
 

 

 

  

  

AN IMPROVED VARIATIONAL MODEL FOR SPECKLE NOISE REDUCTION IN REAL 
ULTRASOUND IMAGES 

 

By 
MISS Siriwan CHANKAN 

 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for Doctor of Philosophy MATHEMATICS 

Department of MATHEMATICS 
Silpakorn University 
Academic Year 2022 

Copyright of Silpakorn University 
 

 

 



 

 

 

  

ตวัแบบเชิงแปรผนัท่ีปรับปรุงส ำหรับกำรลดสัญญำณรบกวนแบบสเปกเคิลจำกภำพถ่ำย
คล่ืนเสียงควำมถ่ีสูง 

 

โดย 
นำงสำวศิริวรรณ จนัทร์แก่น  

วิทยำนิพนธ์น้ีเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตรปรัชญำดุษฎีบณัฑิต 
สำขำวิชำคณิตศำสตร์ แบบ 2.1  ปรัชญำดุษฎีบณัฑิต นำนำชำติ 

ภำควิชำคณิตศำสตร์ 
มหำวิทยำลยัศิลปำกร 
ปีกำรศึกษำ 2565 

ลิขสิทธ์ิของมหำวิทยำลยัศิลปำกร  
 

 



 

 

 

  

AN IMPROVED VARIATIONAL MODEL FOR SPECKLE NOISE REDUCTION 
IN REAL ULTRASOUND IMAGES 

 

By 

MISS Siriwan CHANKAN 
 

A Thesis Submitted in Partial Fulfillment of the Requirements 
for Doctor of Philosophy MATHEMATICS 

Department of MATHEMATICS 
Silpakorn University 
Academic Year 2022 

Copyright of Silpakorn University 
 

 

 



 
 

 

 

Title An improved variational model for speckle noise reduction in real ultrasound 
images 

By MISS Siriwan CHANKAN 
Field of Study MATHEMATICS 
Advisor Assistant Professor Noppadol Chumchob, Ph.D. 

 

Faculty of Science, Silpakorn University in Partial Fulfillment of the Requirements for the 
Doctor of Philosophy 
 

 
  
(Assistant Professor Narong Chimpalee, Ph.D.) 
 

Dean of Faculty of Science 

 
Approved by 

 
  

(Associate Professor Suabsagun Yooyuanyong, Ph.D.) 
 

Chair person 

  
(Assistant Professor Noppadol Chumchob, Ph.D.) 

 

Advisor 

  
(Assistant Professor Warin Sripanya, Ph.D.) 

 

External Examiner 

 

 

 



 
v

61305802 : MAJOR: MATHEMATICS

KEY WORDS : HIGHER-ORDER VARIATIONAL MODEL, SPLIT BREGMAN

METHOD, IMAGE RESTORATION

SIRIWAN CHANKAN : AN IMPROVED VARIATIONAL MODEL FOR

SPECKLE NOISE REDUCTION IN REAL ULTRASOUND IMAGES. THESIS

ADVISOR : ASSISTANT PROFESSOR NOPPADOL CHUMCHOB, Ph.D.

Noise reduction of ultrasound (US) images corrupted by the mixture of additive

and multiplicative speckle noise is an important task in various medical applica-

tions. In this research, we first propose a first-order variational model consisting

of the total variation (TV) regularization and the new non-quadratic data fidelity

term deriving from the distribution of the mixed noise in the observed US images.

In image processing, TV regularization has been proven to be very useful for addi-

tive noise reduction, but it has the staircase effect. To overcome this drawback, a

number of high-order (typically second-order) regularizations have been proposed

in the last few years. High-order regularizations have more efficient than the TV

regularization. The main motivation behind these regularizations is to overcome

problems such as the staircase effect and the loss of image contrast that the TV

regularization does have. In this research, we also propose an improved variational

model on removing the mixed noise in real US images using a second-order regu-

larization. In order to solve the proposed variational models, we apply the split

Bregman method to propose a fast US speckle reduction algorithm for model. Nu-

merical experiments are shown to illustrate the capability of the proposed variation

models and the performance of the proposed numerical algorithms on synthetic

images and real US images.
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Chapter 1

Introduction

1.1 Introduction to Noise Reduction Problems

Noise reduction problem is one of the most important tasks in image processing.

The goal of this problem is to remove or reduce the noise contaminating in a real

recorded image while preserving its important features and details. The noise in

images can be caused by various factors such as sensor noise in digital cameras,

compression artifacts, interference during image acquisition, and other sources of

random or systematic disturbances.

1.2 Some Applications of Noise Reduction

There are several applications of noise reduction. Some examples are given as

follows:

1. Improved image quality : Noise reduction can be used to improve the overall

quality of a real recorded image by removing unwanted artifacts and improv-

ing sharpness.

2. Medical imaging : Noise reduction is important in medical imaging such as

X-rays, CT scans, MRI and Ultrasound (US), as it improves image quality

and accuracy of diagnosis.

3. Astrophotography : Noise reduction is crucial in astrophotography, where a

2
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real recorded image is often captured in low light conditions and high ISO

setting, resulting in a lot of noise.

4. Surveillance : In surveillance applications, noise reduction can be used to

improve the clarity of recorded images captured by security cameras, making

it easier to detect suspects and other important details.

5. Art restoration : In art restoration, noise reduction can be used to remove

unwanted artifacts and enhance the quality of the given image, making it

easier record the original artwork.

1.3 Organization of the Thesis

The remaining parts of this thesis are arranged as follows:

In Chapter 2, we review some necessary mathematical tools to be used in this

thesis. It includes:

• Linear vector space, normed linear spaces, convex sets and functions.

• Function of bounded variations.

• Inverse and ill-posed problems and regularization.

• Introduction into calculus of variations.

• Discretization of partial differential equations.

• Iterative solutions to system of nonlinear equations.

In Chapter 3, we review many variational models for noise reduction and nu-

merical solution schemes. It includes:

• Images and noise.

• Variational formulation.

• Variational models for additive noise reduction.

• Variational models for speckle noise reduction.
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• Numerical solution schemes, numerical discretization, basic iterative methods,

split Bregman method.

In Chapter 4, we introduce a new first-order model and its numerical algorithm

for the mixed noise reduction of real US images. It includes:

• Details of the proposed variational model for removing the mixed noise in real

US images.

• Details of the proposed numerical algorithm, including a finite difference dis-

cretization and its numerical solutions.

• Tests showing the effectiveness of the proposed model and numerical algo-

rithms, including several comparisons with other noise reduction models and

numerical solutions.

In Chapter 5, we propose a new second-order model and its numerical algorithm

for the mixed noise reduction of real US images. It includes:

• Details of the proposed variational model for removing the combination of

additive and speckle noise from real US images.

• Details of the proposed numerical method, including the split Bregman iter-

ation scheme.

• Tests showing the robustness of the new second-order model and the proposed

numerical algorithm.

In Chapter 6, we give our conclusion and future research direction.



 

Chapter 2

Mathematical preliminaries

In this chapter, we review some necessary mathematical tools.

2.1 Linear Vector Space

In this section, we review linear vector space, including normed spaces and convex

sets and functions.

2.1.1 Normed Linear Spaces

Here, we review some basic notions, theorems, and examples in normed linear

spaces. For more details, we refer the reader to [67].

Definition 2.1 (Field). Let K be a subset of the complex numbers C. We say that

K is a field if it satisfies the following conditions:

1. If x, y ∈ K, x+ y and xy are also elements of K.

2. If x ∈ K, −x is also an element of K. If furthermore x ̸= 0, x−1 is also an

element of K.

3. The elements 0 and 1 are elements of K.

Example 2.2. R and C are both fields.

Definition 2.3 (Linear Vector Space). Let K be a field. We say that V is a linear

vector space over the field K if it satisfies the following conditions:

5
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1. If u,v ∈ V, u+ v = v + u.

2. If u,v,w ∈ V, (u+ v) +w = u+ (v +w).

3. There is an element of V, denoted by 0, such that 0+u = u+ 0 = u for all

elements u ∈ V.

4. If u ∈ V, there exists an element −u ∈ V such that u+ (−u) = 0.

5. If c ∈ K and u,v ∈ V, c(u+ v) = cu+ cv.

6. If a, b ∈ K and u ∈ V, (a+ b)u = au+ bu.

7. If a, b ∈ K and u ∈ V, (ab)u = a(bu).

8. If u ∈ V, we have 1 · u = u (here 1 is the number one).

We can notice that a linear vector space V over the field K is a set of objects

which can be added and multiplied by elements of K. In other words, the sum of

two elements of V is also an element of V and the product of an element of V by

an element of K is also an element of V.

Example 2.4. Let V = Kn be the set of n−tuples of elements of K. Then V is a

linear vector space over the field K.

Definition 2.5 (Linear Subspace). Let V be a vector space over the field K and

W be a subset of V. We say that W is a linear subspace of V if it satisfies the

following conditions:

1. If v,w ∈W, v +w is also an element of W.

2. If v ∈W and c ∈ K, cv is also an element of W.

3. The element 0 of V is also an element of W.

Example 2.6. Let V = Kn and W be the set of vectors in V whose last coordinate

is equal to 0. Then W is a linear subspace of V, which can be identified with Kn−1.

Definition 2.7 (Norm). Let V be a vector space over the field K. We say that a

nonnegative-valued scalar function || · || is a norm on V if it satisfies the following

conditions:
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1. ||u|| = 0 if and only if u = 0 ∈ V.

2. ||λu|| = |λ|||u||, for all λ ∈ K and all u ∈ V.

3. ||u+ v|| ≤ ||u||+ ||v||, for all u,v ∈ V.

Definition 2.8 (Seminorm). Let V be a vector space over the field K. We say

that a nonnegative-valued scalar function || · || is a seminorm on V if it satisfies

the following conditions:

1. ||λu|| = |λ|||u||, for all λ ∈ K and all u ∈ V.

2. ||u+ v|| ≤ ||u||+ ||v||, for all u,v ∈ V.

Example 2.9. Let x = (x1, x2, . . . , xn) be a vector. Then well-known examples of

the vector norm are as follows:

||x||∞ = max
1≤i≤n

, |xi|, (l∞ − norm) (2.1)

||x||1 =
n∑

i=1

|xi|, (l1 − norm) (2.2)

||x||2 =

(
n∑

i=1

|xi|2
)1/2

, (l2 − norm). (2.3)

The above examples are special cases of lp−norm which is defined by

||x||p =

(
n∑

i=1

|xi|p
)1/p

, (lp − norm). (2.4)

Example 2.10 (Lp−norm). Let f be a function defined on a domain Ω and 1 ≤

p ≤ ∞. The Lp-norm of f on Ω is defined by

||f ||Lp =

(∫
Ω

|f(x)|pdx
)1/p

. (2.5)

This is a generalization of the previous example. The special case when p = ∞ is

defined by

||f ||L∞ = sup
x
|f(x)|. (2.6)

Example 2.11. Let V be a vector space over the field K. ||u|| = 0 for all u ∈ V

is a trivial seminorm.



 
8

Definition 2.12 (Normed Linear Space). A normed linear space is a pair (V, || · ||)

where V is a vector space over the field K and || · || is a norm on V.

Definition 2.13 (Inner Product). Let V be a vector space over the field K. We

say that a function ⟨·, ·⟩ : V ×V → K is an inner product on V if it satisfies the

following conditions:

1. ⟨u,u⟩ ≥ 0, for all u ∈ V.

2. ⟨u,u⟩ = 0 if and only if u = 0 ∈ V.

3. ⟨u+ v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩, for all u,v,w ∈ V.

4. ⟨λu,v⟩ = λ ⟨u,v⟩, for all λ ∈ K and all u,v ∈ V.

5. ⟨u,v⟩ = ⟨v,u⟩, for all u,v ∈ V.

Example 2.14. Two examples of the inner product are as follows:

• The Euclidean inner product on Kn is defined by

⟨(w1, w2, . . . , wn), (z1, z2, . . . , zn)⟩ = w1z1 + w2z2 + · · ·+ wnzn, (2.7)

where wi, zi, zi ∈ K for all 1 ≤ i ≤ n.

• An inner product on the vector space of continuous real-valued functions on

the interval [−1, 1] can be defined by

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)dx. (2.8)

Definition 2.15 (Cauchy Sequence and Completeness). We say that a sequence

{xn}∞n=1 in a normed linear space V is a Cauchy sequence if given any ϵ > 0, there

exists N0 ∈ N such that

||xn − xm|| < ϵ, for all n,m > N0. (2.9)

In addition, we say that a normed linear space V is complete if every Cauchy

sequence in V converges to an element in V.

Example 2.16. Let a, b ∈ R. V = [a, b] is complete but V = (a, b) is not complete.
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Definition 2.17 (Banach Space and Hilbert Space). A complete normed linear

space is called a Banach space. A complete inner product space concerning the

norm induced by the inner product is called a Hilbert space.

Example 2.18. The space L2(Ω) with the inner product defined by

⟨f, g⟩L2(Ω) =

∫
Ω

f(x)g(x)dx (2.10)

is a Hilbert space. It is also a Banach space.

Definition 2.19 (Linear Mapping). Let V and W be vector spaces over the same

field K. We say that a mapping L : V → W is linear if it satisfies the following

conditions:

1. L(u+ v) = L(u) + L(v), for all u,v ∈ V.

2. L(λu) = λL(u), for all λ ∈ K and all u ∈ V.

Example 2.20. Let V = R3 and W = R2. Define a projective mapping L : V →

W, namely L(x,y, z) = (x,y). Then the mapping L is a linear mapping.

2.1.2 Convex Sets and Functions

Definition 2.21 (Convex Set). Let S be a set. We say that S is a convex set if it

satisfies the following condition:

λu+ (1− λ)v ∈ S; for all λ ∈ [0, 1] and all u, v ∈ S. (2.11)

Definition 2.22 (Convex Function and Strict Convex Function). Let S be a nonempty

convex set. We say that f : S → R is convex on S if it satisfies the following con-

dition:

f(λu+(1−λ)v) ≤ λf(u)+ (1−λ)f(v); for all λ ∈ (0, 1) and all u, v ∈ S. (2.12)

In addition, we say that f : S → R is strictly convex on S if it satisfies the following

condition:

f(λu+(1−λ)v) < λf(u)+(1−λ)f(v); for all λ ∈ (0, 1) and all u ̸= v ∈ S. (2.13)
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Example 2.23. Let S be [0, π]. Then f(x) = x2 is convex and strictly convex on

S. However, f(x) = sin(x) is not convex on S.

Example 2.24. Let S ⊂ Rn be a nonempty subset. The indicator function IS :

Rn → R ∪ {∞} is defined by

IS(x) :=

0 if x ∈ S,

+1 otherwise.
(2.14)

Obviously, IS is convex if and only if S is convex.

2.2 Function of Bounded Variations

In this section, we give a short summary of the theory of function of bounded

variations. As usual Ω denotes an open domain in Rd. For more details, we refer

the reader to [1, 47] which we also follow here.

Let Ω be a bounded convex region in Rd. d = 1, 2, or 3, whose boundary ∂Ω

is Lipschitz continuous. Let |x| =
√∑d

i=1 x
2
i denote the Euclidean norm on Rd.

Denote the norm on the Banach spaces Lp(Ω) by || · ||Lp(Ω), 1 ≤ p ≤ ∞.

The BV semi-norm or total variation (TV) is given by [25]

J0(u) = sup
v∈V

∫
Ω

(−u div v)dx, (2.15)

where the set of test functions

V =
{
v ∈ C1

0(Ω;Rd) : |v(x)| ≤ 1 for all x ∈ Ω
}
. (2.16)

If u ∈ C1(Ω), one can show using integration by parts that

J0(u) =

∫
Ω

|∇u|dx. (2.17)

By a standard denseness argument, this also applies for u in the Sobolev space

W 1,1(Ω).

