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ABSTRACT  

630930003 : Major ENGINEERING MANAGEMENT 
Keyword : Genetic Algorithm, Aggregate production planning, Vehicle routing problems 
with time windows, K-mean clustering 

MISS Ratchadakorn POOHOI : Genetic Algorithm for multi-product multi-period 
aggregate production planning and vehicle routing problems with time windows Thesis 
advisor : Assistant Professor Dr. KANATE PUNTUSAVASE 

Genetic Algorithm is the search algorithms and optimization methods. The 

basic concept is based on the mechanisms of evolution and natural selection, according 

to Darwin’s theory of survival of the fittest.  A novel crossover operator is a combination 

of four crossover operators, including Single point crossover, Two points crossover, 

Arithmetic crossover, and Scattered crossover, which is called “Stas Crossover”. The 

most important advantage of Stas crossover is that it provides greater diversity in the 

choice of methods for creating offspring and increases the opportunity for offspring to 

directly obtain good genetic information. It presents the performance of the crossover 

operator, which tests with multi -product and multi-period aggregate production 

planning problems (APP), provides optimal levels of inventory, backorders, overtime and 

regular production rates, and other controllable variables, and finally chooses 

appropriate crossover options. Moreover, Stas crossover in GA was modified to solve 

the standard Solomon’s benchmark problem instances for vehicle routing problems with 

time windows (VRPTW) by developing the problem with K-mean clustering. Results from 

K-mean clustering show that it performs better for minimum distance and average 

distance than without K-mean clustering. The paths with K-mean clustering are arranged 

into groups and are orderly, but the paths without K-mean clustering are disordered in 

terms of location and dispersion characteristics of the customer. After that, the research 

presents a comparison of the performance of the crossover operator with the instance of 

the Solomon benchmark, and it is recommended to use the appropriate crossover 

operator for each type of problem. It has been shown that adding K -mean clustering to 

the Stas crossover efficiently contributes to its performance. In some instances, the 
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results of Stas crossover are better than the known solutions from previous studies. 

Furthermore, the proposed research will serve as a guideline for a real-world case study. 
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CHAPTER 1 
INTRODUCTION 

1.1 Motivation 

Genetic Algorithm (GA) is a population-based metaheuristic optimization 

algorithm. John Holland developed GA based on Darwin's theory of evolution in 1988 

and expanded it in 1992 (Goldberg, 1989; Holland, 1992). It is a natural selection that is 

based on evolutionary algorithms. GA searches by biologically inspired operations, 

starting from the initial population. This operator starts with a random population to 

determine the population’s fitness for each chromosome. To improve the poor individuals 

in the first population, selection occurs when the operator chooses the individuals for the 

next generation in the total population through chromosome selection from the commonly 

used roulette wheel. This operator is based on probability for individuals and selects the 

next generation, which is proportional to fitness values. Good individuals may be chosen 

many times in a generation, but poor individuals may not be chosen at all. The 

chromosomes of selected parents are recombined. The mechanisms of crossover and 

mutation are generally used. Termination criteria are defined when the solution has no 

improvement. However, GA has been a popular search technique to find good solutions 

for complicated optimization problems. 

Aggregate production planning (APP) is a method for developing an overall 

production plan to ensure production in a facility is not interrupted. APP is associated 

with the determination of production, inventory, and labor levels to fulfill varying demand 

over a planning perspective that ranges from a period of six months to one year 

(Krajewski & Ritzman, 1999). The aggregate plan generally includes forecasts of target 

sales, production levels, inventory levels, and customer backlogs. The goal is to minimize 

operating costs by matching production demand with production capacity. In ord er to 

minimize costs, APP will determine which materials and other resources are required 

and when to procure them. APP helps manufacturers maximize plant productivity and 
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achieve financial goals. To meet customer demand, minimize the expense of excess 

inventory, and meet production capacity to the maximum benefit, this can be helpful. 

The primary goals of APP are to minimize costs and maximize profits. The 

strategic objectives of aggregate planning include minimizing inventory investment, 

minimizing workforce demand and fluctuation, maximizing production rates while 

minimizing fluctuation, and optimizing facility and production equipment utilization. An 

APP problem can be a form of transportation problem. The transportation model is one 

example of a linear programming model. Finding the optimization can determine the 

results of the optimal objective function (maximize problem and minimize problem). It 

can be found in linear programming tools such as Lindo, MATLAB, AMPL, and Excel 

Solver for optimization. However, Excel Solver is well known in the industry, but the free 

version currently available is limited in terms of variables. That means it can be used in a 

limited range, too. In addition, users must have a complete understanding of it; 

otherwise, it may cause errors in the work. In this research, it is a program that uses 

more variables than the current free version. Users need not have knowledge of Excel 

Solver to use it. This is useful in solving problems like APP in the industrial sector. 

APP has received a lot of attention from both practitioners and academics. 

Certain constraints are imposed on solving the APP problem, which demand constraint 

optimization. Various meta heuristic algorithms like simulated annealing, particle swarm 

optimization, and genetic algorithm (GA) have been used by many researchers in solving 

the APP problem. Chakrabortty and Md.A.Akhtar. (2013) developed an interactive Multi-

Objective Genetic Algorithm (MOGA) approach for solving the multi -product, multi-

period APP with forecasted demand, related operating costs, and capacity.  Savsani et 

al. (2016)  described a GA with different selection methods and diverse crossover 

operators for solving APP. Natural selection and natural genetics are the foundations of 

GA search algorithms. They combine survival of the fittest among string structures with a 
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structured yet randomized information exchange to form a search algorithm with some of 

the innovative flair of human search (Goldberg, 1989). 

Dantzig and Ramser (1959) introduced Vehicle routing problem (VRP) in 1959 

called the truck dispatching problem. VRP is significant in the transportation and logistics 

industries. It is classified as an NP-hard problem. Vehicle Routing Problem with Time 

Window (VRPTW) is an important kind of classical VRP in which time window constrain. 

The objective function minimizes the total distance traveled or the number of vehicles 

used. In the VRPTW a number of vehicles is limited, it starts from a central depot to serve 

dispersed customers in the time window with limited capacity and terminates at the 

depot (Cordeau et al., 2000).  

Vehicle Routing Problem (VRP) is important in the transportation and logistics 

industries. One type of VRP with an additional time windows constraint in the model is 

Vehicle Routing Problem with Time Window (VRPTW). The goal is to minimize the total 

distance traveled, or the number of vehicles used, and identify vehicle routes. The 

problem can be described as finding routes with a limited number of vehicles and each 

vehicle having a limited capacity. It starts from a central depot to service only one 

customer within the time windows and ends at the depot (Kallehauge et al., 2005; Ariyani 

et al., 2018; Thangiah, 1995). According to Ahmed et al. (2023), VRPTW is categorized 

as an NP-hard problem, meaning that the computational complexity required to solve it 

increases exponentially with problem size.  

