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Let E be an equivalence relation on a finite fence X such that every equivalence

class in X/E is a subfence of X. Let T (X) be the set of all transformations on X

and

TE(X) = {f ∈ T (X) | ∀a, b ∈ E, (af, bf) ∈ E}

be the set of all E-preserving transformations on X. The set of all order preserving

transformations in TE(X) forms a subsemigroup of TE(X) denoted by

OE(X) = {f ∈ TE(X) | ∀x, y ∈ X, x ≤ y =⇒ xf ≤ yf}.

In this research, we study the semigroup OE(X). Some characterizations of Green’s

equivalences on OE(X) are presented as well.
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Chapter 1

Introduction

A semigroup (S, ◦) is an algebraic structure which consists of a non-empty

set S and an associative binary operation ◦ on S. A subsemigroup of (S, ◦) is a non-

empty subset T of S which is closed under ◦. For example, we know that ∅ ≠ N ⊆ Z

and N is closed under +. Then (N,+) is a subsemigroup of (Z,+).

For any non-empty set X, the set of all transformations on X is denoted by

T (X). Consider an ordered set (X;≤). We denote the set of all ≤ - preserving

transformations on X by OT (X), that is,

OT (X) = {f ∈ T (X) : ∀x, y ∈ X, x ≤ y implies xf ≤ yf}.

An interesting example of an ordered set is a fence, whose order forms a path with

alternating orientations. In fact, the relations

x1 ≤ x2 ≥ x3, . . . , x2m−1 ≤ x2m ≥ x2m+1 ≤ . . .

or

x1 ≥ x2 ≤ x3, . . . , x2m−1 ≥ x2m ≤ x2m+1 ≥ . . .

are the only comparability relations in a fence X = {x1, x2, . . . , xn, . . .}. It is easy to

see that T (X) is a semigroup under the composition of functions defined by

viii



 

fg := {(x, y) ∈ X ×X : (x, z) ∈ f and (z, y) ∈ g for some z ∈ X },

and OT (X) is a subsemigroup of T (X).

Algebraic properties of T (X) and its subsemigroups have been studied by many

researchers. Jendana and Srithus [4] characterized a finite fence X having OT (X) as a

coregular semigroup and already described coregular elements of OT (X). Tanyawong

[5] described all regular semigroups OT (X) where X is a finite fence. To date, we

know the regularity of OT (X) where X is a fence. This leads to a more complex

semigroup, which is the semigroup of all transformations preserving a zig-zag order

and an equivalence relation on X.

An equivalence relation is a binary relation that is reflexive, symmetric and tran-

sitive. Let E be an equivalence relation on X. We define

TE(X) = {f ∈ T (X) : ∀(a, b) ∈ E, (af, bf) ∈ E}.

The set of all order-preserving transformations in TE(X) forms a subsemigroup of

TE(X) denoted by

OE(X) = {f ∈ TE(X) : ∀x, y ∈ X, x ≤ y implies xf ≤ yf}.

Green’s relations are five equivalence ralations that characterize elements of a

semigroup in terms of the ideals they generate. Let S be a semigroup and S1 be the

set S with an identity adjoined if S does not contain an identity. For a, b ∈ S, we

define Green’s relations L,R, J,H and D as follows:

1. aLb if and only if S1a = S1b, that is, a, b generate the same left principal ideal;

2. aRb if and only if aS1 = bS1, that is, a, b generate the same right principal

ideal;

3. aJb if and only if S1aS1 = S1bS1, that is, a, b generate the same two-sided

principal ideal;
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4. aHb if and only if aLb and aRb;

5. aDb is the smallest equivalence relation that contains L and R,

namely, D = L ◦R.

It is well-known that in a finite semigroup, D = J in [1].

Definition 1.1. [2] Let S be a semigroup and x ∈ S. We say that x is regular if

there is b ∈ S such that x = xbx. Moreover, S is regular if every element in S is

regular.

Huisheng and Dingyu [3] described the nature of regular elements in OE(X) and

characterized the Green’s equivalences on OE(X) completely, where X is a finite

chain. For f ∈ T (X), we denote π(f) = {xf−1 : x ∈ Xf}. Notice that f∗ is

a function from π(f) into Xf defined by Af∗ = Af for each A ∈ π(f). For each

f ∈ T (X), we let E(f) = {Af−1 : A ∈ X/E,Af−1 ̸= ∅}. The characterization of

Green’s equivalences for OE(X), where X is a chain are already described as follows:

Theorem 1.2. [3] Let f, g ∈ OE(X). Then the following statements are equivalent.

1. (f, g) ∈ R.

2. π(f) = π(g) and E(f) = E(g).

3. There exists an E∗- preserving order isomorphism ϕ : Xf → Xg such that

g = fϕ.

Before we introduce the result of the relation L, we need to introduce some defi-

nition.

