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The total domination game is played on a simple graph G with no

isolated vertices by two players, Dominator and Staller, who alternate choosing a

vertex in G. Each chosen vertex totally dominates its neighbors. In this game,

each chosen vertex must totally dominates at least one new vertex not totally

dominated before. The game ends when all vertices in G are totally dominated.

Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is

to prolong it as much as possible. The game total domination number is the

number of chosen vertices when both players play optimally, denoted by γtg(G)

when Dominator starts the game and denoted by γ′
tg(G) when Staller starts the

game. If a vertex v in G is declared to be already totally dominated, then we

denote this graph by G|v. A total domination game critical graph is a graph G for

which γtg(G|v) < γtg(G) holds for every vertex v in G. Additionally, if γtg(G) = k,

then G is called k-γtg-critical. In this thesis, we characterize some 4-γtg-critical

graphs.
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Chapter 1

Introduction

A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a set E(G) of

edges, where each edge is associated with an unordered pair of elements of V (G).

Two vertices are adjacent if there is an edge associated with them; they are also

the end vertices of the edge, and the edge is said to be incident to each of its end

vertices. A loop is an edge connecting a vertex to itself. Multiple edges are two

or more edges that are incident to the same two vertices. A graph without loops

or multiple edges is called a simple graph. In this thesis, we only consider simple

graphs.

Given a simple graph G and a subset S of some vertices in G, we say

that S is a dominating set of G if every vertex in G is in S or is adjacent to some

vertex in S. In this case, a vertex in G is dominated by some vertex in S. The

domination number of G is the minimum size of a dominating set of G, denoted

by γ(G). Domination in graphs is one of the most studied topics in graph theory

because many problems in real life can be modeled by domination in graphs. For

example, domination can be used in the transportation route planning, the security

system design, and the wireless network design. For an example of wireless network

design in a building, we want to install multiple access points where the internet
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signal covers all areas in the building and use as few access points as possible

to save costs and reduce maintenance. Then domination can be applied to solve

this kind of resource allocation problem. To solve the problem, we can model the

building using graph theory by representing each area (e.g. room) by a vertex and

two vertices are adjacent if the signal from an access point in one area can cover

the other. Then the minimum number of access points needed in this building is

equal to the domination number of the graph and the access point’s locations are

determined by a minimum dominating set of the graph.

A fundamental problem in domination is to find the domination number

of a graph but there is no known algorithm that can efficiently find the domination

number of every graph. However, researchers have found the formulas of many

families of graphs and produced many bounds of domination numbers. For more

details about domination, we refer the readers to the books by Haynes, Hedetniemi,

and Slater [14, 15] and the book by Haynes, Hedetniemi, and Henning [13]. In

addition to finding the domination numbers of graphs, the study of domination also

focuses on the problem of finding a minimum dominating set of the graph which

leads to finding an effective way to solve the corresponding problems in real life.

There is no known algorithm that can efficiently find a minimum dominating set

of every graph. Thus, another fundamental problem in domination is the process

of creating a small dominating set of a graph. In sense of a game, domination is a

solo game that is played on a graph by a single player who tries to add vertices,

one at a time, into a set until the set becomes a dominating set of the graph and

he wishes to make the set as small as possible. A simple natural strategy for this
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player may be to add a vertex with the greatest degree into the set until the set

becomes a dominating set. There are also other properties of graphs that can take

into consideration when creating a dominating set. However, these strategies do

not guarantee that the size of the dominating set will be smallest.

In 2010, Brešar, Klavžar, and Rall [5] developed domination into a com-

petitive game among two players. Both players alternate adding a vertex into the

same set until the set becomes a dominating set of the graph. One player, Domina-

tor, is the original player who wants to finish the game by making the dominating

set as small as possible, but the other player, Staller, has the opposite objective.

Choosing a vertex will make all vertices in its closed neighborhood dominated. A

vertex that can be chosen must dominate at least one new vertex. The game ends

when all vertices are dominated. The format of playing of both players is a process

of creating a dominating set of the graph so this is a game without winner or loser

but the players want to play optimally according to their objectives. Thus, the

resulting dominating set of the graph will depend on the strategy of both players.

We call this game domination game. In case both players play optimally, the size

of the dominating set of chosen vertices is called the game domination number. We

denoted by γg(G) when Dominator starts the game and denoted by γ′
g(G) when

Staller starts the game.

Given a graph G and a subset S of vertices, a partially dominated graph

G|S is G with a declaration that every vertex in S is already dominated, that is

they do not need to be dominated during the game. The resulting game domination

number is denoted by γg(G|S) or γ′
g(G|S) depending on who starts the game. In
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other words, the vertices in S are predominated.

Although the domination game was introduced not long ago, the topic

has been widely studied, and recently Brešar, Henning, Klavžar and Rall [4] pub-

lished a book that summarizes the results. Some fundamental results of the dom-

ination game include the following results. The relation between domination and

domination game is shown in [5]; that is γ(G) ≤ γg(G) ≤ 2γ(G)− 1 hold for every

graph G. The difference between two types of domination game of a graph is at

most 1 [6]. A key lemma called Continuation Principle [21] is used to give a short

proof of this result. It states the following. For a graph G and A,B ⊆ V (G)

with B ⊆ A, we have γg(G|A) ≤ γg(G|B) and γ′
g(G|A) ≤ γ′

g(G|B). Moreover,

many variations of the game are derived and studied [1, 2, 5, 8, 16]. In this thesis,

we study the total domination game which is a combination of two variations,

domination game and total domination.

Let G be a simple graph with no isolated vertex. Given a subset S of

vertices in G, we say that S is a total dominating set or S totally dominates G if

every vertex in G is adjacent to some vertex in S. In other words, a vertex in S

totally dominates its neighbors, but not itself. The total domination number of G

is the minimum size of a total dominating set of G, denoted by γt(G). We call

a minimum total dominating set a γt-set of G. Since each vertex cannot totally

dominate itself, graphs that contain an isolated vertex are not considered.

An application of total domination is the security system design. We

want to set up a team of security guards in a village where all areas are covered

and a guard is covered by at least one other guard. We first divide the village
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into smaller areas by considering all roads within the village. We will divide the

entire road into sections. Each security guard is responsible for the safety of all

members and all houses that are in the section or in the adjacent section, but we

require one other security guard to look after him. We can model the area of the

village to the graph by representing each section of the road by a vertex and two

vertices are adjacent if the two sections are adjacent. Selecting one vertex in the

graph means determining the main location of one security guard. The design is

still based on comprehensive safety and the least cost. We solve the problem on

the model graph by using total domination. We can conclude that the minimum

number of security guards is equal to the total domination number, and the main

locations of all security guards are determined by a minimum total domination set

of the graph. An example of finding the total domination number on the graph is

shown in Example 1.1.

Example 1.1. Let G be the graph in Figure 1.1. Observe that there is no subset

G :

a

b c d

e

fgh

Figure 1.1: Graph G

S of two vertices in G such that S totally dominates G. Thus, γt(G) ≥ 3. Since
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each vertex in {a, e, f, g, h} is adjacent to at least one vertex in {b, c, d} and b, d are

adjacent to c, we get that {b, c, d} is a total dominating set of G. Thus, γt(G) ≤ 3.

Hence, γt(G) = 3.

The total domination game is a game that is played on a graph G by

two players, Dominator and Staller, who alternate taking turns choosing a vertex

in G. Each chosen vertex must totally dominate at least one new vertex not totally

dominated before. Such vertices are called legal moves; otherwise they are illegal

moves. The game ends when the set of chosen vertices is a total dominating set.

Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is

to prolong it as much as possible. The game total domination number is the size

of the total dominating set of chosen vertices when both players play optimally,

denoted by γtg(G) when Dominator starts the game and denoted by γ′
tg(G) when

Staller starts the game.

This game was introduced by Henning, Klavžar and Rall [16] in 2015.

They showed that many techniques in domination game can be adapted to use

on total domination game and obtain many analogous results. It was proved that

the game total domination number of a graph can be bounded in terms of the

total domination number. The difference between the two types of game total

domination numbers of a graph is at most 1. This was proved by using the key

lemma called Total Continuation Principle. Henning, Klavžar and Rall [17] proved

that if G is a graph on n vertices in which every component contains at least

three vertices, then γtg(G) ≤ 4n/5 and γ′
tg(G) ≤ (4n + 2)/5. Dorbec, Henning
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and Renault [11] determined the game total domination number for paths and

cycles. Henning and Rall [19] showed that if G is a forest with no isolated vertex,

then γtg(G) ≤ γ′
tg(G) and the trees with equal total domination and game total

domination number are characterized.

