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ABSTRACT 

630720018 : Major MATHEMATICS 
Keyword : Deep Learning, Image Registration, Diffeomorphic Transformation, U-Net, Chest X-
rays Image, Unsupervised Learning 

MR. Apinan SANONGSIN : A New Deep Learning Model for Diffeomorphic 
Deformable Image Registration Problems Thesis advisor : Assistant Professor Noppadol 
Chumchob, Ph.D. 

Diffeomorphic deformable image registration is an essential technique in medical 
image analysis, aiming to find a smooth and invertible mapping between images to align their 
corresponding anatomical structures. The importance of diffeomorphic transformations lies in 
their ability to preserve topology, maintain smooth and continuous deformations, and allow for 
invertibility, ensuring accurate and physiologically plausible results. 

Traditional variational methods have been used for diffeomorphic deformable image 
registrations; however, they can be computationally expensive and require extensive parameter 
tuning. In contrast, deep learning approaches have shown remarkable success in various image 
processing tasks due to their ability to learn complex and hierarchical features. These deep 
learning models can offer improved efficiency, robustness, and generalization in image 
registration tasks. 

In this thesis, we present a novel diffeomorphic deformable image registration model 
that incorporates a novel diffeomorphic regularization loss with an unsupervised learning 
strategy. Diffeomorphic regularization enforces smooth and invertible transformations, leading to 
improved registration results. Our proposed model outperforms other models using diffeomorphic 
regularization losses in terms of the relative sum of square differences and maintains the 
topological properties of images, demonstrating its potential in various medical imaging 
applications. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Image Registration

Image registration is a process in computer vision and image processing that involves

aligning and overlaying two or more images of the same scene taken at different times,

from different viewpoints, or by different sensors. The goal is to bring these images into

a common coordinate system so that they can be compared, analyzed, or combined to

create a new image with enhanced information content [5].

Image registration has numerous applications across various fields, enhancing our

understanding of complex data and improving decision-making processes. In medical

imaging, it enables the integration of images from different modalities like MRI, CT, and

PET scans, providing a comprehensive view of a patient’s anatomy and pathology for

more accurate diagnoses and treatment planning [30, 31, 36]. In remote sensing, image

registration facilitates the monitoring of land-use changes, urban growth, and natural

disasters by merging images taken at different times [12]. It also plays a crucial role

in computer vision and robotics, assisting in tasks such as object recognition, tracking,

and navigation by combining images from multiple sensors or viewpoints. These di-

verse applications demonstrate the importance and versatility of image registration in

addressing real-world challenges.

In this thesis, we focus on the process of image registration involving a pair of

images: a reference image and a template image. Image registration entails aligning

the template image with the reference image by applying a geometric transformation,

making the template image to become similar to the reference image, as depicted in
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Figure 1.1: The transformed template image and the reference image are spatially
matched according to an optimal geometric transformation.

Figure 1.1.

The objective of image registration is to search for a suitable transformation that

enables the template image to become similar to the reference image, as previously men-

tioned. This transformation should be meaningful, such as a deformable transformation,

which may not be a linear transformation like translation, rotation, scaling, or shearing.

As illustrated in Figure 1.1, the curved line demonstrates the transformation of the grid

lines. Additionally, the transformation can involve diffeomorphic transformations that

are smooth and invertible, further enhancing the registration process’s accuracy and

relevance.

Over the past few decades, various traditional methods, such as variational ap-

proaches that are non-learning-based, have achieved success in image registration, as

demonstrated by examples in [8, 10, 17, 20, 37, 42]. However, since these variational

methods rely on mathematical models and optimization techniques to establish the

transformation, they often face significant limitations in practical applications due to

their intensive and time-consuming computational optimization requirements.

Recently, with the rapid advancements in technology, deep learning (DL) methods

that aim to emulate human brain processes have been employed in various fields and

problems, including image registration, as reviewed in [19, 22]. Deep learning techniques
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can learn to address the problem through advanced training processes and then apply

pre-trained models, which are models trained using suitable datasets and algorithms.

These models can predict solutions in practical applications within a few seconds or

even less, significantly enhancing efficiency.

While deep learning models are efficient, they sometimes face challenges. Some

of these models do not account for diffeomorphic transformations, which are essential

for specific medical image registration tasks, such as lung image registration between

inhalation and exhalation. Consequently, the results may be inaccurate and unsuitable

for practical applications.

Considering the previously discussed information, the objective of this thesis is to

propose a novel deep-learning model for diffeomorphic deformable image registration

problems. This new model specifically incorporates diffeomorphic transformations to

enhance accuracy and applicability.

1.2 Thesis Outline

This thesis focuses on the development of a novel diffeomorphic deformable image reg-

istration model and its evaluation on synthetic and medical images. The outline of the

thesis is as follows:

1. Introduction

• Briefly introduces the topic of image registration, its importance in medical

imaging, and the challenges of deformable image registration.

• Presents the motivation and objective of the study, which is to develop a

deep-learning model for diffeomorphic deformable image registration.

• Provides an overview of the thesis organization.
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2. Mathematical Frameworks and Deep Learning Models for Image Registration

• Mathematics for Image Registration: Explains the fundamental concepts and

equations involved in image registration.

• Image Registration Frameworks: Reviews image registration frameworks, fo-

cusing on data similarity measures and regularization techniques.

• Deep Learning Models: Presents an overview of deep learning approaches for

image registration, focusing on convolutional neural networks (CNNs).

– Convolution Layer: Describes the function of convolution layers in CNNs.

– Activation Functions: Explores various activation functions used in CNNs.

– Pooling Layer: Explains the role of pooling layers in CNNs.

• Loss Function: Discusses the concept of loss functions in the context of image

registration, focusing on supervised and unsupervised learning techniques.

3. Proposed Diffeomorphic Deformable Image Registration Model

• Introduction: Introduces the proposed deep learning model for diffeomorphic

deformable image registration.

• Neural Network Architecture: Describes the architecture of the proposed

deep learning model for diffeomorphic deformable image registration.

– Architecture Components: Details the components of the neural network

architecture.

– Deformation Prediction: Explains how the deformation is predicted from

the network output.

• Loss Function: Presents the components of the proposed loss function, in-

cluding data similarity, smoothness regularization, and diffeomorphic regu-
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larization.

• Discretization: Discusses the discretization of the loss function terms and

their computation.

4. Experiments and Results of Synthetic Images

• Synthesizing Image Pairs: Describes the process of generating synthetic image

pairs for evaluation.

• Dataset Splitting: Explains how the synthetic image dataset is split into

training, validation, and test sets.

• Evaluation Metrics: Introduces the evaluation metrics used for assessing the

performance of the proposed deep learning model on synthetic images.

• Experimental Setup for Synthetic Images: Details the implementation and

parameter settings for synthetic image experiments.

• Results for Synthetic Images: Registration results of the proposed DL model

on the validation set and test set.

5. Experiments and Results of Real Medical Images

• Dataset: Introduces the medical image dataset used for evaluation.

• Pre-processing: Describes the pre-processing steps applied to the medical

image dataset.

• Evaluation Metrics: The same evaluation metrics used in synthetic images

are also used in medical images.

• Experimental Setup for Medical Images: Details the implementation and

parameter settings for medical image experiments.
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• Results for Medical Images: Results of registration using the test set and

validation set for the proposed deep learning model.

6. Conclusion and Future Work

• Conclusion: Summarizes the registration results of the proposed deep learning

model for diffeomorphic deformable image registration.

• Future Work: Outlines potential avenues for future research.