Definition 1.3. [3] Let f ∈ OE(X) and ϕ : π(f) → π(g). If for every A ∈ X/E, there

is B ∈ X/E such that πA(f)ϕ ⊆ πB(g), then ϕ is called E-admissible. Moreover, if ϕ

is bijective and ϕ, ϕ−1 are E- admissible, then ϕ is E∗-admissible.

Theorem 1.4. [3] Let f, g ∈ OE(X). Then the following statements are equivalent.
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1. (f, g) ∈ L.

2. Xf = Xg and for each A ∈ X/E, there exist B,C ∈ X/E such that Af ⊆

Bg, Ag ⊆ Cf .

3. There exists an E∗- admissible order isomorphism ϕ : π(f) → π(g) such that

f∗ = ϕg∗.

Theorem 1.5. [3] Let f, g ∈ OE(X). Then the following statements are equivalent.

1. (f, g) ∈ H.

2. π(f) = π(g), E(f) = E(g), Xf = Xg and for each A ∈ X/E, there exist

B,C ∈ X/E such that Af ⊆ Bg, Ag ⊆ Cf .

3. There exists an E∗- preserving order isomorphism ϕ : Xf → Xg and E∗-

admissible order isomorphism ψ : π(f) → ϕ(g) such that g = fϕ and f∗ = ψg∗.

Theorem 1.6. [3] Let f, g ∈ OE(X). Then the following statements are equivalent.

1. (f, g) ∈ D.

2. There exist an E∗- preserving order isomorphism ψ : Xf → Xg and E∗- ad-

missible order isomorphism ϕ : π(f) → ϕ(g) such that ϕg∗ = f ∗ ψ.

Theorem 1.7. [3] Let f, g ∈ OE(X) be regular elements. Then

1. fLg if and only if π(f) = π(g);

2. fRg if and only if Xf = Xg;

3. fDg if and only if there exists a bijection ϕ : Xf → Xg such that ϕ and ϕ−1

are order-preserving and E-preserving.

In this research, we aim to characterize the Green’s equivalence relations onOE(X)

where X is a finite fence and E is an equivalence relation on X such that every

equivalence class in X/E is a subfence of X.
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Chapter 2

Preliminaries

In this chapter, we provide definitions, theorems, lemmas and some examples re-

lated to this research.

2.1 Fences

Definition 2.1. A relation on a set X is a subset of X ×X.

Definition 2.2. For a relation ≤ on a set X and x, y ∈ X, the notation x ≤ y refers

to (x, y) ∈≤, and the notation x ≥ y refers to (y, x) ∈≤.

Definition 2.3. Let A be a set. A relation ≤ on A is a (partial) order if

� for all x ∈ A, x ≤ x, that is, ≤ satisfies reflexivity ;

� for all x, y, z ∈ A, if x ≤ y and y ≤ z, then x ≤ z, that is, ≤ satisfies transitivity ;

� for all x, y ∈ A, if x ≤ y and y ≤ x, then x = y, that is, ≤ satisfies antisymmetry.

If ≤ is a partial order on A, the pair (A,≤) is called a (partially) ordered set.

When there is no ambiguity, we denote the partially ordered set (A,≤) by A.

In this research, we will focus on the ordered sets called fences defined as follows.
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Definition 2.4. An ordered set X is called a fence if the order forms a path with

alternating orientation. Indeed, X is in which either

x1 ≤ x2 ≥ x3, . . . , x2m−1 ≤ x2m ≥ x2m+1 ≤ . . .

or

x1 ≥ x2 ≤ x3, . . . , x2m−1 ≥ x2m ≤ x2m+1 ≥ . . .

are the only comparability relations in the fence X = {x1, x2, . . . , xn, . . .}.

2.2 Basic facts on functions

Definition 2.5. Let A and B be sets. A subset f of A× B is said to be a function

from A into B if

A = {a ∈ A : ∃!b ∈ B[(a, b) ∈ f ]}.

We denote the function f from A into B by f : A → B. Moreover, for each a ∈ A,

let af donote the unique b ∈ B such that (a, b) ∈ f .

Definition 2.6. Let A, B, C be sets, f : A → B and g : B → C. The composition

of f and g is the function fg : A→ C defined by

fg = {(a, c) ∈ A× C : (a, b) ∈ f and (b, c) ∈ g for some b ∈ B}.

Definition 2.7. Let A, B be sets and f : A → B. For all subset X of A, the

restriction of f to X is the function f |X : X → B defined by

f |X = {(x, b) ∈ f : x ∈ X}.

Definition 2.8. Let A, B be sets and f : A → B. For all subset X of A, the image

of X under f , which is denoted by Xf , is defined by

Xf = {xf : x ∈ X}.

For all subset Y of B, the inverse image of Y under f , which is denoted by Y f−1, is

defined by

Y f−1 = {x ∈ X : xf ∈ Y }.
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If Y = {b} for some b ∈ B, we denote Y f−1 by bf−1.

Remark 2.9. Let A, B be sets and f : A→ B. Then, for all X ⊆ A and Y ⊆ B,

X ⊆ (Xf)f−1 and (Y f−1)f ⊆ Y.