Genetic Algorithm (GA) is a popular algorithm for solving VRPTW problems. May 

et al. (2021) research proposes developing the problem-specific crossover and seven 

various mutation operators to offer a new improved GA to solve various VRPTW with the 

hard time windows. Ghani et al. (2016) studied how to assign a number of vehicles to a 

customer and depot to minimize the total distance traveled and achieve delivery 

operations within the time windows that the customer required. Kinoshita & Uchiya 
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(2021) propose a method to ensure optimization accuracy while preserving dynamic 

switching with multiple crossovers based on gene population diversity. 

In VRPTW, Solomon benchmarks are the most popular problem to solve. The 

problem is divided into six problem sets, suggested as C1, R1, RC1, C2, R2, and RC2, 

each of which represents a different problem type ( Solomon, 1987; Solomon & 

Desrosiers, 1998). There are between eight to twelve 100-node problems in each set. 

These six sets of problems, including Set C has generated the customer cluster. Set R 

has generated uniformly random locations, whereas Set RC has a combination of Set C 

and Set R. According to Solomon (2005) and Gambardella (2000) Type 1 has narrow 

time windows and a small vehicle capacity, whereas Type 2 has large time windows and 

a large vehicle capacity. 

Based on several studies that have been done before, it is a long evolution phase 

for GA algorithms. Therefore, the authors see that there are good opportunities for future 

contributions. In this study, the author used a popular meta heuristic, GA, to solv e the 

APP problems and VRPTW problems. For APP problems considered a multi-product, 

multi-period to minimize total costs in terms of regular time, overtime, backordering, and 

inventory costs. A detailed comparison is presented of a GA approach for solving APP 

problems by using four different crossover options and new crossover to compare the 

behavior of the crossover and choose appropriate crossover options for solving the APP 

problems. For VRPTW problems considered GA with a new crossover to solve by 

developing the problem with K-mean clustering to perform better for minimum distance 

and average distance for Solomon’s benchmark problem instances . A detailed 

comparison is presented with Solomon’s benchmark problem instances for VRPTW to 

compare the results with and without K-mean clustering. This work developed a novel 

interactive crossover approach, considering four crossover options as well as creating a 

new crossover option for APP problems. After that, the author developed the new 
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crossover with K-mean clustering to solve Solomon’s benchmark problem instances for 

VRPTW. 

 
1.2 Research Objectives 

1.2.1 To create a new crossover operator in a genetic algorithm approach for 

using Microsoft Visual Studio. 

1.2.2 Apply a new crossover and using four different crossover options to solve 

multi-product multi-period APP problems and compared behavior of crossover and 

based on different statistical values. 

1.2.3 Apply a new crossover with K-mean clustering and using four different 

crossover options to solve Solomon’s benchmark problem instances for VRPTW. 

 

1.3 Research Contribution 

1.3.1 Discover a new crossover operator  in a genetic algorithm, it’s called “Stas 

crossover”. 

1.3.2 Be able to choose appropriate crossover options for solving multi-product 

multi-period APP problems.  

1.3.3 Be able to choose appropriate crossover options for solving Solomon’s 

benchmark problem instances for VRPTW with K-mean clustering and without K-mean 

clustering. 
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CHAPTER 2 
THEORY AND LITERATURE REVIEWED 

In this study, the author used a popular meta heuristic, GA, to solve the APP 

problems and Solomon’s benchmark problem instances for VRPTW. Here, the author 

considered two parts, including a multi-product and multi-period APP problems and 

Solomon’s benchmark problem instances for VRPTW. The author study concepts, 

theories, and related research to be used as a guide to explain and study the following 

content. 
 

2.1 Aggregate production planning 

Aggregate production planning is a method to reduce costs and develop all 

overall manufacturing plans. It is concerned with the determination of production, 

inventory, and labor levels to fulfill shifting demand requirements over a six -month to 

one-year planning horizon. The following seasonal peak in demand is usually factored 

into the planning horizon. The planning horizon is often divided into periods ( Gallego, 

2021). The main goal of APP is to minimize costs of operation to optimize manufacturing 

which matches production demand with production capacity. It determines the level of 

production, inventory, and labor needed to meet changing demand and also informs 

manufacturers on the costs of labor, materials, productivity, timetable forecasts, and the 

budget. 

The strategic objectives of APP with the main goal of minimizing costs and 

maximizing profits, include minimizing inventory costs, balancing efforts to minimize 

inventory management and storage, ensuring enough inventory to meet needs, and 

minimizing the workforce. APP uses data from forecasting demand to calculate a 

balanced workforce. Moreover, maximizing facility utilization determines the maximum 

facility utilization for the over-planned period. By achieving the strategic objectives, 
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manufacturers can balance short- and long-range production plans that meet demands 

and optimize manufacturing profits. 

Short-range plans, intermediate-range plans, and long-range plans are the three 

levels of APP. The responsibilities of the top management, operations managers with the 

sales and operations planning team, and operations managers, supervisors, and 

foremen are depicted in Figure 1 (Heizer et al., 2017). The term APP refers to the 

planning that is done for a single measure of overall output; at least it only includes a few 

product categories. Each forecast is appropriate for each planned period. 

 

Responsibility  Planning tasks and time horizons 

Figure  1 Planning Tasks and Responsibilities 
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The formulation of a linear programming model for the APP planning problem 

with multi-product multi-period is discussed.  

Parameters 

Rijt Regular time production cost for product i manufactured from source j in 

period t ($/units)  

Oijt  Overtime production cost for product i manufactured from source j in 

period t ($/units) 

Vijt Inventory carrying cost for product i from source j in period t ($/units) 

Bijt Backorder cost for product i m from source j in period t ($/units) 

Variables 

Dit Forecasted demand of product i in period t (units) 

Xijt Production Quantity of product i manufactured from source j at regular 

time in period t (units) 

Yijt Production Quantity of product i manufactured from source j at overtime 

in period t (units) 

Wijt Inventory of product i in source j at the end of period t (units) 

Mijt Backorder of product i in source j at the end of period t (units) 

Objective function 

Min Z= ∑ ∑ ∑ [RijtXijt+OijtYijt+VijtWijt+BijtMijt]   
T
t=1

J
j=1

I
i=1   (1) 

Constraint 

 Wijt-Mijt=Wij(t-1)-Mij(t-1)+Xijt+Yijt-Dit     for ∀i∀t  (2) 

Wijt ≥Wijt min      for ∀i∀t     (3) 

Mijt≤Mijt max      for ∀i∀t     (4) 

 Xijt,Yijt,Wijt,Mijt≥0      for ∀i,∀t     (5) 
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 Equation (1) is the objective function to find the optimal APP that 

minimizes the sum of production costs, including regular time production, overtime 

production, carrying inventory, and backordering costs. Equation (2) – (4) 

represents the constraint on carrying inventory in which the forecast demand Dit 

cannot be obtained precisely in a dynamic market. Demand for a specific period 

can be fulfilled or backordered, but backorders already made must be completed 

in the next period. Equation (5) determines the constraint of non-negative. 
 