 

CHAPTER 2

MATHEMATICAL FRAMEWORKS AND DEEP LEARNING

MODELS FOR IMAGE REGISTRATION

In this chapter, we will discuss various concepts and methods related to image regis-

tration using deep learning techniques. We will begin by exploring the mathematical

definitions of images and diffeomorphic transformations, which play a crucial role in im-

age registration. Next, we will delve into the image registration framework, highlighting

the key components and steps involved in aligning images.

Subsequently, we will provide an overview of deep learning models, focusing on CNNs

and their components, such as convolutional layers, activation functions, and pooling

layers. These building blocks allow CNNs to learn complex patterns and features from

input images, making them particularly well-suited for image registration tasks. Lastly,

we will discuss utilizing deep learning models to solve image registration problems by

minimizing a loss function, which quantifies the difference between the predicted outputs

and the actual target values.

2.1 Mathematics for Image Registration

We consider an image as a function mapping a two-dimensional spatial coordinate to

an intensity value. We have a reference image R and a template image T for image

registration. These images can be represented as functions R, T : Ω → R, where Ω ⊂ R2

denote the spatial domain of the images and R represents the range of intensity values.

The goal is to find a transformation φ : Ω → Ω such that the transformed template

image T (φ(x)) aligns with the reference image R(x), where x = (x1, x2) ∈ Ω are the

spatial coordinates.
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In our study, we consider the transformation φ to be a diffeomorphic deformable

transformation. For deformable transformations, we define the displacement or defor-

mation u(x) = (u1(x), u2(x)), which represents the movement of image coordinates.

Consequently, φ(x) = x+ u(x), and solving for φ(x) or u(x) is equivalent. As for dif-

feomorphic transformations, the Jacobian determinant, denoted as det(∇φ(x)), where

∇φ(x) is the Jacobian matrix of the transformation at point x ∈ Ω, should be positive

[2, 21]. That is for each x ∈ Ω,

det(∇φ(x)) =

∣∣∣∣∣∣∣∣
∂φ1(X)
∂x1

∂φ1(X)
∂x2

∂φ2(X)
∂x1

∂φ2(X)
∂x2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂(x1+u1(X))

∂x1

∂(x1+u1(X))
∂x2

∂(x2+u2(X))
∂x1

∂(x2+u2(X))
∂x2

∣∣∣∣∣∣∣∣
=

(
∂u1(x)

∂x1
+ 1

)(
∂u2(x)

∂x2
+ 1

)
−
(
∂u1(x)

∂x2

)(
∂u2(x)

∂x1

)
(2.1)

> 0.

The positive Jacobian determinant ensures the preservation of local areas and prevents

folding or tearing in the registered images [25, 36].

2.2 Image Registration Frameworks

From this point forward, we will use the term “deformed template image” instead of

“transformed template image” to emphasize that the transformation is deformable. To

assess the difference between the reference image R and the deformed template image

Tu = T (x + u(x)) = T (φ(x)), an appropriate data similarity term, D(Tu, R), should

be introduced. Consequently, the image registration problem can be formulated by

minimizing the following data similarity term:

min
u∈U

{D(Tu, R)}, (2.2)
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where u is searched over an appropriate function space U .

There are several data similarity terms used in image registration frameworks. For

grayscale images R and T , we will discuss two commonly used similarity measures: the

Sum of Squared Differences (SSD) and Normalized Cross-Correlation (NCC).

• Sum of Squared Differences (SSD): The Sum of Squared Differences (SSD) is

a widely used similarity measure for image registration. It calculates the squared

differences between the intensities of corresponding pixels in the deformed template

image Tu and the reference image R. The SSD is defined as:

DSSD(Tu, R) =

∫
Ω
(Tu(x)−R(x))2 dx. (2.3)

SSD is computationally simple and relatively fast, which makes it suitable for

real-time applications. It performs well when the intensity values of the images

are linearly related. However, it is sensitive to changes in intensity due to factors

such as lighting conditions or imaging modalities. Thus, it may not work well in

situations where the images have significant intensity differences.

• Normalized Cross-Correlation (NCC): Normalized Cross-Correlation (NCC)

is another popular similarity measure used in image registration. It measures

the correlation between the intensities of corresponding pixels in the deformed

template image Tu and the reference image R. The NCC is defined as:

DNCC(Tu, R) = −
∫
Ω

(
Tu(x)− T̄u

) (
R(x)− R̄

)
dx√∫

Ω

(
Tu(x)− T̄u

)2
dx
∫
Ω

(
R(x)− R̄

)2
dx

, (2.4)

where T̄u and R̄ are the mean intensity values of Tu and R, respectively. NCC

is less sensitive to intensity changes compared to SSD, making it more robust to

variations in lighting conditions or imaging modalities. It also works well when the

images have different intensity distributions. However, NCC is computationally
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more complex than SSD, which can result in longer processing times. It may be

less accurate when the images have non-linear intensity relationships or when the

images are misaligned.

Nonetheless, it is widely recognized that merely minimizing the data similarity term

in the previous (2.2) can result in an ill-posed problem, as it does not guarantee the

uniqueness and continuity of the solution [32, 38]. To address this challenge, regulariza-

tion is essential. By combining the data similarity term and a regularization term, the

image registration problem can be well-posed as minimizing the following functional:

min
u∈U

{D(Tu, R) + αR(u)}, (2.5)

where R(u) serves as the regularization term that eliminates irregular and undesired

solutions, while α > 0 is a regularization parameter that balances the two terms.

In image registration frameworks, various regularization terms are often employed

to enforce smoothness constraints. In this thesis, we will focus on three widely-used

smoothness regularization terms, namely Total Variation (TV), Diffusion, and Curvature

regularizations.

• Total Variation (TV) Regularization [18, 23]:

RTV(u) =

∫
Ω

2∑
l=1

|∇ul(x)|dx. (2.6)

TV regularization promotes piecewise smooth solutions. It is particularly effective

in handling non-smooth registration problems. However, TV regularization can

sometimes introduce staircase artifacts in the estimated deformations, especially

when the regularization parameter is not well-tuned. It may also lead to slow

convergence rates in the optimization process due to the non-differentiability of

RTV(u).
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• Diffusion Regularization [16]:

Rdiff(u) =

∫
Ω

2∑
l=1

|∇ul(x)|2 dx. (2.7)

Diffusion regularization is a relatively simple and computationally efficient method

that promotes smooth solutions. It is easy to implement and is suitable for ap-

plications where smooth deformations are desired. While diffusion regularization

is computationally efficient, it can over-smooth the deformations, leading to less

accurate registration of images with complex deformations [9].

• Curvature Regularization [17]:

Rcurv(u) =

∫
Ω

2∑
l=1

|∆ul(x)|2 dx (2.8)

where ∆ is the Laplacian operator. The advantage of curvature regularization

is its capability to accommodate affine transformations - processes encompassing

operations such as translation, scaling, rotation, and shearing - without imposing

penalties for their utilization [29]. Although curvature regularization can handle

affine transformations, it is computationally more expensive due to the need to

compute second-order derivatives.

2.3 Deep Learning Models

In recent years, deep learning has emerged as a powerful tool for addressing various

challenges in the field of image registration [7, 19, 22]. Leveraging the power of artificial

neural networks, deep learning models are capable of learning complex relationships

between images, enabling them to discover the optimal transformation parameters for

aligning images more accurately and efficiently. By training on large datasets, deep

learning models can capture intricate patterns and structures within the images, making

them particularly suitable for complex registration tasks. Additionally, the application
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Figure 2.1: Convolution in two-dimension with a kernel size of 3×3 and a stride of (1,1)

of deep learning in image registration has shown promising results in various domains,

including medical imaging, remote sensing, and computer vision, thereby revolutionizing

the way image registration problems are approached and solved.

