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Effects of safe haven strategy and herd behavior on financial bubble.

Sorathan Juanjenkit

Abstract

Safe-haven strategy is usually used to reduce the risk among the market turbulence. It
is hypothesized that inclusion of safe-haven asset may reduce the volatility during the
bubble. In this study, we propose the new model of financial bubble that generalizes the
previous models by adding the safe-haven asset that interacts with the behavioral change
of investors. The stability condition is derived to confine the parameter space avoiding
the stable fixed point. The numerical results are used to calculate the amplitude and
duration of bubbles. The effect of involved parameters are analyzed. This result indicates
that information from a safe-haven asset model based on mean reversion helps reduce the
severity of financial bubbles resulting from herd behavior of profit seekers in the market.
Additionally, it suggests that if these profit seekers consistently use data from safe-haven
assets in the market, the severity of financial bubbles would decrease significantly compared
to when profit seekers are interested in safe-haven assets only during crisis events.
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Chapter 1

Introduction

Financial bubbles are economic phenomena that have occurred multiple times in history.

The definition or description of financial bubbles and the process of their bursting con-

tinue to vary and have diverse interpretations. For instance, a definition related to financial

bubbles by Didier Sornette suggests that if the price of an asset experiences rapid growth

beyond exponential, there is a possibility that the asset may become a financial bubble [10].

Another definition highlights that financial bubbles and the bursting of financial bubbles

are temporary events where asset prices deviate and fluctuate around their fundamental

value temporarily [8]. One prominent example of a financial bubble event is the Subprime

Crisis of 2008. According to ’Review of economic bubble (2016)’ [5], the crisis was initiated

by a continuous increase in real estate accompanied by loose monetary policies of central

banks and governments, which reduced interest rates to encourage more people to own

real estate. Additionally, the softening of lending standards brought subprime borrowers

into the market. All these factors compounded the growth of real estate, leading people

to speculate and invest more, resulting in skyrocketing real estate prices. While everyone

was enjoying the prosperity of life, some events were unfolding in the background. ’Infla-

tion’ has started creeping in gradually. The low-interest rates, combined with subprime

borrowers, led to people defaulting on their loans, and debts began to pile up rapidly.

Many homes were foreclosed by banks and released into the market simultaneously with
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decreased consumer spending. People panicked and wanted to minimize their losses as

much as possible, but it was too late.

The research about the financial bubble has been conducted and explored from various

perspectives in recent years [12], [7], [10] and [4]. Questions such as where financial bubbles

originate, how the mechanics of financial bubbles work, when financial bubbles form and

burst, or what factors are related to the occurrence or size of financial bubbles are central

to current research. These questions were addressed through various disciplines. For in-

stance, [2] suggested that risky monetary policies by governments and central banks are

factors in the emergence of profit-seeking bubbles in the market. Thomas Lux states that

financial bubbles arise from the collective behavior and sequential actions of investors in

buying or selling until an imbalance occurs between buying and selling demand [8]. What

supports the readiness in the behavior of investors to follow each other is fundamental eco-

nomic variables such as actual returns. While the previous study highlighted the possible

influence of herding behavior and the feedback of price during the bubble event, hedging

strategy that helps to minimize and offset risks within the portfolio of investors was ne-

glected. Financial hedging is more common amongst short-term noised traders, as market

volatility tends to increase. However, research analyzing the impact of other assets on the

financial bubble of another asset is relatively limited. Which asset is most important to

people in the market?

According to Baur and Lucey (2010), safe-haven is defined as an asset that is uncor-

related or negatively correlated with another asset or portfolio in times of market stress

or turmoil. As an example, gold or land, which are well-known and have long lasting

value over time may be considered as safe-haven assets for stock trading and other risky

asset. A safe-haven asset must therefore be some asset that holds its value in ’stormy

weather’ or adverse market conditions” [3]. For some profit-seeking investors, using safe

haven assets to hedge against risk is one of the investment and risk mitigation strategies

[1]. In some cases, it is not necessary to include the safe-haven asset into their portfolio

but use safe-haven asset data, price volatility of assets, or market returns to make trading
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decisions in other profit-generating assets. If this is a case during the financial bubble

event, how the bubble pattern changes or conditioned might be a crucial issue. In this

study, we aim to address these questions and will provide insight into what happens when

profit-seeking investors in the market employ strategies and track the price movements of

profit-generating assets. How will the financial bubble of those assets develop, shrink, or

expand, and what impact will it have on the severity of the economic aftermath?