2.1.1 Aggregate Planning Strategies 

These are valid planning techniques. Inventory, production rates, workforce 

levels, capacity, and other controllable variables are all manipulated (Heizer et al., 

2017). There are two types of planning methodologies for aggregate planning: 

capacity options and demand options. The fundamental capacity options include 

inventory levels that change, different workforce sizes through hiring or layoffs, 

production rates that change with overtime or idle time, subcontracting, and part -

time labor. Influencing demand, backordering during high-demand seasons, and 

counter-seasonal product and service mixing are the core demand choices. Table 

1 summarizes the advantages and disadvantages of aggregate planning options  

(Heizer et al., 2017). 

Table  1 Aggregate Planning Options: Advantages and Disadvantages 
Option Advantages Disadvantages Comments 

Changing 
inventory 
levels 

Human resources or 
none, the shift is 
gradual. There will be 
no dramatic changes 
in manufacturing. 

The cost of storing 
inventory may rise. 
Sales may be lost 
during periods of 
excessive demand. 

This is mostly a 
production issue, 
not a service 
issue. 
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Table  1 Aggregate Planning Options: Advantages and Disadvantages (Continue) 

Option Advantages Disadvantages Comments 
Varying 
workforce size 
by hiring or 
layoffs 

It avoids the costs 
associated with other 
options. 

Costs of hiring, laying 
off, and training may 
be incurred. 

When the labor 
pool is vast, this 
method is used. 

Varying 
production rates 
through overtime 
or idle time 

Seasonal variances 
can be 
accommodated 
without the need for 
additional 
employment or 
training. 

High overtime rates 
and weary staff may 
make it difficult to 
meet demand. 

This allows for 
some flexibility 
within the overall 
strategy. 

Subcontracting This allows for more 
flexibility and 
improves company 
efficiency. 

Quality of goods 
suffers, profits suffer, 
and future business 
opportunities are lost. 

It's mostly used in 
production 
environments. 

Using part-time 
workers 

Full-time employees 
are more expensive 
and have less 
flexibility. 

High turnover/training 
costs; poor quality; 
problematic 
scheduling 

Unskilled jobs in 
locations with a 
high temporary 
workforce are 
ideal. 

Influencing 
demand 

Make the most of the 
extra capacity. New 
clients are attracted 
by discounts. 

Demand is erratic. It's 
difficult to precisely 
match supply and 
demand. 

Produces 
marketing 
concepts. Some 
businesses use 
overbooking. 
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Table  1 Aggregate Planning Options: Advantages and Disadvantages (Continue) 

Option Advantages Disadvantages Comments 
Back ordering 
during high-
demand periods 

It's possible to avoid 
working overtime. 
Maintain a consistent 
capacity. 

Customers must be 
willing to wait, or else 
their goodwill will be 
lost. 

Many businesses 
are prepared to 
wait. 

Counter 
seasonal 
product and 
service mixing 

Utilize all available 
resources and 
maintain a consistent 
workforce level. 

Outside of the 
company's 
competence, skills or 
equipment may be 
necessary. 

Finding items or 
services with 
opposing 
demand patterns 
might be 
dangerous. 

 

The required information is shown in Figure 2, and the APP’s results include 

demand forecasting with appropriate techniques, capacity, and financial 

constraints, as well as strategic objectives (Heizer et al., 2017). This information 

must be accurate and reliable. The APP’s outputs include workforce size (the 

number of personnel needed), production levels, inventory levels, and other costs 

such as subcontract wages and backorder delivery penalties. 

 

Figure  2 Relationships of the Aggregate Production Planning 
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2.2 Transportation Modeling 

  When considering alternative facility locations within the framework of an existing 

distribution system, the transportation model described in this module may prove useful 

(Heizer et al., 2017). It is an iterative problem-solving process that involves minimizing 

the cost of shipping products from multiple sources to multiple destinations. It must be 

aware of the following to use the transportation model: 

 1. The sources, as well as their capability or supply per period. 

 2. The destinations and demands for each period. 

 3. From each source to each destination, transportation costs one unit. 

  The transportation model is one form of a linear programming model. Software is 

available to solve both transportation problems and the more general class of linear 

programming problems. So, the aggregate production planning problem can be a form 

of transportation model, using the transportation simplex method for optimal. 

  Figure 3 shows that the n units required by destination may be shipped in various 

combinations from m source and how much it costs to ship from each source to each 

destination. 

 

Figure  3 Transportation Problem 
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  In the modeling process, the goal is to set up a transportation matrix. Its purpose 

is to summarize all relevant data and keep track of algorithm computations . It can 

construct a transportation matrix as shown in Table 2. 

Table  2 Transportation Matrix 

 

 

2.3 Travelling Salesman Problem 

The traveling salesman problem (TSP) is an optimization problem and one of the 

most popular problems of NP problem. The purpose of TSP is to minimized  the total 

distance travelled by the travelers. The problem is finding the shortest path possible 

through a set of n vertices such that each vertex is visited only once. The problem is to 

find the shortest path possible which considered a number of cities N and distance 

between cities (Tawanda et al., 2023). The travelers have traveled all cities or find a 

closed tour, each city can only be traveled through once which returned to the same city 

from the starting point as described in Figure 4.  
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Figure  4 Traveling Salesman Problem 
 

In a complete weighted undirected can be illustrated by graph G = (V, A), where 

V = {1, …, N} is set of node and A is node of connected. The distance Cij is the distance 

of traveling from node i to node j, (𝑖, 𝑗) ∈ 𝑉|𝑖 ≠ 𝑗 and S is subsets, V: 𝑆 ⊂  𝑉, 𝑆 ≠ ∅,

𝑆 ≠ 𝑉. 

Parameter 

Cij total distance of traveling from node i to node j 

Decision Variables 

  1, the path traveling from node i to node j 

Xij 

0, otherwise 

Objective Function 

min ∑ ∑ CijXij
n
j≠i, j=1

n
i=1       (1) 

∑ Xij=1n
 i=1,i≠j    ∀j = (1,2,  ...,N)    (2) 

∑ Xij=1n
 j=1,j≠i    ∀i = (1,2,  ...,N)    (3) 

∑ ∑ Xij≤|S|-1j≠i,j∈Si∈S   ∀S ⊂V     (4) 

Xij∈{0,1}    ∀i = (1,2,  ...,N),  j= (1,2,...,N)   (5) 
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Equation (1) is represented the shortest closed tour from the total distance 

travelled by the travelers. Equation (2) and (3) is constraint of each city include a single 

tour entrance and single tour exit. Equation (4) is a subtour elimination constraint a nd 

Equation (5) is defined binary decision variables.  