2.3.1 Convolutional Neural Networks [1, 41]

Convolutional Neural Network or CNN, a special type of deep learning architecture, is

particularly adept at extracting local features and hierarchical representations from im-

ages, making them well-suited for image registration tasks. By employing convolutional

layers, followed by activation functions and pooling layers, CNNs can learn robust fea-

ture representations for both template and reference images. These learned features can

then be utilized to compute the optimal transformation parameters for accurate image

alignment.

Convolutional Layer

A convolutional layer can be composed of many convolutional kernels. Convolutional

kernels, also called filters or masks, are small matrices of weights that slide over the input,

which is called stride, performing element-wise multiplication and summing the results.
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Figure 2.1 shows an example of convolutions in CNNs. The convolution operation,

denoted by
⊗

, is a mapping from R2 × R2 to R2. In the given example in Figure 2.1,

the values 55.60 and 217.49 are derived from the sum of respective input values, i.e.,

55.60 =185(−0.89) + 8(0.37) + 194(0.66)

+ 205(0.32) + 84(−0.54) + 157(0.66)

+ 200(0.26) + 54(−0.39) + 157(−0.43)

and

217.49 =8(−0.89) + 194(0.37) + 244(0.66)

+ 84(0.32) + 157(−0.54) + 191(0.66)

+ 54(0.26) + 157(−0.39) + 71(−0.43).

A stride of (1,1) is used, meaning that the kernel slides across the input with a step of 1

unit in both vertical and horizontal directions. It is important to note that the output

size is smaller than the input size. If we want to maintain the same size of the output

as the input, we can apply padding. Padding is the process of extending the input such

as adding zeros to all four sides, which effectively preserves the spatial dimensions after

the convolution operation.

Activation Functions [34]

Activation functions in neural networks are essential components that introduce non-

linearity into the models, enabling them to learn complex relationships and patterns in

the data. Here, we present three common activation functions and their formulas:

• Sigmoid Function σ:

σ(x) =
1

1 + e−x
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The sigmoid function maps input values to a range between 0 and 1, making it

suitable for interpreting output as probabilities. It has a smooth gradient, which

can be beneficial during training. The sigmoid function suffers from the vanishing

gradient problem, which occurs when the gradients become very small during

training, leading to slow learning or convergence.

• Hyperbolic Tangent Function (tanh):

tanh(x) =
ex − e−x

ex + e−x
(2.9)

Similar to the sigmoid function, the tanh function has a smooth gradient. However,

it maps input values to a range between -1 and 1, making it zero-centered. The

tanh function still suffers from the vanishing gradient problem, albeit to a lesser

extent than the sigmoid function.

• Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x) (2.10)

The ReLU function is computationally efficient and has become the default choice

for many deep-learning architectures. It mitigates the vanishing gradient problem

and helps to accelerate convergence during training. However, the ReLU function

suffers from the dying ReLU problem, where neurons can become inactive and stop

learning if their weights are updated such that the input to the ReLU function is

always negative.

Figure 2.2 shows plots of three activation functions: sigmoid (σ), hyperbolic tangent

(tanh), and rectified linear unit (ReLU) in the same coordinate.
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Figure 2.2: Plots of three activation functions: sigmoid (σ), hyperbolic tangent (tanh),
and rectified linear unit (ReLU).

Figure 2.3: Example of max pooling with window size of 2× 2

Pooling Layer

Pooling is an operation in CNNs that aims to reduce the spatial dimensions of the

feature maps while retaining their most important information. This downsampling step

helps to decrease computational complexity, control overfitting, and enhance translation

invariance. There are two common types of pooling: max pooling and average pooling.

• Max Pooling: Max pooling selects the maximum value within a defined window

(usually a 2× 2 or 3× 3 region) as the representative value for that region. This

approach has the advantage of preserving the most prominent features within

the pooled regions, which can be beneficial for capturing patterns and textures

in images. However, one downside is that max pooling can potentially discard
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other valuable information from the input by only considering the maximum value.

Also, it may introduce some loss of spatial resolution, which might affect the final

performance of the network in certain applications. An example of max pooling

is shown in Figure 2.3

• Average Pooling: Average pooling, on the other hand, computes the average

value within a defined window as the representative value for that region. This

approach provides a smoother representation of the input feature maps and is less

sensitive to extreme values compared to max pooling. It can help in reducing the

risk of overfitting and maintaining more contextual information within the pooled

regions. However, average pooling might result in losing some distinctive features

that would be otherwise preserved using max pooling, as it considers all values in

the region equally. This could potentially lead to lower performance in tasks that

require more precise localization or detection of specific features.

As can be seen, CNNs can be composed of various components, including convolu-

tional layers, activation functions, and pooling layers, depending on the specific archi-

tecture or network design being employed.

2.3.2 Loss Function

In neural networks, the loss function plays a critical role in determining the performance

of the model. The loss function quantifies the difference between the predicted outputs

and the actual target values, providing a metric to evaluate the model’s accuracy.

The primary objective of image registration is to determine a meaningful transforma-

tion φ, which results in the accurate alignment of images. In this context, the predicted

outputs are generally associated with the transformation, such as deformation u, that



 17

depends on the model weights, as given in the following [26]:

uW = f(R, T |W), (2.11)

where f represents the neural network, and W denotes its weights. The deformation

uW is obtained by applying the neural network f to the input images, R and T , with

the model weights W. The actual target values are determined based on the learning

paradigm employed. Neural networks primarily follow two distinct learning paradigms:

supervised learning and unsupervised learning [4].

Supervised Learning

Supervised learning involves training a model using labeled data, where the target output

values are provided for each input. This allows the model to learn a direct mapping from

input features to the desired output, making it suitable for tasks such as classification

and regression. In the case of supervised learning for image registration, the loss function

L can be represented as [15]:

L(uW) = d(uW,ugt), (2.12)

where ugt denotes the ground truth solution, and d is a function measuring the difference

between the predicted outputs and the actual target values. Supervised learning has

been employed in image registration studies, such as those found in [27, 39]. The

advantage of supervised learning is that it can achieve high accuracy and generalization

performance when provided with sufficient training data. However, the main drawback

is the requirement for labeled data, which can be time-consuming and costly to obtain,

especially in cases where manual labeling is needed.
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Unsupervised Learning

On the other hand, unsupervised learning does not rely on labeled data. Instead, it

aims to discover underlying patterns and structures in the input data by leveraging

the intrinsic properties of the data itself. Common unsupervised learning tasks include

clustering, dimensionality reduction, and density estimation. In the case of unsupervised

learning for image registration, the loss function L can be represented as following [3]:

L(uW) = D(TuW , R) + αR(uW), (2.13)

where D(TuW , R) serves as the data similarity term, which quantifies the dissimilar-

ity between the deformed template image TuW and the reference image R, R(uW) is

the regularization term that discourages non-smooth or unrealistic deformations, and

parameter α is a positive scalar that adjusts the trade-off between these two terms.

Unsupervised learning has been employed in image registration studies, such as those

found in [11, 13, 40]. The primary advantage of unsupervised learning is that it can

be applied to large datasets without the need for labeled examples. However, the lack

of explicit target values means that evaluating the performance of unsupervised models

can be more challenging, and the resulting representations may not always align with

human intuition or the desired task-specific outcome.

During the training process, the goal is to minimize the loss function L(uW) by

adjusting the model weights W, i.e.,

min
W

{L (uW)}. (2.14)

The choice between supervised and unsupervised learning for image registration tasks

depends on factors such as the availability of labeled data, the required level of accuracy,

and the specific application domain.



 

CHAPTER 3

PROPOSED DIFFEOMORPHIC DEFORMABLE IMAGE

REGISTRATION MODEL

3.1 Introduction

Over the last decade, there has been a growing interest in diffeomorphic deformable

image registration among researchers [31, 36]. Diffeomorphic transformations play a

crucial role in image registration due to their unique properties, ensuring that the re-

sulting registration is smooth and invertible. These properties are particularly important

in applications where preserving the topological structure of the images is vital, such as

in medical imaging.