Due to the wide variety of valuable researches on financial bubbles, all accompanied

by various definitions of bubbles, we must choose just one that we deem suitable as a solid

foundation to begin addressing the questions. This study extends Thomas Lux’s model

that emphasized on the impact of Herding behavior on Bubble, and Crash. Herding

behavior was explained as events stemming from the collective behavior and sequential

actions of investors in buying or selling, leading to an imbalance between buying and

selling demand. What reinforces the readiness in investors’ behavior to follow each other

is fundamental economic variables such as actual returns. This type of model will be

integrated with the model of safe-haven asset that we will present in the next section. The

model results will be subsequently used to investigate and compare the effect of crucial

parameters.
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Chapter 2

Models

2.1 Models

2.1.1 Review of Lux’s Model

First, we will present for mutual understanding the characteristics of the market under

consideration and the definition of the financial bubble based on the previous study. A key

feature of the market is that profit-seekers in the market exhibit a behavior known as herd

behavior, wherein profit-seekers tend to follow the direction of the crowd in one direction.

We presume a market population consisting of a total of 2N market participants. Within

this population, individuals are divided into two ideological groups: those who view the

market negatively, denoted as n−, representing individuals predisposed to selling assets,

and those who view the market positively, denoted as n+, representing individuals inclined

to purchase assets. Additionally, investors are assumed to make buy or sell decisions based

on the contagion process, where each individual is immediately prepared to switch from

their current group to the larger or predominant group. We introduce the superiority of

each group’s population with x = (n+ − n−)/2N , where x is within the range [−1, 1].

In cases where x > 0, it indicates a prevailing demand for buying assets in the market;

conversely, x < 0 denotes a predominance of selling. When x = 0, it signifies market

equilibrium, while x = 1 and x = −1 represent extreme cases where all market participants
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converge on the same perspective.

Next, our focus shifts to the properties of market participants, specifically herd be-

havior or the contagion process within the market. In the market under consideration,

we assume that individuals’ decisions depend on others within the market, meaning each

market participant’s decision to buy or sell assets depends on the prevailing sentiment or

noise in the market. We further assume that at any given moment, individuals in the

market have a probability of switching from being buyers to sellers or vice versa, denoted

as p−+ and p+−, respectively. Conversely, in the opposite direction, we have p+− and p−+,

which, combined with the contagion process, are determined by the collective sentiment

of market participants x. Thus, we define p−+ = p−+(x) and p+− = p+−(x) based on the

overall market sentiment x.

Since there are the probabilities of the transition between optimistic one and pessimistic

one, such that we are starting to consider the change of average disposition x. Conse-

quently, we expect fraction n−p+− to switch from the n− to the n+ group which means

those who are pessimistic traders turn to an optimistic attitude with probability p+−,

and vice versa. From this it follows that the change in time of the number of optimistic

and pessimistic traders is : dn+/dt = n−p+− − n+p−+ and dn−/dt = n+p−+ − n−p+−.

Including with n and x that we defined:

dx/dt = [(N − n)p+−(x)− (N + n)p−+(x)]/N

= (1− x)p+−(x)− (1 + x)p−+(x).

(2.1)

We note that the original arguments serve the stochastic model. However, the derivation

of this equation was carried out via the Master equation. To grasp the very idea of how the

original basic stochastic process was approximated as an approximation to the change in

time of the mean value of the opinion index x which is equation (2.1), it will be explained

in the following operation.