Definition 2.10. Let A, B be sets and f : A→ B.

(i) f is surjective if Af = B.

(ii) f is injective if for all a1, a2 ∈ A, a1 = a2 whenever a1f = a2f .

(iii) f is bijective if f is surjective and injective.

2.3 Semigroups

Definition 2.11. A binary operation on a set X is a function from X ×X into X.

If ◦ is a binary operation on X, we denote ◦((x, y)) by x ◦ y for all x, y ∈ X.

Definition 2.12. Let ◦ be a binary operation on a set X. A subset Y of X is said to

be closed under ◦ if y1 ◦ y2 ∈ Y for all y1, y2 ∈ Y , that is, ◦|Y×Y is a binary operation

on Y .

Definition 2.13. A binary operation ◦ on a setX is associative if (x◦y)◦z = x◦(y◦z)

for all x, y, z ∈ X.

Definition 2.14. A pair (S, ◦) is a semigroup if S is a non-empty set and ◦ is an

associative binary operation on S.

Example 2.15. Let Z be the set of all integers, and + be the usual addition on Z.

Then (Z,+) is a semigroup.

A semigroup (S, ◦) is usually denoted as S, without mentioning the operator ◦, if

there is no ambiguity.

Definition 2.16. Let (S, ◦) be a semigroup and T be a non-empty subset of S. We

call T a subsemigroup of S if (T, ◦|T×T ) is a semigroup.
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Remark 2.17. For any semigroup (S, ◦) and any subset T of S, T is a subsemigroup

of S if and only if T is closed under ◦.

Example 2.18. Consider the semigroup (Z,+), where + is the usual addition on Z.

We know that ∅ ≠ N ⊆ Z and N is closed under +. Then N is a subsemigroup of Z.

Definition 2.19. Let X be a non-empty set. A transformation on X is a function

from X to X. Let T (X) denote the set of all transformations on X.

Remark 2.20. Let X be a non-empty set. Then (T (X), ◦) is a semigroup, where ◦

is the function composition defined by

f ◦ g = {(x, y) ∈ X ×X : (x, z) ∈ f and (z, y) ∈ g for some z ∈ X}.

From now on, for any transformations f , g on a non-empty set X, the composition

f ◦ g is denoted simply as fg.

Definition 2.21. Let X, Y be two ordered sets and f : X → Y be a function. We

say that f is order-preserving if for all x, y ∈ X, x ≤ y implies xf ≤ yf . If f is an

order-preserving bijection such that x ≤ y if and only if xf ≤ yf , then we say that f

is an order isomorphism.

Definition 2.22. Let (X,≤) be an ordered set. We denote the set of all≤ - preserving

transformations on X by OT (X). Namely,

OT (X) = {f ∈ T (X) : ∀x, y ∈ X, x ≤ y implies xf ≤ yf}.

Theorem 2.23. Let (X,≤) be an ordered set. Then OT (X) is a subsemigroup of

T (X).

Proof. Obviously, ∅ ≠ OT (X) ⊆ T (X). Let f, g ∈ OT (X) and x, y ∈ X such that

x ≤ y. Since f ∈ OT (X), xf ≤ yf . Since g ∈ OT (X), x(fg) = (xf)g ≤ (yf)g =

y(fg). Thus, fg ∈ OT (X). It follows that OT (X) is closed under the function

composition. Hence, OT (X) is a subsemigroup of T (X).

xv



 

Definition 2.24. Let S be a semigroup and x ∈ S, then x is a regular element if

there is b ∈ S such that x = xbx. Moreover, S is regular if every element in S is

regular.

Theorem 2.25. Let X be a non-empty set. Then T (X) is regular.

Proof. Let α ∈ T (X). For each y ∈ Xα, there exists xy such that xyα = y. Since X

is non-empty, there exists x0 ∈ X. We define β : X → X by

yβ =


xy if y ∈ Xα;

x0 otherwise.

We want to show that αβα = α. We know that dom(αβα) = dom(α). Since aαβα =

(aα)βα = (xaα)α = aα for all a ∈ X. We have that αβα = α. Hence, α is regular.

2.4 Equivalence relations and partitions

Recall that, for a relation R on a set X,

� R is said to be reflexive, if (x, x) ∈ R for every x ∈ X;

� R is said to be symmetric, if (y, x) ∈ R whenever (x, y) ∈ R;

� R is said to be transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R.

Definition 2.26. A relation R is said to be an equivalence relation if the relation R

is reflexive, symmetric and transitive.

Definition 2.27. Let E be an equivalence relation on X, and x ∈ X. We denote the

set of all elements that is E-related to x by [x], that is,

[x] = {y ∈ X : (x, y) ∈ E}.

The set [x] is called the equivalence class of x. The set of all equivalence classes is

denoted by X/E, that is,

X/E = {[a] : a ∈ X}.
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Definition 2.28. Let X be a set. A nonempty collection C of subsets of X is a

partition of X if
⋃

C = X, and for all A,B ∈ C, A ∩B = ∅ if and only if A ̸= B.