The space of functions of bounded variation on Ω is defined by

BV(Ω) =
{
u ∈ L1(Ω) : J0(u) <∞

}
. (2.18)
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The BV norm is given by

||u||BV = ||u||L1(Ω) + J0(u). (2.19)

BV(Ω) is complete, and hence a Banach space, with respect to this norm. The

Sobolev space W 1,1(Ω) is a proper subset of BV(Ω). Note that for Ω bounded,

Lp(Ω) ⊂ L1(Ω) for p > 1. From the definition, BV(Ω) ⊂ L1(Ω). It is shown in [1]

that BV(Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ d/(d− 1).

Let T be a functional defined on Lp(Ω) with values in the extended reals. The-

orem 2.20 below, guarantees the existence and uniqueness of minimizers of the

unconstrained minimization problem

min
u∈Lp(Ω)

T (u). (2.20)

Define T to be BV-coercive if

T (u)→ +∞ whenever ||u||BV →∞. (2.21)

Note that “lower level sets” {u ∈ Lp(Ω) : T (u) ≤ a}, where a ≥ 0, are BV-bounded.

We recall the following theorem due to Acar and Vogel [1].

Theorem 2.25 (Existence and Uniqueness of Minimizers [1]). Suppose that T is

BV-coercive. If 1 ≤ p < d(d − 1) and T is lower semicontinuous, then problem

(2.20) has a solution. If in addition p = d/(d − 1), dimension d ≥ 2, and T is

weakly lower semicontinuous, then a solution also exists. In either case, the solution

is unique if T is strictly convex.

2.3 Inverse and Ill-posed Problems and Regular-

ization

2.3.1 Well- and Ill-Posed Problems

In the last fifty years, inverse problems have been widely applied in geophysics,

oceanography, signal processing, machine learning, medical imaging and many other

fields [60]. Forward problems start with the causes and calculate the results but
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inverse problems start with the results and calculate the causes. For example, in

image denoising, we want to get the clean image from the recorded image and in

CT scans, we want to get the CT image from the data source. However, inverse

problems are usually ill-posed. The classical definition of an ill-posed problem is

defined by Hadamard in 1902 [27]: if one of the following conditions can not be

satisfied:

1. the solution exists;

2. the solution is unique;

3. the solution’s behavior changes continuously with the initial conditions.

A problem is well-posed if it is not ill-posed.

Example 2.26. Here, we use several simple examples to illustrate the ill-posed

problems and well-posed problems. Let us consider the following system of linear

equations:

Ax = b, (2.22)

where A ∈ R2×2 is a matrix and b ∈ R2×1 is a vector.

• If A =

3 4

3 4

 and b =

2

7

, this problem does not exist a solution and it

is ill-posed.

• If A =

3 4

3 4

 and b =

2

2

, this problem has infinite solutions x =2−4k
3

k

 , k ∈ R and it is ill-posed.

• If A =

2.0002 1.9998

1.9998 2.0002

 and b =

4

4

, this problem has only one solution

x =

1

1

. If we add a perturbation δb =

 2× 10−4

−2× 10−4

 to b, the solution

changes to x̄ =

1.5

0.5

. Here, we can find that the relative error of the
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solution ||x̄−x||∞
||x||∞ is 10, 0000 times of the relative error of the right hand side

||δb||∞
||b||∞ . So it is ill-posed.

• If A =

3 4

5 1

 and b =

7

6

 , this problem has a unique solution x =

1

1

.

The solution depends continuously on the right hand side b and it is well-

posed.

2.3.2 Regularization

Since it is very difficult to deal with the ill-posed problem, Andrei N. Tikhonov in

[58] introduced the concept of the regularization which used a series of well-posed

problems to approximate the ill-posed problem.

Example 2.27. Let us consider the following least-square problem:

min
x
||Ax− b||22 (2.23)

where A ∈ Rm×n is a matrix and b ∈ Rm×1 is a vector. The normal equation of

(2.23) is

ATAx = ATb. (2.24)

If n > m, (2.24) may have no solution or infinite solutions. Here, we try to find

the solution with some properties, for example, it has the smallest 2-norm. Then

we can convert the problem (2.23) into the following problem:

min
x
||Ax− b||22 + α||x||22. (2.25)

Here, the first term is the fitting term and the second term is the regularizer. α

is a nonnegative parameter to balance the weight of these two terms. In order to

minimize (2.25), we only need to solve the following linear system:

(ATA+ αI)x = ATb. (2.26)

Since α > 0 and ATA+ αI is symmetric and positive definite, (2.26) has only one

solution. Hence, (2.25) is well-posed.
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2.4 Introduction to Calculus of Variations

A functional is a mapping from a vector space of functions into the real num-

bers. The calculus of variations is concerned with finding maxima and minima of

functionals. In this section, we introduce the basic notions about the calculus of

variations, such as first variation, Euler-Lagrange equation, and the direct method

to prove the existence. For more details, we refer to [67].

First Variation and Euler-Lagrange Equation

In the general case, Tikhonov regularization replaces

min
u
D(u) (2.27)

by

min
u
{J (u) = D(u) + αR(u)} , (2.28)

where D(u) is a fitting term and R(u) is a regularizer which can rule out the

unwanted solutions according to the prior information. Firstly, we define the local

extrema for the functional.

Definition 2.28 (Neighborhood). The neighborhood of u ∈ U is defined by

Nϵ(u) = {û ∈ U| ||u− û|| ≤ ϵ}. (2.29)

Definition 2.29 (Local Extrema). Let J : U → R be a functional defined on

the functionspace (U , || · ||). We say that J has a local maximum at u ∈ U if the

following condition is satisfied:

J (û) ≤ J (u) for all û ∈ Nϵ(u). (2.30)

We say that J has a local minimum at u ∈ U if u ∈ U is a local maximum for −J .

Often, U is a set of functions with certain boundary conditions.

Next, we illustrate the first variation and the Euler-Lagrange equation through a

particular class of problems. Let J : C2[x0, x1]→ R be a functional defined by

J (u) =
∫ x1

x0

f(x, u, x′)dx, (2.31)
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where f is a function whose partial derivatives with respect to x, u and u′ are second-

order continuous. In addition, let u0, u1 be real numbers and u(x0) = u0, u(x1) = u1.

Then

U = {u ∈ C2[x0, x1] : u(x0) = u0 and u(x1) = u1}. (2.32)

For simplifying the analysis, we set

H = {η ∈ C2[x0, x1] : η(x0) = η(x1) = 0}. (2.33)

Assume that J has a local maximum at u. Then there exists ϵ > 0 such that

J (û) ≤ J (u) for all û ∈ Nϵ(u). For any û ∈ U there is an η ∈ H such that

û = u+ ϵη. For small ϵ, Taylor’s theorem implies that

f(x, û, û′) = f(x, u+ ϵη, u′ + ϵη′)

= f(x, u, u′) + ϵ

(
η
∂f

∂u
+ η′

∂f

∂u′

)
+O(ϵ2). (2.34)

Here, we regard f as a function of the three independent variables x, u and u′ and

the partial derivatives in the above expression are all evaluated at the point x, u

and u′. Then we have

J (û)− J (u) =
∫ x1

x0

f(x, û, û′)dx−
∫ x1

x0

f(x, u, u′)dx (2.35)

= ϵ

∫ x1

x0

(
η
∂f

∂u
+ η′

∂f

∂u′

)
dx+O(ϵ2). (2.36)

The quantity

δJ (η, u) =
∫ x1

x0

(
η
∂f

∂u
+ η′

∂f

∂u′

)
dx (2.37)

is defined as the first variation of J . For small ϵ, the sign of J (û) − J (u) is

determined by the sign of the first variation, unless δJ (η, u) = 0 for all η ∈ H.

Since u ∈ U is a local maximum of J ,J (û) − J (u) does not change sign for any

û ∈ Nϵ(u). Hence, if J (u) is a local maximum then

δJ (η, u) =
∫ x1

x0

{
η
∂f

∂u
+ η′

∂f

∂u′

}
dx = 0 (2.38)

for all η ∈ H. In addition, if J has a local minimum at u ∈ U , (2.38) must also be

satisfied. If u satisfies (2.38) for all η ∈ H, we say that J is stationary at u.
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Furthermore, by employing the integration by parts and boundary conditions

η(x0) = η(x1) = 0, (2.38) can be rewritten into the following formulation∫ x1

x0

η

(
∂f

∂u
− d

dx

(
∂f

∂u′

))
dx = 0. (2.39)

Then by applying the fundamental lemma of the calculus of variations [37], we

conclude the following theorem:

Theorem 2.30 (Theorem 2.2.3 in [12]). Let J : C2[x0, x1] → R be a functional

defined by

J (u) =
∫ x1

x0

f(x, u, u′)dx (2.40)

where f has second-order continuous partial derivatives with respect to x, u and u′

and x0 < x1. Let

U =
{
u ∈ C2[x0, x1] : u(x0) = u0 and u(x1) = u1

}
, (2.41)

where u0 and u1 are given real numbers. If u ∈ U is an extrema of J , then

∂f

∂u
− d

dx

(
∂f

∂u′

)
= 0 (2.42)

for all x ∈ [x0, x1] (2.42) is a second-order ordinary differential equation that any

extrema u must satisfy. This differential equation is called the Euler-Lagrange (EL)

equation.

Example 2.31. Consider the following functional defined by

J(u) =

∫ π

0

(u′2 − ku2)dx, (2.43)

with boundary conditions u(0) = 0 and u(π) = 0. If u is an extrema for J , then

its EL equation is

u′′ + ku = 0. (2.44)

The general solution for the EL equation is

u(x) = c1 cos(
√
kx) + c2 sin(

√
kx). (2.45)

Combining with the boundary conditions, we get an infinite number of extrema:

u(x) = c2 sin(
√
kx).
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To find the solution of the model (2.28), we use the calculus of variations leading

to the EL equation for u. In noise reduction problem, the EL equation is always a

nonlinear partial differential equation. Thus, the EL equation is apparently difficult

in developing an accurate numerical solver and then difficult to solve. So, standard

numerical algorithms are not appropriate. In this thesis, we introduce two numerical

algorithms to solve the associated EL equations of the proposed models.

2.5 Discretization of Partial Differential Equa-

tions

In the numerical implementation for solving the EL equation resulting from the

variational problem (2.28), we must discretize the continuous problem into the

discrete problem since the computer only deals with the discrete data. How to

discretize a continuous problem is very important because a proper discretization

may affect the rate of the convergence and an improper discretization may lead to

a bad result or even divergence.

There exist several ways to discretize a continuous problem, including the finite

element method, the finite volume method, and the finite difference method. For

image noise reduction problem, since the domain of the image is usually rectangular

and the intensity values of the image are uniformly distributed in this domain, the

natural way is to choose the finite difference method to discretize this domain. This

domain is denoted by Ω ∈ Rd. For simplicity, in this section, we only consider the

two-dimensional case, namely, d = 2 and Ω ∈ R2. Here, we set Ω = [a, b] × [c, d].

We discretize Ω into n1 × n2 cells of size h1 in x direction and h2 in y direction.

Employing a cartesian mesh, the lengths of the intervals in x and y direction are

h1 = (b− a)/n1 and h2 = (d− c)/n2 respectively.

In this thesis, we use the so called vertex centered discreteization. The grids are

located at the vertex of the cells. There are (n1+1)× (n2+1) grid points including

points on the boundary and the position of the grid point (i, j) is (a+ ih1, c+ jh2)

for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2. For more details, we refer to [67].

In order to solve the variational models using the so called split Bregman (SB)
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method to be introduced in the next section and the next three chapter, we shall

present the finite difference approximations of the first-, second- and fourth-order

derivative operators. They are respectively ∂+
x , ∂

−
x , ∂

+
y , ∂

−
y , ∂

−
x ∂

+
x , ∂

+
x ∂

−
x , ∂

−
y ∂

+
y ,

∂+
y ∂

−
y , ∂

+
y ∂

+
x , ∂

+
x ∂

+
y , ∂

−
y ∂

−
x , ∂

−
x ∂

−
y , ∂

+
x ∂

−
y , ∂

+
y ∂

−
x , ∂

+
x ∂

−
x ∂

−
x ∂

+
x , ∂

+
y ∂

−
y ∂

−
y ∂

+
y , ∂

−
y ∂

−
x ∂

+
y ∂

+
x ,

and ∂−
x ∂

−
y ∂

+
x ∂

+
y . Here the gradient, Hessian matrix and symmetrized derivative can

be discretized as follows:

∇u =

 ∂+
x u

∂+
y u

 , (2.46)

∇2u =

 ∂−
x ∂

+
x u ∂+

y ∂
+
x u

∂+
x ∂

+
y u ∂−

y ∂
+
y u

 , (2.47)

ϵ(p) =

 ∂−
x p1

∂−
y p1+∂−

x p2
2

∂−
y p1+∂−

x p2
2

∂−
y p2

 . (2.48)

We note first that ∂x∂yu should be equal to ∂y∂xu in the Hessian matrix ∇2u, so it

is necessary to define its discrete form such that ∂+
x ∂

+
y u = ∂+

y ∂
+
x u in (2.47). We also

note that the periodic boundary conditions will be applied with these discretizations

because it is able to preserve jumps and image contrasts and allows fast numerical

computations.

From now on, we assume Ω = [1,M ] × [1, N ]. Let Ω̄ ⊂ Ω be the discretized

image domain as given by

Ω̄ = {(x, y) ∈ Ω|(x, y) = (xi, yj), xi = i, yj = j, i = 1, 2, . . . ,M and j = 1, 2, . . . , N} .

For simplicity, each grid point (xi, yj) ∈ Ω̄ is denoted by (i, j), where the coordi-

nates x and y are oriented along columns and rows, respectively. All the variables

are defined on these grid points. Let Ω̄ → V = RM×N denotes the 2D grayscale

image space with size MN . So, the first-order forward differences of the grayscale

image u at a grid point (i, j) along x and y directions are respectively

∂+
x (u)i,j =

 (u)i,j+1 − (u)i,j if 1 ≤ i ≤M, 1 ≤ j < N,

(u)i,1 − (u)i,j if 1 ≤ i ≤M, j = N,
(2.49)

and

∂+
y (u)i,j =

 (u)i+1,j − (u)i,j if 1 < i ≤M, 1 ≤ j ≤ N,

(u)1,j − (u)i,j if i = M, 1 ≤ j ≤ N.
(2.50)
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The first-order backward differences are respectively

∂−
x (u)i,j =

 (u)i,j − (u)i,j−1 if 1 ≤ i ≤M, 1 < j ≤ N,

(u)i,j − (u)i,N if 1 ≤ i ≤M, j = 1,
(2.51)

and

∂−
y (u)i,j =

 (u)i,j − (u)i−1,j if 1 < i ≤M, 1 ≤ j ≤ N,

(u)i,j − (u)M,j if i = 1, 1 ≤ j ≤ N.
(2.52)

For p = (p1 p2) ∈ V2 and u ∈ V , the discrete version of the first-order divergence

operator satisfies ∑
1≤i≤M
1≤j≤N

−div (p) · u =
∑

1≤i≤M
1≤j≤N

p · (∇u) .