First, we can intentionally select a time scale such that only ’nearest neighbor transi-

tions’ occur, meaning the likelihood of simultaneous movements by multiple members of
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the population at any given moment is minimal. We define n = 0.5(n+ − n−). We then

define the probability that the distribution of the population of speculators changes from

{n+, n−} to {n+ − 1, n− + 1}, or equivalently, from {n} to {n− 1} as:

w−+(n/N) = n+p−+(n/N) (2.2)

Vice versa, the probability from {n} to {n+ 1} as:

w+−(n/N) = n−p+−(n/N) (2.3)

Additionally, if the population size is sufficiently large to permit a continuous-time

approximation, the following Master equation can be written to describe the change in

the probability distribution P(n; t) over time:

dP(n; t)/dt = [w+−(n− 1)P(n− 1; t) + w−+(n+ 1)P(n+ 1; t)]

− [w+−(n)P(n; t) + w−+(n)P(n; t)].

(2.4)

The mean value of {n} is defined by:

n̄t =
N∑

n=−N

nP(n; t). (2.5)

Its change over time is given by:

dn̄t/dt =

N∑
n=−N

nP(n; t)/dt

=

N∑
n=−N

[w+−(n)− w−+(n)]P(n; t) = w+−(n)− w−+(n).

(2.6)

An approximation of the right-hand side (RHS) of equation (2.6) can be made by

considering the first term in the Taylor series expansion around n̄t, resulting in the closed
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expression:

dn̄t = w+−(n̄)− w−+(n̄). (2.7)

Dividing by N and substituting the definitions (2.2) and (2.3), equation (2.7) is trans-

lated into a dynamic equation for the mean value of the opinion index x, which is:

dx̄/dt = [(N − n̄)p+−(n̄/N)− (N + n̄)p−+(n̄/N)]/N

= (1− x̄)p+−(x̄)− (1 + x̄)p−+(x̄)

(2.8)

Suppressing the bars, (2.8) is the same as (2.1) in the main text. This operation has

converted the stochastic dynamics into a quasi-deterministic one, significantly simplifying

analysis.

The transition probabilities will be specified in order to perceive how (2.1) potentially-

describes. Note that the requirements for p+− and p−+ is, (1) all transition probabilities

have to be positive, (2) if the prevailing disposition of the population is already optimistic

then p−+ > p+−. Moreover, it seems reasonable to assume that dp+−/p+− = a dx, that

is the relative changes in probability to switch from pessimism to optimism increases lin-

early with-changes in x, and vice versa dp−+/p−+ = −a dx, where a is a constant. These

assumptions may suggest the following functional form commonly chosen in the related

literature:

p+−(x) = veax, p−+(x) = ve−ax. (2.9)

Here, a gives a measure for the strength of herd behavior and a > 0, v is a variable

for the speed of change and v ∈ [0, 0.5] (x = 0, balanced disposition we have p+− = p−+ =

v > 0). This means that a little change from equilibrium point is the starting point of

herd behavior.

Follow by properties of the hyperbolic sine and cosine and this specification of tran-
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sition rates the time development of the mean value of the index x becomes:

dx/dt = (1− x)veax − (1 + x)ve−ax = 2v[sinh(ax)− x cosh(ax)]

= 2v[tanh(ax)− x] cosh(ax).

(2.10)

The equation (2.10) represents changes in the majority Sentiment of the market. As the

price of focusing securities changes according to the excess demand, the further assumption

relies on the direct proportionality of the excess demand on the market sentiment and

the deviation of price from the fundamental value. These two factors used the different

proportionality constants that distinguishes between the trading volume of speculative

investors and of fundamentalists. The corresponding dynamics are given by

dx

dt
= 2v[tanh(a1ṗ/v + a2x)− x] cosh(a1ṗ/v + a2x),

dp

dt
= β[xTN + TF (pf − p)],

(2.11)

where dp/dt and ṗ, representing the rate of change in the price of the underlying asset.

According to dp/dt, price changes are driven by the excess demand of two groups of

speculators: Fundamental traders, who trade based on the perceived discrepancy between

current prices and fundamental values, and Noise traders, who follow others’ actions. The

excess demand of Fundamental traders is denoted by TF (pf − p), where TF is the trading

volume of Fundamental traders, and pf is the Fundamental price of the underlying asset.

On the other hand, Noise traders’ excess demand is represented by xTN , with TN being

the trading volume of Noise traders. a1 is weight factor describing how much information

investors try to draw from price and a2 is weight factor describing how much information

investors drawn from the behavior of others.