 

2.4 Vehicle Routing Problems with Time Windows 

 Vehicle routing problem (VRP) is the most important in the transportation and 

logistics industries. It is related to Traveling Salesman Problem. Dantzig and Ramser 

(1959) started the first in VRP problem which included the routing of a fleet of fuel tanker 

trucks between the bulk terminal and the various service stations that the terminal 

offered. After that, it has been many research which expanded about this scope. VRP is 

NP-hard problem that determines the optimal solution. It may be limited by the size of the 

problems to find the optimal solution by using mathematical programming or 

combinatorial optimization, so these heuristics have been used to solve real-world 

problems. The objectives of VRP are different; it depends on the specific application of 

the results. However, the common objectives include minimizing transportation costs 

based on transportation plans and routes, minimizing the number of vehicles that can be 

serviced by all customers, and minimizing travel time ( Toth & Vigo, 2002). Figure 5 

illustrates VRP; it can describe the vehicles starting from the depot, visiting each 

customer exactly once, meeting the demand of the customer, and returning to the end at 

the depot (Kumar & Panneerselvam, 2015). 
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Figure  5 Vehicle Routing Problem 

The VRPTW is defined by a set of homogeneous vehicles denoted by V, a set of 

customers C, and directed graph G = (V, C). Each vehicle has a capacity C(k) which 

each customer i a delivery demand (di) for service time at customer i s(i). A vehicle has 

arrival time at customer i before T(i). It can arrive before e(i) but can’t arrive after l(i). The 

distance can be traveled from customer i to customer j (Dij). The formulation model for 

VRPTW is described. The following are the symbols to describe the model. 

Parameter 

N = number of customers 

K = number of vehicles 

D(ij) = distance that can be traveled from customer i to customer j 

d(i) = delivery demand of customer i  

C(k) = capacity of vehicle 

T(i) = arrival time at customer i  

e(i) = earliest arrival time at customer i  

l(i) = latest arrival time at customer i  

s(i) = service time at customer i 
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Decision Variable: 

1, if the vehicle k travels from customer i to customer j 

x(ijk) =         

0, otherwise. 

 i ≠ j; i,j ∈  (Tawanda, Nyamugure, Kumar, & Munapo, 2023…,N);   

0 refers to depot. 

Objective function:    

minimize(∑ ∑ ∑ D(ij).x(ijk)K
j≠1,k=1

N
j=0

N
i=0 )  (1) 

Subject to  
∑ x(ijk) = 1N

j=0   (2) 

i = 0 and ∀ k∈K  
  

∑ x(ijk) ≤ KN
j=0   (3) 

i = 0  
  

∑ ∑ x(ijk)N
j=0,j≠i  = 1N

k=1   (4) 
∑ ∑ x(ijk)N

i=0,i≠j  = 1N
k=1    

∀ i∈N  

∀ j∈N  
  

∑ x(ijk) - ∑ x(ijk)N
i=1  = 0N

i=1   (5) 

∀ i∈N  

∀ k∈K  
  

∑ ∑ d(i).N
j=0,j≠1 x(ijk) ≤ C(k)N

i=1   (6) 

∀ k∈K  
  

e(i) ≤ T(i) +s(i) ≤l(i) (7) 
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Equation (1) is the objective function to minimize the distance traveled to serve 

customers by all vehicles in which each vehicle has limited capacity within the time 

windows requested by the customer. Equation (2) defines each vehicle starting from the 

central depot and ending at the depot. Equation (3) represents the vehicles number at 

the depot, that means the number of routes. Equation (4) requires that each customer 

can be visited only once by one of the vehicles from the depot. Equation (5) constraint 

that the same vehicle must enter and leave from that customer. Equation (6) states that 

the demand of each customer on each vehicle route needs to be less than or equal to 

the vehicle capacity. Equation (7) determines that vehicles cannot arrive before the 

earliest arrival time and must not be later than the latest arrival time. 

One type of VRP is the Vehicle Routing Problems with Time Windows (VRPTW), 

which is an additional time windows constraint in the model. The goal is to design a set 

of routes that minimize the total distance traveled, or the number of vehicles used, and 

identify vehicle routes. The problem can be described as follows: ea ch customer is 

served exactly once in the time windows, where every route originates at the central 

depot and terminates at the central depot, and the capacity of each vehicle has not been 

exceeded. 

 For the VRPTW, a set of well -known benchmark problems is Solomon 

benchmarks. Solomon benchmark instances are divided into six sets, which include C1, 

C2, R1, R2, RC1, and RC2 (Solomon, 1987; Solomon & Desrosiers, 1998). Each set 

contains between eight and twelve instances. In C1 and C2, the customer has been 

generated and placed in a cluster. R1 and R2 have randomly generated the locations 

with random distribution, and finally, in RC1 and RC2, some customers have been 

placed in clusters and others have been placed randomly. For sets C1, R1, and RC1, the 

problems have narrow time windows to be serviced, and few accommodate customers. 

For sets C2, R2, and RC2, the problems have large time windows to be serviced, and a 
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lot of accommodate customers. For each instance has 25 customers, 50 customers, and 

100 customers. (Kallehauge et al., 2005; Solomon, 2005; Gambardella, 2000). 

 

2.4 Genetic Algorithm 

The genetic algorithm (GA) is a natural selection-inspired optimization algorithm. 

According to Darwin's theory, natural selection favors the fittest individuals who 

reproduce. This concept was developed by Goldberg (Goldberg, 1989). It is a 

population-based search algorithm that uses the concept of the survival of the fittest. The 

new populations are created by iteratively using genetic operators with individuals 

present in the population. In general, GA consists of five basic components (Carr, 2014), 

including a fitness function for optimization, a population of chromosomes, selection of 

which chromosomes will reproduce, crossover to produce the next generation of 

chromosomes, and random mutation of chromosomes in the new generation. These  are 

all attempts to copy the mechanisms of nature. GA is mostly used to heuristically find 

and locate the global optimal solution. The steps of GA are summarized in Figure 6.  
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Figure  6 Genetic algorithm steps 
 

2.4.1 Foundation of Genetic Algorithms 

GA are based on comparisons with the genetic structure and behavior of 

chromosomes of the population. It has the following general procedure 

(Michalewicz Z., 1994): 
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Procedure: Genetic Algorithms 
  begin 

   t ←   0; 

   initialize P(t); 

   evaluate P(t); 

   while (not termination condition) do 

   begin 

    recombine P(t) to yield C(t); 

    evaluate c(t); 

    select P(t+1) from P(t) and C(t); 

    t ←    t+1; 

   end 
  end 
 

 In the GA, the initial population is the first step. The individuals in the 

population, which represent legal solutions to a problem, are created and 

initialized at this step. In the current generation, the population is a subset of 

solutions. The initial population technique is depicted in Figure 7. 