One notable example of the importance of diffeomorphic transformations can be

found in medical image registration, specifically in the registration of lung images dur-

ing different phases of respiration, such as inhalation and exhalation. By employing dif-

feomorphic deformable image registration, researchers and clinicians can obtain reliable

and meaningful results that aid in the diagnosis, treatment planning, and monitoring of

various lung conditions [14].

Han and Wang [21] presented an effective diffeomorphic image registration model

that leverages fractional-order regularization and the Cauchy-Riemann constraint to

further enhance the smoothness and invertibility of the resulting transformations. The

Cauchy-Reimann constraint is transformed into an unconstrained minimization prob-

lem. Their work provides a thorough mathematical analysis of the proposed model as

well as numerical experiments to demonstrate its effectiveness and compares its perfor-

mance with other registration methods. Their results indicate that the proposed model
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performs well in terms of accuracy and robustness, outperforming other methods in

various scenarios.

Kuang and Schmah [28] proposed a promising unsupervised 3D medical image reg-

istration method, also known as FAIM, which leverages deep learning to learn diffeo-

morphic transformations while preserving the Jacobian determinant. To ensure diffeo-

morphic transformations, the method incorporates a regularization term based on the

Jacobian determinant into the loss function. Their work demonstrates the effectiveness

of the approach through various experiments, showcasing its potential for a wide range

of medical imaging applications.

In this thesis, we aim to propose a novel deep learning model for model diffeomorphic

deformable image registration that incorporate a new regularization term, which is based

on the Jacobian determinant, into the loss function of CNNs. Furthermore, we perform

a comparison with the regularization terms presented in the previous works [21, 28] to

evaluate the effectiveness of our proposed model.

Following this, we will delve into the proposed CNN architecture, detailing its indi-

vidual components. We will also discuss the loss function, highlighting how it integrates

the aforementioned regularization terms.

3.2 Proposed Neural Network Architecture

In our research, a Fully Convolutional Neural Network (FCNN) is developed with an

architecture similar to U-Net [33] to tackle the diffeomorphic deformable image regis-

tration problem. The U-Net architecture has demonstrated remarkable effectiveness in

a range of tasks related to image segmentation and registration [35], making it ideal for

our study. The FCNN, a type of CNNs where the dimensions of the input and output

are identical, accepts a pair of images, the template image T and the reference image
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Figure 3.1: FCNN Architecture with a U-Net-like structure for Diffeomorphic De-
formable Image Registration.

R, as input and produces the deformation uW as output, as depicted in Figure 3.1.

3.2.1 Architecture Components

The architecture of the proposed FCNN comprises four levels, with the first level having

32 kernels and each successive layer having twice as many kernels. The network utilizes

2D convolutions with a 3 × 3 kernel size, and both the encoder and decoder paths are

followed by the ReLU activation layer. The decoder path uses 2× 2 upsampling layers

and half as many kernels as the prior layer, while the encoder path uses 2 × 2 max

pooling and a stride of 2 to downsample the feature maps. The main components of the

architecture include:

Encoder path: The encoder path is responsible for extracting features from the

input images. It consists of a series of convolutional layers, activation functions (ReLU),

and downsampling layers (max pooling).

Decoder path: The decoder path is responsible for reconstructing the deformation

from the extracted features. It consists of a series of upsampling layers, convolutional
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layers, and activation functions (ReLU).

Skip connections: The proposed FCNN architecture incorporates skip connections

or concatenation between the encoder and decoder paths.

Final layer: The final layer of the network, with a 1 × 1 kernel size convolution

kernel, produces the deformation, as represented by uW:

3.2.2 Deformation Prediction

The primary goal of the proposed FCNN is to predict the deformation uW that the

deformed template image TuW and the reference image R are spatially matched with an

optimal or meaningful manner. The final layer of the network produces the deformation

uW by applying a 1x1 convolution kernel. This layer acts as a regression layer, estimat-

ing the deformation at each pixel location in the image. The predicted deformation uW

is then used to warp the template image T to align it with the reference image R.

In summary, the proposed FCNN with a U-Net-like architecture efficiently predicts

the deformation uW for diffeomorphic deformable image registration tasks (as can be

seen in Chapters 4 and 5). The architecture’s components, such as the encoder and de-

coder paths, convolutional layers, activation functions, and upsampling/downsampling

techniques, contribute to the overall performance and accuracy of the image registration

process.

3.3 Proposed Loss Function

As mentioned in section 2.3.2, the registration task is to solve the minimization problem:

min
W

{L (uW)} (3.1)

where uW = f(R, T |W), f is our proposed FCNN, and W represents its model weights.

For the sake of simplicity in the following discussion, we will use u to represent uW.



 23

In this thesis, we design our loss function to train the proposed FCNN for diffeo-

morphic deformable image registration problems. The proposed loss function consists of

three components: data similarity loss, smoothness regularization loss, and diffeomor-

phic regularization loss. These components work together to minimize the similarity

between the reference and deformed template images, enforce smoothness in the de-

formation, and maintain the properties of diffeomorphic transformations. By using a

combination of these loss components, we aim to achieve accurate, smooth, and realistic

deformation, enhancing the overall performance of the image registration process. The

total loss function can be then expressed as follows:

L(u) = Lsim(u) + αLsmooth(u) + βLdiffeo(u). (3.2)

where α and β are two parameters that control the trade-off among sub-loss functions.

The details of each loss are as follows:

3.3.1 Data Similarity Loss

Assume that the image intensities of the given images R and T are comparable (i.e., in

a monomodal registration scenario), the data similarity loss can be given by:

Lsim(u) = DSSD(Tu, R) =

∫
Ω
(Tu(x)−R(x))2dx. (3.3)

Lower values of Lsim(u) indicate a better registration result.

3.3.2 Smoothness Regularization Loss

In this work, the diffusion regularization of the form

Lsmooth(u) = Rdiff(u) =

∫
Ω

2∑
l=1

|∇ul(x)|2 dx. (3.4)
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is used to be smoothness regularization loss in order to ensure that the constructed

deformation u is smooth and penalizes unwanted deformation.

3.3.3 Diffeomorphic Regularization Loss

We first review the diffeomorphic regularization techniques: the Cauchy-Riemann-based

regularization introduced by Han and Wang [21] and the regularization used in Kuang

and Schmah [28] and propose our new diffeomorphic regularization loss. Note that these

losses enforce the diffeomorphism constraint, which ensures the constructed deformation

is smooth, invertible, and non-self-intersecting.

1. Cauchy-Riemann-Based Regularization:

Han and Wang [21] proposed a diffeomorphic image registration model that incor-

porates the Cauchy-Riemann constraint. This registration model aims at ensuring

that det(∇φ(x)) > 0 to guarantee φ to be diffeomorphic transformation. The

regularization in their registration model is given by:

Ldiffeo,CR(u) =

∫
Ω

(
∂u1(x)

∂x1
− ∂u2(x)

∂x2

)2

+

(
∂u1(x)

∂x2
+

∂u2(x)

∂x1

)2

dx. (3.5)

2. Diffeomorphic Regularization:

Kuang and Schmah [28] integrated a Jacobian determinant regularization term

into the loss function of their model to ensure diffeomorphic transformations and

prevent folding or tearing in the registered images. The regularization in their

registration model is defined as follows:

Ldiffeo,σ1(u) =

∫
Ω
σ1(det(∇φ(x)))dx, (3.6)

where σ1(x) =
1
2(|x| − x) = max(0,−x), x ∈ R which is the ReLU function of −x.
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Now, we shall propose our new diffeomorphic regularization loss function,

Ldiffeo,σp(u) =

∫
Ω
σp (det(∇φ(x))) dx, (3.7)

which improves the one introduced in [28] where φ(x) = x+u(x) and σp(x) =
(x−1)2

max(x,1)2

satisfies the following properties:

• σp is a smooth function defined on real numbers. Because the Jacobian determi-

nant is a real number, det(∇φ(x)) ∈ R. Here φ(x) = x + u(x).