A partially total dominated graph is the graph with a declaration that

some vertices are already totally dominated, that is they do not need to be totally

dominated during the game. A vertex that is already totally dominated can be a

legal move if it has some totally undominated neighbors. Given a graph G and a

subset S of vertices of G, let G|S be the partially total dominated graph that every

vertex in S has already been totally dominated. If S = {v} for some vertex v in G,

we write G|v instead of G|{v}. The game total domination number of G|S is the

number of optimal moves remaining on G|S. We use γtg(G|S) (or γ′
tg(G|S)) when

Dominator (or Staller) starts the game on G|S. Observe that γtg(G|S) ≤ γtg(G)

holds for any subset S of vertices in a graph G. When S contains only one vertex,

Iršič [20] showed that γtg(G|v) ≥ γtg(G)− 2 holds for every vertex v in G.

A critical graph with respect to a graph parameter and a graph operation

is a graph whose value of parameter changes if we make any change to the graph

using the specified operation, such as vertex removal, edge addition, etc. Criticality

can be used to prove many important results in graph theory such as Ore’s theorem

on the necessary condition of Hamiltonian graphs. The knowledge of structures of

critical graphs can lead to a general theorem describing general graph structures.

A critical graph with respect to the domination in [23] was presented

as follows: a graph is domination critical if adding any edge will decrease its
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domination number. In [7], the domination critical graph was presented with the

operation of removing a vertex. A graph is vertex domination-critical if removing

any vertex will decrease its domination number.

Critical graphs with respect to the domination and (total) domination

game were studied in several different operations such as vertex or edge removal

in [3, 10], which has the following results. The game domination number can be

increased or decreased by at most 2 when removing a vertex or an edge, and the

game total domination number can be decreased by at most 2 when removing a

vertex. By the Continuation Principle, γg(G) ≥ γg(G|v) for every vertex v in a

graph G. In 2015, Bujtás, Klavžar, and Košmrlj [9] introduced the definition of

domination game critical graphs with respect to predomination as follows. For a

graph G, we say that G is γg-critical if γg(G) > γg(G|v) for all v ∈ V (G). If G is

a γg-critical graph and γg(G) = k, then G is called k-γg-critical. The authors of

[9] proved that if v is a vertex of a graph G, then γg(G|v) ≥ γg(G)− 2. Moreover,

they also characterized k-γg-critical graph with k = 2, 3. A graph G is 2-γg-critical

if and only if γg(G) = 2 and every pair of vertices of G forms a dominating set.

For a graph G with maximum degree at most n−3, G is 3-γg-critical if and only if

there is no pair of vertices in G that have the same closed neighborhood, and for

any v ∈ V (G) there exists a vertex u of degree n− 3 that is not adjacent to v.

The concept of domination game critical graphs does not make sense

for Staller-start game. Suppose we define γ′
g-critical graphs analogously, that is,

a graph G is γ′
g-critical if γ′

g(G) > γ′
g(G|v) for all v ∈ V (G). Let G be a graph.

If there is an optimal first move u of Staller with degree at least one, then Staller
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can start on u in G|u and we get that γ′
g(G|u) ≥ 1 + γg(G|N [u]) = γ′

g(G). This

implies that graphs with no isolated vertex are not γ′
g-critical.

The total domination critical graphs were introduced by Henning, Klavžar,

and Rall [18] in 2018 as follows. A graph G is total domination game critical or

shortly γtg-critical, if γtg(G) > γtg(G|v) for every vertex v in G. If G is γtg-critical

and γtg(G) = k, then we say that G is k-γtg-critical. The authors characterized

γtg-critical graphs for cycles and paths and they also characterized k-γtg-critical

graphs when k = 2, 3. The results are as follows. A graph G is 2-γtg-critical if and

only if every pair of vertices in G is adjacent. A graph G of order n is 3-γtg-critical

if and only if there is no pair of vertices in G that share common neighborhood,

there is no vertex in G adjacent to every other vertex of G, and for every vertex

v of G of degree at most n− 3, there exists a vertex u of degree n− 2 that is not

adjacent to v.

In this thesis, we study the characterization of 4-γtg-critical graphs.

We proceed as follows. In the next chapter, we recall some definitions, notion

and some useful results. In chapter 3, we characterize disconnected 4-γtg-critical

graphs and show some properties of connected 4-γtg-critical graphs. In chapter

4, we characterize connected 4-γtg-critical graphs with diameter 4. In chapter 5,

we characterize some connected 4-γtg-critical graphs with diameter 3. In the last

chapter, we summarize all the results and state the remaining problem.



 

Chapter 2

Preliminaries

In this chapter, we recall some basic definitions and notation in graph theory and

some useful results in total domination game. For graph theory in general, we

follow the book [24] by West.

Definition 2.1. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). A graph G is connected if there is a path from any vertex to

any other vertex; otherwise, G is disconnected.

Definition 2.2. An isomorphism from a simple graph G to a simple graph H is a

bijection f : V (G) → V (H) such that for each u, v ∈ V (G), uv ∈ E(G) if and only

if f(u)f(v) ∈ E(H). If there is an isomorphism from G to H, then we say that G

is isomorphic to H, written G ∼= H.

Definition 2.3. Let G be a graph and u, v be two vertices in G. The distance from

u to v, written dG(u, v) or simply d(u, v), is the length of a shortest path from u

to v. The diameter of G, written diam(G), is maxu,v∈V (G) d(u, v). The eccentricity

of a vertex u, written ecc(u), is maxv∈V (G) d(u, v).

Definition 2.4. Let G and H be two disjoint graphs. The disjoint union of graphs

G and H is denoted by G+H.
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In this study, it is useful to draw a graph by arranging the vertices

according to their distances to a fixed vertex. For a vertex x in a graph G and

i ≥ 0, we let Γi(x) be the subgraph of G induced by all vertices which have

distance i to x in G. That is G is the disjoin union of subgraphs Γi(x) where i ∈

{0, 1, 2, ..., ecc(x)} together with some edges joining vertices in Γi(x) and Γi+1(x)

for i ∈ {0, 1, 2, ..., ecc(x)− 1}.

Definition 2.5. Let G be a graph. The order of G is the number of vertices of G.

The degree of the vertex v in G, written deg(v), is the number of edges incident to

v. If deg(v) = 0, then v is said to be an isolated vertex. If deg(v) = 1, then v is

said to be a pendent or leaf.

Definition 2.6. A path Pn is a graph of order n whose vertices can be listed in the

order v1, v2, ..., vn such that vi and vi+1 are adjacent where i = 1, 2, ..., n − 1 and

no other pair of vertices are adjacent. A cycle Cn with n ≥ 3 is a graph obtained

from Pn by adding an edge connecting the two leaves.

Definition 2.7. An independent set in a graph is a set of pairwise nonadjacent

vertices. A graph G is said to be a bipartite graph if V (G) is the union of two

disjoint (possibly empty) independent sets X and Y . Then we say that X,Y are

partite sets of G and (X,Y ) is a bipartition of G.

Definition 2.8. A complete graph Kn is a graph of order n which every pair of

distinct vertices are adjacent. A complete bipartite graph is a bipartite graph such

that two vertices are adjacent if and only if they are in different partite sets. We

denote a complete bipartite graph with two partite sets of sizes m and n by Km,n.
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Definition 2.9. A matching in a graph is a set of non-loop edges with no common

end vertices. A perfect matching in a graph G is a matching M such that every

vertex in G is incident to exactly one edge in M .

Definition 2.10. Let G and H be two disjoint graphs. The join of disjoint graphs

G and H, written G ∨H, is the graph obtained from the disjoint union of graphs

G and H by adding the edges uv for all u ∈ V (G) and v ∈ V (H).

Definition 2.11. The chain G0∨G1∨G2∨...∨Gd of disjoint graphs G0, G1, G2, ..., Gd

is the graph obtained from the disjoint union G0 + G1 + G2 + ... + Gd by adding

the edges uv for all i ∈ {0, 1, 2, ..., d− 1}, u ∈ V (Gi) and v ∈ V (Gi+1).

Definition 2.12. The open neighborhood NG(v) of v in a graph G is the set of

vertices adjacent to v; that is NG(v) = {u ∈ V (G)|uv ∈ E(G)}. The closed

neighborhood of v is NG[v] = NG(v) ∪ {v}. We simply write N(v) and N [v] if the

graph is understood. If N [v] = V (G), then v is said to be a universal vertex in G.

Definition 2.13. Let G be a graph. Two vertices u and v of G are twins in G

if their closed neighborhoods are the same, that is N [u] = N [v]. G is said to be

twin-free if it does not contain any twins. Two vertices u and v of G are open twins

in G if their open neighborhoods are the same, that is N(u) = N(v). G is said to

be open twin-free if it does not contain any open twins.

Next, we recall some important results on total domination game. By

the definition of total domination game, we have the following lemma.