 

Figure  7 Initial Population Procedure 
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 The fitness function determines the individual's fitness level (an 

individual’s ability to complete with others). It gives each individual a fitness score. 

The fitness score determines the probability of an individual being chosen for 

reproduction. 

Selection is when the operator chooses the individuals for the next 

generation in the total population chromosome selection. Here the author used 

only the Roulette Wheel selection. Roulette Wheel selection is based on probability. 

It simulates a roulette wheel, with the areas proportional to their fitness. Then, the 

roulette wheel is rotated, and the individuals are selected at random. With it, an 

individual with better fitness is, the more likely to be selected. 

Roulette wheel selection, the basic part of the selection process is to 

stochastically select from one generation to create the basis of the next generation 

(UNSW, 2022). The criteria state that the fittest individuals have a better chance of 

surviving than those who are weaker. Fitter individuals will have a better chance of 

survival and will go on to form the mating pool for the next generation, just as they 

do in nature. Individuals that are weaker have a chance. Such individuals may 

have genetic coding that will be valuable to future generations in nature. 

This method of selection is based on chance and is also known as fitness 

proportionate selection. Essentially, the probability of a hypothesis being chosen is 

determined by the ratio of the hypothesis' fitness to the sum of the fitness values 

for all the members of the population. One way of implementing this is to use the 

following algorithm: 

 1. Determine the total S of the hypotheses’ fitness values in the population. 

 2. Select a random number r from the interval (0, S) 

3. Iterate through the population and, for each hypothesis, sum the fitness values 

of all preceding hypotheses to get a value s. When s is greater than r, stop 

and return to the current hypothesis as the selected hypothesis. 
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This can also be compared to a roulette wheel in a casino, where each 

hypothesis is given a fraction of the wheel equal to its fitness divided by the sum of 

fitness values in the population, and thus fitter hypotheses have a larger area of 

the wheel and a higher likelihood of selection, as shown in Figure 8 (Dalton, 2007). 

 

Figure  8 Roulette wheel approach: based on fitness 

Crossover is a genetic operator used to specify a new individual or child by 

combining two individuals, or parents for the next generation ( Chakrabortty & 

Hassin, 2013). Two individuals, or parents, are randomly selected from the mating 

pool to crossover to produce offspring. Here the authors choose four different 

crossover options including Single point crossover, Two points crossover, 

Arithmetic crossover, and Scattered crossover. Single point crossover and Two 

point crossover have a drawback when the chromosomes have similar 

characteristics in that chromosomes cannot be passed good genetic information, 

and none of the offspring get directly two good features. Arithmetic crossover is 

defined with linear constraints by taking the weighted average of two parents. If 

the parent has a better fitness value, it will return to the new offspring. Scattered 
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crossover can remove similar characteristics in the chromosome representation to 

get new offspring with good genetic information (Shukla et al., 2010; Sivanandam 

and Deepa, 2008; Kaya et al., 2011). 

Single point crossover: it chooses a random integer as the point of crossover 

and chooses the data beyond that point to swap between two parents to get new 

offspring (Shukla et al., 2010). For example, if p1 and p2 are the parents such as 

p1 = [a b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the random integer for the 

point of crossover is 3. Then, the child would have [a b c 4 5 6 7 8] in Figure 9. 

 

Figure  9 Single point crossover 

Two points crossover: it chooses two random integers as points of crossover, 

which means the N-point crossover technique. Two random points are selected on 

the chromosome. The values for the head section and tail section are taken from 

the first parent, and the middle section is taken from the second parent to get new 

offspring (Shukla et al., 2010). For example, if p1 and p2 are the parents such as 

p1 = [a b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the random integer for point of 

crossover are 2 and 4. Then, the child would have [a b c 4 5 6 g h] in Figure 10. 
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Figure  10 Two points crossover 

Arithmetic crossover: it creates a new offspring that is the weighted 

arithmetic of two parents. The operator concerns a linear combination; according 

to the following equation, a is a random weighting factor between [0,1] and shows 

in Figure 11: (Kaya et al., 2011) 

Offspring1 = a*Parent1+(1-a) *Parent2 

Offspring2 = (1–a) *Parent1+a*Parent2 

 

Figure  11 Arithmetic crossover 

Scattered crossover, it creates a random binary vector by generating the 

size of the chromosome. To get the new offspring, it is taken from the first parent, 

where the vector is 1, and from the second parent, where the vector is 0 (Stoykova 

& Spasov, 2019). For example, if p1 and p2 are the parents such as p1 = [a b c d 
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e f g h] and p2 = [1 2 3 4 5 6 7 8] and the binary vector is [1 1 0 0 0 1 0 0 0]. Then, 

the function returns the following child1 = [a b 3 4 e 6 7 8] in Figure 12. 

 

Figure  12 Scattered crossover 

Mutation is the next variation operator after the crossover is done. This 

operator is based on the chromosome representation, but it is up to you to decide 

how to apply mutation. It is creating good new offspring while avoiding local 

optimal maintenance of diversity within a population and avoiding early 

convergence. Figure 13 shows example of mutation operator. 

 

Figure  13 Mutation: Before and After 

Stopping criteria when the stopping criteria are met (REGUANT, 2021). It 

can be defined as a set of rules to stop computation because the best solution is 

unknown. Accordingly, there is a solution that meets the minimum criteria. There 
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are already too many iterations. The algorithm can't seem to find something better. 

The solution is good enough to satisfy the results. 

Replacement is the process in which a previous chromosome is replaced by 

a new chromosome. This new generation of population’s chromosomes will be 

better because they passed the selection options. The best result should be a 

chromosome that has the highest fitness function value. 

Termination condition is a common practice of GA when a predetermined 

number of generations is reached. The quality of the best members of the 

population is tested against the problem definition. If no acceptable solutions are 

found, the GA may be restarted or a fresh search be initiated. Termination criteria 

include no improvement in the solution for x iterations, reaching a prespecified 

number of generations, and the objective function value reaching a prespecified 

threshold. 

 
2.5 K-mean clustering algorithm 

 K-mean clustering algorithm was discovered in 1967 by James MacQueen 

(1967). K-mean is the most popular clustering algorithm. The algorithm starts by 

generating a number of k cluster centers randomly; each data is initially assigned to the 

nearest cluster. The Euclidean distance metric measure is typically applied to the 

standard K-means method to calculate the distance between data objects and cluster 

centers. Therefore, the cluster depends on the first cluster center selections. Selecting 

an appropriate value for k is important in K-mean algorithm. The performance of the 

algorithm depends on the specified k values, with different k values providing different 

results (Ikotun et al., 2023: Hartono et al.,2015: Suryawanshi & Puthran,2016). 