• σp is a decreasing function for x < 1 and an increasing function for x ≥ 1. This

property encourages the Jacobian determinant to be close to 1, which means the

local volume change induced by the deformation should be close to the identity

transformation. By minimizing the proposed loss function, the algorithm avoids

excessive local shrinkage or expansion.

• σp(x) = σp
(
1
x

)
if x > 0. This symmetry property ensures that local shrinkage

and local expansion are penalized symmetrically. This symmetry is crucial for

maintaining the balance between local compression and local expansion.

To visualize the behavior of the two diffeomorphic regularization loss functions,

Ldiffeo,σ1 and Ldiffeo,σp , we plot σ1 and σ1 on a graph as shown in Figure 3.2. The

plots can show the different behaviors of the loss functions, illustrating how they penal-

ize local shrinkage and expansion. σ1 is a constant rate decreasing function for x < 0

and a constant function for x ≥ 1 while σp is a decreasing function for x < 1 and an

increasing function for x ≥ 1.

3.4 Discretization

In this section, we shall introduce the finite difference discretization for image registra-

tion, focusing on the domain setup and discretized losses.
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Figure 3.2: Behaviors of σ1 and σp.

Assume that the image domain is represented by a two-dimensional set Ω = [0, N −

1]2 ⊂ R, where the image shape is N×N . To discretize the domain, we define a uniform

grid with grid points (xi, yj) = (i∆, j∆), where i, j ∈ 0, 1, 2, ..., N − 1. Here, the grid

spacing ∆ = 1 is determined by dividing the size of the domain by the number of grid

points in each dimension.

The continuous images T (x) and R(x) is then represented by their discretized

counterparts Tij = T (xi, yj) and Rij = R(xi, yj). Similarly, the deformation field

u(x) = (u1(x), u2(x))
⊤ can be discretized as uij = u(xi, yj) = (u1(xi, yj), u2(xi, yj))

⊤.

3.4.1 Discretization of Lsim(u)

To discretize the similarity loss function Lsim(u), we compute the discrete version of the

integral over the domain Ω as follows:

Lsim(u) ≈
N−1∑
i=0

N−1∑
j=0

(Tuij −Rij)
2∆2. (3.8)

We note that the so-called bilinear interpolation is used as a method to compute the
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intensity value of a continuous image at non-integer coordinates by interpolating the

intensity values of the surrounding grid points.

Given the deformation uij = (u1ij , u2ij ) at a grid point (xi, yj), we can compute the

transformed coordinates x′ = (x′, y′) as follows:

(x′, y′) = (xi + u1ij , yj + u2ij ). (3.9)

Since (x′, y′) may not correspond to integer coordinates, we use bilinear interpolation to

estimate the intensity value Tuij at this point. Let i′ = ⌊x′⌋, j′ = ⌊y′⌋, a = x′ − i′, and

b = y′ − j′. Then, we can compute the bilinearly interpolated intensity value as follows:

Tuij = (1− a)(1− b)Ti′j′ + a(1− b)T(i′+1)j′ + (1− a)bTi′(j′+1) + abT(i′+1)(j′+1). (3.10)

In this equation, Ti′j′ , T(i′+1)j′ , Ti′(j′+1), and T(i′+1)(j′+1) are the intensity values of

the template image at the surrounding grid points of the transformed coordinate (x′, y′).

By using bilinear interpolation, we can compute the deformed template image Tuij for

any deformation field u, allowing us to evaluate the similarity loss function and perform

the image registration process.

3.4.2 Discretization of Lsmooth(u)

We first rewrite the smoothness loss function (3.4) as follows:

Lsmooth(u) =

∫
Ω

2∑
l=1

|∇ul(x)|2 dx =

∫
Ω

(
|∇u1(x)|2 + |∇u2(x)|2

)
dx. (3.11)

Now, we approximate the integrals using the finite sums over the discrete domain

and the gradients using the standard finite difference as given by:

Lsmooth(u) ≈
N−1∑
i=0

N−1∑
j=0

(
|∇iju1|2 + |∇iju2|2

)
∆2, (3.12)

where ∇ijul denotes the gradient of ul at the grid point (xi, yj) for all l = 1, 2 and
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|(x, y)| =
√

x2 + y2. In order to approximate the gradients, we apply the central finite

difference as follows:

∇ijul =

(
ul(i+1)j

− ul(i−1)j

2∆
,
uli(j+1)

− uli(j−1)

2∆

)
, (3.13)

with the following boundary conditions:

ul(−1)j
= ul(0)j , ul(N)j

= ul(N−1)j
, uli(−1)

= uli(0) , uli(N)
= uli(N−1)

. (3.14)

3.4.3 Discretization of Ldiffeo,CR(u)

To discretize the Cauchy-Riemann loss term Ldiffeo,CR(u) (to be used in our numerical

experiment), we first apply the central finite difference approximations to compute the

partial derivatives of the deformation on a grid point as follows:

∂u1ij
∂x1

≈
u1(i+1)j

− u1(i−1)j

2∆
,

∂u1ij
∂x2

≈
u1i(j+1)

− u1i(j−1)

2∆
,

∂u2ij
∂x1

≈
u2(i+1)j

− u2(i−1)j

2∆
,

∂u2ij
∂x2

≈
u2i(j+1)

− u2i(j−1)

2∆
.

with the same boundary conditions in section 3.4.2. By substituting the approximated

derivatives into the loss function, we obtain the discretized version of the Cauchy-

Riemann loss term as given by:

Ldiffeo,CR(u) ≈
N−1∑
i=0

N−1∑
j=0

((
∂u1ij
∂x1

−
∂u2ij
∂x2

)2

+

(
∂u1ij
∂x2

+
∂u2ij
∂x1

)2
)
∆2

≈
N−1∑
i=0

N−1∑
j=0

((
u1(i+1)j

− u1(i−1)j

2∆
−

u2i(j+1)
− u2i(j−1)

2∆

)2

+

(
u1i(j+1)

− u1i(j−1)

2∆
+

u2(i+1)j
− u2(i−1)j

2∆

)2
)
∆2.
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3.4.4 Discretization of Ldiffeo,σ1(u) and Ldiffeo,σp(u)

To discretize the diffeomorphic regularization loss terms Ldiffeo,σ1(u) and Ldiffeo,σp(u),

we need to compute the Jacobian determinant det(∇φ(x)), as shown in (2.1), for each

grid point in the discrete domain. The Jacobian determinant at grid point (xi, yj) can

be computed using the partial derivatives of the deformation as given by:

det(∇φ(x)) =

(
∂u1ij
∂x1

+ 1

)(
∂u2ij
∂x2

+ 1

)
−

∂u1ij
∂x2

∂u2ij
∂x1

. (3.15)

Next, we apply the central finite differences approximation for
∂u1ij

∂x1
,
∂u2ij

∂x2
,
∂u1ij

∂x2
, and

∂u2ij

∂x1
as given in section 3.4.3 to approximate these partial derivatives.