Therefore, according to the definition of discrete gradient operator, the discrete

divergence is given by

div(p)i,j = ∂−
x (p1)i,j + ∂−

y (p2)i,j. (2.53)

The second-order derivative operators of u at a grid point (i, j) are given by

∂+
x ∂

−
x (u)i,j = ∂−

x ∂
+
x (u)i,j,

=


(u)i,N − 2(u)i,j + (u)i,j+1 if 1 ≤ i ≤M, j = 1,

(u)i,j−1 − 2(u)i,j + (u)i,j+1 if 1 ≤ i ≤M, 1 < j < N,

(u)i,j−1 − 2(u)i,j + (u)i,1 if 1 ≤ i ≤M, j = N,

(2.54)

∂+
y ∂

−
y (u)i,j = ∂−

y ∂
+
y (u)i,j

=


(u)M,j − 2(u)i,j + (u)i+1,j if i = 1, 1 ≤ j ≤ N,

(u)i−1,j − 2(u)i,j + (u)i+1,j if 1 < i < M, 1 ≤ j ≤ N,

(u)i−1,j − 2(u)i,j + (u)1,j if i = M, 1 ≤ j ≤ N,

(2.55)

∂+
x ∂

+
y (u)i,j = ∂+

y ∂
+
x (u)i,j

=



(u)i,j − (u)i+1,j − (u)i,j+1 + (u)i+1,j+1 if 1 ≤ i < M, 1 ≤ j < N,

(u)i,j − (u)1,j − (u)i,j+1 + (u)1,j+1 if i = M, 1 ≤ j < N,

(u)i,j − (u)i+1,j − (u)i,1 + (u)i+1,1 if 1 ≤ i < M, j = N,

(u)i,j − (u)1,j − (u)i,1 + (u)1,1 if i = M, j = N,

(2.56)
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∂−
x ∂

−
y (u)i,j = ∂−

y ∂
−
x (u)i,j

=



(u)i,j − (u)i,N − (u)M,j + (u)M,N if i = 1, j = 1,

(u)i,j − (u)1,j−1 − (u)M,j + (u)M,j−1 if i = 1, 1 < j ≤ N,

(u)i,j − (u)i,N − (u)i−1,j + (u)i−1,N if 1 < i ≤M, j = 1,

(u)i,j − (u)i,j−1 − (u)i−1,j + (u)i−1,j−1 if 1 < i ≤M, 1 < j ≤ N,

(2.57)

∂+
x ∂

−
y (u)i,j =



(u)i,j+1 − (u)i,j − (u)M,j+1 + (u)M,j if i = 1, 1 ≤ j < N,

(u)i,1 − (u)i,j − (u)M,1 + (u)M,j if i = 1, j = N,

(u)i,j+1 − (u)i,j − (u)i−1,j+1 + (u)i−1,j if 1 < i ≤M, 1 ≤ j < N,

(u)i,1 − (u)i,j − (u)i−1,1 + (u)i−1,j if 1 < i ≤M, j = N,

(2.58)

∂+
y ∂

−
x (u)i,j =



(u)i+1,j − (u)i,j − (u)i+1,N + (u)i,N if 1 ≤ i < M, j = 1,

(u)1,j − (u)i,j − (u)1,N + (u)i,N if i = M, j = 1,

(u)i+1,j − (u)i,j − (u)i+1,j−1 + (u)i,j−1 if 1 ≤ i < M, 1 < j ≤ N,

(u)1,j − (u)i,j − (u)1,j−1 + (u)i,j−1 if i = M, 1 < j ≤ N.

(2.59)

Based on (2.54) and (2.55), the discrete Laplace operator is given by

(△u)i,j = div(∇u)i,j = ∂−
x ∂

+
x (u)i,j + ∂−

y ∂
+
y (u)i,j. (2.60)

For q =

q1 q2

q3 q4

 ∈ V2×2 and u ∈ V , we have

∑
1≤i≤M
1≤j≤N

div2 (q) · u =
∑

1≤i≤M
1≤j≤N

q ·
(
∇2u

)
.

Therefore, the discrete version of the second-order divergence operator is given by

div2(q)i,j = ∂+
x ∂

−
x (q1)i,j + ∂−

y ∂
−
x (q2)i,j + ∂−

x ∂
−
y (q3)i,j + ∂+

y ∂
−
y (q4)i,j. (2.61)

For the discrete fourth-order derivative operators of u at grid point (i, j), we
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have

∂−
x ∂

+
x ∂

−
x ∂

+
x (u)i,j = ∂+

x ∂
−
x ∂

−
x ∂

+
x (u)i,j

= 6(u)i,j + (u)i,j+2 + (u)i,j−2 − 4(u)i,j+1 − 4(u)i,j−1, (2.62)

∂−
y ∂

+
y ∂

−
y ∂

+
y (u)i,j = ∂+

y ∂
−
y ∂

−
y ∂

+
y (u)i,j

= 6(u)i,j + (u)i+2,j + (u)i−2,j − 4(u)i+1,j − 4(u)i−1,j, (2.63)

∂−
x ∂

+
x ∂

−
y ∂

+
y (u)i,j = ∂−

y ∂
+
y ∂

−
x ∂

+
x (u)i,j = ∂−

x ∂
−
y ∂

+
x ∂

+
y (u)i,j = ∂−

y ∂
−
x ∂

+
y ∂

+
x (u)i,j

= 4(u)i,j + (u)i+1,j+1 + (u)i−1,j+1 + (u)i+1,j−1 + (u)i−1,j−1

− 2((u)i,j+1 + (u)i,j−1 + (u)i+1,j + (u)i−1,j). (2.64)

Based on (2.62)-(2.64), we obtain the following two discrete fourth-order differ-

ential operators:

div2
(
∇2u

)
i,j

= ∂+
x ∂

−
x ∂

−
x ∂

+
x (u)i,j + ∂−

y ∂
−
x ∂

+
y ∂

+
x (u)i,j

+ ∂−
x ∂

−
y ∂

+
x ∂

+
y (u)i,j + ∂+

y ∂
−
y ∂

−
y ∂

+
y (u)i,j, (2.65)

△2(u)i,j = △ (△u)i,j ,

= ∂−
x ∂

+
x ∂

−
x ∂

+
x (u)i,j + ∂−

x ∂
+
x ∂

−
y ∂

+
y (u)i,j

+ ∂−
y ∂

+
y ∂

−
x ∂

+
x (u)i,j + ∂−

y ∂
+
y ∂

−
y ∂

+
y (u)i,j. (2.66)

We note first that div2 (∇2u)i,j = △2(u)i,j. We also note that the periodic boundary

conditions are applied with the above finite difference approximations.

2.6 Iterative Solutions to System of Nonlinear

Equations

In this section, we introduce the iterative methods to solve the system of nonlinear

equations. For more details, we refer to [24, 67] and references therein.

2.6.1 Fixed-Point Iteration Method

We now consider systems of nonlinear equations. Let F be a given vector function

from a domain in Rn to a range also in Rm, i.e., F : Rn → Rm. We are now
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looking for a solution vector x = (x1, x2, . . . , xn)
T that satisfies a set of n nonlinear

equations

F (x) = 0, (2.67)

where

F (x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)

. . .

fm(x1, x2, . . . , xn)

 (2.68)

and 0 here is understood to be the zero vector in Rm. In order to apply a fixed-point

iteration method, we first need to transform the system

F (x) = 0

into the system

x = G(x).

For the function x = G(x), the fixed-point iteration method is given by

x(k+1) = G(xk),

where k ∈ N0.

2.6.2 Explicit Time Marching Method

To solve the variational models for noise reduction, the main aim is to solve the

associated EL equation, which generally turns out to be a nonlinear PDE as given

by

f(u, z) +N (u) = 0 (2.69)

subject to the appropriate boundary conditions.

In order to solve the nonlinear PDE in (2.69), the time marching method per-

forms by introducing the artificial time variable t and then determining the steady

state solution of the linear time-dependent PDE:

∂tu(t) = f(u(t), z) + αN (u(t)),



 
23

where u(t) = u(x, t), typically u(0) = z.

In the case f and N are nonlinear, the explicit time marching method for (2.6.2)

can be given by

u(t(k+1))− u(t(k))

τ
= f(u(t(k)), z) + αN (u(t(k)))

where k ∈ N0 and τ > 0 denotes the time length used to discretize ∂tu(t) see

[3, 6, 49, 50, 54].

2.6.3 Alternating Direction Method of Multipliers

Here, we review the alternating direction method of multipliers (ADMM) which

is a variant of the augmented Lagrangian method that partially updates the dual

variables. Consider the following constrained problem:

min f(x) + g(z)

s.t.Ax+Bz = c (2.70)

with x ∈ Rn×1, z ∈ Rm×1, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp×1. Its corresponding

augmented Lagrangian function is defined by the following formulation:

LA(x, z, λ, σ) = f(x) + g(z) + λT (Ax+Bz − c) +
1

2σ
||Ax+Bz − c||2, (2.71)

where λ is the Lagrangian multiplier and σ > 0 is the penalty parameter. Then

ADMM consists of the following iterations

xk+1 := argmin LA(x, z
k, λk, σ),

zk+1 := argmin LA(x
k+1, z, λk, σ),

λk+1 := λk +
1

σ
(Axk+1 +Bzk+1 − c). (2.72)

ADMM can be viewed as a Gauss-Seidel pass over x and z instead of updating

x and z simultaneously. By considering the structures of f and g, we can design

effective solves for subproblem x and subproblem z respectively and reduce the

computational time significantly. Besides, ADMM can have excellent properties of

the convergence under suitable assumptions.
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2.6.4 Bregman Iteration

Here, we introduce the Bregman iteration, which is one of the most popular methods

in image processing and first used by Osher et al. in [26] to solve the ROF model

for TV denoising. We consider the following constrained optimization problem:

min
x

f(x) subject to Ax = b, (2.73)

where A is a linear operator and b is a vector. We use the quadratic penalty method

to convert (2.73) into the following unconstrained optimization problem:

min
x

f(x) +
1

2σ
||Ax− b||22. (2.74)

Then the basic iterative scheme of the Bregman iteration is as follows:

xk+1 = argmin f(x) +
1

2σ
||Ax− bk||22, (2.75)

bk+1 = bk + b− Axk+1. (2.76)

Yin et al. [64] point out that the Bregman iteration is equivalent to the augmented

Lagrangian method when the constriants are linear.

As we can see, the main idea behind our SB method is to introduce several aux-

iliary variables for converting the complex operation into an alternating iterative

process by simple operations, which are easy to implement and have high compu-

tational efficiency. In order to solve the proposed variational model, we apply the

split Bregman method to propose a fast ultrasound speckle reduction algorithm.



 

Chapter 3

Review of Variational Models for

Noise Reduction

Basically, the US images used in the medical diagnosis suffer from the speckle noise

(SN) because of the imaging principle. The SN degrades the quality and visibility

of US images, thereby decreasing overall reliability of the images and interfering

with the clinical diagnosis. Therefore, SN reduction in US images becomes one

of the necessary pre-processing steps in order to provide meaningful and useful

information for the medical diagnosis.

In order to improve the image quality and increase the diagnostics potential for

clinical US images, a number of SN removal methods have been proposed and stud-

ies recently. Roughly speaking, these SN removal methods fall into five categories:

1. spatial domain [30, 38, 42, 46];

2. a transform domain, e.g. wavelet domain [2, 19, 29, 39];

3. non-locall filtering [13, 22, 55];

4. anisotropic diffusion methods [18, 66];

5. variational methods [4, 28, 32, 33, 34, 35, 36, 50, 54].

Among these SN removal methods, the variational methods are powerful tools to

offer superior image restoration quality. Accordingly, this research focuses on the

variational method to deal with the SN in the US images.

25
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3.1 Images and Noise

Given a noisy image z : Ω ⊂ R2 → V ⊂ R, where Ω is a bounded open subset

of R2, the purpose of the noise reduction is to restore the original image u : Ω ⊂

R2 → V ⊂ R from the noisy image z.

In many image formulation models, the noisy image is the sum of the original

image and the additive noise (AN):

z = u+ η, (3.1)

where η is assumed to be the zero-mean Gaussian white noise.

In contract, the image formation model is different from (3.1) for SN. It is

assumed that the original image u is corrupted by some multiplicative speckle noise

(MSN) ζ as follows:

z = uζ, (3.2)

where z > 0 and u > 0. As is well known, MSN is commonly found in many real

world image processing applications, such as in laser images, microscope images,

medical US images and synthetic aperture radar (SAR) images. Unlike traditionally

AN model in (3.1), the noisy signals in the recorded images are much more difficult

to be removed, mainly not only because of the multiplicative nature between the

noise and the original image, which is signal correlated, but also because of the noise

distribution, which is generally non-Gaussian with Rayleigh and Gamma being

common noise distributions [57].

In clinical US imaging systems, Loupas et al. [42] pointed out that the noise in

the displayed US image “on screen” can be modeled as corrupted with the SN of

the form

z = u+
√
uζ, (3.3)

where ζ is the zero-mean Gaussian noise with the standard deviation σ2
n. Due to

the additive term in the image formulation model (3.3), we shall name this SN as

the additive speckle noise (ASN).
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3.2 Variational Formulation

In the literature, many approaches have been developed to eliminate noise from

images. The variational approach is one of the most commonly used techniques for

noise reduction.

Generally speaking, the variational method or variational model for noise re-

duction of the noisy image consists in solving the minimization problem

min
u∈U
{J (u) = γD(u, z) +R(u)} , (3.4)

where D(u, z) is the data fidelity term, which is derived form the assumption on the

distribution of the noise in the noisy image in order to penalize the inconsistency

between the restored image and the noisy image, R(u) is the regularization term,

which is used to filter out the noise from the observed noisy image as well as to

preserve significant features such as edges and textures of the restored image, and

γ > 0 is the regularization parameter, which is used to compromise the fidelity term

D(u, z) and the regularization term R(u). Here the solution u is searched over a

set of admissible functions U , which minimizes the objective functional J .

3.3 Variational Models for Additive Noise Re-

duction

In order to recover u from the noisy image z by using the AN model in (3.1), Rudin,

Osher, and Fatemi [49] used the TV regularization

RTV(u) =

∫
Ω

|∇u| dΩ

with the quadratic fidelity term resulting from the AN model (3.1)

DAN(u, z) =
1

2

∫
Ω

(u− z)2 dΩ

and proposed the total variation (TV) model

min
u

{
J TV(u) = γDAN(u, z) +RTV(u)

}
. (3.5)

Although TV regularization has some undesired effects. In particular, it trans-

forms smooth signals or signals that are not necessarily piecewise constant into



 
28

piecewise constants. This phenomenon is known as staircase effect. From a practi-

cal point of view, staircase solutions of TV based variational model fail to satisfy

the evaluation of visual quality, and they can develop false edges that do not exist

in the true image. The main challenge is thus to deal with the staircase effect while

preserving image sharpness.

The weakness of TV regularization is known as staircase effect. To eliminate the

staircase effect, several higher-order regularizations have been proposed so far in the

literature for (3.4) to yield better restoration results. These higher-order regulariza-

tions usually involve second-order differential operators in dealing with the staircase

effect because piecewise-vanishing second-order derivatives yield piecewise-linear

solutions that better fit than those by the TV regularization for smooth intensity

changes. To the best of our knowledge, there are three main classes of higher-

order regularizations for image restoration problems. The first class combines a

second-order regularization with the TV regularization. The second class employs

a second-order regularization in a standalone way. The third class uses fractional-

order derivative to model the regularization term. Next, we briefly review the

higher-order variational models.

You and Kaveh [65] used the TL regularization

RTL(u) =

∫
Ω

|△u|dΩ =

∫
Ω

√
|uxx|2 + |uyy|2dΩ,

where △u denotes the Laplacian operator and introduced the total Laplace (TL)

model

min
u

{
J TL

AN (u) = γDAN(u, z) +RTL(u)
}
. (3.6)

Scherzer [51], Lysaker et al. [45], Hinterberger and Scherzer [31], Bergounioux

and Piffet [5] and Lai et al. [41] used the BH regularization

RBH(u) =

∫
Ω

|∇2u|dΩ,

where

∇2u =

 uxx uyx

uxy uyy


is the Hessian matrix of u and |∇2u| =

√
u2
xx + u2

yx + u2
xy + u2

yy and considered the
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bounded Hessian (BH) model

min
u

{
J BH

AN (u) = γDAN(u, z) +RBH(u)
}
. (3.7)

Chan et al. [16] decomposed the noisy image z into three parts, i.e. z =

u1 + u2 + η and proposed the fidelity term D̄AN(u1, u2, z) =
1
2

∫
Ω
(z − u1 − u2)

2 dΩ.