Furthermore, the contagion process and price dynamics have different mean time lags,

denoted by 1/v and 1/β, respectively. Assuming instantaneous market clearing, the equa-

tion implies that p = pf + (TN/TF )x and ṗ = (TN/TF )ẋ, where the expected returns

influence the readiness of profit-seekers to follow suit in the market, and ẋ represents the
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rate of change in x. This readiness is influenced by the cumulative difference between the

true returns of the underlying asset and the expected returns in the market.

dx

dt
= 2v[tanh(a0 + a2x)− x] cosh(a0 + a2x),

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x
−R

]
,

(2.12)

Here, r is the nominal dividend payment and defines R = r/pf as the expected return,

with τ interpreted as an adjustment coefficient. Finally, it is noted that when the accu-

mulated market return a0 becomes less than 0, it indicates the occurrence of a financial

bubble burst.

2.1.2 The Model with Safe-Haven Asset

In this section we include the price dynamic of the safe-haven in equation (2.12). Since

models of safe-haven assets are still relatively rare nowadays, we adopt the assumption that

the change in return of a safe-haven asset, denoted by s, follows a mean-reverting process,

as discussed in [9]. To develop such a model according to our initial definition, it is essential

to understand the term ”safe-haven.” The term ”safe-haven” refers to a place chosen by

living beings to avoid or reduce potential damage to something valuable to them from

impending dangers. For investors, ”safe-haven” means an alternative investment strategy

chosen to protect their assets or their value from economic uncertainties or potential crises.

Simply stating that investor behavior changes from buying to selling or vice versa may be

too simplistic and rigid. However, evidence from two studies, one by Macro Tronzano [11]

and another by Dirk G. Baur [4], indicates that during periods of economic uncertainty,

investors tend to shift their cherished risky assets or underlying assets to safe-haven assets.

Despite this, there is still a lack of data on the extent of this behavior. To align with [2],

we hypothesize that the extent of investor behavior also depends on current economic

factors. Therefore, we introduce −Ex as a factor in our safe-haven asset model, where

E > 0 represents a basic economic factor influencing investors (akin to a weight factor).
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Hence, the safe-haven asset model is given by:

ds

dt
= α [TS(sf − s)− Ex] (2.13)

In this context, α signifies the speed of change of the safe-haven asset, TS represents

the trading volume for the safe-haven asset, and sf denotes the fundamental price of

the safe-haven asset. In this equation, the return of safe-haven tends to decrease as

the current financial market booms. Furthermore, considering the economic indicators’

involvement with financial bubbles, it becomes imperative to contemplate a new model

for the underlying asset. Therefore, we derive the following equation:

dp

dt
= β[xTN + TF (pf − p) + E] (2.14)

It is clear that equation (2.13)-(2.14) describe that both are driven by the market

sentiment. As a result, the dynamic of accumulative return is adjusted as

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x+ E/TF
−R

]
(2.15)

Here, R = r/(pf +E/TF ). To complete the model modification, we extend the transition

probability by assuming that additional information is also drawn from the safe-haven

return with directly but negatively proportional to the change in return of the safe-haven

asset. By this assumption, dynamic of safe-haven becomes negatively associated with the

price of the focusing asset.

To align with Lux’s work and his interpretation, it is reasonable to include a3ds/dt as

a factor influencing the readiness of profit-seekers to follow the crowd in the market. Re-

cently herd behaviour model, which includes the return of safe-haven assets, is represented

by

dx

dt
= 2v[tanh(a0 + a2x+ a3ṡ)− x] cosh(a0 + a2x+ a3ṡ), (2.16)
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where a3 is a weight coefficient that expresses the strength of the safe-haven asset’s

influence on herd behavior, and ṡ represents the rate of change in s. However, this as-

sumption can be considered as two possibilities that is the relationship between two assets

can be discrete and continuous. Thus, it is reasonable to separate the model into two

sub-models as follows.