Lemma 2.14. Let G be a graph. Then the following statements hold.
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(i) For Dominator-start game, if Dominator has a strategy that can end the

game within k moves, then γtg(G) ≤ k.

(ii) For Staller-start game, if Dominator has a strategy that can end the game

within k moves, then γ′
tg(G) ≤ k.

(iii) For Dominator-start game, if Staller has a strategy that can end the game

with at least k moves, then γtg(G) ≥ k.

(iv) For Staller-start game, if Staller has a strategy that can end the game with

at least k moves, then γ′
tg(G) ≥ k.

By Lemma 2.14, we can prove a bound for game total domination num-

ber by devising an appropriate strategy for a player.

Example 2.15. Let G be the graph in Figure 1.1. For Dominator-start game, if

Dominator starts on c, then only three vertices a, c and e are not totally dominated

by c. Thus, at most 3 more moves are played to totally dominated them. By this

strategy of Dominator, the game will end within 4 moves so by Lemma 2.14(i),

γtg(G) ≤ 4. Next, we show that Staller has a strategy to end the game using at

least 4 moves as follows. By symmetry, Dominator has 3 ways to start the game.

Case 1: Dominator starts on a. Then Staller responds by playing on e. Now, a

and e are not totally dominated yet. Since a and e cannot be totally dominated

at the same time, at least 2 more moves are played to totally dominate them. In

this case, at least 4 moves are played in this game.

Case 2: Dominator starts on b. Then Staller responds by playing on e and only two
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vertices b and e are not totally dominated. Since they cannot be totally dominated

at the same time, at least 2 more moves are played to totally dominate them. In

this case, at least 4 moves are played in this game.

Case 3: Dominator starts on c. Then Staller responds by playing on g and only two

vertices a and e are not totally dominated. Since they cannot be totally dominated

at the same time, at least 2 more moves are played to totally dominate them. In

this case, at least 4 moves are played in this game.

By this strategy of Staller, at least 4 moves are played in this game. By Lemma

2.14(iii), γtg(G) ≥ 4. Hence, we conclude that γtg(G) = 4.

In addition, we can use the comparison of some vertices or use the value

of the total domination number to bound the game total domination number of a

graph, see in the following theorem.

Theorem 2.16. [16] Let G be a graph with no isolated vertex. Then γt(G) ≤

γtg(G) ≤ 2γt(G)− 1.

Theorem 2.17. [16](Total Continuation Principle) Let G be a graph and let A

and B be subsets of V (G). If B ⊆ A, then γtg(G|A) ≤ γtg(G|B) and γ′
tg(G|A) ≤

γ′
tg(G|B).

The Total Continuation Principle implies that whenever two vertices u

and v are legal moves and N(u) ⊆ N(v), Dominator prefers to play on v over u

but Staller prefers to play on u over v.

The next result shows that predominating an open twin does not change

the game total domination number of a graph.
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Lemma 2.18. [18] If u and v are open twins in a graph G, then γtg(G) =

γtg(G|u) = γtg(G|v).

As an immediate consequence of Lemma 2.18, we have the following

result.

Corollary 2.19. [18] Every γtg-critical graph is open twin-free.

By Total Continuation Principle, we have a fundamental property of

γtg-critical graphs.

Lemma 2.20. [18] If G is a γtg-critical graph, then a neighbor of a vertex v is not

an optimal first move of Dominator in the Dominator-start game on G|v.

For an example of a 4-γtg-critical graph, we consider the graph G in

Figure 1.1. From Example 2.15, we know that γtg(G) = 4. Next, we show that

for each v ∈ V (G), Dominator has a strategy to end the game in G|v within 3

moves. By symmetry, we can assume that v ∈ {a, b, c}. In G|a, Dominator starts

on c. Then only two vertices c and e are not totally dominated. Thus, at most 2

more moves are played to totally dominate the graph. In G|b, Dominator starts

on b. Then only three vertices d, e and f are not totally dominated, and Staller is

forced to totally dominate two new vertices in his move so this game ends within

3 moves. In G|c, Dominator starts on c. Then only two vertices a and e are not

totally dominated. Thus, at most 2 more moves are played to totally dominate the

graph. By this strategy of Dominator, we get that at most 3 moves are played in

G|v for any v ∈ V (G). By Lemma 2.14(i), we have γtg(G|v) ≤ 3 for any v ∈ V (G).

Therefore, G is 4-γtg-critical.
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Total domination game critical graphs were characterized for the cycles

and paths. We will see that C6 is the only 4-γtg-critical cycle and there are no

4-γtg-critical path.

Theorem 2.21. [11] For n ≥ 3,

γtg(Cn) =


⌊
2n+1

3

⌋
− 1; n ≡ 4 (mod 6)

⌊
2n+1

3

⌋
; otherwise.

Theorem 2.22. [18] For n ≥ 3, the cycle Cn is γtg-critical if and only if n

(mod 6) ∈ {0, 1, 3}.

By Theorem 2.21, γtg(Cn) = 4 if and only if n = 6. Thus, by Theorem

2.22, C6 is the only cycle that is 4-γtg-critical.

Theorem 2.23. [11] For n ≥ 2,

γtg(Pn) =


⌊
2n
3

⌋
; n ≡ 5 (mod 6)

⌈
2n
3

⌉
; otherwise.

Theorem 2.24. [18] For n ≥ 2, the path Pn is γtg-critical if and only if n

(mod 6) ∈ {2, 4}.

By Theorem 2.23, γtg(Pn) = 4 if and only if n = 6 so by Theorem 2.24,

P6 is not a 4-γtg-critical graph. Thus, Pn is not 4-γtg-critical for any n.



 

Chapter 3

Some properties of 4-γtg-critical graphs

In this chapter, we present some general properties of 4-γtg-critical graphs and

characterize disconnected 4-γtg-critical graphs. First, we show that Staller must

end the game on a 2k-γtg-critical graph by totally dominating one new vertex.

Lemma 3.1. Let G be a 2k-γtg-critical graph. If both players play optimally in G,

then the last move of the game always totally dominates exactly one new vertex.

Proof. Suppose that the last move of the game totally dominates two new vertices

x and y. It implies that N(x) = N(y); otherwise Staller can choose not to end

the game in the 2k-th move. This contradicts with Corollary 2.19 where G is open

twin-free. Hence, exactly one new vertex is totally dominated in the last move of

the game.

To study 4-γtg-critical graphs, we sometimes need to consider several

partially total dominated graphs of the form G|v simultaneously. Thus, we will

use the following notation to specify moves (not necessary optimal). Let di be the

i-th move of Dominator’s in a graph G and let si be the i-th move of Staller’s in

G. For a vertex v in G, we let dvi be the i-th move of Dominator’s in G|v and let

svi be i-th move of Staller’s in G|v.
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If there is a vertex v in a graph G such that γtg(G|v) = 1, then v is a

universal vertex in G. In this case, γtg(G) = 2, and thus, G is not 4-γtg-critical.

Lemma 3.2. Let G be a graph. If there exists a vertex v in G such that γtg(G|v) =

2, then γtg(G) ≤ 3.

Proof. Let v be a vertex in G with γtg(G|v) = 2 and let dv1 be an optimal first

move for Dominator in G|v. If dv1 = v, then every legal move of Staller’s is played

in N(v). Thus, {u, v} is a total dominating set of G for every u ∈ N(v) such that

N(u)\N [v] ̸= ∅. We consider a total dominating set {u, v} for some u ∈ N(v)

such that N(u)\N [v] ̸= ∅. Then the game in G can be ended within 3 moves if

Dominator starts on v and then plays u. Therefore, γtg(G) ≤ 3. If dv1 ∈ N(v),

then γtg(G) = γtg(G|v) = 2. Assume that d(dv1, v) ≥ 2. If d(dv1, v) > 2, then v is a

legal move of Staller’s in G|v. Since dv1 is not totally dominated by v and Staller

can play v, we have γtg(G|v) ≥ 3. It is a contradiction. Thus, d(dv1, v) = 2 so at

least one vertex u in N(v) is totally dominated by dv1. Since Staller can play u

and γtg(G|v) = 2, we get that {dv1, u} is a total dominating set of G. Therefore,

γtg(G) ≤ 3.

From the above results, we have the following conclusion.

Corollary 3.3. Let G be a 4-γtg-critical graph. Then γtg(G|v) = 3 for all v ∈

V (G).

By Theorem 2.16, we have the following lemma.

Lemma 3.4. Let G be a 4-γtg-critical graph. Then γt(G) ∈ {3, 4}.
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Next, we characterize disconnected 4-γtg-critical graphs.

Theorem 3.5. Let G be a disconnected graph. Then G is 4-γtg-critical if and only

if G ∼= Km +Kn for some m,n ≥ 2.