Remark 2.29. If E is an equivalence relation on a set X, then X/E is a partition

of X.

Proposition 2.30. If f is a transformation on a non-empty set X, then π(f) is a

partition of X.

Proof. Define a relation ∼ on X by x ∼ y if and only if f(x) = f(y) for all x, y ∈ X.

It is easy to see that ∼ is an equivalence relation and π(f) = X/ ∼. Hence, π(f) is

a partition of X.

Definition 2.31. Let P and Q be partitions of X. We say that P is a refinement of

Q if for any A ∈ P , there is B ∈ Q such that A ⊆ B.

Proposition 2.32. Let P and Q be partitions of X. If P is a refinement of Q and

Q is a refinement of P, then P = Q.

Proof. Assume that P is a refinement of Q and Q is a refinement of P . To show that

P ⊆ Q, let A ∈ P . Since P is a refinement of Q, there is B ∈ Q such that A ⊆ B.

Similarly, since Q is a refinement of P , there is C ∈ P such that B ⊆ C. Since

A ⊆ B ⊆ C, A ∩ C = A ̸= ∅. Since P is a partition and A ∩ C ̸= ∅, A = C, which

implies that A = B ∈ Q. Similarly, we can conclude that Q ⊆ P . Hence, P = Q.

2.5 Transformations preserving an equivalence re-

lation

Definition 2.33. Let E be an equivalence relation on X, and Y, Z be subsets of

X. Let f be a function from Y to Z. We say that f is E-preserving if for any

a, b ∈ Y, (a, b) ∈ E implies (af, bf) ∈ E. Moreover, if for any a, b ∈ Y, (a, b) ∈

E if and only if (af, bf) ∈ E, then we say that f is E∗ − preserving.
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Definition 2.34. Let X be an ordered set and E be an equivalence relation on X.

The set of all E-preserving transformation in OT (X), denoted by OE(X), is defined

by

OE(X) = {f ∈ OT (X) : (xf, yf) ∈ E for all (x, y) ∈ E}.

Lemma 2.35. [3] Let f be E-preserving. Then, for each B ∈ X/E, there exists

B′ ∈ X/E such that Bf ⊆ B′. Consequently, for any A ∈ X/E,Af−1 is either ∅ or

a union of some classes X/E.

2.6 Green’s equivalences

Definition 2.36. For any semigroup S, let S1 be a semigroup with an identity

adjoined if S has no identity, and let S1 = S if S contains an identity. For a, b ∈ S,

we define the Green’s relation L,R, J,H and D as follows:

1. aLb if and only if S1a = S1b. Namely, aLb if and only if a = xb and b = ya for

some x, y ∈ S1;

2. aRb if and only if aS1 = bS1. Namely, aRb if and only if a = bx and b = ay for

some x, y ∈ S1;

3. aJb if and only if S1aS1 = S1bS1. Namely, aJb if and only if a = xby and

b = uav for some x, y, u, v ∈ S1;

4. aHb if and only if aLb and aRb;

5. aDb is the smallest equivalence relation that contains L and R,

namely, D = L ◦R.

It is well-known that in a finite semigroup, D = J. Therefore, to characterize all

Green’s equivalences on OT (X), where X is a finite fence, it is enough to consider

only L, R, H and D.
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Chapter 3

The characterization of Green’s

equivalences

For the rest of this research, let E be an equivalence relation on a finite fence X

such that every equivalence class in X/E is a subfence in X.

We begin this section with the characterization of L and R, which will be useful

for the characterization of H and D later.

Theorem 3.1. Let f, g ∈ OE(X). Then (f, g) ∈ R if and only if π(f) = π(g) and

E(f) = E(g).

Proof. Assume that (f, g) ∈ R. Then there are h, k ∈ OE (X) such that fh = g

and gk = f . Let P ∈ π (f). We have that Pfh is a singleton , which implies that

P ⊆ (Pg)g−1 = (Pfh) g−1 ∈ π (g). Thus, π(f) is a refinement of π(g). Similarly,

we also have that π(g) is a refinement of π(f). Hence, π (f) = π (g). Next, we will

show that E (f) = E (g). Let U ∈ E (f). Then there exists A ∈ X/E such that

A ∩Xf ̸= ∅ and U = Af−1. Since h is E- preserving, there exists B ∈ X/E such

that Ah ⊆ B. Then Ug = Ufh = Af−1fh ⊆ Ah ⊆ B. Hence, U ⊆ Ugg−1 ⊆ Bg−1.

Similarly, since Bg−1 ∈ E (g), we can also have that Bg−1 ⊆ V for some V ∈ E (f).

Thus, U ⊆ V and U, V ∈ E (f). Since E (f) is a partition of X, we have U = V .

So, U = Bg−1 ∈ E (g). Hence, E (f) ⊆ E (g). Similarly, we can also have that
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E (g) ⊆ E (f). Thus, E (f) = E (g).

