zp2 , p)|

for all b ∈ ZD(Zp2).

Proof. Let b ∈ ZD(Zp2). Then b = ap for some 1 ≤ a < p. Let ψ : An(Zp2 , p) →

An(Zp2 , ap) be the function defined by

ψ(A) = diag(a, 1, 1, . . . , 1)A.

Let

A =



a11 a12 a13 · · · a1n

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an1 0 0 · · · ann


∈ An(Zp2 , p).

Then det(A) = p and

ψ(A) = diag(a, 1, 1, . . . , 1)A

=



aa11 aa12 aa13 · · · aa1n

a21 a22 0 · · · 0

a31 0 a33 · · · 0

...
...

...
. . .

...

an1 0 0 · · · ann


. (4.2)
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It follows that ψ(A) is an n× n arrowhead matrix over Zp2 and

det(ψ(A)) = det(diag(a, 1, 1, . . . , 1)A)

= det(diag(a, 1, 1, . . . , 1)) · det(A)

= a · p

= ap.

Hence, ψ(A) ∈ An(Zp2 , ap).

Let A,B ∈ An(Zp2 , p) be such that ψ(A) = ψ(B). Then

diag(a, 1, 1, . . . , 1)A = diag(a, 1, 1, . . . , 1)B.

Since diag(a, 1, 1, . . . , 1) is invertible, we have A = B. Hence, ψ is injective.

Let X ∈ An(Zp2 , ap). Then det(X) = ap. Since a is a unit, diag(a−1, 1, 1, . . . , 1)

is the inverse of diag(a, 1, 1, . . . , 1). Let A = diag(a−1, 1, 1, . . . , 1)X. Using the

argument similar to that of (4.2), A ∈ An(Zp2) and

det(A) = det(diag(a−1, 1, 1, . . . , 1)X) = a−1 · ap = p.

It follows that A ∈ An(Zp2 , p) and

ψ(A) = ψ(diag(a−1, 1, 1, . . . , 1)X) = diag(a, 1, 1, . . . , 1)diag(a−1, 1, 1, . . . , 1)X = X.

Hence, ψ is surjective.

All together, it can be concluded that ψ is a bijection from An(Zp2 , p)

onto An(Zp2 , ap). Therefore, |An(Zp2 , p)| = |An(Zp2 , b)| as desired.

An upper bound for n × n singular arrowhead matrices over Zp2 with

non-zero determinant is shown in the next corollary.
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Corollary 4.8. Let p be a prime number and let n be a positive integer. Then

|An(Zp2 , b)| ≤
p6n−4

p− 1
− p5n−5(p− 1)n−1(p+ (n− 1))

− (p5(p− 1))n−1

p− 1
+
p5n−6(p2 + p− 1)

p− 1

(
n−2∑
i=0

pi(p− 1)n−i−2

)

− p5n−8(p− 1)n−1((n− 1)p2 +
1

2
(n2 + n− 2)p+

1

2
(n2 − 3n+ 2))

for all b ∈ ZD(Zp2).

Proof. Let ZDAn(Zp2) denote the set of n × n singular arrowhead matrices over

Zp2 with non-zero determinant. We note that ZDAn(Zp2) is disjoint union of

An(Zp2 , b) for all b ∈ ZD(Zp2). Precisely,

ZDAn(Zp2) =
∪

b∈ZD(Zp2 )

An(Zp2 , b)

which is a disjoint union. By Proposition 4.7, An(Zp2 , b) and An(Zp2 , p) have the

same cardinality, and hence,

|ZDAn(Zp2)| =

∣∣∣∣∣∣
∪

b∈U(Zp2)

An(Zp2 , b)

∣∣∣∣∣∣
=

∑
b∈U(Zp2 )

|An(Zp2 , b)|

=
∑

b∈U(Zp2 )

|An(Zp2 , p)|

= |ZD(Zp2)||An(Zp2 , p)|.

From Lemma 2.5, we have |ZD(Zp2)| = p− 1. By Corollary 4.2, Proposition 4.5,
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and Proposition 4.7, it can be concluded that

|An(Zp2 , b)| = |An(Zp2 , p)|

=
|ZDAn(Zp2)|
|ZD(Zp2)|

=
|An(Zp2)| − |IAn(Zp2)| − |An(Zp2 , 0)|

p− 1

≤ p6n−4

p− 1
− p5n−5(p− 1)n−1(p+ (n− 1))

− (p5(p− 1))n−1

p− 1
+
p5n−6(p2 + p− 1)

p− 1

(
n−2∑
i=0

pi(p− 1)n−i−2

)

− p5n−8(p− 1)n−1((n− 1)p2 +
1

2
(n2 + n− 2)p+

1

2
(n2 − 3n+ 2)).

The proof is completed.

Illustrative computation of upper bounds for |An(Zp2 , b)| is presented,

where b ∈ ZD(Zp2), in Table 4.3.

Table 4.3: Upper Bounds for |An(Zp2 , b)|, where b ∈ ZD(Zp2)

p n Upper Bounds for |An(Zp2 , b)|

2 3 6, 016

2 4 413, 696

2 5 27, 000, 832

2 6 1, 719, 664, 640

3 3 848, 556

3 4 739, 765, 872



 

Chapter 5

Conclusion and Remarks

In this thesis, the enumeration of arrowhead matrices with prescribed

determinant over Zp and Zp2 has been studied. The number of n× n non-singular

(resp., singular) arrowhead matrices over Zp has been determined together with the

number of n×n arrowhead matrices over Zp whose determinant is a for all positive

integers n and a ∈ Zp. Subsequently, the enumeration of n×n non-singular (resp.,

singular) arrowhead matrices over Zp2 has been given. The number of n× n non-

singular arrowhead matrices over Zp2 whose determinant is a has been determined

for all positive integers n and for all a ∈ U(Zp2). For n × n singular arrowhead

matrices over Zp2 , bounds on the number of n × n singular arrowhead matrices

have been presented. An upper bound for the number of n×n singular arrowhead

matrices over Zp2 with zero determinant has been derived as well as a lower bound

for the number of n× n singular arrowhead matrices over Zp2 with a zero-divisor

determinant.

It is interesting to studied the n×n arrowhead matrices over Zp2 whose

determinant is a zero-divisor in Zp2 . In general, the study of n×n arrowhead ma-

trices with prescribed determinant over other rings is another interesting problem.
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