Proof. Clearly, Km +Kn is 4-γtg-critical for all m,n ≥ 2. Assume that G is 4-γtg-

critical. Since we require at least two vertices to totally dominate a component,

we get that G has exactly 2 components H1 and H2. Let v ∈ V (H1). Since G is

4-γtg-critical, we have γtg(H1|v) = 1. Then v is a universal vertex in H1. Since v is

an arbitrary vertex in H1, we have H1
∼= Km for some m ≥ 2. Similarly, H2

∼= Kn

for some n ≥ 2. Hence, G ∼= Km +Kn.

For the rest of the thesis, we only consider connected graphs. We de-

termine the possible value of the diameters of connected 4-γtg-critical graphs.

Lemma 3.6. Let G be a connected 4-γtg-critical graph. Then 2 ≤ diam(G) ≤ 4.

Proof. If diam(G) = 1, then G is a complete graph which has γtg(G) = 2.

This contradicts with G being 4-γtg-critical. Thus, diam(G) ≥ 2. Suppose that

diam(G) ≥ 5. Let x ∈ V (G) with eccG(x) ≥ 5. Let v be a vertex in Γ2(x). We

show that Staller has a strategy to end the game in G|v by using at least four

moves as follows. If Dominator starts in {x} ∪ Γ1(x) ∪ Γ2(x), then Staller plays

in Γ5(x). If Dominator starts elsewhere, then Staller plays x. By this strategy,

at least four moves are needed to end the game. Therefore, γtg(G|v) ≥ 4. This

contradicts with Corollary 3.3. Therefore, diam(G) ≤ 4.
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Examples of 4-γtg-critical graphs with diameters 2, 3 and 4 are shown

in Figure 3.1.

Figure 3.1: Examples of 4-γtg-critical graphs with diameters 2,3 and 4, respectively.



 

Chapter 4

4-γtg-critical graphs with diameter 4

In this chapter, we characterize 4-γtg-critical graphs with diameter 4.

Theorem 4.1. Let G be a connected graph with diameter 4. Then G is 4-γtg-

critical if and only if G ∼= K1 ∨Kn1 ∨Kn2 ∨Kn3 ∨K1 for some positive integers

n1, n2, n3 where n2 ≥ 2.

Proof. First, we suppose that G ∼= K1 ∨Kn1 ∨Kn2 ∨Kn3 ∨K1 for some positive

integers n1, n2, n3 where n2 ≥ 2. Then there exists a vertex x in G such that

ecc(x) = 4,Γ1(x) ∼= Kn1 ,Γ2(x) ∼= Kn2 ,Γ3(x) ∼= Kn3 ,Γ4(x) ∼= K1 and each vertex

in Γi(x) is adjacent to every vertex in Γi+1(x) for i ∈ {0, 1, 2, 3}. We show that

γtg(G) = 4. If Dominator starts in G by playing in Γ2(x), then exactly three

vertices are not yet totally dominated. Thus, at most four moves are played in G.

It implies that γtg(G) ≤ 4. On the other hand, we show that Staller has a strategy

that can end the game in G using at least four moves as follows. If Dominator

plays d1 in {x} ∪ Γ4(x), then Staller totally dominates d1. If Dominator plays d1

in Γ1(x) ∪ Γ3(x), then Staller responds in {x} ∪ Γ4(x) to totally dominate d1. In

these two cases, either Γ3(x) ∪ Γ4(x) or {x} ∪ Γ1(x) is totally undominated and

at least two more moves are played to end the game. If Dominator plays d1 in

Γ2(x), then Staller responds in Γ2(x) to totally dominate d1. It implies that x and
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Γ4(x) are totally undominated. Since x and Γ4(x) cannot be totally dominated

simultaneously, at least two more moves are played to end the game. Thus, at

least four moves are played in G. Hence, γtg(G) ≥ 4. Consequently, γtg(G) = 4.

Next, we show that γtg(G|v) ≤ 3 for every v ∈ V (G). Let v ∈ V (G). If

v is in {x} ∪ Γ4(x), then Dominator starts in Γ2(x). It implies that exactly two

vertices are not yet totally dominated. Otherwise, Dominator starts on v. In either

case, after Staller’s first move, exactly one vertex is not yet totally dominated. By

this strategy of Dominator’s, the number of moves in G|v is at most three. Thus,

γtg(G|v) ≤ 3, implying that G is a 4-γtg-critical graph.

To prove the other direction, we assume that G is a 4-γtg-critical graph.

Let x be a vertex in G such that ecc(x) = 4. We show that Γ1(x) ∼= Kn1 ,Γ2(x) ∼=

Kn2 ,Γ3(x) ∼= Kn3 ,Γ4(x) ∼= K1 and each vertex in Γi(x) is adjacent to every vertex

in Γi+1(x) for i ∈ {0, 1, 2, 3}.

Claim 1. Γ4(x) ∼= K1.

Proof. Let v be a vertex in Γ2(x). We consider an optimal first move dv1 for

Dominator in G|v. If dv1 is in Γ1(x)∪{x}, then Staller can play in Γ4(x). If dv1 is in

Γ3(x)∪Γ4(x), then Staller can play x. From the two cases, Dominator cannot end

this game in the third move. Since γtg(G|v) = 3, we get that dv1 is in Γ2(x). Then

the remaining two moves must be played in Γ1(x) and Γ3(x) to totally dominate

x and vertices in Γ4(x), respectively. Therefore, Staller cannot play a vertex in

{x} ∪ Γ2(x) ∪ Γ4(x), which implies that the following properties hold

• dv1 totally dominates all vertices in Γ1(x) ∪ Γ3(x).
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• There is no edge in Γ4(x).

• Each legal move sv1 in Γ3(x) must totally dominate all vertices in Γ4(x).

Since G is open twin-free, we have |V (Γ4(x))| = 1.

Next, we let w be the vertex in Γ4(x).

Claim 2. Each vertex in Γ3(x) is adjacent to w.

Proof. Suppose that there is a vertex v in Γ3(x) such that v is not adjacent to w.

We show that Staller has a strategy that can end the game in G|v using at least

four moves as follows. If dv1 is in Γ1(x) ∪ {x}, then Staller plays w so at least two

more moves are played to totally dominate dv1 and w. If dv1 = w, then Staller plays

x. If dv1 is in Γ2(x) and v is a legal move, then Staller plays v. If dv1 is in Γ2(x) and

v is an illegal move, then Staller plays in Γ2(x) to totally dominate dv1. In these

three cases at least two more moves are played to totally dominate x and w. If dv1 is

in Γ3(x) and w is totally dominated, then Staller plays w. If dv1 is in Γ3(x) but w is

not totally dominated, then Staller plays in Γ3(x) to totally dominate w. In these

two cases at least two moves are played to totally dominate x and Γ1(x). From all

cases, the number of moves in G|v is at least four. It implies that γtg(G|v) ≥ 4,

a contradiction. Therefore N(w) = V (Γ3(x)) and each vertex in Γ3(x) is adjacent

to w.

Claim 3. Each vertex in Γ2(x) is adjacent to every vertex in Γ1(x) ∪ Γ3(x).

Proof. We show that each vertex in Γ1(x) is adjacent to every vertex in Γ2(x).

Suppose that there are two vertices v, y such that v is in Γ1(x), y is in Γ2(x) and v
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is not adjacent to y. Then we have |Γ1(x)| > 1 since y is adjacent to some vertex in

Γ1(x). We show that Staller has a strategy that can end the game in G|v using at

least four moves as follows. We consider an optimal first move dv1 of Dominator’s

in G|v. If dv1 = v, then Staller plays in Γ1(x) to totally dominate y. If dv1 is in

Γ1(x)\{v}, then Staller plays x. In these two cases at least two more moves are

played to totally dominate Γ3(x) and w. If dv1 is in Γ3(x), then Staller plays x so

at least two more moves are played to totally dominate Γ3(x) and x. If dv1 = w,

then Staller plays x so at least two more moves are played to totally dominate x

and w. It remains to consider the case that dv1 is in Γ2(x). Suppose that Γ2(x)

does not contain any edges. Since γtg(G|v) = 3, dv1 must totally dominate all

vertices in (Γ1(x) ∪ Γ3(x))\{v}. It implies that for each a ∈ V (Γ1(x)), there is

b ∈ V (Γ3(x)) such that N(a) ∪ N(b) contains all vertices in Γ2(x). Also for each

b ∈ V (Γ3(x)), there is a ∈ V (Γ1(x)) such that N(a) ∪ N(b) contains all vertices

in Γ2(x). We now consider an optimal first move dy1 of Dominator’s in G|y. If dy1

is not in Γ2(x), then Staller can totally dominate dy1 without playing in Γ2(x) so

at least two more moves are played to totally dominate all remaining vertices. If

dy1 is in Γ2(x) but dy1 does not totally dominate some vertex in Γ1(x)∪ Γ3(x), then

Staller can totally dominate that vertex by playing in {x} ∪ Γ4(x) so at least two

more moves are played to totally dominate x and Γ4(x). In these two cases, at

least four moves are played in this game. Since γtg(G|y) = 3, the move dy1 must be

played in Γ2(x) and it totally dominates all of Γ1(x)∪Γ3(x). Now in a game on G,

assume that Dominator starts at d1 = dy1. Since Γ2(x) does not contain any edges,

Staller is forced to play in Γ1(x) or Γ3(x). By the above results, Dominator can
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end the game on G in his second move. It implies that γtg(G) ≤ 3, a contradiction.