 After all data objects are completed, some data objects may be moved from one 

cluster to another. The centroid of each cluster is updated depending on the newly 

included data items. This process repeats the definition and updating of centroids until 
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the movement of data objects between clusters stops and convergence is achieved, as 

shown in Figure 14 (Awawdeh et al., 2019). However, K-mean has many advantages, 

such as being easy to implement and easy to understand, but it also has some 

disadvantages, such as being sensitive to the initial position of the centroid and having 

to specify the number of clusters before. 

 

Figure  14 Flowchart of K-Means Clustering 

The theory and case study for the research guidelines found in the reviewed 

literature show that the genetic algorithm is used to solve the proposed aggregate 

product model. This algorithm is a heuristic algorithm for searching that is based on the 

concept of natural selection, which occurs in genetic and evolutionary processes and 

has become very popular in solving APP. 

APP is the medium-term planning horizon that determines the optimum 

production and workforce levels for each period to meet customer demand with minimum 

cost. Cheraghalikhania et al. , (2019) reviewed the literature on APP models and 
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classification schemes, which categorize them into two main purposes. The first 

perspective is the structure of the APP model, including the level of uncertainty contained 

in the APP model and the number of objective functions contained in the model. The 

second perspective is based on some extra problems that are added to the basic 

problems of the APP model. Jamalnial et al., (2019) reviewed the literature on APP under 

uncertainty. First, the preliminary analysis of the literature regarding the classificati on 

schemes with advantages and disadvantages of these methodologies was presented. 

Finally, more detailed analysis of the surveyed literature from management science and 

operations management perspectives was followed. Mohamad et al., (2012) presented a 

multi-objective model to deal with a multi-period multi-product multi-site APP problem for 

a medium-term planning horizon under uncertainty. The objective function attempts to 

minimize the sum of the expected value and the variability of total costs and maximize 

worker productivity, by calculating a weighted average of productivity levels in all 

factories and in all periods, which is weighted by the number of k-level labor. The results 

show the practical feasibility of the proposed multi-objective stochastic model as well as 

the proposed algorithm. 

Certain constraints are defined for solving APP problems, which demand 

constraint optimization. Stockton and Quinn (1995) examined the aggregate planning 

process and described the basic tasks involved. The main limitations of the current 

approaches to the aggregate plan method are then compared. Then, it explains how 

GAs can be used to develop such plans and illustrates how this type of algorithm 

provides the means by which the limitations of existing aggregate planning techniques 

can be overcome. Tavakkoli-Moghaddam and Safaei (2006) have presented a genetic 

algorithm (GA) for solving a generalized model of single-item resource constrained APP 

with linear cost functions. Ramezanian, Rahmani, and Barzinpour (2012) developed a 

mixed integer linear programming (MILP) model for general two-phase aggregate 

production planning systems and presented genetic algorithm and tabu search for 
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solving the NP-hard class of APP. The result found that the proposed algorithms obtained 

high-quality solutions for APP in a reasonable amount of computational time. Nowak 

(2013) designed the interactive procedure for aggregate production planning. It was 

assumed that cost minimization is the most important objective. Finally, an interactive 

procedure is used to identify the final solution to the problem. Ahmed, Biswas, and 

Nundy (2019) proposed a model that makes an effort to include in the optimization model 

all relevant cost factors that are affected by the APP, directly or indirectly. 

Charles Darwin's theory of natural selection served as the foundation for John 

Holland's 1960s and 1970s model or abstraction of biological evolution, known as the 

Genetic Algorithm. (Yang, 2014). GA is a search algorithm based on the mechanisms of 

natural selection and natural genetics. They combine the survival of the fittest in string 

structures with the exchange of structured and random data to create a search algorithm 

with innovative human search intelligence (Goldberg, 1989). Umbarkar and Sheth (2015) 

described crossover operators that help researchers in selecting an appropriate 

crossover operator for better results. Hassanat et al. (2019) reviewed various methods 

for choosing mutation and crossover ratios in GAs and defined new deterministic control 

approaches for crossover and mutation rate, namely Dynamic Decreasing of high 

mutation ratio/dynamic increasing of low crossover ratio (DHM/ILC), and Dynamic 

Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). The 

experiments showed both proposed dynamic methods outperformed the predefined 

methods in most cases tested. Podvalny, Chizhov, Gusev, and Gusev (2019) proposed 

the crossover operator of a genetic algorithm that can be applied to tasks of production 

planning. The proposed crossover operators are presented in a formal way. Based on 

this operator, the optimizing software was developed. The proposed operator 

successfully passed the tests, and it will be used for solving real tasks in the future. 

Katoch, Chauhan, and Kumar (2021) discussed recent advances in GAs that are helpful 

for research and graduate teaching. 
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Many researchers have developed an integrated approach to solve APP 

problems and present many models that combine different algorithms and techniques to 

solve the problem. In this study, the authors used GA to solve the APP problem. Dakka, 

Aswin, and Siswojo (2017) presented a GA approach for solving APP with different 

selection methods and crossover procedures. They combined three selection methods 

and three crossover procedures. The results reveal the best performance was obtained 

by combining the rank selection procedure with scattered crossover. Mahmud, Hossain, 

and Hossain (2018) developed an interactive possibilistic environment -based GA for 

multi-product and multi-period APP and it has been solved by the MOGA to minimize the 

production cost and the rate of changing imprecise parameters. Yuliastuti, Rizki, 

Mahmudy, and Tama (2019) used a hybrid approach that combined GA and Simulated 

Annealing. The function of Simulated Annealing is to improve every solution produced by 

GA.  The proposed hybrid method has been proven to provide better solutions. Liu and 

Yang (2021) purposed to deal with the multi-product APP, problem considering stability 

in the workforce and total production costs, and were established to minimize total 

production costs and instability in the work force. The result showed the NSG A-II 

algorithm based on local search has better performance in the multi -objective APP 

problem. 

Some recent studies have attempted to find better methods for solving VRPTW, 

such as the exact method, the heuristics method, and meta heuristics method. For 

instance, Shi & Weise (2013) proposed ant colony optimization (ACO) to decrease the 

vehicle number and distance traveled to serve customers. Kosolsombat & Ratanavilisagul 

(2022) present a novel ACO-based optimization method for VRPTW using customer 

selection to decrease or solve the customer selection inefficiency of the ACO process 

and propose a reinitialization technique to decrease or optimize local trapping. 

Gambardella (2000) described a multiple-ant colony system for vehicle routing problems 

with time windows to minimize vehicle numbers and traveled distances.  Revanna & Al-
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Nakash (2022) defined the objective to decrease the number of vehicles employed, the 

cost of total logistics, and to reduce carbon emissions by approaching ACO with K-mean 

clustering. Amini (2011) proposed a particle swarm optimization algorithm (PSO) to solve 

VRPTW with Solomon benchmark problem instances and used it in a real -case study of 

a Chlorine Capsule distribution company at the water reservoir in Tehran. Duan et al. 