Model 1: Continuous Relationship

The first system of equations for the financial bubble model we are considering is repre-

sented by the following equation:

dx

dt
= 2v[tanh(a0 + a2x+ a3ṡ)− x] cosh(a0 + a2x+ a3ṡ),

da0
dt

= τ

[
r + τ−1(TN/TF )ẋ

pf + (TN/TF )x+ E/TF
−R

]
,

ds

dt
= α [TS(sf − s)− Ex] ,

(2.17)

Model (2.17) indicates that investors’ behavior is not solely influenced by the actions

of the majority but is also affected by accumulated returns and the return information

of safe-haven assets when making investment decisions in speculative markets. Investors

are aware of this information at all times. This is worth mentioning as it connects to the

subsequent model we will consider next.

Model 2: Discrete Relationship

In order to align more closely with the safe-haven asset’s definition we have discussed. We

now define function A(a0),

A(a0) =


0, if a0 ≥ 0

1, if a0 < 0

Incorporating the term A(a0) to refine and adjust equation (2.17) would enhance the

system to adhere more closely to the defined definition. The influence of the returns of

safe-haven assets on market participants’ decision-making would come into play only when
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the value of a0, or the accumulated actual return of the market is negative. Now we have

dx

dt
= 2v[tanh(a0 + a2x+ a3ṡA(a0))− x] cosh(a0 + a2x+ a3ṡA(a0)). (2.18)

where a3 is defined as the same as the previous model. Therefore, the present models are

(2.18)

2.1.3 Stability Analysis

In this section, we aim to determine the (local) stability condition for the equilibrium

point of model (2.17). This is because when considering the definition of a bubble as

a transient situation where prices oscillate around the fundamental price, analyzing the

stability of the system becomes an important aspect. As the bubble may occur when the

system undergoes the unstable equilibrium state, the derived condition can be used to

confine the parameter space for further investigation.

To determine the equilibrium point of the system (2.17), we first put dx/dt = 0,

da0/dt = 0, and ds/dt = 0, respectively. This is true after the truth that dx/dt = 0 and

x = 0. So, we consider only remained two equations. We also observe that x = 0 is only

solution for the first equation. Hence, s = sf is a result. Therefore, we can conclude that

our system inherently possesses a unique equilibrium E(x, a0, s) = E(0, 0, sf ), representing

a scenario where the majority of dispositions are balanced, actual returns are zero, and the

price of the safe-haven asset equals its fundamental price. For assessing system stability,

we rely on the Routh-Hurwitz stability criterion, a mathematical test that is a necessary

and sufficient condition for the stability of a linear time-invariant dynamical system, [6]

with the following Jacobian matrix:

J =


F11 F12 F13

F21 F22 F23

−αE 0 αTS

 , (2.19)

where F11 = 2vM2(1−K1)M4 + 2vK1M1M3,
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F12 = 2vT5 + 2vM1M3,

F13 = −K2M5 −K2M1M3,

F21 = −K3TN (2vTFM2−2vTFK1(1+M2)M4+K3τ(r+2M2M3TNv))
K4TF

,

F22 = τK3(
2vTNM5+2vTNM1M3

K4
),

F23 = τK3(
TNK2M3−TNK2M1M3

K4
),

K1 = a2 − a3αE,

K2 = 2a3αTSv,

K3 = 1/(pf + E/TF + xTN/TF ),

K4 = τTF ,

M1 = sinh(a0 + a2x+ a3α((−s+ sf )TS − Ex)),

M2 = cosh(a0 + a2x+ a3α((−s+ sf )TS − Ex)),

M3 = −x+ tanh(a0 + a2x+ a3α((−s+ sf )TS − Ex)),

M4 = sech(a0 + a2x+ a3α((−s+ sf )TS − Ex))2

and M5 = sech(a0 + a2x+ a3α((−s+ sf )TS − Ex)).

After computing the Jacobian matrix, we proceed to analyze the stability of the system

at equilibrium points examining the eigenvalues of the characteristic equation. The char-

acteristic equation is obtained from the determinant of the Jacobian matrix subtracted by

a scalar multiple of the identity matrix, given by:

det(J − λI) = 0 (2.20)

This characteristic polynomial is typically expressed as:

anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0 = 0 (2.21)

To determine the stability of the system, we use the Routh-Hurwitz criterion, which

involves constructing the Routh-Hurwitz array from the coefficients of the characteristic

polynomial. The Routh-Hurwitz array is constructed as follows:
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sn an an−2 an−4 · · ·

sn−1 an−1 an−3 an−5 · · ·

sn−2 b1 b2 b3 · · ·

sn−3 c1 c2 c3 · · ·
...