Therefore, Γ2(x) contains some edge. It implies that |Γ2(x)| ≥ 2. Since dv1 is in

Γ2(x) in G|v, Staller can respond by playing in Γ2(x). So at least two more moves

are played to totally dominate x and w. From all cases, we get that γtg(G|v) ≥ 4.

This contradicts with Corollary 3.3. Hence, each vertex in Γ2(x) is adjacent to

every vertex in Γ1(x). Similarly, each vertex in Γ2(x) is adjacent to every vertex

in Γ3(x).

Claim 4. Γ2(x) contains at least one edge.

Proof. Suppose that V (Γ2(x)) = {v}. If Dominator starts at d1 = v in G, then

only three vertices x, v and w are not totally dominated by d1. By Claim 3, Staller

cannot totally dominate only v. It implies that Dominator can end this game in

his second move. Thus, γtg(G) ≤ 3, a contradiction. Therefore |Γ2(x)| ≥ 2. Since

G is open twin-free and by Claim 3, we get that Γ2(x) contains some edge.

Claim 5. Γ1(x) and Γ3(x) are complete graphs.

Proof. Suppose there are nonadjacent vertices u and v in Γ1(x). We show that

Staller has a strategy that can end the game in G|v using at least four moves

as follows. If dv1 = w, then Staller plays x. If dv1 is in Γ2(x), then by Claim 4,

Staller can play in Γ2(x). In these two cases at least two more moves are played

to totally dominate x and w. If dv1 is in Γ3(x), then Staller plays w. Since v

cannot totally dominate u, at least two more moves are played to totally dominate

{x} ∪ Γ1(x) ∖ {v}. If dv1 is in Γ1(x), then by assumption, Staller can play x. So
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at least two more moves are played to totally dominate Γ3(x) and w. By this

strategy, the number of moves in G|v is at least four. It implies that γtg(G|v) ≥ 4,

which is a contradiction. Therefore, Γ1(x) is a complete graph. Similarly, Γ3(x) is

a complete graph.

Claim 6. Γ2(x) is a complete graph (of order at least 2).

Proof. Let v be an arbitrary vertex in Γ2(x). From the proof of Claim 1, we have

an optimal first move dv1 of Dominator’s in G|v is in Γ2(x). By Claim 3, dv1 totally

dominates all vertices in Γ1(x)∪Γ3(x). We show that v is adjacent to some vertex

in Γ2(x). If v is isolated in Γ2(x), then we can assume that dv1 ̸= v and dv1 is

incident to an edge in Γ2(x) by using Total Cotinuation Principle and Claim 4. In

this case, Staller can play in Γ2(x) to totally dominate dv1. It implies that at least

two more moves are played to totally dominate x and w. Thus, γtg(G|v) ≥ 4, a

contradiction. Therefore there is a vertex v′ in Γ2(x) that is adjacent to v.

Suppose there is a vertex u in Γ2(x) such that u and v are not adjacent.

We consider an optimal first move du1 of Dominator’s in G|u. If du1 = u, then

Staller plays v′ to totally dominate v. Otherwise, Staller plays in Γ2(x) to totally

dominate du1 . So at least two more moves are played to totally dominate x and w.

It implies that γtg(G|v) ≥ 4, which is a contradiction. Hence, Γ2(x) is a complete

graph.

Thus, G ∼= K1∨Kn1∨Kn2∨Kn3∨K1 for some positive integers n1, n2, n3

where n2 ≥ 2.



 

Chapter 5

Some 4-γtg-critical graphs with diameter 3

In this chapter, we characterize some 4-γtg-critical graphs with diameter 3. By

Lemma 3.4, a 4-γtg-critical graph has total domination number 3 or 4.

Lemma 5.1. Let G be a connected 4-γtg-critical graph. If γt(G) = 4, then

diam(G) = 3. Furthermore, if diam(G) ∈ {2, 4}, then γt(G) = 3.

Proof. Let v ∈ V (G) with ecc(v) = diam(G). Suppose γt(G) = 4. Then we have

ecc(v) ≥ 2. By Corollary 3.4, γtg(G|v) = 3. Assume that dv1 and dv2 are the optimal

moves for Dominator in G|v. Since G is γtg-critical, by Lemma 2.20 dv1 is not played

in N(v). If either sv1 or dv2 is in N(v), then {dv1, sv1, dv2} is a total dominating set

of G. It is a contradiction with γt(G) = 4. Thus, Staller cannot play in N(v). It

means that dv1 totally dominates all vertices in Γ2(v). Since dv1 is not in Γ1(v), we

get that dv1 is in Γ3(v). Hence, diam(G) ≥ 3. If diam(G) = 4, then by Theorem

4.1, we have γt(G) = 3. Thus, diam(G) = 3. By Lemma 3.4 and Lemma 3.6, the

second statement of the lemma is equivalent to the first one.

5.1 4-γtg-critical graph G with diam(G) = 3 and γt(G) = 4

Theorem 5.2. Let G be a graph with diam(G) = 3 and γt(G) = 4. Then G is

4-γtg-critical if and only if G is obtained from the complete bipartite graph Kn,n
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for some n ≥ 3 by removing a perfect matching.

Proof. First, we assume that G is 4-γtg-critical. Let x ∈ V (G) with ecc(x) = 3.

We consider that dx1 is an optimal move of Dominator’s in G|x. As in the proof of

Lemma 5.1 (with v = x), the following results hold in G|x.

• dx1 is in Γ3(x).

• dx1 totally dominates all vertices in Γ2(x).

• Staller cannot play in N(x) = V (Γ1(x)).

Consequently, Γ1(x) does not contain any edges. Let dx1 = y. Then V (Γ2(x)) ⊆

N(y), implying that d(y, z) = 1 or 2 for any vertex z in Γ3(x) and z ̸= y. Next, we

consider an optimal move dy1 of Dominator’s in G|y. Since d(x, y) = 3 = diam(G),

we get that ecc(y) = 3. Similarly with dx1 in G|x, we have dy1 totally dominates all

vertices in Γ2(y) in G|y. Since Γ1(x) does not contain any edges and ecc(y) = 3,

each vertex in Γ1(x) is adjacent to some vertex in Γ2(x). Since y is adjacent to

every vertex in Γ2(x), we get that dy1 is not in Γ2(x) and V (Γ1(x)) ⊆ V (Γ2(y)).

Similar to dx1 , the move dy1 totally dominates all vertices in Γ2(y), and hence Γ1(x).

If there is a vertex z in Γ3(x) such that d(y, z) = 2, then dy1 must totally dominate

z so dy1 is in Γ2(x) to totally dominate Γ1(x) ∪ {z} and dy1 is adjacent to y, a

contradiction. We conclude that N [y] = V (Γ2(x) ∪ Γ3(x)) so Γ2(y) = Γ1(x) and

Γ3(y) = {x}. Since dy1 is in Γ3(y), we have dy1 = x. If Γ3(x) contains at least two

vertices, then Staller can respond in Γ3(x)\{y}. It implies that at least two more

moves are played to totally dominate x and some vertices in Γ3(x) so γtg(G|y) ≥ 4,
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a contradiction. Therefore V (Γ3(x)) = {y}, and thus Γ1(y) = Γ2(x). Similar to

Γ1(x), the subgraph Γ1(y) does not contain any edges. Since γtg(G) = 4, we get

that |V (Γ1(x))| > 1 and |V (Γ2(x))| > 1. So far, each of Γ1(x) and Γ2(x) contains

at least two vertices but has no edges, and |Γ3(x)| = 1.

Since γt(G) = 4 and each of Γ1(x) and Γ2(x) has no edges, there are

two vertices u, v such that u ∈ V (Γ1(x)), v ∈ V (Γ2(x)) and d(u, v) = 3. Then

ecc(u) = 3. From the above argument, we have V (Γ3(u)) = {v}. In G|u, we have

du1 = v. Since Γ1(x) has no edges, V (Γ1(x))\{u} ⊆ V (Γ2(u)), which implies that

du1 totally dominates all vertices in Γ1(x) except u. It means that v is adjacent to

every vertex in Γ1(x) except u. Similarly, u is adjacent to every vertex in Γ2(x)

except v. Therefore, |V (Γ1(x))| = |V (Γ2(x))|. Let n = |V (Γ1(x))| + 1. Hence, G

is obtained from Kn,n for some n ≥ 3 by removing a perfect matching.