(2022) designed a new model disturbance of travel time and built a robust multi-objective 

VRPTW in which the travel time perturbation range is determined by the maximum 

perturbation level with two conflicting objectives, including minimizing both total distance 

and vehicle number. Mohammadi & Mahmoodian (2022) studied to select the best 

routes for a specific vehicle number to reduce fuel cost, driver wages, driver distance, 

and time needed to provide the products to the customers by using simulated annealing 

algorithm (SA). 

Moreover, Dixit et al. (2019) reviewed some of the recent advances in VRPTW 

using meta-heuristic techniques. GA has been a popular algorithm for VRPTW problems. 

May et al. (2021) proposed an improved GA by developing a problem-specific crossover 

with seven different mutation operators to solve VRPTW. Ghani et al. (2016) studied GA 

and applied the random population method to assign the vehicle numbers to the routes 

connecting the customer and depot so that the overall distance traveled is minimized 

and the delivery operations are completed within the time windows requested by the 

customer. Kinoshita & Uchiya (2021) focused on a method to optimize while dynamically 

switching multiple crossovers based on the diversity of the gene population by using 

GA. Sripriya et al. (2015) proposed work that simultaneously minimizes the number of 

vehicles and total distance traveled, which achieves several objectives, and proposed a 

new hybrid genetic search with diversity control for GA to solve a large class of VRPTW. 

Anggodo et al. (2016) studied the application of multi trip VRPTW on the problems of the 

tourist routes in Banyuwangi by using GA. Gocken & Yaktubay (2019)  proposed a multi 

objective GA approach for VRPTW solution and the effect on the initial population 
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generation step of GA when using different clustering algorithms, including K -means, 

centroid-based heuristic, DBSCAN, and SNN clustering algorithms. Ibrahim et al. (2020) 

developed GA with crossover and mutation operators optimized for solving VRPPDTW 

cases. It is related to the constraints of vehicle capacity and the time windows of the 

destination node. Ibrahim et al. (2021) discussed the VRPPDTW model for reducing 

distance travel and penalties with an improved GA that was developed and applied to 

solve. 

Based on several studies that have been done before, GA has been used by 

many researchers in solving the APP problem and VRPTW problem. Therefore, the 

author sees that there are good opportunities for future contributions. Here, the model of 

APP problems contains a large size of problem, including regular time cost, overtime 

cost, backordering cost, and inventory cost. The model of VRPTW problems use 

Solomon benchmark problem instances. 
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CHAPTER 3 
RESEARCH METHODOLOGY 

In this chapter, the author designed method and introduced a novel interactive 

crossover approach, considering four crossover options as well as creating a new 

crossover option, are described for APP problems and considered GA with a new 

crossover to solve by developing the problem with K-mean clustering to perform better 

for VRPTW. The research design can be developed based on the research objectives 

shown in Figure 15 Process Flow Chart. 

 

Figure  15 Process Flow Chart 
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3.1 Create a new crossover operator 

In genetic algorithm, crossover is a recombination operator, combined the 

genetic information of two parent solutions to create new offspring. The concept is to 

taking two parents which randomly from the mating pool to crossover to produce a better 

offspring. 

In this study, to create a new crossover used Single point crossover, Two points 

crossover, Arithmetic crossover, and Scatter crossover. It is a combination of four 

crossover operators. After that, placed each operator on the roulette wheel which the 

equal size of the probability area. Moreover, it can be adjusted according to the size of 

the probability area in each operator. It can be described in Figure 15. 

 
Figure  16 The process of creating a new crossover 
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3.2 Genetic algorithm for APP problems and Solomon’s benchmark problem instances 
for VRPTW. 

The term Genetic Algorithm (GA) describes a set of methods, that can be used 

to optimize complex problems. As the name suggests, the processes employed by GAs 

are inspired by natural selection and genetic variation. To achieve this, a GA uses a 

population of possible solutions to a problem and applies a series of processes. 

In keeping with the evolutionary theme, each individual in a GA population is 

represented by a chromosome. As in nature, this chromosome contains genetic 

information relating to each individual’s characteristics, it’s described in Figure 17. 

 

Figure  17 Genetic Algorithm Process 

Based on several studies that have been done before, many researchers have 

been used GA to solve the APP problems and Solomon’s benchmark problem instances 

for VRPTW. Therefore, in this study applied four crossover and new crossover to solve 

which focused on the model of APP problems contains a large size of problem, including 

regular time cost, overtime cost, backordering cost, and inventory cost. The model of 

VRPTW problems use Solomon benchmark problem instances. 
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3.2.1 Genetic algorithm for APP problems 

In this study, APP problem with multi-product and multi-period was used to 

test the algorithm. The author had studied the APP problems, which is the point to 

making use of the limited resources and answering customer satisfaction. The 

resources include the tools of manufacture, such as machines and tools, labor, 

and raw materials. APP is the plan to connect the production ability with the 

product needed in that section of time. It also needs good support, such as the 

appropriate appointing process for the best cost of investment and lowest cost of 

production possible. 

 
3.2.1.2 Applied Transportation Problems to Aggregate Production Planning 

Problems 

APP problems can be a form of  t ransportat ion problems. The 

transportation model is one example of a linear programming model . It is the 

problem used to make the decision to choose the right material from origin to 

destination. This research will use the transportation problem to solve the APP 

problem by finding the most appropriate product for production planning. 

Applying the APP problems to the transportation problem must be 

analyzed. First, if the problem is an unbalanced transportation problem, it must be 

balanced as a balanced transportation problem before finding an initial basic, 

feasible solution to an optimal solution in Table 3. Otherwise, total supply is equal 

to total demand. 
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Table  3 Balance transportation problem 

  

Therefore, we need to learn how to make a problem balanced if it is not 

as in Table 4 and it was meant to cover two cases. 

Table  4 Unbalance transportation problem 

 

For the first case, total supply exceeds total demand. They are balancing 

a transportation problem by creating a dummy demand that has a demand equal 

to the amount of excess supply. The dummy demand points are not real shipments, 

they are assigned zero cost. Table 5 shows a dummy demand. 
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Table  5 Balance transportation problem with dummy demand 

 
 For the second case total supply is less than total demand .  If a 

transportation problem has a total supply that is less than its total demand, then 

the problem has no feasible solution . Sometimes, it is desirable to allow the 

possibility of leaving some demand unmet . In such a situation, a penalty is often 

associated with unmet demand. 

 

3.2.1.2 Chromosome Encoding 

Chromosome Encoding is the first step in solving the problem. Encoding 

is one of the most important processes as it determines the effectiveness and 

efficiency of the genetic algorithm on a particular problem.  