By substituting the above approximations into 3.15, we consider σ as σ1 or σp, the

discrete version of diffeomorphic regularization losses are given by:

Ldiffeo,σ(u) ≈
N−1∑
i=0

N−1∑
j=0

σ
((

∂u1ij

∂x1
+ 1
)(

∂u2ij

∂x2
+ 1
)
−

∂u1ij

∂x2

∂u2ij

∂x1

)
∆2

≈
N−1∑
i=0

N−1∑
j=0

σ

((
u1(i+1)j

− u1(i−1)j

2∆
+ 1

) (
u2i(j+1)

− u2i(j−1)

2∆
+ 1

)

−
u1i(j+1)

− u1i(j−1)

2∆

u2(i+1)j
− u2(i−1)j

2∆

)
∆2,



 

CHAPTER 4

EXPERIMENTS AND RESULTS OF SYNTHETIC IMAGES

In this chapter, we present the experiments and results of synthetic images conducted to

evaluate the performance of our proposed deep learning (DL) model for the diffeomor-

phic deformable image registration problems using different loss functions, along with

their diffeomorphic regularization terms. We also compare our proposed method with

existing diffeomorphic regularization losses [28] and a DL model that incorporates the

Cauchy-Riemann constraint from the variational method proposed by Han and Wang

[21]. Finally, we examine the effectiveness of diffeomorphic regularization by comparing

the registration results obtained using the proposed loss function with and without the

diffeomorphic regularization term.

4.1 Synthesizing Image Pairs

This section introduces the process of building image pairs. All steps can be explained

as follows:

4.1.1 Generating Deformation

The first step in building image pairs is to generate deformations. These deformations

are responsible for determining the spatial transformation between the image pairs. The

process of generating deformations can be summarized as follows:

1. A 5× 5 uniformly spaced grid of control points is created. This grid spans across

the entire image, with points evenly distributed across the width and height of the

image.

2. For each control point in the grid, a corresponding target point is randomly gen-
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erated. The distance of the target point from its corresponding control point is

restricted to less than 20% of the image size.

3. A two-dimensional cubic interpolation is performed using the control points and

their corresponding target points. This creates a smooth deformation. The in-

terpolation ensures that the deformation is smooth and continuous, resulting in

realistic and natural deformations.

4. After generating the deformation, a check is performed to ensure that the Jacobian

determinant of the transformation is positive. This step is crucial to ensure that

the deformation does not cause any folding in the image, preserving the topology

of the image. If the Jacobian determinant is positive, the deformation is considered

valid.

4.1.2 Creating Template images

Each template image is obtained by the following step:

1. An empty or blank image is created with a pre-specified shape. This image serves

as the canvas on which different shapes will be drawn. These shapes are assumed

to be the ‘objects’ in the image and are the features that will be subjected to

deformations.

2. Three different geometric shapes are selected randomly from the set comprising

rectangles, circles, and ellipses. For each chosen shape, its size and position within

the image are determined randomly. Each shape is assigned a unique intensity

value to ensure they are distinguishable from each other within the image.

3. Once the shapes are placed within the image, a random transformation is applied

to the entire image. The transformation includes a combination of rotation and
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Figure 4.1: Examples of the synthetic image: Top row is template images and the
bottom row is reference images.

shearing. The rotation angle and the shear magnitude are both selected randomly.

This transformation adds an additional layer of variety among the generated tem-

plate images, as each image, despite containing similar shapes, appears different

due to the transformation applied.

4. After applying a transformation, the intensity of the image is normalized, ensuring

that the maximum pixel intensity value in the image is 1. This is a common

practice in image processing and deep learning.

5. The generated and transformed image, now termed a ‘template image’, is added

to a collection of such images, building a dataset of template images.

4.1.3 Generating Reference Images

After creating the template images, we generate the corresponding reference images.

These images are obtained by transforming the template images using the known defor-

mations generated earlier.
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In our approach to generating the dataset of image pairs, we leveraged the capabil-

ities of Python programming to follow the outlined process, resulting in the successful

generation of 600 image pairs (template images and corresponding reference images).

Representative examples of these synthetic image pairs are depicted in Figure 4.1.

4.2 Dataset Splitting

Our dataset contains 600 image pairs and is split into three parts to ensure proper

evaluation and validation of the proposed model as follows:

1. Training: 400 image pairs.

2. Validating: 100 image pairs.

3. Testing: 100 image pairs.

We note that this partitioning strategy allows our registration model to learn from a

large set of training data, evaluate its performance on the validation set during training,

and assess its generalization capabilities on the unseen test set.

4.3 Evaluation Metrics

Evaluation metrics are crucial for assessing the performance of a learning registration

model and play an essential role in the development and evaluation of image registration

algorithms. These metrics provide quantitative measures of the algorithm’s effectiveness

in aligning the synthetic images and are commonly employed to compare various regis-

tration methods and assess the accuracy of the results. The following are the evaluation

metrics in this thesis.

• Relative Sum of Squared Differences (Rel. SSD) is a widely used evaluation

metric in registration results. It is computed as the ratio of the sum of squared
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differences between the reference image and the transformed template image after

registration to the sum of squared differences between the reference image and the

template image before registration as given by:

Rel. SSD =
Lsim(u)

Lsim(0)
=

∫
Ω(Tu(x)−R(x))2dx∫
Ω(T (x)−R(x))2dx

. (4.1)

The resulting value indicates the degree of changes in the template image after

registration, with lower values signifying a better registration outcome. The Rel.

SSD is often expressed as a percentage, with values near 0% denoting a highly

accurate registration and values closer to 100% indicating a visually unappealing

registration result.

• Number of non-positive Jacobian determinant pixels addresses cases where

the transformation between the given images leads to a fold in the physical space.

This occurs when the Jacobian determinant of the transformation function is not

positive, implying that the transformation is not invertible at that point or folding.

The number of pixels with non-positive values in the determinant of the Jacobian

matrix

J≤0(φ) = |{x ∈ Ω : det(∇φ(x)) ≤ 0}| (4.2)

is frequently used as an evaluation metric to gauge the quality of a registration

result. A larger number of pixels with non-positive values suggests more significant

distortion or folding of the transformed synthetic image, resulting in a lower-quality

registration outcome.

4.4 Experimental Setup for Synthetic Images

In this section, we detail the experimental setup and parameters used for our proposed

DL model for diffeomorphic deformable image registration problems on synthetic images.
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4.4.1 Implementation

Our proposed FCNN was designed and implemented using Keras, a powerful open-source

neural network library, with TensorFlow serving as the backend. For the synthetic

images, we employed a method of 2D linear interpolation to generate the deformed

template images. The central finite difference method was used to numerically discretize

the partial derivatives in the loss function as mentioned in section 3.4.

The model was trained using the Adaptive Moment Estimation (ADAM) optimizer,

a popular and effective gradient descent optimization algorithm. The learning rate was

set to 10−4. The training process used mini-batch stochastic gradient descent with a

batch size of 20 image pairs. The training was run for a total of 200 epochs.

All experiments were conducted in Python on a computer notebook equipped with

an AMD Ryzen 7 4800HS processor and Radeon graphics, operating at a clock speed of

2.90 GHz, and equipped with 16 GB of RAM. All operations were carried out using the

default settings.

4.4.2 Loss Function Parameters

We experimented on the total loss function (3.2) with and without diffeomorphic reg-

ularization loss to see how well our proposed DL model performs on synthetic images.

For the total loss function without diffeomorphic regularization loss (β = 0), we used

α = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1. For the total loss function with diffeo-

morphic regularization loss (β ̸= 0), we used α = 0.001, β = 0.01, 0.02, 0.05, 0.1, and

0.2.
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Table 4.1: Average Rel. SSD and average J≤0(φ) from the validation set of the 100 pairs
of the synthetic images without diffeomorphic regularization loss in (3.2) (i.e., β = 0).