They used the CEP-L2 regularization

RCEP-L2

(u1, u2) = γ1RTV(u1) + γ2RTL(u2)

where γ1 > 0 and γ2 > 0 are the weighting parameters and proposed the CEP-L2

model

min
u1,u2

{
J CEP-L2

(u1, u2) = γD̄AN(u1, u2, z) +RCEP-L2

(u1, u2)
}
. (3.8)

Zheng et al. [69], Wang et al. [61] and Chan et al. [15] used the TVL regular-

ization

RTVL(u) = γ1RTV(u) + γ2RTL(u)

and proposed the TVL model

min
u

{
J TVL

AN (u) = γDAN(u, z) +RTVL(u)
}
. (3.9)

Papafitsoros and Schönlieb [48] used the TVBH regularization

RTVBH(u) = γ1RTV(u) + γ2RBH(u)

and proposed the TVBH model

min
u

{
J TVBH

AN (u) = γDAN(u, z) +RTVBH(u)
}
. (3.10)

Chambolle and Lions [14] used the INFCON regularization

RINFCON(u1, u2) = γ1RTV(u1) + γ2RBH(u2)

and introduced the INFCON model

min
u1,u2

{
J INFCON

AN (u1, u2) = γD̄AN(u1, u2, z) +RINFCON(u1, u2)
}
. (3.11)

Bredies et al. [8] used the TGV regularization

RTGV(u, p̃) = γ1

∫
Ω

|∇u− p̃| dΩ + γ2

∫
Ω

|ϵ(p̃)| dΩ,
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where ϵ(p̃) is the symmetrized derivatives defined as

ϵ(p̃) =

 p̃1x
p̃1y+p̃2x

2
p̃1y+p̃2x

2
p̃2y


and introduced the total generalized variation (TGV) model

min
u,p̃

{
J TGV

AN (u, p̃) = γDAN(u, z) +RTGV(u, p̃)
}
. (3.12)

Zhu and Chan [70] used the MC regularization

RMC(u) =

∫
Ω

|κM(u)| dΩ

where

κM(u) = ∇ ·

(
∇u√

1 + |∇u|2

)
is the mean curvature of image surface ϕ(x, y, z) = u(x, y) − z = 0 and proposed

the mean curvature (MC) model

min
u

{
JMC

AN (u) = γDAN(u, z) +RMC(u)
}
. (3.13)

This model tries to fit the given noisy image surface (x, y, z(x, y)) with a surface

(x, y, u(x, y)) that bears small magnitude of mean curvature. As demonstrated in

[70], the MC model is able to sweep noise while keeping object edges, and it also

ameliorates the staircase effect. More importantly, the MC model is also capable of

preserving image contrasts as well as geometry of object shapes, especially object

corners.

Brito-Loeza and Chen [11] used the GC regularization

RGC(u) =

∫
Ω

|κG(u)| dΩ

where

κG(u) =
uxxuyy − uxyuyx

(1 + |∇u|2)2

is the Gaussian curvature of image surface ϕ(x, y, z) = u(x, y)−z = 0 and proposed

the Gaussian curvature (GC) model

min
u

{
J GC

AN (u) = γDAN(u, z) +RGC(u)
}
. (3.14)
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This model is able to preserve image contrast, edges, and corners such as the MC

model does.

Zhang and Chen [68] used the TVα regularization

RTVα

(u) = sup
ϕ∈K

∫
Ω

(−u divαϕ)dΩ,

where divαϕ =
∑d

i=1
∂αϕi

∂xα
i
, ∂

αϕi

∂xα
i
is the α-order derivative of ϕi along the xi direction,

K = {ϕ ∈ llo(Ω,Rd) || ϕ(x) |≤ 1 for all x ∈ Ω}

is the space of special test functions, and ll0(Ω,Rd) is the l-compactly supported

continuous-integrable function space, and proposed the total α-order variation

model

min
u

{
J TVα

AN (u) = γDAN(u, z) +RTVα

(u)
}
. (3.15)

Chankan et al. [17] proposed firstly a new high-order regularization based on

the sum of squared principal curvatures of the image surface

RCv(u) =
1

2

∫
Ω

(
k2
M(u)− 2kG(u)

)
dΩ

and proposed a new high-order variation model

min
u

{
J Cv

AN(u) = DAN(u, z) + γRCv(u)
}
. (3.16)

From the variational models for additive noise reduction, we can see that the

higher-order regularizations are superior than the TV regularization in order to

reduce staircase effects and achieve good trade-off between noise removal and edge

preservation. Some performance comparison can be seen in [11, 43, 68].

3.4 Variational Models for Speckle Noise Reduc-

tion

In the literature, the total variation (TV) regularization RTV(u) =
∫
Ω
|∇u| dΩ

is commonly used as regularization term in several variational models for MSN

reduction. The term difference among different variational models only comes from
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their data fidelity terms. As far as we know, Rudin, Lions, and Osher [50] proposed

firstly the MSN removal model (called RLO model) as follows:

min
u∈S(Ω)

{
J RLO

MSN (u) = γ1

∫
Ω

z

u
dΩ + γ2

∫
Ω

(z
u
− 1
)2

dΩ +

∫
Ω

|∇u| dΩ
}
, (3.17)

where the first two terms are the data fidelity terms. γ1 and γ2 are the weighting

parameters. Here S(Ω) = {u ∈ BV (Ω), u > 0} and BV (Ω) represent the space of

functions in L1(Ω) such that the bounded variations∫
Ω

|Du| = sup

{∫
Ω

udiv(ϕ)dΩ|ϕ ∈ C∞
0 (Ω,R2), ∥ϕ∥L∞(Ω,RN ) ≤ 1

}
is finite, i.e. BV (Ω) =

{
u ∈ L1(Ω),

∫
Ω
|Du| <∞

}
. This model is non-convex and

particularly effective for Gaussian multiplicative noise removal.

Under the assumption that the multiplicative noise ζ follows the Gamma dis-

tribution with mean equal to 1. Aubert and Aujol used the maximum a posteriori

(MAP) estimation to derive the variational model in [3] (called the AA model) as

follows:

min
u∈BV (Ω)

{
J AA

MSN(u) = γ

∫
Ω

(
log u+

z

u

)
dΩ +

∫
Ω

|∇u| dΩ
}
. (3.18)

Unfortunately, the AA model is also non-convex due to the data fidelity term.

It is therefore difficult to find a global solution and the computed solutions rely

on the initial estimation. Moreover, some fast algorithms for convex optimization

cannot be used. However, they still proved the existence of the minimizer, gave

a sufficient condition ensuring uniqueness and showed that a comparison principle

holds. They further gave some numerical tests illustrating the capability of their

model. Their results indicate that the AA model outperforms the RLO model

for Gamma distribution and are comparable to the results of RLO for Gaussian

distribution.

In order to resolve the non-convexity of AA model, Shi and Osher [53] used

logarithmic transformation ū = log(u) and proposed the transformed variational

model (referred to as SO model):

min
ū∈BV (Ω)

{
J SO
MSN(ū) = γ

∫
Ω

(
aze−ū +

b

2
z2e−2ū + (a+ b)ū

)
dΩ+

∫
Ω
|∇ū| dΩ

}
, (3.19)

where a, b are nonnegative constants and u = eū. It is remarkable that the SO

model is convex in the logarithm domain, but are not convex in the original image
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domain. Using the relaxed inverse scale space (ISS) flow method, the restored

images can be obtained although it is expensive to compute the solutions.

To improve the speed of computation, Huang et al. [32] used a different idea by

converting the term log u+ z
u
in the data fidelity term of AA model into u+ ze−u

under the exponential transformation u → eu to derive the convex model (called

HNW model) as follows:

min
u,w∈BV (Ω)

{
J HNW
MSN (u) =

∫
Ω

(
u+ ze−u

)
dΩ+ γ1

∫
Ω

|u− w|2 dΩ+ γ2

∫
Ω

|∇w| dΩ
}
, (3.20)

where γ1, γ2 are two weighting parameters. Jin and Yang [35] used the AA and

HNW models to propose the convex model (called JY model) as follows:

min
u∈BV (Ω)

{
J JY

MSN(u) = γ

∫
Ω

(
u+ ze−u

)
dΩ +

∫
Ω

|∇u| dΩ
}
. (3.21)

Their experiments on the test images corrupted by some MSN with Gaussian and

Gamma noise show that the JY model delivers better restoration results than the

AA model. Chumchob et al. [20] introduced the convex model (called CCB model)

to restore the noisy images corrupted by the combination of the AN and MSN as

follows:

min
u∈BV (Ω)

{
J CCB
AN-MSN(u) =

γ1
2

∫
Ω

(u− z)
2
dΩ+ γ2

∫
Ω

(
u+ ze−u

)
dΩ+

∫
Ω

|∇u| dΩ
}
, (3.22)

where γ1, γ2 are two weighting parameters. Their results show that the CCB model

performs a clear improvement over some existing MSN reduction methods.

Several variational models for ASN reduction in US images by minimization

of TV regularization have been proposed in [21, 34, 36, 40]. As far as we know,

Krissian et al. [40] introduced firstly the ASN removal model (KKWV model):

min
u∈S(Ω)

{
J KKWV

ASN (u) = γ

∫
Ω

(u− z)2

u
dΩ +

∫
Ω

|∇u| dΩ
}
. (3.23)

As can be seen, the KKWV is convex. The authors in [36] proved the existence and

uniqueness of the minimizer for the variational problem (3.23). Huang and Yang

[34] used the generalized Kullback–Leibler (KL) distance with (3.3) and proposed

the convex model (HY model):

min
ū∈BV (Ω)

{
J HY

ASN(ū) = γ

∫
Ω

(ze−ū/2 log
z

eū
− ze−ū/2 + eū/2)dΩ +

∫
Ω

|∇ū| dΩ
}
. (3.24)

To fast solve the HY model, the authors proposed to incorporate splitting method

and Bregman iterative method. Their experimental results indicate that their pro-

posed algorithm is fast and effective to remove ASN in the real US images. Recently,
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Chumchob and Prakit [21] used the Weberized total variation (WTV) regularization

RWTV(u) =

∫
Ω

|∇u|
u

dΩ (3.25)

and proposed the convex variational model (improved KKWV model):

min
ū∈S̄(Ω)

{
J HY

ASN(u) =

∫
Ω

(u− z)2

u
dΩ + γ1

∫
Ω

|∇u| dΩ + γ2

∫
Ω

|∇u|
u

dΩ

}
,

for removing ASN on US images, where

S̄(Ω) =

{
u ∈ BV (Ω), u > 0,

∫
Ω

|Du|
u

<∞
}
. (3.26)

Their numerical tests show that the improved KKWV model can provide significant

improvement over the KKWV and HY models.

From a practical point of view, a fundamental assumption concerning only pure

MSN or ASN as modeled and given respectively by (3.2) or (3.3) is inadequate

for SN reduction in US images. The reason is that the complex image formation

process is considered.

3.5 Numerical Solution Schemes

To study the efficient numerical solutions of the existing variational models for SN

reduction such as the JY, KKWV and improved KKWV models, we review three

numerical algorithms based on the SB framework.

3.5.1 Split Bregman Algorithm for the JY model

First, we start with introducing an auxiliary vector variable w = (w1 w2), a Breg-

man iterative parameter b = (b1 b2) and a positive penalty parameter θ, to trans-

form the variational problem

min
u∈BV (Ω)

{
J JY

MSN(u) = γ

∫
Ω

(
u+ ze−u

)
dΩ +

∫
Ω

|∇u| dΩ
}

into the following form

min
u,w

{
J̄ JY
MSN(u,w; b) = γ

∫
Ω

(
u+ ze−u

)
dΩ+

∫
Ω

|w| dΩ+
θ

2

∫
Ω

(w −∇u− b)2 dΩ

}
. (3.27)
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Clearly, both variables u and w are very difficult to solve simultaneously. We then

separate the minimization problem in (3.27) into two subproblems:

u(m+1) = argmin
u>0

{γ
∫
Ω

(
u+ ze−u

)
dΩ +

θ

2

∫
Ω

(w(m) −∇u− b(m))2dΩ}, (3.28)

w(m+1) = argmin
w
{
∫
Ω

|w| dΩ +
θ

2

∫
Ω

(w −∇u(m+1) − b(m))2dΩ}, (3.29)

and use an alternating minimization procedure as proposed in Algorithm 1 to ap-

proximate the solution. Here the Bregman iterative parameter is update by

b(m+1) = b(m) +∇u(m+1) −w(m+1). (3.30)

This process is repeated until one of the following stopping rules is satisfied:∥∥u(m+1) − u(m)
∥∥2

∥u(m)∥2
< ϵSB1 , (3.31)

m ≥ ϵSB2 , (3.32)

where ϵSB1 denotes the predefined small positive number and ϵSB2 denotes the max-

imum iteration of the SB method. Here m represents the index of the current

iteration. The two subproblems can be solved as follows:

u-subproblem. Fixing variables (w; b) in (3.28) yields the EL equation associ-

ated with u as follows:

△u = Ḡ(u) (3.33)

where Ḡ(u) = ∇· (w− b)+ γ
θ
(1− ze−u). To solve the nonlinear partial differential

equation in (3.33), we firstly apply the simple linearized iterations by the following

γ1u
[ν+1] −△u[ν+1] = G(u[ν]) (3.34)

where G(u[ν]) = Ḡ(u[ν]) + γ1u
[ν] and γ1 > 0 is the FP parameter used to stabilize

numerical computation. Secondly, we assume that Ω = [1,M ]× [1, N ] and Ω̄ ⊂ Ω

is the discretized image domain where

Ω̄ = {(x, y) = (xi, yj) ∈ Ω, xi = i, yj = j, 1 ≤ i ≤M and 1 ≤ j ≤ N} .
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Next, we discretize the linearized PDE (3.34) using the standard finite difference

method subject to periodic boundary conditions. Therefore, the discrete Fourier

transform (DFT) method can be directly applied as follows:

F{γ1(u[ν+1])i,j − (△u[ν+1])i,j} = F{G(u[ν])i,j} (3.35)

where F denoted the DFT operator. For the discrete frequencies r ∈ [0,M) and

s ∈ [0, N), we have

ζF{(u[ν+1])i,j} = F{(G(u[ν]))i,j} (3.36)

where ζ = γ1 − 2(cos(2πs
N
) + cos(2πr

M
)− 2), i ∈ [1,M ] and j ∈ [1, N ] are the indexes

in the discrete time domain. For each outer step ν, we finally have a closed-form

solution of u[ν+1] at grid point (i, j)

(u[ν+1])i,j = Re(F−1(
F((G(u[ν]))i,j)

ζ
)), (3.37)

where F−1 denotes the inverse DFT operator. Re is the real part of a complex

number. ‘—’ represents for point-wise division of matrices.

w-subproblem. Fixing variables (u; b) in (3.29) yields the EL equation associ-

ated with w as follows:
w

|w|
+ θ(w −∇u− b) = 0.

The solution can be determined using the closed-form formula [44]

(w)i,j = max(|∇(u)i,j + (b)i,j|−
1

θ
, 0)
∇(u)i,j + (b)i,j
|∇(u)i,j + (b)i,j|

, (3.38)

with the convention 0/0 = 0.

Algorithm 1 : Split Bregman Algorithm for the JY Model

Denote by

u the restored image

z the noisy image

w the auxiliary spitting vector variable

b the Bregman iterative parameter

γ the weighting parameter

γ1 the FP parameter

θ the penalty parameter
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[u]← SB (u, z,w, b, γ, γ1, θ)

Step 1. Initialization, set u = z,m = 0 and w(m) = b(m) = 0

and choose γ, γ1, θ > 0;

Step 2. Compute u(m+1) according to (3.37) for fixed (w(m); b(m));

Step 3. Compute w(m+1) according to (3.38) for fixed (u(m+1); b(m));

Step 4. Update b(m+1) according to (3.30);

Step 5. If a stopping criterion is satisfied, stop; else m← m+ 1, repeat 2.