Conversely, assume that π (f) = π (g) and E (f) = E (g). Without loss of gener-

ality, we may assume that X = {x1, x2, . . . , xl}, x1 ≤ x2 ≥ x3 ≤ . . .≥ xl−1 ≤ xl and

ran(g) = {xi, xi+1, . . . , xj}, where 1 ≤ i ≤ j ≤ l. Define γ : X → X by

xγ =


af ;x = ag for some a ∈ X;

yif ;x = xk for some k ≤ i and yig = xi for some yi ∈ X;

yjf ;x = xk for some k ≥ j and yjg = xj for some yj ∈ X.

Thus, γ is well-defined since π (f) = π (g). Next, we will show that γ ∈ OE (X).

First, we need to show that γ is order-preserving. Let xm, xn ∈ X with xm ≤ xn.

Case 1 : xm, xn ∈ ran(g). Then there exist a, b ∈ X such that a ≤ b, ag = xm and

bg = xn. Thus, xmγ = af and xnγ = bf . Since a ≤ b and f is order-preserving, we

have xmγ = af ≤ bf = xnγ.

Case 2 : xm /∈ ran(g) or xn /∈ ran(g). Since xm and xn are comparable, m,n ≤ i

or m,n ≥ j. If m,n ≤ i, then xmγ = yif = xnγ. Similarly, if m,n ≥ j, then

xmγ = yjf = xnγ.

Thus, γ ∈ OT (X). Finally, we will show that γ is E-preserving. Let (x, y) ∈ E.

Case 1 : x, y ∈ ran (g). Then there are a1, a2 ∈ X such that a1g = x and a2g = y.

Thus, we have xγ = a1f and yγ = a2f . Since a1, a2 ∈ [x] g−1 ∈ E (g) = E (f), we

have (a1f, a2f) ∈ E implying (xγ, yγ) ∈ E.

Case 2 : x ∈ ran (g) but y /∈ ran (g). Let F be a subfence of X such that x

and y are both ends of F . Then xi ∈ F or xj ∈ F . Without loss of generality, we

may assume that xi ∈ F . Then yγ = xiγ. Since every equivalence class in X/E is

a subfence of X, F ⊆ A for some A ∈ X/E. So, (x, xi) ∈ E. By the previous case,

(xγ, xiγ) ∈ E. Hence, (xγ, yγ) ∈ E.

Case 3 : x, y /∈ ran(g). Let F be a subfence of X such that x and y are both ends

of F . Then ran(g) ∩ F = ∅ or ran(g) ⊆ F . If ran(g) ∩ F = ∅, then xγ = yγ, which

implies that (xγ, yγ) ∈ E. Now, assume that ran(g) ⊆ F . Then xγ, yγ ∈ {xiγ, xjγ}.

Moreover, since every equivalence class in X/E is a subfence of X, F ⊆ A for some
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A ∈ X/E. Then (xi, xj) ∈ E. By Case 1, we have that (xiγ, xjγ) ∈ E. Since

xγ, yγ ∈ {xiγ, xjγ} and (xiγ, xjγ) ∈ E, we can conclude that (xγ, yγ) ∈ E.

Thus, γ ∈ OE (X). Moreover, it is easy to see from the definition of γ that gγ = f .

Similarly, we can also show that g = fδ for some δ ∈ OE (X). Hence, (f, g) ∈ R.

For f ∈ OE(X), let

Xf := {imh : h ∈ OE(X) and hf = f}.

The following lemma will be useful for the characterization of L.

Lemma 3.2. Let f ∈ OE(X) and Yf , Y
′

f be minimal subfences in Xf . Then there

exists a function in OE(X) that bijectively map Yf onto Y
′

f . Consequently, |Yf | = |Y ′

f |.

Proof. Assume that f ∈ OE(X). Since Xf = {imh : h ∈ OE(X) and hf = f},

and Yf and Y
′

f are minimal subfences in Xf , there exist g, h ∈ OE(X) such that

im g = Yf , gf = f, imh = Y
′

f and hf = f . We will show that there exists a bijective

function h|Yf
: Yf → Y

′

f . Notice that im gh ⊆ imh = Y
′

f and ghf = f , and Y
′

f is

minimal in Xf . Then we have imh|Yf
= Yfh = im gh = Y

′

f implying h|Yf
is onto.

Consequently, we have |Yf | ≥ |Y ′

f |. On the other hand, we can find an onto function

h′|Yf
: Y

′

f → Yf , then |Y ′

f | ≥ |Yf | which implies |Yf | = |Y ′

f |. Since h|Yf
is onto,

|Yf | = |Y ′

f | and Yf , Y
′

f are finite, we have that h|Yf
is injective and we can conclude

that h|Yf
is a bijective function from Yf to Y ′

f .

Theorem 3.3. For f, g ∈ OE(X), let Yf and Yg be minimal subfences in Xf and Xg

respectively. Then (f, g) ∈ L if and only if f |Yf
= hg for some E∗-preserving order

isomorphism h : Yf → Yg.