α Rel. SSD (%) J≤0(φ)

0.001 5.25 127
0.002 5.36 72
0.005 5.62 24
0.01 5.52 14
0.02 6.44 5
0.05 8.62 2
0.1 11.94 0

Table 4.2: Average Rel. SSD and average J≤0(φ) from the validation set 100 pairs the
synthetic images with different diffeomorphic regularization losses in (3.2) (α = 0.001).

β Ldiffeo,CR (3.5) Ldiffeo,σ1 (3.6) Ldiffeo,σp (3.7)
Rel. SSD J≤0(φ) Rel. SSD J≤0(φ) Rel. SSD J≤0(φ)

0.01 5.95% 16 5.01% 92 5.14% 28
0.02 6.45% 5 4.79% 78 5.49% 17
0.05 9.02% 1 5.23% 47 6.45% 4
0.1 11.48% 0 4.95% 38 7.36% 2
0.2 16.68% 0 5.52% 25 9.52% 0

100 - - 7.56% 2 - -
200 - - 9.55% 1 - -
500 - - 9.67% 1 - -
1000 - - 10.84% 0 - -

4.5 Results for Synthetic Images

4.5.1 Validation Set Performance

Table 4.1 shows the average Rel. SSD and average J≤0(φ) resulting from the validation

set of the 100 pairs of the synthetic images using the proposed total loss functions (3.2)

without diffeomorphic regularization loss (i.e.,β = 0). From the registration results,

increasing α can reduce J≤0(φ) to 0, achieving diffeomorphic deformation. However, we

expect that using the total proposed loss functions (3.2) with diffeomorphic regulariza-

tion loss can reduce the values of J≤0(φ) more effectively.

Table 4.2 presents the average Rel. SSD and average J≤0(φ) obtained from the vali-

dation set of the 100 pairs of the synthetic images using the proposed total loss functions
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(3.2) with different diffeomorphic regularization losses. Additionally, we further experi-

mented for the Ldiffeo,σ1 diffeomorphic regularization with β = 100, 200, 500 and 1000,

since J≤0(φ) had not yet reached 0. The results demonstrate that our proposed DL

model using diffeomorphic regularization in (3.7) is more effective for reducing J≤0(φ)

in terms of the Rel. SSD when compared to other diffeomorphic regularization losses.

4.5.2 Test Set Performance

We chose the appropriate α and β that yield J≤0(φ) = 0 for each experiment. In

our notation, we represent the total loss function as Lλ(u|α, β) for convenience. This

function is defined as:

Lλ(u|α, β) = Lsim(u) + αLsmooth(u) + βLdiffeo,λ(u), (4.3)

Recall that Lsim(u) represents the similarity loss term, Lsmooth(u) is the smoothness

regularization term, and Ldiffeo,λ(u) denotes the diffeomorphic regularization term. The

parameters α and β are weights for the smoothness and diffeomorphic regularization

terms, respectively. The term λ in the subscript of L is used to represent the types of

diffeomorphic regularization being used.

We compare L−(u|0.1, 0), LCR(u|0.001, 0.1), and Lσ1(u|0.001, 1000) with the pro-

posed total loss function Lσp(u|0.001, 0.2). Figure 4.2 shows the loss total function

behavior throughout the training process on the synthetic images. Throughout the

training process, both the training and validation loss decrease. This observation sug-

gests that our DL model generalizes well to new data and is not overfitting. However,

an exception was noted in the case of the model trained with the total loss function

Lσ1(u|0.001, 1000), which displayed instability during the training process.

We also used the α and β that yield J≤0(φ) = 0 to compare the average Rel. SSD

and J≤0(φ) resulting from the test set, as shown in Table 4.3. These results demonstrate
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Figure 4.2: The plots of different total loss functions from training and validation sets
during the training process on the pairs of the synthetic images for different loss functions

Table 4.3: Comparison of average Rel. SSD and average J≤0(φ) from the test set of the
100 image pairs of the synthetic images with different total loss functions.

Total loss function Rel. SSD (%) J≤0(φ)

L−(u|0.1, 0) 11.69 0
LCR(u|0.001, 0.1) 11.13 0
Lσ1(u|0.001, 1000) 10.99 0
Lσp(u|0.001, 0.2) 9.74 0

the effectiveness of our proposed diffeomorphic regularization loss in reducing J≤0(φ)

more efficiently than other approaches for synthetic images.

Figure 4.3 displays a registration problem from our test set. The first row shows the

template T and reference R. The second and third rows show the deformed template

images Tu and the constructed transformations, from different total loss functions.

As can be seen, the registration results obtained from the synthetic image pairs

confirm the effectiveness of our proposed DL model in reducing J≤0(φ) while maintaining

a competitive Rel. SSD when compared to other diffeomorphic regularization losses.
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Figure 4.3: Registration results of a registration problem from the test set: (a) template
T , (b) reference R, (c)-(f) and (g)-(j) are respectively the deformed template images and
constructed transformation from L-(u|0.1, 0), LCR(u|0.001, 0.1), Lσ1(u|0.001, 1000), and
Lσp(u|0.001, 0.2) (our proposed total loss function).



 

CHAPTER 5

EXPERIMENTS AND RESULTS OF MEDICAL IMAGES

The previous chapter presents the performance of our proposed DL model on synthetic

images. This chapter extends our evaluation to real medical images and demonstrates

the robustness and applicability of our DL model with different diffeomorphic regular-

ization losses.

5.1 Dataset

The standard digital image database for tuberculosis1 dataset includes Chest X-rays

obtained during routine clinical procedures using Philips DR Digital Diagnose systems.

It comprises 336 cases with tuberculosis manifestations and 326 normal cases. The

images in the dataset are in PNG format and vary in size, with each X-ray approximately

3K×3K pixels. For our study, the tuberculosis X-ray dataset was chosen and utilized as

the evaluation dataset.

5.2 Pre-processing

The 220 normal male images of 3K×3K pixels from the dataset were undergone pre-

processing by resizing them to 128x128 pixels and scaling the intensity values from 0

to 1. Of these 220 images, there are 160 training images, 30 validating images, and 30

testing images. Our image pairing procedure was applied to create image pairs, with

one image designated as the template and the other as the reference image. This pairing

process resulted in 25,440 image pairs for training and 870 image pairs for validation

1A publicly accessible dataset, was established through a collaboration between the National Library
of Medicine in Maryland, USA, and Shenzhen No.3 People’s Hospital, Guangdong Medical College,
Shenzhen, China [6, 24].
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Figure 5.1: Examples of real medical images used in our experiments, showcasing the
diversity of images.

and testing.

Figure 5.1 displays some examples of real medical images that were utilized in our

experiments. The figure demonstrates the variety of real medical images used.

5.3 Evaluation Metrics

The following two evaluation metrics will be also used in this chapter:

• Relative Sum of Squared Differences (Rel. SSD):

Rel. SSD =
Lsim(u)

Lsim(0)
=

∫
Ω(Tu(x)−R(x))2dx∫
Ω(T (x)−R(x))2dx

.

• Number of non-positive Jacobian determinant pixels:

J≤0(φ) = |{x ∈ Ω : det(∇φ(x)) ≤ 0}| .
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5.4 Experimental Setup for Real Medical Images

We outline the experimental setup and parameters employed for our proposed DL model

for diffeomorphic deformable image registration on real medical images, which are a bit

different from those used for synthetic images.

5.4.1 Implementation

For real medical images, our proposed FCNN was also implemented using Keras with

a TensorFlow backend. As with synthetic images, 2D linear interpolation was used to

generate the deformed template images, and the central finite difference method was

utilized to numerically discretize the partial derivatives in the loss function. The DL

model was trained using the ADAM optimizer, maintaining a learning rate of 10−4.

Each training batch consisted of pairs of the real medical images, facilitating mini-

batch stochastic gradient descent with a batch size of 30 and a total of 12 epochs. All

experiments were executed in Python on the same computer notebook as mentioned in

the previous chapter in section 4.4.1.