3.5.2 Split Bregman Algorithm for the KKWV model

In order to solve the KKWV model, we introduce an auxiliary vector variable

w = (w1 w2), a Bregman iterative parameter b = (b1 b2) and a positive penalty

parameter θ, to transform the variational problem

min
u∈S(Ω)

{
J KKWV

ASN (u) = γ

∫
Ω

(u− z)2

u
dΩ +

∫
Ω

|∇u| dΩ
}
.

into the following form

min
u,w

{
J̄ KKWV
ASN (u,w; b) = γ

∫
Ω

(u− z)2

u
dΩ+

∫
Ω

|w| dΩ+
θ

2

∫
Ω

(w −∇u− b)2 dΩ

}
. (3.39)

Applying the alternating optimization technique with (3.39), we then solve two

subproblems for u and w and update b as follows :

u(m+1) = argmin
u>0

{γ
∫
Ω

(u− z)2

u
dΩ +

θ

2

∫
Ω

(w(m) −∇u− b(m))2dΩ}, (3.40)

w(m+1) = argmin
w
{
∫
Ω

|w| dΩ +
θ

2

∫
Ω

(w −∇u(m+1) − b(m))2dΩ}, (3.41)

b(m+1) = b(m) +∇u(m+1) −w(m+1). (3.42)

This process is repeated until one of the stopping rules given in (3.31) and (3.32)

is satisfied. The two subproblems can be solved as follows:

u-subproblem. Fixing variables (w; b) in (3.40) yields the EL equation associ-

ated with u as follows:

△u = Ḡ(u) (3.43)
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where Ḡ(u) = ∇ · (w − b) + γ
θ

(
1− z2

u2

)
. By using the similar procedure in section

3.5.1, the nonlinear PDE (3.43) can be solve as follows. We apply the simple

linearized iterations by the following

γ1u
[ν+1] −△u[ν+1] = G(u[ν]) (3.44)

where G(u[ν]) = Ḡ(u[ν]) + γ1u
[ν] and γ1 > 0 is the FP parameter used to stabilize

numerical computation. Secondly, we apply the discrete differential operators as

given in section 3.5.1 and then apply the DFT to the both side leads to

F{γ1(u[ν+1])i,j − (△u[ν+1])i,j} = F{G(u[ν])i,j} (3.45)

where F denoted the DFT operator. For the discrete frequencies r ∈ [0,M) and

s ∈ [0, N), we have

ζF{(u[ν+1])i,j} = F{(G(u[ν]))i,j} (3.46)

where ζ = γ1 − 2(cos(2πs
N
) + cos(2πr

M
)− 2), i ∈ [1,M ] and j ∈ [1, N ] are the indexes

in the discrete time domain. For each outer step ν, we finally have a closed-form

solution of u[ν+1] at grid point (i, j)

(u[ν+1])i,j = Re(F−1(
F((G(u[ν]))i,j)

ζ
)), (3.47)

where F−1 denotes the inverse DFT operator. Re is the real part of a complex

number. ‘—’ represents for point-wise division of matrices.

w-subproblem. Fixing variables (u; b) in (3.41) yields the EL equation associ-

ated with w as follows:
w

|w|
+ θ(w −∇u− b) = 0.

The solution can be determined using the closed-form formula [44]

(w)i,j = max(|∇(u)i,j + (b)i,j|−
1

θ
, 0)
∇(u)i,j + (b)i,j
|∇(u)i,j + (b)i,j|

, (3.48)

with the convention 0/0 = 0.

The SB method for the KKWV model (3.39) can be summarized as shown in

Algorithm 2.
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Algorithm 2 : Split Bregman Algorithm for the KKWV Model

Denote by

u the restored image

z the noisy image

w the auxiliary spitting vector variable

b the Bregman iterative parameter

γ the weighting parameter

γ1 the FP parameter

θ the penalty parameter

[u]← SB (u, z,w, b, γ, γ1, θ)

Step 1. Initialization, set u = z,m = 0 and w(m) = b(m) = 0

and choose γ, γ1, θ > 0;

Step 2. Compute u(m+1) according to (3.47) for fixed (w(m); b(m));

Step 3. Compute w(m+1) according to (3.48) for fixed (u(m+1); b(m));

Step 4. Update b(m+1) according to (3.42);

Step 5. If a stopping criterion is satisfied, stop; else m← m+ 1, repeat 2.

3.5.3 Split Bregman Algorithm for the improved KKWV

model

For the improved KKWV model, we convert the original problem

min
u∈S(Ω)

{
J improved KKWV

ASN (u) =

∫
Ω

(u− z)2

u
dΩ + α1

∫
Ω

| ▽u | +α2

∫
Ω

| ▽u |
u

}
into the following form

min
u,w

{
J̄ improved KKWV
ASN (u,w; b) =

∫
Ω

|w| dΩ+
θ

2

∫
Ω

(w −∇u− b)2 + F (u;α1, α2) dΩ

}
. (3.49)

Next, we solve two subproblems for u,w and update b as follows:

u(m+1) = argmin
u>0

{
θ

2

∫
Ω

(w(m) −∇u− b(m))2 + F (u;α1, α2)dΩ}, (3.50)

w(m+1) = argmin
w
{
∫
Ω

|w| dΩ +
θ

2

∫
Ω

(w −∇u(m+1) − b(m))2dΩ}, (3.51)

b(m+1) = b(m) +∇u(m+1) −w(m+1). (3.52)
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This process is repeated until one of the stopping rules given in (3.31) and (3.32)

is satisfied.

u-subproblem. Fixing variables (w; b) in (3.50) yields the EL equation associ-

ated with u as follows:

△u = Ḡ(u) (3.53)

where Ḡ(u) = ∇ · (w − b) + 1
θ
· u2−z2

α1u2+α2u
. In order to solve the nonlinear PDE in

(3.53), we apply the simple linearized iterations by the following

γ1u
[ν+1] −△u[ν+1] = G(u[ν]) (3.54)

where G(u[ν]) = Ḡ(u[ν]) + γ1u
[ν] and γ1 > 0 is the FP parameter used to stabilize

numerical computation.

We use the similar procedure in section 3.5.1 and 3.5.3 to solve the nonlinear

PDE (3.54). Hence, we have

F{γ1(u[ν+1])i,j − (△u[ν+1])i,j} = F{G(u[ν])i,j} (3.55)

where F denoted the DFT operator. For the discrete frequencies r ∈ [0,M) and

s ∈ [0, N), we have

ζF{(u[ν+1])i,j} = F{(G(u[ν]))i,j} (3.56)

where ζ = γ1 − 2(cos(2πs
N
) + cos(2πr

M
)− 2), i ∈ [1,M ] and j ∈ [1, N ] are the indexes

in the discrete time domain. For each outer step ν, we finally have a closed-form

solution of u[ν+1] at grid point (i, j)

(u[ν+1])i,j = Re(F−1(
F((G(u[ν]))i,j)

ζ
)), (3.57)

where F−1 denotes the inverse DFT operator. Re is the real part of a complex

number. ‘—’ represents for point-wise division of matrices.

w-subproblem. Fixing variables (u; b) in (3.51) yields the EL equation associ-

ated with w as follows:
w

|w|
+ θ(w −∇u− b) = 0.
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The solution can be determined using the closed-form formula [44]

(w)i,j = max(|∇(u)i,j + (b)i,j|−
1

θ
, 0)
∇(u)i,j + (b)i,j
|∇(u)i,j + (b)i,j|

, (3.58)

with the convention 0/0 = 0.

Algorithm 3 summarizes the SB method for the improved KKWV model.

Algorithm 3 : Split Bregman Algorithm for the improved KKWV Model

Denote by

u the restored image

z the noisy image

w the auxiliary spitting vector variable

b the Bregman iterative parameter

α1 the weighting parameter

α2 the weighting parameter

γ1 the FP parameter

θ the penalty parameter

[u]← SB (u, z,w, b, α1, α2, γ1, θ)

Step 1. Initialization, set u = z,m = 0 and w(m) = b(m) = 0

and choose α1, α2, γ1, θ > 0;

Step 2. Compute u(m+1) according to (3.57) for fixed (w(m); b(m));

Step 3. Compute w(m+1) according to (3.58) for fixed (u(m+1); b(m));

Step 4. Update b(m+1) according to (3.52);

Step 5. If a stopping criterion is satisfied, stop; else m← m+ 1, repeat 2.



 

Chapter 4

A First-Order Variational Model

and Its Numerical Algorithm

From a practical point of view, a fundamental assumption concerning only pure

MSN or ASN as modeled and given respectively by (3.2) or (3.3) is inadequate for

SN reduction in US images. The reason is that the complex image formation process

is considered. The first main contribution of this thesis is then to propose a new

first-order variational model for removal of combined ASN and MSN in US images

and an efficient algorithm for its numerical approximation. The proposed model

is designed to utilize the two data fidelity terms in (3.21) and (3.23) for dealing

with the ASN and MSN corrupted in the noisy images and TV regularization for

preserving sharp edges while removing unwanted oscillations and noise.

4.1 Introduction

Due to the similarity between the processes of producing the SAR and US images

[46], we now assume that the noise in US images can be modeled as corrupted with

the combination of ASN and MSN components of the form

z = u+ k0
√
uη + k1uζ, (4.1)

where k0 and k1 are positive constants, respectively. Here we also assume that

both noise distributions, Gaussian noise η and Gamma noise ζ, are independently

42
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contaminated in z. In order to remove this type of mixed noise on the US images,

we first proposed a new first-order variational model as follows.

4.2 A New First-Order Variational Model

In order to remove mixed noise on the US images, our proposed model is formulated

via the following minimization:

min
u∈S(Ω)

{
J TV

ASN-MSN(u) = DNew
ASN-MSN(u, z) +RTV(u)

}
, (4.2)

where

DNew
ASN-MSN(u, z) = γ1

∫
Ω

(u− z)2

u
dΩ + γ2

∫
Ω

(
u+ ze−u

)
dΩ,

RTV(u) =

∫
Ω

|∇u| dΩ,

γ1 and γ2 are the weighting parameters used to balance between the two fidelity

terms, respectively.

4.2.1 Existence and Uniqueness of the Solution

It is necessary to discuss about the existence and uniqueness of the solution to the

minimization problem (4.2).

Theorem 4.1. Assume that γ1 > 0, γ2 > 0 and z > 0 is in L∞(Ω). Then the min-

imization problem in (4.2) has a unique solution in S(Ω) = {u ∈ BV (Ω), u > 0}.

Proof. We first show that J TV
ASN-MSN(u) is BV-coercivity. For each u ∈ S(Ω), the

BV-coercivity of J TV
ASN-MSN(u) follows provided J TV

ASN-MSN(u) → +∞ as ∥u∥BV →

+∞, where ∥ · ∥BV is the total variation norm, and is analogous to
∫
Ω
|∇u|dΩ for

u ∈ C1
0(Ω); see [1]. For (4.2), we have∫

Ω

(u− z)2

u
dΩ ≥ 0 (4.3)

and ∫
Ω

(u+ ze−u)dΩ ≥ 0. (4.4)
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It follows that ∥u∥BV ≤ J TV
ASN-MSN(u) up to a constant. Thus, the coercivity condi-

tion holds.

Next, we obtain the weakly lower semi-continuity of (4.3) and (4.4) as proven

in [35] and [36] and for ∥u∥BV as proven in [1]. Due to J TV
ASN-MSN(u) being lower

semi-continuous and BV-coercive, the existence of the solution is guaranteed as

shown in Acar and Vogel [1, Thm 3.1].

Finally, the solution is unique due to each term in J TV
ASN-MSN(u) being strictly

convex, as also shown in [1, 35, 36].

The following lemma leads to the EL equation of the proposed model (4.2).

Lemma 4.2. Let Φ(u) : (0,∞)→ (0,∞) be a C1 function and

J TV
ASN-MSN(u) = DNew

ASN-MSN(u, z) +RTV(u)

then the formal equilibrium EL equation of J TV
ASN-MSN(u) is given by

γ1

(
1− z2

u2

)
+ γ2

(
1− ze−u

)
+

(
−∇ ·

(
∇u
|∇u|

))
=0 on Ω

∂u

∂n
=0 on ∂Ω,

where n is the unit outward normal vector on the image boundary ∂Ω.

Proof. We consider δJ TV
ASN-MSN(u) = 0. That is δDNew

ASN-MSN(u, z) + δRTV(u) = 0.

Since DNew
ASN-MSN(u, z) = γ1

∫
Ω

(u−z)2

u
dΩ + γ2

∫
Ω
(u+ ze−u) dΩ, we have

δDNew
ASN-MSN(u, z; v) =

d

dϵ
DNew

ASN-MSN(u+ ϵv, z; v)

∣∣∣∣
ϵ=0

=γ1

∫
Ω

d

dϵ

(u+ ϵv − z)2

u+ ϵv

∣∣∣∣∣
ϵ=0

dΩ

+ γ2

∫
Ω

d

dϵ

(
u+ ϵv + ze−(u+ϵv)

) ∣∣∣∣∣
ϵ=0

dΩ

=γ1

∫
Ω

2v (u+ ϵv) (u+ ϵv − z)− v(u+ ϵv − z)2

(u+ ϵv)2

∣∣∣∣∣
ϵ=0

dΩ

+ γ2

∫
Ω

(
v − zve−(u+ϵv)

) ∣∣∣∣∣
ϵ=0

dΩ

=γ1

∫
Ω

(
1− z2

u2

)
vdΩ + γ2

∫
Ω

(
1− ze−u

)
vdΩ

=γ1

∫
Ω

〈
1− z2

u2
, v

〉
dΩ + γ2

∫
Ω

〈
1− ze−u, v

〉
dΩ.
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Let Φ(S) = S. Then Φ (|∇u|) = |∇u|. We have that RTV(u) =
∫
Ω
Φ (|∇u|) dΩ.

Then

δRTV(u; v) =
d

dϵ
RTV(u+ ϵv; v)

∣∣∣∣
ϵ=0

=
d

dϵ

∫
Ω

Φ (|∇u+ ϵ∇v|) dΩ
∣∣∣∣
ϵ=0

=

∫
Ω

2∑
m=1

Φ′ (|∇u+ ϵ∇v|)
|∇u+ ϵ∇v|

(uxm + ϵvxm)

∣∣∣∣
ϵ=0

dΩ

=

∫
Ω

Φ′ (|∇u|)
|∇u|

∇u∇vdΩ

=−
∫
Ω

∇ ·
(
Φ′ (|∇u|)∇u
|∇u|

)
∇vdΩ +

∫
∂Ω

Φ′ (|∇u|)
|∇u|

∇u · ndS.

Since Φ(S) = S, Φ′(S) = 1. Then

δDNew
ASN-MSN(u, z; v) =−

∫
Ω

∇ ·
(
∇u
|∇u|

)
vdΩ +

∫
∂Ω

∇u
|∇u|

· ndS

=

∫
Ω

〈
−∇ ·

(
∇u
|∇u|

)
, v

〉
dΩ +

∫
∂Ω

〈
∇u
|∇u|

,n

〉
dS.

Since δDNew
ASN-MSN(u, z) + δRTV(u) = 0 , we have

γ1

(
1− z2

u2

)
+ γ2

(
1− ze−u

)
+

(
−∇ ·

(
∇u
|∇u|

))
=0 on Ω

∂u

∂n
=0 on ∂Ω.

Therefore the Euler-Lagrange equation is

γ1

(
1− z2

u2

)
+ γ2

(
1− ze−u

)
+

(
−∇ ·

(
∇u
|∇u|

))
=0 on Ω

∂u

∂n
=0 on ∂Ω.