Proof. Assume that (f, g) ∈ L. Then there are α, β ∈ OE(X) such that αf =

g and βg = f . Since Yf and Yg are minimal elements in Xf and Xg, there are

γ1, γ2 ∈ OE(X), such that im γ1 = Yf , γ1f = f , and im γ2 = Yg, γ2g = g. Let h :=

β|Yf
γ2. Since β, γ2 ∈ OE(X), we have that h is order and E-preserving. Notice that
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γ1βγ2α ∈ OE(X) and im γ1βγ2α = Yfhα, and γ1βγ2αf = γ1βγ2g = γ1βg = γ1f = f .

Thus, Yfhα ∈ Xf . Next, we will show that h := β|Yf
γ2 is injective. Suppose that

β|Yf
γ2 is not injective. Then |Yfβγ2| < |Yf | which contradicts to the fact that Yf

is a minimal subfence in Xf . Therefore, h := β|Yf
γ2 is an injective function. Since

h := β|Yf
γ2 injectively maps Yf into Yg, we have |Yf | ≤ |Yg|. Similarly, we can

prove that |Yg| ≤ |Yf |. Then |Yf | = |Yg|. Consequently, h is a bijection. Similarly,

there exists an order and E-preserving bijection h2 that maps Yg onto Yf . Since

Yf is finite, by Lagrange’s theorem, (hh2)
n is the identity function on Yf for some

n, so (hh2)
n = h(h2h)

n−1h2. Then (h2h)
n−1h2 is the inverse function of h. Since

(h2h)
n−1h2 is order and E-preserving, h is an E∗-preserving order isomorphism. No-

tice that hg = β|Yf
γ2g = β|Yf

g = f |Yf
. Hence, there is an E∗-preserving order

isomorphism h : Yf → Yg such that f |Yf
= hg. Conversely, assume that f |Yf

= hg

for some E∗-preserving order isomorphism h : Yf → Yg. Since Yf is a element in Xf ,

there is γ1 ∈ OE(X) such that im γ1 = Yf and γ1f = f . Let β := γ1h ∈ OE(X). Then

βg = γ1hg = γ1f = f . Thus, we have β := γ1h ∈ OE(X) such that f = βg. Since

f |Yf
= hg and h is an bijection, there exists an E∗-preserving order isomorphism

h−1 : Yg → Yf such that h−1f = h−1hg = g|Yg . Similarly, there is β′ ∈ OE(X) such

that g = β′f . Therefore, (f, g) ∈ L.

Theorem 3.4. Let f, g ∈ OE(X), Yf and Yg be minimal subfences in Xf and Xg

respectively. Then (f, g) ∈ H if and only if π(f) = π(g) and E(f) = E(g), and

f |Yf
= hg for some E∗-preserving order isomorphism h : Yf → Yg.

The following lemmas will be useful to proof the next theorem.

Lemma 3.5. Let f ∈ OE(X), Y be a subfence of X and let y1, y2 ∈ Y f with y1 < y2.

Then there are x1, x2 ∈ Y such that x1f = y1, x2f = y2 and x1 ≤ x2.

Proof. Assume that y1 < y2, Y = {x1, x2, . . . , xm} and Y f = {z1, z2, . . . , zk}, where

x1 < x2 > x3 < · · · > xm and z1 < z2 > z3 < · · · > zk. We choose i, j ∈ {1, 2, . . . ,m}

such that i < j, {xif, xjf} = {y1, y2} and j− i = min{|r−s| : {xrf, xsf} = {y1, y2}}.
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Now, we are going to show that j − i = 1 by supposing that j − i ≥ 2. Then there

exists a subfence {xi+1f, xi+2f, . . . , xj−1f} which is disjoint from {y1, y2}. Now, we

let {y1, y2} = {zp, zp+1} for some p ∈ {1, 2, . . . , k − 1}. Then we have

{xi+1f, xi+2f, . . . , xj−1f} ⊆ {z1, z2, . . . , zp−1} or

{xi+1f, xi+2f, . . . , xj−1f} ⊆ {zp+2, zp+3, . . . , zk}.

Thus, xi+1f and xif are not comparable or xj−1f and xjf are not comparable, which

is a contradiction. Then we have j − i = 1 implying xi, xj are comparable. Since

y1 < y2 and f ∈ OE(X), if xif = y1 and xjf = y2, we have xi < xj, similarly for

xjf = y1 and xif = y2, we have xj < xi.

Lemma 3.6. Let f, g ∈ OE(X). If π(f) = π(g) and E(f) = E(g), then there exists

an E∗- preserving order isomorphism ψ : Xg → Xf such that f = gψ.

Proof. Assume that π(f) = π(g). Since for each y ∈ Xg, there is xy ∈ X such

that xyg = y, we can define h : Xg → X by yh = xy. Then, for all x ∈ X,

xghg = xxgg = xg implying ghg = g. Since π(f) = π(g), we have f = ghf . Now,

we are going to prove that hf is an E∗- preserving order isomorphism that f = ghf .