...
...

...
. . .

s1 d1 d2 d3 · · ·

s0 a0 0 0 · · ·

where the elements bi, ci, . . . are computed as follows:

b1 =
an−1an−2 − anan−3

an−1
, b2 =

an−1an−4 − anan−5

an−1
, and so on.

c1 =
b1an−1 − an−1b2

b1
, c2 =

b1an−3 − an−1b3
b1

, and so on.

Once the Routh-Hurwitz array is constructed, the stability of the system can be de-

termined by examining the first column of the array. If all elements in the first column

are positive and there are no sign changes, the system is stable. If there are sign changes,

the number of sign changes corresponds to the number of eigenvalues with positive real

parts, indicating instability.

After computing the coefficients of the characteristic equation of our differential equa-

tion system and constructing the Routh-Hurwitz array, we identified the stability condi-

tions as follows: the equilibrium is stable if and only if either a < 0 and b < 0. The values

of a and b are determined as follows:

a = −αTS + 2vC − 2a3αEv +
2TNRv

rTF
,

b = 2v

(
RTN (αTS − τR)

rTF
+ αTS

(
C +

τR2TN

αrTF (TS + 2a3Ev)− 2v(CrTF +RTN )

))
,

(2.22)

where R = r/(pf + E/TF ) and C = a2 − 1.
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Before proceeding to the next section, it’s important to acknowledge the scope of

our stability analysis. While we have successfully identified conditions under which our

system exhibits instability, it’s essential to note that our focus has been primarily on

understanding fluctuations around the fundamental price. However, it’s worth mentioning

that determining conditions for periodic events remains an ongoing challenge. Despite this

limitation, our analysis provides valuable insights into the behavior of our system within

the context of instability.
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Chapter 3

Results

3.1 Results

In the context of financial bubble phenomena, two factors can indicate its severity. First

is its size, which refers to the magnitude of its price fluctuations around the fundamental

value, represented by the height from crest to trough. The second factor is its duration,

which represents the time it takes for the price fluctuations to complete one cycle, indicated

by the length from crest to crest.

We have omitted the analysis of events in the early stages of the mechanism concerning

size and duration in both (2.17) and (2.18) due to their non-periodic nature. Instead, we

focus on the analysis of events in the second stage when the system exhibits periodic

solutions, as depicted in Figure 3.1.

In this section, we calculate the two indicators from the numerical solutions of the

models using the parameter values in Table 3.1. To verify whether the results align

with our hypothesis, which posits that the inclusion of information from safe-haven assets

reduces the severity of financial bubbles which are temporary events where asset prices

deviate and follow with the fluctuation around their fundamental value, we consider the

stability conditions outlined in the previous section. Given the unique equilibrium point

of the system, it is sufficient to select parameters that induce instability in system (2.17)

for this analysis.
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Parameter Description Value(unit)

a2 Strength of herd behavior 1.125
a3 Strength of safe-haven asset 1.25
r Constant nominal dividend payment 1.0
TN Trading volume of speculative investor 21/160
TF Trading volume of fundamental investor 3/4
pF Fundamental price of underlying asset 7/10
TS Trading volume of safe-haven asset 1.0
sF Fundamental price of safe-haven asset 1.3
α Speed of change on safe-haven asset 1.0
β Speed of change on underlying asset 1.0
E Economic factor 0.02
v Speed of change on probability 0.5
τ Adjustment coefficient 1.0

Table 3.1: Parameter values used in numerical calculations.

Figure 3.1: Sample of price dynamics/movements of the underlying asset for each model with a
set of initial conditions p = 0.8, x = 0.5, a0 = 1 and s = 1.