4.2.2 Euler-Lagrange Equation

According to Lemma 4.2, the minimizer of J TV
ASN-MSN(u) in (4.2) satisfies the Euler-

Lagrange (EL) equation:

−K(u) + γ1(1−
z2

u2
) + γ2(1− ze−u)︸ ︷︷ ︸

N (u)

= 0, (4.5)
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subject to the Neumann boundary condition ∂u
∂n

= 0, where n is the unit out-

ward normal vector on the image boundary ∂Ω and K(u) = ∇ · ( ∇u
|∇u|β

), |∇u|β =√
| ∇u |2 +β, and 0 < β ≪ 1 is small constant to avoid division by zero in numer-

ical computations.

4.3 Numerical Solutions

4.3.1 Numerical Discretization

Let (uh)i,j = uh(xi, yj) be the grid function with the uniform grid spacing h = 1
n
.

Here the integer n = 1
h
is the number of uniform intervals in the x and y coordinate

directions. Each grid point x in the discretized domain Ωh ⊂ Ω is vertex-centered

and given by x = (xi, yj)
⊤ = (ih, jh)⊤ for 1 ≤ i, j ≤ n. The partial derivatives

in (4.5) are approximated by the standard second-order finite difference schemes.

Therefore, the discrete nonlinear system is given by

N h(uh)i,j = 0, (4.6)

where

N h(uh)i,j = −Kh(uh)i,j + γ1(1−
(zh)2i,j
(uh)2i,j

) + γ2(1− (zh)i,je
−(uh)i,j),

Kh(uh)i,j = − 1
h2 ((

∑h)i,j(u
h)i,j − (

∑̄h
)i,j(u

h)i,j),

(
∑h)i,j(u

h)i,j = (D1(u
h)i,j +D2(u

h)i,j + 2D3(u
h)i,j)(u

h)i,j,

(
∑̄h

)i,j(u
h)i,j = D1(u

h)i,j(u
h)i−1,j +D2(u

h)i,j(u
h)i,j−1

+D3(u
h)i,j(u

h)i+1,j +D3(u
h)i,j(u

h)i,j+1,

D1(u
h)i,j = D(uh)i−1,j,

D2(u
h)i,j = D(uh)i,j−1,

D3(u
h)i,j = D(uh)i,j,

D(uh)i,j =
1√

(δ+x (uh)i,j/h)2+(δ+y (uh)i,j/h)2+β
,

δ±x (u
h)i,j = ±((uh)i±1,j − (uh)i,j),

δ±y (u
h)i,j = ±((uh)i,j±1 − (uh)i,j).



 
47

We note that the approximations in (4.6) need to be adjusted at the image boundary

∂Ωh using the discrete boundary conditions (uh)i,0 = (uh)i,1, (u
h)i,n+1 = (uh)i,n,

(uh)0,j = (uh)1,j, (u
h)n+1,j = (uh)n,j. In the following sections the symbol ‘h’ and

(·, ·)hi,j will sometimes drop for simplicity.

4.3.2 Method 1-Explicit Time Marching Method

We can see that the EL equation (4.6) is highly nonlinear discrete problem that is

not easy to solve. In order to overcome the nonlinearity of N , the gradient descent

method, also known as explicit time marching (ETM) method, can be conveniently

applied, and the iteration is then given by

(u(k+1))i,j = (u(k))i,j − τ(−K(u(k))i,j + γ1(1−
(z)2i,j

(u(k))2i,j
) + γ2(1− (z)i,je

−(u(k))i,j )), (4.7)

where (u(k))i,j = u(xi, yj, tk), tk = t0 + kτ , τ > 0 is the time-step and k = 0, 1, . . ..

Although the above ETM method is simple for numerical implementation, this

method is not efficient because the time step τ is required to be very small for

stability reasons.

4.3.3 Method 2-Fixed-Point Iteration Method

As is well known, the fixed-point (FP) method is also a possible option in solving

the EL equations related to the TV minimization. For our proposed FP method,

the nonlinear terms 1
|∇u|β

, 1
u
and e−u represented in (4.5) or D(u)i,j,

1
(u)i,j

and e−(u)i,j

in (4.6) can be linearized or frozen globally at a previous FP step ν. The simple

linearized iterations is given by the following

N [u[ν]]u[ν+1] = G[u[ν]], ν = 0, 1, . . . (4.8)

where

N [u[ν]]u[ν+1] = −∇ ·
(
∇u[ν+1]

|∇u[ν]|β

)
+ γ3u

[ν+1],

G[u[ν]] = γ1

(
z2

(u[ν])2
− 1

)
+ γ2

(
ze−u[ν] − 1

)
+ γ3u

[ν],

and γ3 > 0 represents the FP parameter for stabilizing the numerical computation.

To solve the linearized discrete system (4.8), the successive over-relaxation (SOR)
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method is applied with the relaxation parameter ω ∈ (0, 2). For each FP step ν,

the new iteration at each grid point (i, j) is given by

(u[ν+1,k+1])i,j = (1− ω) (u[ν+1,k])i,j + ω(N [u[ν]])−1
i,j (G[u[ν,k+1/2]])i,j (4.9)

where

(N [u[ν]])−1
i,j = ((1/h2)(Σ[ν])i,j + γ3)

−1,

(G[u[ν,k+1/2]])i,j = γ1(
(z)2i,j

(u[ν])2i,j
− 1) + γ2((z)i,je

−(u[ν])i,j − 1)

+ γ3(u
[ν])i,j + (1/h2)(Σ̄[ν])i,j(u

[ν+1,k+1/2])i,j.

Here the superscripts k, k+1/2 and k+1 denote the current, intermediate and new

approximations computed by the SOR method, respectively.

4.3.4 Method 3-Split Bregman Method

Alternating direction method of multipliers (ADMM) has been successfully applied

to minimize the energy functional involving TV regularization and quadratic or

non-quadratic data fitting term. For example, the authors in [26] used the split

Bregman (SB) iteration to solve the TV model, while the augmented Lagrangian

method (ALM) has been developed for the ROF model in [56, 62]. Note that

both SB and ALM employ ADMM to minimize their energy functionals and the

convergence of ADMM is always guaranteed. In [56, 62], the authors have proven

that the two methods are in fact equivalent. For applying ADMM to minimize the

energy functionals, we refer to [4, 28, 32, 34, 63].

As can be seen, both Method 1 and Method 2 share two drawbacks. At first,

they provide only the the approximate solutions of the original problem (4.2), since

the TV regularization

RTV(u) =

∫
Ω

|∇u| dΩ =

∫
Ω

√
u2
x + u2

ydΩ

is replaced with

RβTV(u) =

∫
Ω

√
u2
x + u2

y + βdΩ

to avoid non-differentiability of RTV(u). On the second, the choice of β will effect

on the computational efficiency of the numerical methods and the smoothness of
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the restored images. Larger the β, more efficient the methods are, whereas more

smooth the constructed images will be. Therefore the performance of the proposed

model in removing SN and preserving edges by these two methods is very sensitive

to the parameter β.

In order to deal with TV regularization, in this work, we propose to solve our

noise removal model (4.2) by split Bregman (SB) method. Instead of solving (4.2)

directly, we first introduce an auxiliary scalar variable w, a Bregman iterative

parameter b, and a positive penalty parameter θ, and then consider the following

equivalent unconstrained minimization problem (4.2):

min
u>0,w

{J TV
ASN-MSN(u,w; b) = DNew

ASN-MSN(u, z) +

∫
Ω

|w| dΩ+
θ

2

∫
Ω

(w −∇u− b)
2
dΩ} (4.10)

where

DNew
ASN-MSN(u, z) = γ1

∫
Ω

(u− z)2

u
dΩ + γ2

∫
Ω

(
u+ ze−u

)
dΩ

represent the non-quadratic data fidelity term.

Clearly, both variables u and w are very difficult to solve simultaneously. We

then separate the minimization problem in (4.10) into two subproblems:

u(m+1) = argmin
u>0

{DNew
ASN-MSN(u, z) +

θ

2

∫
Ω

(w(m) −∇u− b(m))2dΩ}, (4.11)

w(m+1) = argmin
w
{
∫
Ω

|w| dΩ +
θ

2

∫
Ω

(w −∇u(m+1) − b(m))2dΩ}, (4.12)

and use an alternating minimization procedure as proposed in Algorithm 4 to ap-

proximate the solution. Here the Bregman iterative parameter is update by

b(m+1) = b(m) +∇u(m+1) −w(m+1). (4.13)

This process is repeated until one of the following stopping rules is satisfied:

∥u(m+1)−u(m)∥2

∥u(m)∥2 < ϵSB1 , (4.14)

m ≥ ϵSB2 , (4.15)

where ϵSB1 denotes the predefined small positive number and ϵSB2 denotes the max-

imum iteration of the SB method. Here m represents the index of the current

iteration.

The two subproblems can be solved as follows:
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u-subproblem. Fixing variables (w; b) in (4.11) yields the EL equation associ-

ated with u as follows:

△u = Ḡ(u) (4.16)

where Ḡ(u) = ∇·(w−b)+ γ1
θ

(
1− z2

u2

)
+ γ2

θ
(1− ze−u). To solve the nonlinear partial

differential equation in (4.16), we firstly apply the simple linearized iterations by

the following

γ3u
[ν+1] −△u[ν+1] = G(u[ν]) (4.17)

where G(u[ν]) = Ḡ(u[ν]) + γ3u
[ν] and γ3 > 0 is the FP parameter used to stabilize

numerical computation. Secondly, we assume that Ω = [1,M ]× [1, N ] and Ω̄ ⊂ Ω

is the discretized image domain where

Ω̄ = {(x, y) = (xi, yj) ∈ Ω, xi = i, yj = j, 1 ≤ i ≤M and 1 ≤ j ≤ N} .

Next, we discretize the linearized partial differential equation (4.17) using the stan-

dard finite difference method subject to periodic boundary conditions. Therefore,

the discrete Fourier transform (DFT) method can be directly applied as follows:

F{γ3(u[ν+1])i,j − (△u[ν+1])i,j} = F{G(u[ν])i,j} (4.18)

where F denoted the DFT operator. For the discrete frequencies r ∈ [0,M) and

s ∈ [0, N), we have

ζF{(u[ν+1])i,j} = F{(G(u[ν]))i,j} (4.19)

where ζ = γ3 − 2(cos(2πs
N
) + cos(2πr

M
)− 2), i ∈ [1,M ] and j ∈ [1, N ] are the indexes

in the discrete time domain. For each outer step ν, we finally have a closed-form

solution of u[ν+1] at grid point (i, j)

(u[ν+1])i,j = Re(F−1(
F((G(u[ν]))i,j)

ζ
)), (4.20)

where F−1 denotes the inverse DFT operator. Re is the real part of a complex

number. ‘—’ represents for point-wise division of matrices.

w-subproblem. Fixing variables (u; b) in (4.12) yields the EL equation associ-

ated with w as follows:

w
|w| + θ(w −∇u− b) = 0.
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The solution can be determined using the closed-form formula [44]

(w)i,j = max(|∇(u)i,j + (b)i,j|−
1

θ
, 0)
∇(u)i,j + (b)i,j
|∇(u)i,j + (b)i,j|

, (4.21)

with the convention 0/0 = 0.

Algorithm 4 : Split Bregman Algorithm for the Proposed First-Order

Variational Model

Denote by

u the restored image

z the noisy image

w the auxiliary spitting vector variable

b the Bregman iterative parameter

γ1 the weighting parameter

γ2 the weighting parameter

γ3 the FP parameter

θ the penalty parameter

[u]← SB (u, z,w, b, γ1, γ2, γ3, θ)

Step 1. Initialization, set u = z,m = 0 and w(m) = b(m) = 0

and choose γ1, γ2, γ3, θ > 0;

Step 2. Compute u(m+1) according to (4.20) for fixed (w(m); b(m));

Step 3. Compute w(m+1) according to (4.21) for fixed (u(m+1); b(m));

Step 4. Update b(m+1) according to (4.13);

Step 5. If a stopping criterion is satisfied, stop; else m← m+ 1, repeat 2.

The alternating minimization procedure mentioned above can be summarized as

shown in Algorithm 4. This proposed algorithm is efficient. At each iteration, the

computation requires to solve two subproblems. On one hand for the u-subproblem,

the objective functional in (4.11) is strictly convex, which implies a unique solution,

and the solution can be determined by using the proposed FP method as given by

(4.20) (usually takes 10− 15 iteration in our experiments). On the other hand for

the w-subproblem, it has a closed-form solution as given in (4.21). According to

[6, 23, 52] the convergence of the algorithm is guaranteed as long as the sequences of
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optimization errors with respect to u (in Step 2) and w (in Step 3) are absolutely

summable. That is to say Steps 2 do not have to be solved exactly (In all our

experiments, we take only ten iterations in Step 2.).

4.4 Numerical Results and Discussion

In this section, we carry out numerical experiments from several test cases for both

synthetic and real US images to

1. compare the noise reduction results of the proposed TV model in (4.2) with

existing three existing noise removal models, the JY model [35] , KKWV

model [40] and improved KKWV model [21].

2. illustrate the overall performances of the three numerical solutions, ETM, FP

and proposed SB methods.

We note first that all experiments were performed using MATLAB R2019a on a

machine with an Intel Core i5 at 2.3GHz with 8 GB of RAM. Second, the peak

signal to noise ratio (PSNR) between the original and restored images is used to

measure the quality of image restoration results; a higher PSNR value indicates the

higher quality of the restored image (better). The PSNR is defined as follows:

PSNR = 10 log

(
2552

MSE

)
,

where MSE = 1
NM

∑M
i=1

∑N
j=1((u

∗)i,j−(u)i,j)2. Here u and u∗ are the original image

and the restored image, respectively. Note that all numerical methods for each

model will be repeated until the following stopping criteria based on the relative

error of the solution is satisfied

∥ u[new] − u[old] ∥2l2
∥ u[old] ∥2l2

< 10−5. (4.22)

Results on synthetic images

In our first test, the standard test images in Figure 4.1: “Ring” “Boat” and “Bar-

bara” are used to compare the performance between three competing noise removal

models in the literature and the one proposed in this work. Note that the size



 
53

of test images are all the same, which is 256 × 256 pixels. We also note that, we

implement the ETM methods for all models to make a fair comparison. Here, the

images are corrupted by different levels of noise strength. According to the noise

formation model as given by (4.1), there are two cases to be considered. First,

we test on different levels of noise strength by using the fixed value of k0 = 0.5

and different values of k1 = 1
100

, 1
75
, 1
50
, 1
25
, 1
10

to see the effects of Gamma noise ζ

on quality improvement of the restored images. Second, we use the fixed value of

k1 =
1

100
and different values of k0 = 0.5, 0.75, 1, 1.25 to see the effects of Gaussian

noise η on quality improvement of the restored images. We note that the param-

eters β = 10−4, τ ∈ [10−5, 10−4] and γ3 ∈ [10, 103] are used in this test, where τ

and γ3 are manually selected for each noise removal problem. Tables 4.1 and 4.2

show the restoration results for the first and second cases, respectively. Table 4.3

summarizes the restoration results for the case, where the test images are corrupted

with four different levels of Gaussian noise and five different levels of Gamma noise.

As can be seen, the average PSNR of the restored images by the proposed model is

more accurate and robust than the other three noise removal models for different

levels of noise strength.

Figure 4.1: The original test images.
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Model Ring Boat Barbara

Proposed Model 37.7740 29.0951 29.8553

JY Model 36.7811 28.9229 29.7121

KKWV Model 33.1726 26.1507 26.9316

Improved KKWV Model 33.2747 26.2220 26.9978

Table 4.1: Performance comparison using the average PSNR of the restored images

by four noise removal models with several levels of noise strength, where the test

images are corrupted with a fixed level of Gaussian noise and five different levels of

Gamma noise.