First, let ag, bg ∈ Xg, where a, b ∈ X, such that aghf = bghf . Since π(f) = π(g),

we have aghg = bghg. Thus, ag = bg. Hence, hf is injective. Now, we let y ∈ Xf .

Then there is x ∈ X such that xf = y. Since xghg = xg and π(f) = π(g), we

have that xghf = xf , then there is xg ∈ Xg such that xghf = xf = y. Hence,

hf is onto. Next, we will show that hf is order preserving. Let ag, bg ∈ Xg, where

a, b ∈ X, with ag ≤ bg. Since ghg = g, we have aghg = ag ≤ bg = bghg. By lemma

3.5, there are a′, b′ ∈ X such that a′ ≤ b′, a′g = (agh)g and b′g = (bgh)g. Since

π(f) = π(g) and f ∈ OT (X), aghf = a′f ≤ b′f = bghf . Finally, we are going to

show that hf is E∗ - preserving. Let x1, x2 ∈ Xg. Then x1h = xx1 and x2h = xx2 . So,

xx1 ∈ [x1]g
−1 and xx2 ∈ [x2]g

−1. Since (x1, x2) ∈ E, [x1] = [x2], so xx2 ∈ [x1]g
−1. Since

E(f) = E(g), xx1 , xx2 ∈ [xm]f
−1 for some xm ∈ X/E. Hence, x1h, x2h ∈ [xm]f

−1.

Thus, x1hf, x2hf ∈ [xm] implying (x1hf, x2hf) ∈ E. Conversely, we assume that
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(x1hf, x2hf) ∈ E. Let A0 ∈ X/E such that x1hf, x2hf ∈ A0. Then x1h, x2h ∈

A0f
−1. Since E(f) = E(g), we have x1h, x2h ∈ Amg

−1 for some Am ∈ X/E. So,

xx1 , xx2 ∈ Amg
−1. Then xx1g, xx2g ∈ Am implying x1, x2 ∈ Am. Thus (x1, x2) ∈ E.

Lemma 3.7. Let f, g ∈ OE(X). Assume that π(f) = π(g). Then Xf = Xg. In

particular, a subset of X is minimal in Xf if and only if it is minimal in Xg.

Proof. To show that Xf ⊆ Xg, let Y ∈ Xf . Then Y = Xh for some h ∈ OE(X) with

hf = f . Thus, for any x ∈ X, since π(f) = π(g) and (xh)f = xf , we have that

(xh)g = xg. Consequently, hg = g, which implies that Y = Xh ∈ Xg. So, Xf ⊆ Xg.

Similarly, we obtain that Xg ⊆ Xf . Hence, Xf = Xg.

Theorem 3.8. Let f, g ∈ OE(X) and let Yf and Yg be minimal subsets in Xf and

Xg, respectively. Then (f, g) ∈ D if and only if there exist E∗-preserving order

isomorphism h : Yf → Yg and ψ : Xf → Xg such that g|Yg = hfψ.

Proof. Assume that (f, g) ∈ D. There is γ ∈ OE(X) such that (f, γ) ∈ L and

(γ, g) ∈ R. Since (γ, g) ∈ R, by Theorem 3.1, π(γ) = π(g). By Lemma 3.7, Yg is a

minimal subfence in Xγ. Since (f, γ) ∈ L, by Theorem 3.3, there is an E∗-preserving

order isomorphism h : Yg → Yf such that γ|Yg = hf . Since (γ, g) ∈ R, by Theorem

3.1 and Lemma 3.6, there is an E∗-preserving order isomorphism ψ : Xγ → Xg such

that g = γψ. Since (f, γ) ∈ L, it is easy to see that Xγ = Xf , so the domain of ψ is

Xf . Notice that g|Yg = γ|Ygψ = hfψ.

Conversely, assume that there exist E∗-preserving order isomorphisms h : Yg → Yf

and ψ : Xf → Xg such that g|Yg = hfψ. Let γ := fψ ∈ OE(X). Since γ = fψ and

γψ−1 = f , (γ, f) ∈ R. By Theorem 3.1 and Lemma 3.7, Yf is a minimal subfence

in Xγ. Since g|Yg = hfψ = hγ, we have that (g, γ) ∈ L by Theorem 3.3. Hence,

(f, g) ∈ D.
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Chapter 4

The characterization of Green’s

equivalences for regular elements

In chapter 4, we focus on the characterization of Green’s equivalences on the semi-

group OE(X) for regular elements. The definition of regular element has been intro-

duced in chapter 2. We start this section with the relation L.

Theorem 4.1. Let f, g ∈ OE(X) be regular. Then (f, g) ∈ L if and only if Xf = Xg.

Proof. Assume that (f, g) ∈ L. Then there exist h, k ∈ OE (X) such that hf = g

and kg = f . Thus, Xf ⊆ Xhf = Xg and Xg ⊆ Xkg = Xf . Then Xg = Xf .