3.1.1 Model 1’s Result

According to model (2.17), it demonstrates how safe-haven assets play a role in investors’

decision-making at all times. When considering the weight factor variable a3, which rep-

resents the weight that profit-seekers give to information about safe-haven assets, from
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Figure 3.2b, it can be observed that as a3 increases, the height of the bubble decreases. In

this scenario, we might argue that when profit-seekers who exhibit herding behavior take

a moment to observe information from safe-haven assets before considering buying/selling

the underlying asset they are interested in, in cases where these profit-seekers make mis-

takes in their decision-making, it may help reduce the resulting losses.

As for the weight factor variable a2, which represents the weight that profit-seekers

give to the noise of the crowd before considering buying/selling the underlying asset they

are interested in, from Figure 3.2a, it can be observed that as a2 increases, the height of

the bubble also increases. It is evident that when people are ready to make decisions to

buy/sell the underlying asset solely because others are doing so, it is not surprising that

the price of this asset may soar to the sky or plummet underground.

Upon examining financial bubble in term of the duration in Figures 3.3a and 3.3b,

both variables a2 and a3 yield similar results. That is, as these variables increase, the

duration of price fluctuations around the fundamental value for one cycle also increases.

This may be beneficial as it suggests a decrease in market volatility.

(a) Impact of a2 on asset’s amplitude as a3 is 1. (b) Impact of a3 on asset’s amplitude as a2 is 1.

Figure 3.2: Impacts of a2 and a3 on underlying asset’s amplitude of model 1 as a3 is 1 and a2 is
1 respectively.
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(a) Impact of a2 on asset’s period as a3 is 1. (b) Impact of a3 on asset’s period as a2 is 1.

Figure 3.3: Impacts of a2 and a3 on underlying asset’s period of model 1 as a3 is 1 and a2 is 1
respectively.

(a) Impacts of a2 and a3 on underlying asset’s
amplitude.

(b) Impacts of a2 and a3 on underlying asset’s
period.

Figure 3.4: Impacts of a2 and a3 on underlying asset’s price of model 1 in contour plot.

Figures 3.4a and 3.4b represent contour plots illustrating the impacts of a2 and a3 on

the underlying asset’s price in terms of amplitude and period in Model 1. We have seen

that the change in combination of two parameters does not make significant change of

the amplitudes and periods from the pattern when fixing one parameter. The results are

more relatively sensitive to the change of a2 than a3. The contour plot shows that the

safe-haven strategy and the herding behavior are uncorrelated.
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(a) Impact of a2 on asset’s amplitude as a3 is 1. (b) Impact of a3 on asset’s amplitude as a2 is 1.

Figure 3.5: Impacts of a2 and a3 on underlying asset’s amplitude of model 2 as a3 is 1 and a2 is
1 respectively.

(a) Impact of a2 on asset’s period as a3 is 1. (b) Impact of a3 on asset’s period as a2 is 1.

Figure 3.6: Impacts of a2 and a3 on underlying asset’s period of model 2 as a3 is 1 and a2 is 1
respectively.

3.1.2 Model 2’s Result

For the results of model (2.18), where we stated that safe-haven assets play a role in

investors’ decision-making only when the market enters a crisis or downturn, as indicated

by the actual return a0 being less than 0, the outcomes, whether in terms of amplitude

as shown in figures 3.5a and 3.5b, or in terms of period as shown in figures 3.6a and 3.6b,

yield similar Model 1(a continuous relationship) both numerical result and interpretations.

However, when comparing the outcomes of both models from both the amplitude and

period perspectives by the effect from a3, it is evident that Model 1 provides better results



 

21

in both aspects, as depicted in figures 3.8a and 3.8b. Therefore, we can conclude that

investors’ continuous interest in safe-haven assets at all times leads to less market volatility

compared to when they only pay attention to them during crisis periods.

(a) Impacts of a2 and a3 on underlying asset’s
amplitude.

(b) Impacts of a2 and a3 on underlying asset’s
period.

Figure 3.7: Impacts of a2 and a3 on underlying asset’s price of model 2 in contour plot.

Figures 3.7a and 3.7b represent contour plots illustrating the impacts of a2 and a3 on

the underlying asset’s price in terms of amplitude and height in Model 2.