Model Ring Boat Barbara

Proposed Model 41.1206 30.5264 31.0669

JY Model 41.1036 30.5264 31.0490

KKWV Model 40.2642 29.6509 30.2900

Improved KKWV Model 40.3775 30.3871 30.8069

Table 4.2: Performance comparison using the average PSNR of the restored images

by four noise removal models with several levels of noise strength, where the test

images are corrupted with a fixed level of Gamma noise and four different levels of

Gaussian noise.

Model Ring Boat Barbara

Proposed Model 38.6602 29.1531 29.8564

JY Model 38.0312 29.0455 29.7579

KKWV Model 35.7750 27.0906 27.8380

Improved KKWV Model 35.8480 27.5033 28.1348

Table 4.3: Performance comparison using the average PSNR of the restored images

by four noise removal models with several levels of noise strength, where the test

images are corrupted with four different levels of Gaussian noise and five different

levels of Gamma noise.
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(a) Original (b) Noisy (c) Proposed

(d) JY (e) KKWV (f) Improved KKWV

Figure 4.2: Performance comparison of the restored images by four noise removal

models with k0 = 0.5 and k1 = 1
10
; (a) original image; (b) noisy image; (c)-(f)

restoration results by proposed, JY, KKWV and improved KKWV models respec-

tively.
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Figure 4.3: Corresponding signals of one column 128 of the Ring image in figure

4.2.



 
56

Method Ring Boat Barbara

ETM Method 41.1206 30.5264 31.0669

FP Method 42.0911 29.5537 30.0121

Proposed SB Method 44.7128 32.0729 31.6899

Table 4.5: Performance comparison using the average PSNR of the restored images

by three numerical solutions with several levels of SN strength, where the test

images are corrupted with a fixed level of Gamma noise and four different levels of

Gaussian noise.

Method Ring Boat Barbara

ETM Method 38.6602 29.1531 29.8564

FP Method 38.4731 28.0264 28.7448

Proposed SB Method 41.6659 31.6570 31.5015

Table 4.6: Performance comparison using the average PSNR of the restored images

by three numerical solutions with several levels of noise strength, where the test

images are corrupted with four different levels of Gaussian noise and five different

levels of Gamma noise.

Method Ring Boat Barbara

ETM Method 37.7740 29.0951 29.8553

FP Method 36.2722 29.1733 28.0407

Proposed SB Method 39.3677 31.8719 31.6242

Table 4.4: Performance comparison using the average PSNR of the restored images

by three numerical solutions with several levels of noise strength, where the test

images are corrupted with a fixed level of Gaussian noise and five different levels of

Gamma noise.
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Results on real US images

Next, we test the performance of the proposed model and compared with the other

three noise removal models in removing mixed noise from the two real US images,

which are “baby” and “kidney”. We note that the test images are contaminated

by the unknown noise strength and have the same size of 256 × 256. As shown in

Figures 4.4 and 4.5, the first and second columns show the real US images and the

restores images by the proposed model, respectively. The third, fourth and fifth

columns show respectively the restored images by the JY, KKWV and improved

KKWV models. Figures 4.6 and 4.11 show the corresponding signal of one column

at different columns (named by the highlight line) extracted from the original image

and the restored images by the JY, KKWV, improved KKWV, proposed models.

The horizontal axis is the pixel along the highlight line and the vertical axis is

the intensity value. Digits 1-3 are marked along the highlight line. Here the areas

in Digit 1 (the local change of intensity) and Digit 2 (the significant local change

of intensity) should be well preserved and the area in Digit 3 (the homogeneous

regions) should be smoothed in SN reduction. In the aspect of protection Digit 1,

we can see from Figure 4.6 and 4.11. that the JY, KKWV and improved KKWV

models are not successful as the proposed model. Moreover, it is clear from Figure

4.11 that our proposed model outperforms to protect the significant local change

in Digit 2 over the other three SN removal models. However, all models are able

to smooth the homogeneous in Digit 3 as shown in Figures 4.6 and 4.11. These

evidence from Figures 4.4-4.15 clearly support us that our proposed model is the

most effective noise removal model among the four for the real US images.
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Figure 4.4: Performance comparison of different noise removal models on the baby

image. Top: The original and restored images. Bottom: the magnification of the

original and restored images.

Figure 4.5: Performance comparison of different noise removal models on the kidney

image. Top: The original and restored images. Bottom: the magnification of the

original and restored images.

In our second test, the aim is to illustrate the performance among three numer-

ical solutions discussed in the previous section. The test images with the 256× 256

pixels as shown in Figure 4.1 are also used here and distorted by different levels of

noise strength divided into two cases as performed in our first test. By experiments

we note that the parameters β = 10−4, τ ∈ [10−5, 10−4], γ3 ∈ [10, 103], ϵSB1 = 10−5

and ϵSB2 = 103 are used in this test, where τ and γ3 are well-selected for each noise
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reduction problem. Tables 4.4 and 4.5 show the restoration results for the first

and second cases, respectively. Table 4.6 summarizes the restoration results for the

case, where the test images are corrupted with four different levels of Gaussian noise

and five different levels of Gamma noise. As expected from the previous section,

Tables 4.5-4.6 confirm us that the SB method is more accurate and robust than the

ETM and FP methods in delivering high-quality image restoration results, while

the ETM is less efficient.

Figure 4.6: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the baby image and the restored images by four

noise removal models.
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Figure 4.7: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the kidney image and the restored images by the

proposed model.
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Figure 4.8: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the baby image and the restored images by the JY

model.
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Figure 4.9: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the baby image and the restored images by the

KKWV model.
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Figure 4.10: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the baby image and the restored images by the

improved KKWV model.
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Figure 4.11: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the baby image and the restored images by four

noise removal models.
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Figure 4.12: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the baby image and the restored images by the

proposed model.
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Figure 4.13: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the kidney image and the restored images by the

JY model.
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Figure 4.14: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the kidney image and the restored images by the

KKWV model.



 
64

110 120 130 140 150 160 170 180 190 200

The number of rows

0

50

100

150

200

250

T
h

e
 v

a
lu

e
 o

f 
th

e
 i

m
a

g
e

 i
n

te
n

s
it

y

Original

Improved KKWV Model

Figure 4.15: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the kidney image and the restored images by the

improved KKWV model.

4.5 Conclusions

In this chapter, we have firstly proposed a first-order variational model for the

mixed noise reduction of real US images. In order to solve the proposed model,

we have developed an efficient numerical algorithm based on the SB method. Our

numerical results not only confirm that the proposed model is more accurate and

robust in removing mixed noise from synthetic and real US images than existing

noise removal models, but also that the proposed numerical algorithm is more

effective than those by the other two standard methods.



 

Chapter 5

A Second-Order Model and Its

Numerical Algorithm

As can be seen, the main difference among the variational models mentioned in

the previous section for SN removal only comes from their data terms, while a

common feature is to use RTV as the regularization term. As previously reviewed

in Chapter 3, RTV used in these models for recovering sharp edges is confliction

with SN removing because the noise is very large and signal dependent. That is to

say the edges are blurred when noise is removed or edges are sharp but the noise is

not well removed. In other words, RTV is not inadequate. In order to improve the

restoration results of RTV, it motivates us to propose a second-order regularization

based variational model in dealing with these effects from SN reduction process.

To our knowledge, higher-order regularization approach has not been applied for

SN reduction in real US images modeled by (4.1).

5.1 A New Second-Order Variational Model

Since TV based models always have the staircase effect due to the solutions con-

sisting of piecewise constant function in BV space, in this thesis, we propose a new

higher-order model based on the second-order TGV regularization to eliminate the

combined ASN and MSN in real US images as follows:

min
u>0, u∈Lp(Ω)

{
J TGV

ASN-MSN(u) = DNew
ASN-MSN(u) + TGV2

α(u)
}
. (5.1)
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We note that p ≤ 2,

DNew
ASN-MSN(u) = γ1

∫
Ω

(u− z)2

u
dΩ + γ2

∫
Ω

(u+ ze−u)dΩ,

and the second-order TGV regularization is defined as

TGV2
α(u) = sup

{∫
Ω

u div2vdx|v ∈ C2(Ω,S2×2), ∥v∥∞ ≤ α2, ∥divv∥∞ ≤ α1

}
,

where α1, α2 > 0, S2×2 is the set of all 2× 2 symmetric matrices, and C2(Ω,S2×2)

is the space of continuously differentiable symmetric matrix field with the compact

support in Ω. Here the infinity norm of v and divv are defined as

∥v∥∞ = sup
x∈Ω

(
2∑

i,j=1

|vi,j|2
)1/2

,

∥divv∥∞ = sup
x∈Ω

(
2∑

i=1

|(divv)i|2
)1/2

,

and the divergences are given by

(divv)i =
2∑

j=1

∂vi,j

∂xj

,

div2v =
2∑

i,j=1

∂2vi,j

∂xi∂xj

,

where 1 ≤ i ≤ 2. We note that the kernel of TGV2
α(u) is defined as

ker(TGV2
α(u)) =

{
u : Ω→ R|u(x) = Ax+ b a.e. in Ω for some A ∈ R1×2, b ∈ R

}
.

Then a linear mapping P is defined as a projection operator onto the kernel of

TGV2
α(u):

P : Lp(Ω)→ ker(TGV2
α(u)).

To prove the existence of solutions for (5.1), the following coercivity assumption

on DNew
ASN-MSN should be made: For any sequence {un} in Lp(Ω), it follows that

∥Pun∥p →∞ and
{
∥(I − P )un∥p

}
bounded ⇒ DNew

ASN-MSN →∞. (5.2)

If (5.2) is satisfied, there exists at least one solution for (5.1) [7].
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5.1.1 Existence and Uniqueness of the Solution

Theorem 5.1. For z ≥ 0 and z ∈ L∞(Ω), there exists a linear projection P such

that DNew
ASN-MSN satisfies the condition (5.2). Thus the proposed model (5.1) exists

at least one minimizer.

Proof. Let P : L1(Ω)→ ker(TGV2
α(u)) be an arbitrary linear continuous projection.

If, for a sequence {un} ⊂ Lp(Ω) it holds that ∥Pun∥p →∞, then also ∥Pun∥1 →∞

since all norms are equivalent on the finite-dimensional space ker(TGV2
α(u)). Then

the following inequality holds as P is continuous on L1(Ω),

DNew
ASN-MSN(u

n) = γ1

∫
Ω

(
un +

z2

un
− 2z

)
dΩ + γ2

∫
Ω

(un + ze−un

)dΩ

≥ γ1

∫
Ω

(un − 2z)dΩ + γ2

∫
Ω

undΩ

= (γ1 + γ2) ∥un∥1 − 2γ1

∫
Ω

zdΩ

≥ c(γ1 + γ2) ∥Pun∥1 − 2γ1

∫
Ω

zdΩ

for some constant c > 0. Accordingly, DNew
ASN-MSN(u

n)→∞ as n→∞, and therefore

(5.2) is satisfied. Together with the fact that DNew
ASN-MSN is proper, convex, and lower

semi-continuous, this implies that the proposed model (5.1) admits at least one

solution.

Theorem 5.2. Let z ∈ L∞(Ω) with inf
Ω
z > 0, then the proposed model (5.1) admits

a unique solution.

Proof. From now on, we write DNew
ASN-MSN(u) as

DNew
ASN-MSN(u) = γ1

∫
Ω

h(u)dΩ + γ2

∫
Ω

g(u)dΩ, (5.3)

where

h(s) =
(z − s)2

s
and g(s) = s+ ze−s.

It is easy to find that h′′(s) = 2z2

s3
and g′′(s) = ze−s. Thus h and g are strictly

convex with respect to s as inf
Ω
z > 0. Therefore, DNew

ASN-MSN(u) is strictly convex

for all γ1, γ2 > 0. With the convexity of the TGV regularization TGV2
α(u) [7] and

strictly convexity ofDNew
ASN-MSN(u), we obtain the conclusion that objective functional

J TGV
ASN-MSN(u) in the proposed model (5.1) is strictly convex. Hence the uniqueness

follows from the strict convexity of J TGV
ASN-MSN(u).
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5.1.2 Split BregmanMethod for the New Variational Model

By the Fenchel–Rockafellar duality, we have the dual form of TGV2
α(u) which can

be rewritten as (see, for instance, [9, 10, 59])

TGV2
α(u) = min

p∈C2(Ω,S2×2)

{
α1

∫
Ω

|∇u− p| dΩ + α2

∫
Ω

|ϵ(p)|
}

(5.4)

where

ϵ(p) =

 p1x
p1y+p2x

2
p1y+p2x

2
p2y

 .

The SB method can be easily applied to solve the proposed second-order vari-

ational model (5.1). Here, we use the auxiliary variables (w,v; b,d) and positive

penalty parameter (θ1, θ2). We reformulate the original model (5.1) as the equiva-

lent unconstrained minimization problem as given by

min
u,p,w,v

{
J̄ TGV

ASN-MSN(u,p,w,v; b,d) = DNew
ASN-MSN(u, z)

+ α1

∫
Ω

|w| dΩ +
θ1
2

∫
Ω

(w −∇u+ p− b)2 dΩ

+α2

∫
Ω

|v| dΩ +
θ2
2

∫
Ω

(v − ϵ(p)− d)2 dΩ

}
. (5.5)

Recall that the meaning of the primal and dual variables in (5.5) are listed as the

following

• u denotes the denoised image to be recovered;

• p = (p1 p2) is the symmetrized gradient;

• w = (w1 w2) is a vector valued function related to vector field ∇u− p;

• v =

 v11 v3

v3 v22

 is a matrix valued function related to symmetrized gradient

ϵ(p);

• b = (b1 b2) denotes a vector Bregman iterative parameter for enforcing

w = ∇u− p;
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• d =

 d11 d3

d3 d22

 denotes a matrix Bregman iterative parameter for enforc-

ing v = ϵ(p).