Conversely, we let n ≥ 3 and a graph G be the graph obtained from Kn,n

by removing a perfect matching. Clearly diam(G) = 3 and γt(G) = γtg(G) = 4.

Let (X,Y ) be a bipartition of G. We show that γtg(G|v) ≤ 3 for any v ∈ V (G).

Let v ∈ V (G). Without loss of generality, we assume that v ∈ X. Then there

exists w ∈ Y such that v is not adjacent to w. We show that Dominator has a

strategy to end the game in G|v within 3 moves as follows. Dominator starts on

w. After this move, all vertices in X are totally dominated. Since there is no edge

in Y , Staller is forced to play in X to totally dominate |Y |− 1 vertices in Y . Then

the number of moves in G|v is at most three, implying that γtg(G|v) ≤ 3. Hence,

G is a 4-γtg-critical graph.
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5.2 4-γtg-critical graph G with diam(G) = 3 and γt(G) = 3

For a graph G with diam(G) = 3 and γt(G) = 3, we characterize 4-γtg-critical

graph G when there is a vertex v in G such that some optimal first move of

Dominator’s in G|v is not in any γt-set of G.

Lemma 5.3. Let G be a graph with diam(G) = 3 and γt(G) = 3. Assume that

there are vertices v, x ∈ V (G) such that x is an optimal first move of Dominator’s

in G|v and x is not in any γt-set of G. If G is 4-γtg-critical, then the following

conditions hold.

(i) V (Γ3(x)) = {v} and N(v) = V (Γ2(x)).

(ii) Γ1(x) contains at least one edge and Γ2(x) does not contain any edges.

(iii) Each vertex in Γ1(x) is adjacent to every vertex in Γ2(x) except one vertex.

(iv) Each vertex in Γ2(x) is not adjacent to at least one vertex in Γ1(x).

(v) |V (Γ1(x))| ≥ |V (Γ2(x))| ≥ 2.

Proof. Let v, x ∈ V (G) such that x is an optimal first move of Dominator’s in G|v

and x is not in any γt-set of G. We show that G satisfies the conditions (i) to (v).

Claim 7. For each u ∈ V (G), there is no total dominating set of size 3 of G|u

that contains both x and a neighbor of u (distinct from x).

Proof. Clear by assumption.

Claim 8. V (Γ3(x)) = {v} and each vertex in N(v) is not adjacent to any vertex

in Γ2(x).
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Proof. Recall that x is an optimal first move of Dominator’s. If v = x or v is

in Γ2(x), then Staller can play sv1 on a vertex in Γ1(x) that is adjacent to v.

Since γtg(G|v) = 3, Dominator can end the game in G|v with dv2. It implies that

{x, sv1, dv2} is a total dominating set of G|v that contains sv1 ∈ N(v), a contradiction

with Claim 7. Therefore, v ̸= x and v is not in Γ2(x). Since x /∈ N(v) and

diam(G) = 3, we have v is in Γ3(x).

If {v} ⫋ Γ3(x), then Staller can respond with a vertex sv1 in Γ3(x)\{v}

and make γtg(G|v) ≥ 4, a contradiction. Thus, V (Γ3(x)) = {v}. Since γtg(G|v) =

3, dv1 = x and by Claim7, we get that every vertex in N(v) is not a legal response for

Staller in G|v. So every vertex in N(v) is not adjacent to any vertices in Γ2(x).

Claim 9. There is no vertex in Γ1(x) that is adjacent to every vertex in Γ2(x).

Furthermore, |V (Γ1(x))| ≥ 2 and |V (Γ2(x))| ≥ 2.

Proof. Suppose that there is a vertex u in Γ1(x) that is adjacent to every vertex

in Γ2(x). By Claim 8, V (Γ3(x)) = {v}, and we get that {x, u, w} is a γt-set of G

where w ∈ N(v), a contradiction with the assumption. So there is no vertex in

Γ1(x) that is adjacent to every vertex in Γ2(x). It implies that |V (Γ1(x))| ≥ 2 and

|V (Γ2(x))| ≥ 2.

Claim 10. V (Γ2(x)) = N(v). Moreover, there is no vertex in Γ2(x) that is adjacent

to every vertex in Γ1(x), and Γ2(x) does not contain edges.

Proof. Suppose that there is a vertex in Γ2(x) that is not adjacent to v. By

Claim 8, each vertex in N(v) is not adjacent to any vertices in Γ2(x). By Total
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Continuation Principle, there is no vertex in N(v) that is adjacent to every vertex

in Γ1(x); otherwise this vertex is a neighbor of v that is no worse than the optimal

first move x in G|v.

In G|x, we consider an optimal first move dx1 of Dominator’s. If dx1 = x,

then Staller can play sx1 in Γ1(x). Since γtg(G|x) = 3, Dominator can end the

game in G|v with dx2 so {x, sx1 , dx2} is a total dominating set of G|x that contains

sx1 ∈ N(x). It contradicts with Claim 7. Therefore, dx1 is in {v} ∪ Γ2(x).

Suppose that Staller cannot respond with x. Then dx1 is in Γ2(x) and

totally dominates all vertices in Γ1(x). Since there is no vertex in N(v) that is

adjacent to every vertex in Γ1(x), we have dx1 /∈ N(v). Since each vertex in N(v)

is not adjacent to any vertices in Γ2(x), Staller can play v. It implies that at least

two more moves are played to totally dominate dx1 and v, which contradicts with

γtg(G|x) = 3. Thus, Staller can always play sx1 on x.

If dx1 is in N(v), then Staller plays x. Since γtg(G|x) = 3 and by Claim 8,

Dominator can end the game by playing in Γ1(x) to totally dominate all vertices

in Γ2(x). This contradicts with Claim 9. Thus, dx1 /∈ N(v). So Staller plays x

and there is a vertex u in Γ2(x) such that u /∈ N(v) and u has not been totally

dominated. It implies that at least two more moves are played to totally dominate

u and v. Thus, γtg(G|x) ≥ 4, a contradiction. We conclude that v is adjacent to

every vertex in Γ2(x). It implies that there is no vertex in Γ2(x) that is adjacent to

every vertex in Γ1(x). By Claim 8, we get that Γ2(x) does not contain edges.

Claim 11. Γ1(x) contains at least one edge.
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Proof. Suppose that Γ1(x) does not contain any edges. Since each γt-set of G has

size 3, its induced subgraph is isomorphic to the path P3 or the cycle C3. Since

Γ2(x) does not contain edges and x is not in any γt-set of G, each γt-set of G must

contain one vertex in Γ1(x) that is adjacent to every vertex in Γ2(x) or contain

one vertex in Γ2(x) that is adjacent to every vertex in Γ1(x). It contradicts with

Claim 9 or Claim 10. Thus, Γ1(x) contains at least one edge.

Claim 12. Each vertex in Γ1(x) is adjacent to every vertex in Γ2(x) except one

vertex.

Proof. Suppose that there is a vertex u in Γ1(x) that is not adjacent to at least

two vertices y and z in Γ2(x). In G|u, we consider an optimal first move du1 of

Dominator’s. Since |V (Γ1(x))| ≥ 2, we have du1 ̸= v; otherwise γtg(G|u) ≥ 4.

If du1 is in Γ1(x) but du1 ̸= u, then Staller responds with x. By Claim

9, there is no vertex in Γ1(x) that is adjacent to every vertex in Γ2(x) so at

least two more moves are played to totally dominate v and its neighbor(s). Thus,

γtg(G|u) ≥ 4, a contradiction.

If du1 = u, then v, y, z are not totally dominated by u. Since Γ2(x) does

not contain any edges, v and one of {y, z} cannot be totally dominated simulta-

neously. Since γtg(G|u) = 3, Staller cannot totally dominate exactly one of {y, z}.

It implies that N(y) = N(z) so y and z are open twins. This contradicts with

Corollary 2.19. Thus, du1 is not in Γ1(x). Therefore, du1 is in Γ2(x).

If Staller can respond with su1 = x, then an optimal move du2 is in Γ1(x).

Since γtg(G|u) = 3, we have {du1 , x, du2} is a total dominating set of G|u that
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contains x ∈ N(u). It contradicts with Claim 7. So Staller cannot play x. It

means that du1 totally dominates every vertex in Γ1(x) except u. Without loss of

generality, we can assume that du1 = y. Then V (Γ1(x))\{u} ⊆ N(y).