Conversely, assume that Xf = Xg. Since g is regular, there exists h ∈ OE (X) such

that g = ghg. We define γ : X → X by xγ = y, where y ∈ ran (gh) and yg = xf .

First, we will show that γ is well-defined, that is, we will show that for each x ∈ X,

there exists a unique y ∈ ran (gh) such that yg = xf . Since Xf = Xg = (Xgh) g,

the existence is clear. Next, let y1, y2 ∈ ran (gh) be such that y1g = y2g. Since

y1, y2 ∈ ran (gh), there exist a1, a2 ∈ X such that y1 = a1gh and y2 = a2gh. Then

y1 = a1gh = a1ghgh = y1gh = y2gh = a2ghgh = a2gh = y2. Similarly, for any

x1, x2 ∈ X and y1, y2 ∈ ran (gh) such that y1g = x1f and y2g = x2f , we also

have that x1 ≤ x2 implies y1 ≤ y2, and (x1, x2) ∈ E implies (y1, y2) ∈ E. Hence,

γ ∈ OE (X). Moreover, it is easy to see that γg = f . Similarly, we can also show
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that g = δf for some δ ∈ OE (X). Therefore, (f, g) ∈ L.

The immediate consequence of the Theorem 3.1 and Theroem 4.1 is the charac-

terization of H. Since H = L ∩R, we get the following theorem.

Theorem 4.2. Let f, g ∈ OE(X) be regular. Then (f, g) ∈ H if and only if Xf =

Xg, π(f) = π(g) and E(f) = E(g).

Finally, we present the characterization ofD - equivalence for two regular elements

in the following theorem.

Theorem 4.3. Let f, g ∈ OE (X) be regular. Then (f, g) ∈ D if and only if there

exists ϕ : Xg → Xf such that, for all x, y ∈ Xg, the following conditions hold :

1. x ≤ y if and only if xϕ ≤ yϕ;

2. (x, y) ∈ E if and only if (xϕ, yϕ) ∈ E.

Proof. Assume that (f, g) ∈ D. Then there exists h ∈ OE (X) such that (f, h) ∈ L

and (h, g) ∈ R. Since (h, g) ∈ R, there is γ ∈ OE (X) such that h = gγ. Since

(f, h) ∈ L, we have Xf = Xh, so ran
(
γ|ran(g)

)
⊆ Xh = Xf . We will show that

γ|ran(g) is a bijection satisfying conditions (1) and (2). Since h = gγ, we have |Xh| =

|Xgγ| ≤ |Xg|. Since Xf = Xh, we get that |Xf | ≤ |Xg|. Similarly, since (g, f) ∈ D,

we have that |Xg| ≤ |Xf |. Hence, |Xg| = |Xf |. Since Xf = Xh = Xgγ|ran(g), we

have that γ|ran(g) is surjective, which also implies that γ|ran(g) is bijective. Next, we

will show that γ|ran(g) satisfies condition (1). For a subset S of X ×X, let ≤ ∩S =

{(a, b) ∈ S|a ≤ b}. Notice that since γ|ran(g) is an order-preserving bijection, we can

define an injective map γ1 :≤ ∩ (Xg ×Xg) → ≤ ∩ (Xf ×Xf) by γ1(x, y) = xγ, yγ

for all x, y ∈ ≤ ∩ (Xg ×Xg). Since Xg and Xf are subfences of X and |Xg| = |Xf |,

we have that |≤ ∩ (Xg ×Xg)| = |≤ ∩ (Xf ×Xf)|. Therefore, γ1 is bijective, which

implies that γ satisfies condition (1). Finally, we will show that γ|ran(g) satisfies

condition (2). We know that γ|ran(g) is E- preserving. Now, let x1, x2 ∈ ran (g) be

such that (x1γ, x2γ) ∈ E. Since x1 = a1g and x2 = a2g for some a1, a2 ∈ X, we have
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(a1gγ, a2gγ) ∈ E. Then (a1h, a2h) ∈ E. Note that E(h) = Ah−1|A ∈ X/E,Ah−1 ̸= ∅.

Let a1h, a2h ∈ A0 for some A0 ∈ X/E. Then a1, a2 ∈ A0h
−1 ∈ E(h). Since E(h) =

E(g), There exists A1 ∈ X/E such that a1, a2 ∈ A1g
−1. Then a1g, a2g ∈ A1. Hence,

(a1g, a2g) ∈ E implying (x1, x2) ∈ E. Therefore, γ|ran(g) satisfies condition (2).

Conversely, let ϕ : Xg → Xf be a bijective function satisfying conditions (1) and

(2). Let h = gϕ. Since ϕ satisfies condition (1), h is order-preserving. Moreover,

since ϕ satisfies condition (2), h ∈ OE (X) and E (h) = E (g). Since ϕ is a bijection,

we have that π (h) = π (g) and Xh = Xf . Hence, by Theorem 3.1 and Theorem

4.1, we have that (h, g) ∈ R and (h, f) ∈ L, which implies that (f, g) ∈ D.
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