The primal-dual algorithm for solving the minimization problem (5.5) is expressed

as the following iterarions:

u[new] = argmin
u

{
DNew

ASN-MSN(u, z) +
θ1
2

∫
Ω
(w[old] −∇u+ p[old] − b[old])2dΩ

}
, (5.6)

p[new] = argmin
p

{
θ1
2

∫
Ω
(w[old] −∇u[new] + p− b[old])2dΩ

+
θ2
2

∫
Ω
(v[old] − ϵ(p)− d[old])2dΩ

}
, (5.7)

w[new] = argmin
w

{
α1

∫
Ω
|w| dΩ+

θ1
2

∫
Ω
(w −∇u[new] + p[new] − b[old])2dΩ

}
, (5.8)

v[new] = argmin
v

{
α2

∫
Ω
|v| dΩ+

θ2
2

∫
Ω
(v − ϵ(p[new])− d[old])2dΩ

}
, (5.9)

b[new] = b[old] +∇u[new] − p[new] −w[new], (5.10)

d[new] = d[old] + ϵ(p[new])− v[new]. (5.11)

The solutions for u-, p-, w- and v-subproblems can be derived as the following.

u-subproblem. Fixing variables (p,w;b) in (5.6) leads to the Euler-Lagrange

equation associated with u as given by

−θ1△u = Ḡ(u) (5.12)

where Ḡ(u) = γ1(
z2

u2 − 1)+ γ2(ze
−u− 1)− θ1div(w+p− b). To solve the nonlinear

PDE (5.12), we firstly apply the fixed point method as follows:

γ3u
[ν+1] − θ1△u[ν+1] = G(u[ν]) (5.13)

where G(u[ν]) = Ḡ(u[ν]) + γ3u
[ν] and γ3 > 0. Secondly, we assume that Ω =

[1,M ]× [1, N ] and Ω̄ ⊂ Ω is the discretized image domain where

Ω̄ = {(x, y) = (xi, yj) ∈ Ω, xi = i, yj = j}

with 1 ≤ i ≤M and 1 ≤ j ≤ N . Next, we discretize the linearized PDE (5.13) using

the standard finite difference method subject to periordic boundary conditions.
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Thus, the DFT method can be directly applied as follows:

F{γ3(u[ν+1])i,j − θ1(△u[ν+1])i,j} = F{G(u[ν])i,j}. (5.14)

where F denoted the DFT operator. For the discrete frequencies r ∈ [0,M) and

s ∈ [0, N), we have

ζ1F{(u[ν+1])i,j} = F{(G(u[ν]))i,j}. (5.15)

where ζ1 = γ3 − 2θ1

(
cos

(
2πs
N

)
+ cos

(
2πr
M

)
− 2

)
, i ∈ [1,M ] and j ∈ [1, N ] are

the indexes in the discrete time domain. For each outer step ν, we finally have a

closed-form solution of u[ν+1] at grid point (i, j)

(u[ν+1])i,j = Re

(
F−1

(
F((G(u[ν]))i,j)

ζ1

))
, (5.16)

where F−1 denotes the inverse DFT operator. Re is the real part of a complex

number. ‘—’ represents for point-wise division of matrices.

p-subproblem. By fixing variables (u,w,v; b,d) in (5.7), the Euler-Lagrange

equation associated with p = (p1 p2) as given by

(
θ1 − θ2∂

+
x ∂

−
x −

θ2
2
∂+
y ∂

−
y

)
(p1)i,j −

θ2
2
∂+
y ∂

−
x (p2)i,j = (h1)i,j, (5.17)(

θ1 −
θ2
2
∂+
x ∂

−
x − θ2∂

+
y ∂

−
y

)
(p2)i,j −

θ2
2
∂+
x ∂

−
y (p1)i,j = (h2)i,j, (5.18)

where

(h1)i,j =θ1
(
∂+
x u+ b1 − w1

)
i,j
− θ2∂

+
x (v11 − d11)i,j − θ2∂

+
y (v3 − d3)i,j, (5.19)

(h2)i,j =θ1
(
∂+
y u+ b2 − w2

)
i,j
− θ2∂

+
y (v22 − d22)i,j − θ2∂

+
x (v3 − d3)i,j. (5.20)

Taking the DFT with (5.17) and (5.18) leads to the following system of linear

equations a11 a12

a21 a22

F{(p1)i,j}
F{(p2)i,j}

 =

F{(h1)i,j}

F{(h2)i,j}

 ,
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where

a11 =θ1 − θ2

(
2 cos

2πs

N
− 2
)
− θ2

2

(
2 cos

2πr

M
− 2
)
,

a12 =−
θ2
2

(
− 1 + cos

2πr

M
+
√
−1 sin 2πr

M

)
·
(
1− cos

2πs

N
+
√
−1 sin 2πs

N

)
,

a21 =−
θ2
2

(
− 1 + cos

2πs

N
+
√
−1 sin 2πs

N

)
·
(
1− cos

2πr

M
+
√
−1 sin 2πr

M

)
,

a22 =θ1 −
θ2
2

(
2 cos

2πs

N
− 2
)
− θ2

(
2 cos

2πr

M
− 2
)
.

The coefficient matrix

a11 a12

a21 a22

 is a M×N numbers of 2×2, whose determinant

is

D =

(
θ1 − 2θ2

(
cos

2πs

N
+ cos

2πr

M
− 2
))
·
(
θ1 − θ2

(
cos

2πs

N
+ cos

2πr

M
− 2
))

, (5.21)

which always positive for all discrete frequencies if (θ1, θ2) > 0. Thus, the closed-

form solution of p1 and p2 at a grid point (i, j) are given by

(p1)i,j = Re

(
F−1

{
a22F

{
(h1)i,j

}
− a12F

{
(h2)i,j

}
D

})
, (5.22)

(p2)i,j = Re

(
F−1

{
a11F

{
(h2)i,j

}
− a21F

{
(h1)i,j

}
D

})
. (5.23)

w-subproblem. By fixing variables (u,p,v; b,d) in (5.8), the closed-form solu-

tion of w at a grid point (i, j) is given by

(w)i,j =max
(
|∇(u)i,j − (p)i,j + (b)i,j|−

α1

θ1
, 0
)
· ∇(u)i,j − (p)i,j + (b)i,j
|∇(u)i,j − (p)i,j + (b)i,j|

. (5.24)

v-subproblem. By fixing variables (p;d) in (5.9), the closed-form solution of v

at a grid point (i, j) is given by

(v)i,j = max

(
|ϵ ((p)i,j) + (d)i,j|−

α2

θ2
, 0

)
ϵ ((p)i,j) + (d)i,j
|ϵ ((p)i,j) + (d)i,j|

. (5.25)

Finally, the proposed method for the second-order model (5.5) can be presented

in Algorithm 5.
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Algorithm 5 : Split Bregman Algorithm for the Proposed Second-Order

Variational Model

Denote by

u the denoised image

z the noisy image

γ1, γ2 the regularization parameters

α1, α2 the regularization parameters

p the symmetrized gradient

w the auxiliary spitting vector variable

v the auxiliary spitting matrix variable

b,d the Bregman iterative parameters

θ1, θ2 the penalty parameters

[u]← SBTGV (u, z, γ1, γ2, α1, α2,p,w,v, b,d, θ1, θ2)

Step 1. Initialization : Set u = z,m = 0 and (p(m),w(m),v(m); b(m),d(m)) = 0,

and choose γ1, γ2, α1, α2 > 0, θ1, θ2 > 0;

Step 2. Compute u(m+1) according to (5.16) for fixed (p(m),w(m); b(m));

Step 3. Compute p(m+1) according to (5.22) and (5.23) for fixed

(u(m+1),w(m),v(m); b(m);d(m));

Step 4. Compute w(m+1) according to (5.24) for fixed

(u(m+1),p(m+1),v(m); b(m);d(m));

Step 5. Compute v(m+1) according to (5.25) for fixed (p(m+1);d(m));

Step 6. Update b(m+1) according to (5.10);

Step 7. Update d(m+1) according to (5.11);

Step 8. If a stopping criterion is satisfied, stop; else m← m+ 1, repeat 2.

5.2 Numerical Results and Discussion

Our aim in this section is to show that the proposed second-order variational model

is more accurate and reliable than existing variational models for removing noise

from both synthetic and real US images. To compare the performance of existing
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higher-order variational models with the proposed second-order model, we apply

the SB methods for all models.

There are 5 variational models in experiment. For simplicity, we name these

variational models as follows:

• min
u>0

{
J TV

ASN-MSN(u) = DNew
ASN-MSN(u) +RTV(u)

}
called SN-TV model,

• min
u>0

{
J TL

ASN-MSN(u) = DNew
ASN-MSN(u) +RTL(u)

}
called SN-TL model,

• min
u>0

{
J BH

ASN-MSN(u) = DNew
ASN-MSN(u) +RBH(u)

}
called SN-BH model,

• min
u>0

{
J TC

ASN-MSN(u) = DNew
ASN-MSN(u) +RCv(u)

}
called SN-TC model,

• min
u>0

{
J TGV

ASN-MSN(u) = DNew
ASN-MSN(u) + TGV2

α(u)
}
called SN-TGV model.

We note first that all experiments were performed using MATLAB R2019a on

a machine with and Intel Core i5 at 2.3GHz with 8 GB of RAM. Second, the peak

signal to noise ratio (PSNR) between the original and restored images is used to

measure the quality of image restoration results; a higher PSNR value indicates the

higher quality of the restored image (better). The PSNR is defined as follows:

PSNR = 10 log

(
2552

MSE

)
,

where MSE = 1
NM

∑M
i=1

∑N
j=1((u

∗)i,j−(u)i,j)2. Here u and u∗ are the original image

and the restored image, respectively. Note that all numerical methods for each

model will be repeated until the following stopping criteria based on the relative

error of the solution is satisfied

∥ u[new] − u[old] ∥2l2
∥ u[old] ∥2l2

< 10−5. (5.26)

Results on synthetic images

Figure 5.1 shows the original test images to be used here for the performance test

of different models. The size of the three images are all the same which is 256×256

pixels.
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(a) (b) (c)

Figure 5.1: The original test images.

In order to test the performance of the variational models in dealing with stair-

case effect, we consider the linear-reservation abilities of different variational models

on a piecewise linear image.

Figures 5.2 - 5.4 show the linear-preservation abilities of different variational

models on a piecewise linear image as shown in Figure 5.1 (a).

In terms of visual inspection from Figure 5.3, the image (b)-(c) shows the re-

sults of the first-order SN-TV model are composed of jagged appearance, which is

staircase effect. In addition, the restoration results shown from the images (d)-(f)

illustrate the SN-BH, the SN-TC and the proposed SN-TGV models can remove

the staircase effect.

As shown in Table 5.1 we see that the proposed SN-TGV model is the best

model for the linear-preservation ability.

Model PSNR

SN-TV Model 32.8007

SN-TL Model 30.4729

SN-BH Model 30.8700

SN-TC Model 34.6507

SN-TGV Model 35.4040

Table 5.1: Comparison of PSNR by different variational models on synthetic image.



 
75

(a) Noisy image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.2: Linear-preservation ability test; (a) noisy image; (b)-(f) restoration

results by SN-TV, SN-TL, SN-BH, SN-TC and SN-TGV models respectively.
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50 100 150 200 250
0

50

100

150

200

250

(e) SN-TC

50 100 150 200 250
0

50

100

150

200

250

(f) SN-TGV

Figure 5.3: Plots of 1D of the noisy and denoised images in Figure 5.2, where the

x-axis presents the number of columns and the y-axis shows the value of the image

intensity.

(a) Noisy image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.4: Surfaces of the noisy and denoised images in Figure 5.2.
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Next, we test the performance of existing second-order variational models with

the proposed second-order variational model on two noisy images, which are the

“Boat” image and “Barbara” image. In Figure 5.1 (b)-(c), the noise formation

model in (4.1) was used for creating the noisy versions of the original images Figure

5.1. In experiments, there are two case to considered. First, we test on different

levels for Gamma noise ( 1
10
, 1
50
, 1
100

) by fixing k0 = 0.5. Second, we test on different

levels for Gaussian noise (0.5, 0.75, 1.25) by fixing k1 =
1

100
. Tables 5.2 and 5.3 show

the restoration results for the first and second cases, respectively.

Image Model
(k0, k1)

(0.5, 1
10
) (0.5, 1

50
) (0.5, 1

100
)

Barbara SN-TV 27.3137 33.1470 34.3224

SN-TL 27.2104 33.7238 34.4954

SN-BH 27.7852 34.3320 35.2134

SN-TC 28.0437 34.4047 35.1072

SN-TGV 28.3770 34.7061 35.6537

Boat SN-TV 26.9434 33.1043 34.0371

SN-TL 26.7045 33.7157 34.6086

SN-BH 27.4703 34.2175 35.2666

SN-TC 27.8417 33.5479 35.3654

SN-TGV 28.4870 34.6713 35.8587

Table 5.2: Comparison of PSNR tesing on different levels of Gamma noise by

different variational models on two images.
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Image Model
(k0, k1)

(0.5, 1
100

) (0.75, 1
100

) (1.25, 1
100

)

Barbara SN-TV 34.3224 32.6780 30.1405

SN-TL 34.4954 32.3755 29.7882

SN-BH 35.2134 32.6813 29.9819

SN-TC 35.1072 32.9776 30.0458

SN-TGV 35.6537 32.7008 30.7949

Boat SN-TV 34.0371 32.8264 30.0651

SN-TL 34.6086 32.4048 29.8085

SN-BH 35.2666 32.8117 29.1545

SN-TC 35.3654 33.1903 30.0377

SN-TGV 35.8587 33.4747 30.7719

Table 5.3: Comparison of PSNR tesing on different levels of Gaussian noise by

different variational models on real images.

As can be seen from Table 5.2-5.3, the average PSNR of the restored images

by the proposed second-order variational model is more accurate and robust than

other four noise removal models for different level of noise strength.

Results on real US images

In this section, we test the performance of the proposed second-order variational

model and compared with other four models using two real US images, “baby” and

“kidney”. These real US images from different medical applications are the same

size which is 256 × 256 pixels and corrupted with unknown SN strength.

Figure 5.5 and Figure 5.7 show the real US images of the baby and the kidney

with SN and the restored image by the SN-TV, SN-TL, SN-BH, SN-TC and SN-

TGV models. Figure 5.6 show the enlarged portions of the baby image and the

restored image of the baby image by the SN-TV, SN-TL, SN-BH, SN-TC and SN-

TGV models. Figure 5.8 show the enlarged portions of the kidney and the restored

image of the baby image by the SN-TV, SN-TL, SN-BH, SN-TC and SN-TGV
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models. Figure 5.9 show corresponding signals of the 75th column with different

rows ranging from 70 to 120, extracted from the baby image and the restored images

by five noise removal models. Figure 5.10 show corresponding signals of the 150th

column with different rows ranging from 100 to 200, extracted from the kidney

image and the restored images by five noise removal models.

It can be observed from Figure 5.5-5.8 that all models can be used to remove

SN from real US images. Figure 5.9 and Figure 5.10 show that our model is more

effective than other four models.

(a) Original image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.5: Performance comparison of different noise removal models on the baby

image; (a) original image; (b)-(f) restored images.
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(a) Original image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.6: Performance comparison of different noise removal models on the baby

image; (a) magnification of original image; (b)-(f) magnification of restored images.

(a) Original image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.7: Performance comparison of different noise removal models on the kidney

image; (a) original image; (b)-(f) restored images.
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(a) Original image (b) SN-TV (c) SN-TL

(d) SN-BH (e) SN-TC (f) SN-TGV

Figure 5.8: Performance comparison of different noise removal models on the kidney

image; (a) magnification of original image; (b)-(f) magnification of restored images.
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Figure 5.9: Corresponding signals of the 75th column with different rows ranging

from 70 to 120, extracted from the baby image and the restored images by five

noise removal models.
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Figure 5.10: Corresponding signals of the 150th column with different rows ranging

from 100 to 200, extracted from the kidney image and the restored images by five

noise removal models.

5.3 Conclusions

In this Chapter, we presented a new second-order variational models for removing

mixed noise from real US images to deal with the staircase effect. In order to solve

the associated variational problem, we proposed the efficient numerical algorithm

based on the SB framework. Our numerical tests confirm that the proposed second-

order variational models deliver more accurate and reliable restoration results than

the competing models.



 

Chapter 6

Summary and Future Directions

In this work, we have firstly proposed a first-order variational model for both ASN

and MSN noise reduction of real US images. We have also discussed the existence

and uniqueness of the solution for the proposed first-order variational model. In

order to solve the proposed first-order variational model, we have developed three

efficient numerical algorithm:

1. Method 1-explicit time marching method;

2. Method 2-fixed-point iteration method;

3. Method 3-split Bregman method.

Numerical tests confirmed that the proposed first-order model delivers better restora-

tion results than those in [21, 35, 40] and the proposed algorithm based on SB

method is more accurate than the standard numerical algorithms in delivering vi-

sually pleasing restoration results.

In order to improve the restoration results, we also proposed a second-order vari-

ational model and discussed the existence and uniqueness of the solution for the

proposed second-order variational model. In order to solve the second-order vara-

tional model, we develop the numerical algorithm base on SB method. Numerical

tests show that the proposed second-order variational model has several advan-

tages. Firstly, it is more efficient than the competing models to remove mixed noise

and preserve edge. Secondly, our SB method for proposed second-order variational

model is fast and accurate in providing visually preasing SN reduction. Finally, we
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found what we expected in numerical experiments that it provides better restoration

results than those obtained from several regularizations.

The idea presented in this thesis can be expended in different directions. First,

variational models used in this work can be developed both fidelity term and reg-

ularization term in order to improve restoration result. Next, the algorithm must

be modified due to the nonlinearlity of EL equation resulting in the slowness.
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