In G|y, we consider an optimal first move dy1 for Dominator. If dy1 = x,

then Staller responds with v. So at least two more moves are played to totally

dominate v and x, a contradiction. If dy1 = u, then Staller plays x. So at least

two more moves are played to totally dominate v and z, a contradiction. If dy1

is in Γ2(x), then Staller plays x. Since γtg(G|y) = 3, an optimal move dy2 is in

Γ1(x). It means that there is a vertex w in Γ1(x) such that N(w) contains all

vertices in Γ2(x) except y. Since u is not adjacent to z, we have u ̸= w. Since

V (Γ1(x))\{u} ⊆ N(y), we get that w ∈ N(y). It is a contradiction. Thus, each

vertex in Γ1(x) is adjacent to every vertex in Γ2(x) except one vertex.

Claim 13. |V (Γ1(x))| ≥ |V (Γ2(x))|

Proof. Suppose that |V (Γ1(x))| < |V (Γ2(x))|. By Claim 12, each vertex in Γ1(x)

is not adjacent one vertex in Γ2(x). It implies that at least one vertex in Γ2(x)

must be adjacent to every vertex in Γ1(x), a contradiction with Claim 10. Hence,

|V (Γ1(x))| ≥ |V (Γ2(x))|.

Thus, the conditions (i) to (v) hold.

Theorem 5.4. Let G be a graph with diam(G) = 3 and γt(G) = 3. Assume that

there are v, x ∈ V (G) such that x is an optimal first move of Dominator’s in G|v

and x is not in any γt-set of G. If |V (Γ1(x))| = |V (Γ2(x))|, then G is 4-γtg-critical

if and only if G is obtained from Kn,n for some n ≥ 3 by removing a perfect
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matching and adding at least one edge to one of the partite sets and the resulting

set contains at least one isolated vertex.

Proof. Assume that |V (Γ1(x))| = |V (Γ2(x))| = k and G is 4-γtg-critical. Let

V (Γ1(x)) = {y1, y2, ..., yk} and V (Γ2(x)) = {z1, z2, ..., zk}. Suppose that there is a

vertex in Γ2(x) that is not adjacent to at least two vertices in Γ1(x). Without loss of

generality, we can assume that y1, y2 are not adjacent to z1. Since z1 is adjacent to

some vertex in Γ1(x), we have k = |V (Γ1(x))| ≥ 3. For each 3 ≤ i ≤ k, by Lemma

5.3(iii), yi is adjacent to every vertex in Γ2(x) except one vertex. Without loss of

generality, for i ≥ 2 we can assume that yi is not adjacent to one of {z1, z2, ..., zi−1}.

It implies that zk is adjacent to every vertex in Γ1(x), a contradiction with Lemma

5.3(iv). Therefore, each vertex in Γ2(x) is adjacent to every vertex in Γ1(x) except

one vertex.

From Lemma 5.3 and the above result, we get that G is obtained from

Kn,n with bipartition (Γ1(x) ∪ {v},Γ2(x) ∪ {x}) by removing a perfect matching

in (Γ1(x),Γ2(x)) and adding at least one edge in Γ1(x). Note that v is an isolated

vertex in the partite set Γ1(x) ∪ {v}.

To prove the other direction, let n ≥ 3 and (Y, Z) be a bipartition of

Kn,n. Assume that G is obtained from Kn,n by removing a perfect matching, and

adding at least one edge to Y so that vertex y ∈ Y is isolated in G[Y ]. Let z be

the vertex in Z that is not adjacent to y. We show that G is 4-γtg-critical. Clearly

γtg(G) ≤ 4.

We show that Staller has a strategy to end this game in G using at least
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four moves as follows. We consider Dominator’s first move in G. If Dominator

starts on one of {y, z}, then Staller plays the other vertex in {y, z}. Since y and

z cannot be totally dominated together, we get that at least two more moves are

played to totally dominate y and z. If Dominator starts in Z\{z}, then Staller

plays z. So every vertex in Z is not totally dominated. Since there is no vertex

that is adjacent to all of Z, we get that at least two more moves are played to

totally dominate Z. If Dominator starts in Y \{y}, then Staller plays z. So y and

one vertex in Z are not totally dominated. Since y does not have neighbor in Y ,

we get that at least two more moves are played. From all cases, we get that at least

four moves are played to finish the game in G. Thus, γtg(G) ≥ 4. Consequently,

γtg(G) = 4.

It remains to show that γtg(G|u) ≤ 3 for any u ∈ V (G). Let u ∈ V (G).

We show that Dominator has a strategy to end the game in G|u within 3 moves

as follows. We consider four possibilities.

• Case u = y. Then Dominator starts on z.

• Case u ∈ Y \{y}. Then there is a vertex w in Z such that w is adjacent to

every vertex in Y except u. Dominator starts on w.

From these two cases, after Dominator makes his first move, every ver-

tex in Y is totally dominated and at most two more moves are played to totally

dominate Z.

• Case u = z. Then Dominator starts on y.
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• Case u ∈ Z\{z}. Then there is a vertex w in Y such that w is adjacent to

every vertex in Z except u. Dominator starts on w.

From these two cases, after Dominator makes his first move, every vertex

in Z is totally dominated. By assumption on G, Dominator can end the game in

his second move. By this strategy of Dominator’s, the number of moves in G|u is

three. It implies that γtg(G|u) ≤ 3. Hence G is 4-γtg-critical. This completes the

proof for Theorem 5.4.

Theorem 5.5. Let G be a graph with diam(G) = 3 and γt(G) = 3. Assume that

there are v, x ∈ V (G) such that x is an optimal first move of Dominator’s in G|v

and x is not in any γt-set of G. If |V (Γ1(x))| > |V (Γ2(x))|, then G is 4-γtg-critical

if and only if the following conditions hold.

(i) V (Γ3(x)) = {v} and N(v) = V (Γ2(x)) which contains at least two vertices.

(ii) Γ1(x) contains at least one edge and Γ2(x) does not contain any edges.

(iii) Each vertex in Γ1(x) is adjacent to every vertex in Γ2(x) except one vertex.

(iv) Each vertex in Γ2(x) is not adjacent to at least one vertex in Γ1(x).

(v) If y is a vertex in Γ2(x), then y is adjacent to every vertex in Γ1(x) except

one vertex or for every vertex in Γ1(x) that is not adjacent to y, its closed

neighborhood contains every vertex in Γ1(x).

Proof. Assume that |V (Γ1(x))| > |V (Γ2(x))|. To prove the forward direction, we

assume that G is 4-γtg-critical. By Lemma 5.3, conditions (i)-(iv) hold. It remains
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to show that condition (v) holds. Let y be a vertex in Γ2(x). By condition (iv), y

is not adjacent to at least one vertex in Γ1(x), say z.

Suppose that V (Γ1(x)) ̸⊆ N [z]. Then we show that y is adjacent to

every vertex in Γ1(x) except z. We consider G|z. By Lemma 2.20, we have dz1 ̸= x.

If dz1 = v, then Staller responds with x so at least two more moves are played to

totally dominate x and v, a contradiction. If dz1 is in Γ1(x), then one vertex in Γ2(x)

and at least one vertex in Γ1(x) are not totally dominated. Staller can respond with

x so at least two more moves are played to totally dominate v and the undominated

vertex in Γ2(x), a contradiction. Thus, dz1 is in Γ2(x). By condition (iii) and

Lemma 2.20, we get that dz1 = y. Suppose V (Γ1(x)\{z}) ⊈ N(y). Then Staller

can respond with x. So x and every vertex in Γ2(x) are not totally dominated.

Since γtg(G|z) = 3, Dominator can end this game by playing in Γ1(x). Thus,

there is a vertex in Γ1(x) that is adjacent every vertex in Γ2(x). It contradicts

with condition (iii). Hence y is adjacent to every vertex in Γ1(x) except z. Thus,

condition (v) holds.

To prove the other direction, we assume that conditions (i) to (v) hold

and show that G is 4-γtg-critical. First, we show that γtg(G) = 4. Clearly γtg(G) ≤

4. We show that Staller has a strategy to end this game in G using at least 4 moves

as follows. We consider Dominator’s first move in G. If Dominator starts on a

vertex in {x, v}, then Staller plays the other vertex in {x, v}. Since x and v cannot

be totally dominated by the same vertex, we get that at least two more moves

are played to totally dominate x and v. If Dominator starts in Γ1(x), then Staller

responds with x so one vertex in Γ2(x) and v are not totally dominated. Since
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Γ2(x) does not contains any edges, we get that two more moves are played to

totally dominate them. If Dominator starts in Γ2(x), then Staller responds with

x so x and every vertex in Γ2(x) are not totally dominated. By (iii), at least two

more moves are played to totally dominate x and Γ2(x). From all cases, we get

that at least four moves are played to finish the game in G. Thus, γtg(G) ≥ 4.