(a) Comparison between model 1&2 on am-
plitude from impact of a3

(b) Comparison between model 1&2 on pe-
riod from impact of a3

Figure 3.8: Comparison between model 1&2 on amplitude and period from impact of a3
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Chapter 4

Conclusion

4.1 Conclusion

Our findings from the safe-haven asset model, as illustrated by the Mean Reversion model,

confirm our underlying assumption in both respects. Compare to Lux’s, this indicates

that when investors base their decisions to buy or sell the underlying asset on information

beyond mere consensus, it can reduce market volatility. In this context, volatility refers

to the intensity of financial bubbles. Or in other words, wisdom prevails over emotions.

We have proposed the mechanistic models extended from the previous work. The

model composes of the dynamics of disposition variables, the accumulative difference of

returns and safe-haven asset. The present model always has only one equilibrium point.

The stability conditions are more complicate than of the previous work since the number of

parameters of safe-haven asset are added. However, the common necessary conditions are

that a2 < 1. This implies that the onset of financial bubble requires the strong influence

of herding behavior.

Understanding the existence of financial bubbles and being able to explain them in

another form, as we have proposed, would be beneficial for analyzing whether the current

situation warrants diversification of our investment risks or not. In addition to that, safe-

haven assets are likely to be another option for hedging or portfolio allocation. Since the

parameters used in our experiments are not specified, it may be possible to consider the
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proportions of holding safe-haven assets for hedging or portfolio allocation.

This research, while explaining the influence of safe-haven assets on financial bubbles in

a deterministic form, also paves the way for exploring stochastic models. This extension

could encompass various aspects, including price prediction models or financial bubble

models, sentiment analysis of profit seekers in the market, or expressing it in other forms.

There are numerous avenues to explore. Another potential direction is to include other

assets beyond safe-haven assets to observe the behavior of profit seekers, price movements,

and sentiment, which could be beneficial for hedging or portfolio allocation. Undoubtedly,

there is much more to investigate.

As mentioned earlier, this paper is an extension of Thomas Lux’s work on ”Herd

behavior, bubbles and crashes”. In this regard, it raises the question of what would happen

if other assets were involved with the underlying asset, and we chose it as the safe-haven

asset. While our proposed safe-haven asset model may not fully capture the characteristics

indicative of a safe-haven asset and could prompt questions about its efficacy, this could

serve as a starting point for further development of Thomas Lux’s model from another

interesting perspective.



 

24

References

[1] M. Akhtaruzzaman, S. Boubaker, B. M. Lucey, and A. Sensoy, Is gold a hedge or a

safe-haven asset in the covid–19 crisis?, Economic Modelling 102 (2021), 105588.

[2] F. Allen and D. Gale, Bubbles and crises, The Economic Journal 110 (2000), no. 460,

236–255.

[3] D. G. Baur and T. K.J. McDermott, Is gold a safe haven? international evidence,

Journal of Banking & Finance 34 (2010), no. 8, 1886–1898.

[4] D. G. Baur and T.K.J. McDermott, Safe Haven Assets and Investor Behaviour Under

Uncertainty, The Institute for International Integration Studies Discussion Paper

Series (2011), no. iiisdp392.

[5] V. Chang, R. Newman, R. J. Walters, and G. B. Wills, Review of economic bubbles,

International Journal of Information Management 36 (2016), no. 4, 497–506.

[6] G. Franklin, J.D. Powell, and Abbas Emami-Naeini, Feedback control of dynamic

systems, 1994.

[7] I. Giardina and J. Bouchaud, Bubbles, crashes and intermittency in agent based mar-

ket models, The European Physical Journal B 31 (2003), 421–437.

[8] T. Lux, Herd behaviour, bubbles and crashes, The Economic Journal 105 (1995),

no. 431, 881–896.

[9] E. S. Schwartz, The stochastic behavior of commodity prices: Implications for valua-

tion and hedging, The Journal of Finance 52 (1997), no. 3, 923–973.



 

25

[10] D. Sornette and P. Cauwels, Financial bubbles: Mechanisms and diagnostics, Review

of Behavioral Economics 2 (2015), no. 3, 279–305.

[11] M. Tronzano, Safe-haven assets, financial crises, and macroeconomic variables: Evi-

dence from the last two decades (2000–2018), Journal of Risk and Financial Manage-

ment 13 (2020), no. 3.
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