5.4.2 Loss Function Parameters

We experimented on the total loss function (3.2) with and without diffeomorphic regular-

ization losses, to evaluate the performance of our proposed DL model on the real medical

images. For the total loss function without diffeomorphic regularization loss (β = 0),

we used α = 0.01, 0.02, 0.05, and 0.1. For the total loss function with diffeomorphic

regularization loss (β ̸= 0), we used α = 0.01, β = 0.01, 0.02, 0.05.
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Table 5.1: Average Rel. SSD and average J≤0(φ) from the validation set of the 870
image pairs of the real medical images without the diffeomorphic regularization loss in
(3.2) (i.e., β = 0).

α Rel. SSD (%) J≤0(φ)

0.01 20.44 136
0.02 23.34 28
0.05 27.19 3
0.1 31.87 0

Table 5.2: Average Rel. SSD and average J≤0(φ) from the validation set of the 870
image pairs of the real medical images with different diffeomorphic regularization losses
in (3.2) (α = 0.01).

β Ldiffeo,CR (3.5) Ldiffeo,σ1 (3.6) Ldiffeo,σp (3.7)
Rel. SSD J≤0(φ) Rel. SSD J≤0(φ) Rel. SSD J≤0(φ)

0.01 22.83% 31 20.16% 129 22.14% 39
0.02 24.13% 13 20.23% 105 22.48% 15
0.05 27.57% 2 19.81% 94 24.07% 3
0.1 31.77% 0 20.48% 53 26.65% 0

100 - - 23.94% 1 - -
200 - - 23.93% 1 - -
500 - - 26.42% 0 - -

5.5 Results for Real Medical Images

5.5.1 Validation Set Performance

Table 5.1 presents the average Rel. SSD and average J≤0(φ) obtained from the validation

set of the 870 image pairs of the real medical images using the proposed total loss

function (3.2) without diffeomorphic regularization (β = 0). Similar to the registration

results obtained from the synthetic images, increasing α reduces J≤0(φ) to 0, delivering

diffeomorphic deformation. We also expect that applying the total loss function with

diffeomorphic regularization (3.7) can be better in decreasing J≤0(φ).

Table 5.2 displays the average Rel. SSD and average J≤0(φ) resulting from the

validation set of the 870 image pairs of the real medical images with different diffeo-

morphic regularization losses. Similar to the experiments conducted on the synthetic

images, we further experimented Ldiffeo,σ1 with β = 100, 200, and 500, as J≤0(φ) had
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Figure 5.2: Loss value of training and validation sets during the training process on real
medical images for different loss functions

not yet reached 0. The results also demonstrate that our proposed DL model is more

effective for reducing J≤0(φ) in terms of Rel. SSD compared to other diffeomorphic

regularization losses.

5.5.2 Test Set Performance

Similarly, we chose the appropriate α and β that yield J≤0(φ) = 0 for each experi-

ment. Figure 5.2 shows the total loss function behavior throughout the training pro-

cess on the real medical images. Here, we also compare L−(u|0.1, 0), LCR(u|0.01, 0.1),

andLσ1(u|0.01, 1000) with our proposed total loss function Lσp(u|0.01, 0.2). Similarly,

the training and validation loss decrease during the training process so our DL model

generalizes well to new data and is not overfitting on real medical images.

We also used the α and β that yield J≤0(φ) = 0 to compare the average Rel. SSD

and J≤0(φ) resulting from the test set of the 870 image pairs of the real medical images,
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Table 5.3: Comparison of average Rel. SSD and average J≤0(φ) from the test set of the
870 image pairs of the real medical images with different total loss functions.

Total loss function Rel. SSD (%) J≤0(φ)

L−(u|0.1, 0) 40.87 0
LCR(u|0.01, 0.1) 32.58 0
Lσ1(u|0.01, 500) 27.14 0
Lσp(u|0.01, 0.1) 26.76 0

as shown in Table 5.3. These results demonstrate the effectiveness of our proposed dif-

feomorphic regularization loss in reducing J≤0(φ) more efficiently than other approaches

for real medical images.

Figure 5.3 displays a registration problem from our test set of the real medical images.

The first row shows the template T and reference R. The second and third rows show

the deformed template images Tu and the constructed transformations from different

total loss functions.

We display the absolute difference between the deformed template images and the

reference images, denoted as |Tu−R|, as shown in Figure 5.4. This difference visualiza-

tion provides a clear view of the dissimilarities between the registration results obtained

from different diffeomorphic regularization losses. We can see that the darker areas rep-

resent a smaller difference, indicating better registration. The contrasting light regions,

conversely, indicate areas with larger differences or discrepancies between the deformed

template and the reference image, signifying less effective registration.

Obviously, the registration results obtained from this experiment confirm the effec-

tiveness of our proposed DL model in reducing J≤0(φ) while maintaining a competitive

Rel. SSD when compared to other techniques. The overall performance improvement is

also evident in the real medical images, demonstrating the robustness of the proposed

method across various image types.
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Figure 5.3: Registration results of a registration problem from the test set of the
real medical images: (a) template T , (b) reference R, (c)-(f) and (g)-(j) are respec-
tively the deformed template images and constructed transformation from L-(u|0.1, 0),
LCR(u|0.01, 0.1), Lσ1(u|0.01, 500), and Lσp(u|0.01, 0.1) (our proposed total loss func-
tion).
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Figure 5.4: Absolute difference between the deformed template image and the reference
image from different total loss functions. From left to right: Results from L−, LCR, Lσ1 ,
and Lσp (our proposed total loss function).



 

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This work contributes to the field of image registration, with a particular focus on medi-

cal image analysis. The study aimed at enhancing the registration process by proposing

a DL model equipped with diffeomorphic regularization losses, thereby ensuring the

topological properties of the transformation.

Our proposed DL model was evaluated against various total loss functions, and the

results were thoroughly analyzed. The comparative analysis was made based on the Rel.

SSD and J≤0(φ).

From our results, it is evident that our proposed DL model achieved significant im-

provements in both synthetic and medical images. Specifically, we demonstrated that

by adjusting the parameters α and β, it is possible to achieve diffeomorphic transfor-

mations, where J≤0(φ) is reduced to zero. This result signifies that the transformations

constructed by the proposed model are diffeomorphic, thereby preserving the topological

properties of the images.

Moreover, the results from the validation and test sets further reinforced the model’s

effectiveness. Our DL model generalized well to new data. The successful results on the

medical images confirm the applicability of the proposed method in real-world scenarios,

particularly in medical imaging, which is known for its complexity and high demand for

precision.
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6.2 Future Work

Although our proposed DL model has shown promising results, there are still areas for

future work and improvement:

1. Currently, the model is trained and tested on a limited dataset. To further val-

idate the effectiveness of our approach, we would perform experiments on larger

and more diverse datasets, covering different imaging modalities and anatomical

structures.

2. The optimization of hyperparameters α and β plays a crucial role in the perfor-

mance of our model. Therefore, developing an adaptive strategy for selecting the

appropriate values for these parameters during the training process could poten-

tially lead to further improvements in registration performance.

3. We plan to extend our model to 3D medical image registration, taking advantage

of the additional spatial information available in three-dimensional images. This

could potentially provide even better registration results in a broader range of

medical imaging applications.

4. Our model can be further improved by incorporating more advanced deep learning

architectures, such as the use of attention mechanisms, which could help the model

focus on specific regions of interest within the images, thus improving registration

accuracy in challenging cases.

By addressing these areas in future work, we believe that our proposed diffeomorphic

regularization model can be further refined and applied to a wide range of medical image

registration tasks, ultimately contributing to the advancement of the field of medical

image analysis.
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