Consequently, γtg(G) = 4.

It remains to show that γtg(G|u) ≤ 3 for any u ∈ V (G). Let u ∈ V (G).

We show that Dominator has a strategy to end the game in G|u within 3 moves

as follows. We consider four possibilities.

Case 1 : u = v. Then Dominator starts on x. If Staller totally dominates x, then

Dominator can end this game by playing v. Otherwise, Staller plays v so

Dominator can end this game by playing to totally dominate x.

Case 2 : u is in Γ2(x). By (iv), there is a vertex w in Γ1(x) that is not adjacent to u.

Then Dominator starts on w and every vertex in Γ2(x) are totally dominated.

Subcase 2.1 For every vertex in Γ1(x) that is not adjacent to u, its closed neighbor-

hood contains every vertex in Γ1(x). In particular, V (Γ1(x)) ⊆ N [w].

Then after Dominator plays w, only two vertices w and v are not totally

dominated so at most two more moves are played to totally dominate

them.

Subcase 2.2 u is adjacent to every vertex in Γ1(x) except w. If Staller responds with

x, then Dominator can end this game by playing u. If Staller responds
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with a vertex in Γ2(x), then Dominator can end this game by playing

x.

Assume that Staller plays su1 in Γ1(x). If su1 totally dominates w, then

Dominator can end this game by playing u. Otherwise, we can assume

that su1 totally dominates w′ ̸= w. By (iii), there is a vertex u′ in Γ2(x)

that is not adjacent to w′. Then u′ ̸= u. We consider u′ in Γ2(x).

Suppose that there are at least two vertices in Γ1(x) that are not ad-

jacent to u′. By (v), V (Γ1(x)) ⊆ N [w′] so w′ is totally dominated by

du1 = w. It implies that u′ is adjacent to every totally undominated

vertices in Γ1(x). Thus, Dominator can end this game by playing u′.

Case 3 : u is in Γ1(x). Then du1 /∈ {v, x}; otherwise Staller can make the game last

more than three moves. By (iii), u is not adjacent to exactly one vertex in

Γ2(x), say w. By (v), we consider two possibilities.

Subcase 3.1 w is adjacent to every vertex in Γ1(x) except u.

Then Dominator starts on w. After Staller’s response, at least one

vertex in Γ2(x) is totally dominated. By (iii), Dominator can end this

game by playing in Γ1(x).

Subcase 3.2 w is not adjacent to at least two vertices in Γ1(x).

Then by (v), V (Γ1(x)) ⊆ N [u]. Dominator starts on u and only two

vertices v, w are not totally dominated so at most two more moves are

played to totally dominate them.
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Case 4 : u = x. Then Dominator starts on v. If Staller responds in Γ2(x), then

Dominator can end this game by playing x. If Staller responds with x, then

only v is not totally dominated so Dominator can end this game in his next

move. Assume that Staller plays su1 in Γ1(x). Then su1 totally dominates at

least one vertex in Γ1(x), say y. By (iii), there is a vertex z in Γ2(x) that is

not adjacent to y. If su1 is not adjacent to z, then by (v), V (Γ1(x)) ⊆ N [su1 ].

Thus, only two vertices su1 and v are not totally dominated so Dominator

can totally dominate them in his next move.

By this strategy of Dominator’s, at most 3 moves are played in G|u. It

implies that γtg(G|u) ≤ 3. Hence G is 4-γtg-critical. This completes the proof for

Theorem 5.5.

In Figure 5.1, the graphs G1 and G2 are examples of 4-γtg-critical graphs

that correspond to Theorem 5.5.

x v

G1 :

x v

G2 :

Figure 5.1: Examples of 4-γtg-critical graphs with diameter 3 and total domination

numbers 3 that correspond to Theorem 5.5.



 

Chapter 6

Conclusions

In this chapter, we summarize all the results obtained in this study. We start

by characterizing the disconnected 4-γtg-critical graphs. The disconnected 4-γtg-

critical graph is the graph obtained from the union of two nontrivial complete

graphs.

Theorem 3.5. Let G be a disconnected graph. Then G is 4-γtg-critical if and

only if G ∼= Km +Kn for some m,n ≥ 2.

For a 4-γtg-critical connected graph G, we have 2 ≤ diam(G) ≤ 4. Next,

the 4-γtg-critical graph with diameter 4 is characterized.

Theorem 4.1. Let G be a connected graph with diam(G) = 4. Then G is

4-γtg-critical if and only if G ∼= K1 ∨Kn1 ∨Kn2 ∨Kn3 ∨K1 for some positive

integers n1, n2, n3 where n2 ≥ 2.

Recall Lemma 3.4, if G is 4-γtg-critical, then γt(G) ∈ {3, 4}. The next

result shows the characterization of 4-γtg-critical graph G with diam(G) = 3 and

γt(G) = 4.

Theorem 5.2. Let G be a graph with diam(G) = 3 and γt(G) = 4. Then G is

4-γtg-critical if and only if G is obtained from the complete bipartite graph Kn,n
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for some n ≥ 3 by removing a perfect matching.

For a 4-γtg-critical graph G with diam(G) = 3 and γt(G) = 3, we

characterize such graph when it has a vertex v in G such that some optimal first

move of Dominator in G|v is not in any γt-set of G.

Theorem 5.4. Let G be a graph with diam(G) = 3 and γt(G) = 3. Assume that

there are v, x ∈ V (G) such that x is an optimal first move of Dominator’s in G|v

and x is not in any γt-set of G. If |V (Γ1(x))| = |V (Γ2(x))|, then G is

4-γtg-critical if and only if G is obtained from Kn,n for some n ≥ 3 by removing a

perfect matching and adding at least one edge to one of the partite sets and the

resulting set contains at least one isolated vertex.

Theorem 5.5. Let G be a graph with diam(G) = 3 and γt(G) = 3. Assume that

there are v, x ∈ V (G) such that x is an optimal first move of Dominator’s in G|v

and x is not in any γt-set of G. If |V (Γ1(x))| > |V (Γ2(x))|, then G is

4-γtg-critical if and only if the following conditions hold.

(i) V (Γ3(x)) = {v} and N(v) = V (Γ2(x)) which contains at least two vertices.

(ii) Γ1(x) contains at least one edge and Γ2(x) does not contain any edges.

(iii) Each vertex in Γ1(x) is adjacent to every vertex in Γ2(x) except one vertex.

(iv) Each vertex in Γ2(x) is not adjacent to at least one vertex in Γ1(x).

(v) If y is a vertex in Γ2(x), then y is adjacent to every vertex in Γ1(x) except

one vertex or for every vertex in Γ1(x) that is not adjacent to y, its closed

neighborhood contains every vertex in Γ1(x).
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Therefore, we are left with one more case for 4-γtg-critical graphs with

diameter 3, that is to characterize 4-γtg-critical graph G with γt(G) = 3, and for

every vertex v in G, every optimal first move of Dominator’s in G|v is in some

γt-set of G.

The graphs in Figure 6.1 are examples of 4-γtg-critical graphs that cor-

respond to the conditions in this case.

Figure 6.1: Examples of other 4-γtg-critical graphs with diameter 3.

For a 4-γtg-critical graph G with diameter 2, we show that for every

vertex v in G, every optimal first move of Dominator’s in G|v is in some γt-set of

G.

Proposition 6.1. Let G be a 4-γtg-critical graph with diam(G) = 2. If v is a

vertex in G, then every optimal first move of Dominator’s in G|v is in some γt-set

of G.
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Proof. By Lemma 5.1, we have γt(G) = 3. Let v ∈ V (G). In G|v, we consider

that dv1 is optimal. By Lemma 2.20, we have dv1 /∈ N(v). Since diam(G) = 2

and γtg(G|v) = 3, we get that ecc(v) = 2. If dv1 = v, then Staller can respond

with sv1 in Γ1(v) to totally dominate some vertices of Γ2(v). If dv1 is in Γ2(v), then

Staller can respond with sv1 in Γ1(v) to totally dominate dv1. Note that sv1 ∈ N(v)

and it cannot end the game; otherwise {dv1, sv1} is a total dominating set of size 2.

Therefore, {dv1, sv1, dv2} is a γt-set of G.

Figure 6.2 shows examples of 4-γtg-critical graphs with diameter 2.

Figure 6.2: Examples of 4-γtg-critical graphs with diameter 2.

Lastly, we summarize the remaining problem in this topic.

Problem 6.2. Characterize 4-γtg-critical graph G where γt(G) = 3, diam(G) ∈

{2, 3}, and for every vertex v in G, every optimal first move of Dominator’s in G|v

is in some γt-set of G.
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