 

3.2.1.3 Chromosome Representation 

In this study, the production cost of a product for each period is 

determined by the decision variables, which are positive integers, which contribute 

to the implementation of chromosome encoding. In a series of chromosomes, 

Table 6 shows a simple sample of chromosome with I as the products type and T 

as periods. PPit denotes the chromosome of a production cost of product in term 

of periods. 
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Table  6 A simple example of chromosome 

 

A gene in chromosome representation for the production cost of product 

i in period t as described in Figure 18. 

 
Figure  18 Chromosome representation in APP problems 

 

3.2.1.4 Fitness Function 

The fitness value is used to check the quality and feasibility of the 

solution. The higher the fitness value, the better the solution will be. The objective  

function is usually used as a measure of the survival probability of a chromosome. 

It can be obtained from the equation. 

Fitness [i] = 1 / Objective [i] 
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3.2.1.5 Selection 

Selection is the procedure of selecting individuals with the best fitness, 

while others are discarded because they will be used to produce offspring. The 

best fittest chromosomes have a higher chance of being selected for the next 

generation. Here the author used only the Roulette Wheel selection. Roulette-wheel 

selection associates each individual with a probability depending on its function 

value. In the first step, the selection probability of each chromosome is calculated. 

Selection probability the Prob [i] of a chromosome is calculated by: 

Prob [i] = Fitness [i] / Cummulative_Fitness [i] 

After calculating selection probability, divide a circular wheel into x 

segment, and the width of each segment is relative to selection probability. In the 

last step, a random number is generated and selected from a chromosome in 

which the random number. 

 

3.2.1.6 Crossover 

Crossover is used to create new offspring from individuals selected in the 

selection step. The crossover options used Single point crossover, Two points 

crossover, Arithmetic crossover, Scatter crossover and new crossover. 

 

3.2.1.7 Problem Description for APP problems 

In this study, the authors model and analyze the APP problems with multi-

product multi-period. The orders consist of the type of product, quantity, and 

duration. Every specified period of time, decision-makers will create an initial APP. 

In the planning process, it has to consider the manufacturing capacity, invento ry 

level, and other factors to fulfill forecasted demand. According to the production 

plan, the factories are assigned a list of products with quantities to be produced at 

each time interval. 
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The model of APP planning problem with multi-product multi-period has 

the production cost, inventory cost, and back-order cost for different products, 

which means the actual value of the answer is ignored as shown in Table 7.  

Table  7 Production, inventory and backorder cost 
Product i Cost of RT 

(bath/unit) 
Cost of OT 
(bath/unit) 

Inventory cost 
(bath/unit) 

Backorder cost 
(bath/unit) 

1 10 12 2 2 
2 12 14 2 3 
3 14 16 2 4 
4 10 12 2 2 
5 12 14 2 3 

The forecast demand for each size of problem is shown in Table 8. The 

model has 6 period, 12 period, and 24 periods planning horizon.  Following that, P 

denotes the period and S denotes the source. Therefore, 2P12P6S means 2 

products, 12 periods, and 6 sources. 

Table  8 Forecast Demand 
Size of 
Problem 

Product i 
Period i 

1 2 3 4 5 6 7 8 9 10 11 12 
2P12P6S Product 1 45 40 60 25 45 55 30 40 35 35 40 30 

Product 2 55 40 55 30 30 35 45 30 55 30 40 35 
2P12P12S Product 1 45 40 60 25 45 55 30 40 35 35 40 30 

Product 2 55 40 55 30 30 35 45 30 55 30 40 35 
2P12P24S Product 1 70 85 85 60 75 80 65 75 65 85 80 80 

Product 2 75 60 90 70 90 75 70 75 60 70 85 75 
3P12P6S Product 1 35 25 35 30 40 30 35 30 35 35 30 40 

Product 2 30 25 30 35 40 35 25 30 25 30 40 35 
Product 3 30 35 45 30 25 30 35 40 45 40 35 30 

3P12P12S Product 1 60 65 45 60 35 65 45 60 55 50 45 35 
Product 2 40 35 50 55 45 50 65 35 60 35 45 55 
Product 3 35 55 35 60 60 65 55 35 55 65 35 55 
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Table  8 Forecast Demand (Continue) 
3P12P24S Product 1 50 65 50 45 55 40 55 45 50 55 45 50 

Product 2 65 40 50 65 50 50 55 45 40 40 65 40 
Product 3 50 40 45 45 40 45 60 65 60 45 45 50 

4P12P6S Product 1 20 25 15 30 25 25 30 15 15 25 20 25 
Product 2 30 15 30 25 15 30 25 25 30 20 15 30 
Product 3 20 20 30 15 15 20 25 15 30 30 15 25 
Product 4 25 15 25 20 15 25 15 30 20 30 25 15 

4P12P12S Product 1 30 20 35 30 35 25 30 30 40 35 25 30 
Product 2 25 35 35 40 35 25 25 40 45 40 25 40 
Product 3 25 35 20 25 30 25 40 25 35 20 30 25 
Product 4 40 25 25 25 40 25 30 25 20 25 25 25 

4P12P24S Product 1 35 45 40 30 45 35 40 35 35 30 45 40 
Product 2 45 40 45 30 30 45 30 40 40 35 30 40 
Product 3 30 35 45 40 45 35 35 40 45 50 30 35 
Product 4 40 35 30 30 40 45 30 45 40 35 30 30 

5P12P6S Product 1 20 25 15 30 25 25 30 15 15 25 20 25 
Product 2 30 15 30 25 15 30 25 25 30 20 15 30 
Product 3 20 20 30 15 15 20 25 15 30 30 15 25 
Product 4 25 15 25 20 15 25 15 30 20 30 25 15 
Product 5 25 20 25 20 15 25 15 20 20 15 20 20 

5P12P12S Product 1 30 20 35 30 35 25 30 30 40 35 25 30 
Product 2 25 35 35 40 35 25 25 40 45 40 25 40 
Product 3 25 35 20 25 30 25 40 25 35 20 30 25 
Product 4 40 25 25 25 40 25 30 25 20 25 25 25 
Product 5 25 30 30 20 25 30 30 25 40 40 30 35 

5P12P24S Product 1 35 45 40 30 45 35 40 35 35 30 45 40 
Product 2 45 40 45 30 30 45 30 40 40 35 30 40 
Product 3 30 35 45 40 45 35 35 40 45 50 30 35 
Product 4 40 35 30 30 40 45 30 45 40 35 30 30 
Product 5 30 35 25 30 25 25 25 35 40 35 35 20 
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The sources of production capacities in the planning horizon are 

including regular time and overtime as shown in Table 9. For 24 sources of 

production capacities, it has regular time and over time because this study aims to 

show the large size of the problem. 

Table  9 Production capacity 
Source Capacity per Period 

2 Products 3 Products 4 Products 5 Products 
6 Sources 160 200 180 220 
12 Sources 80 150 120 150 

24 Sources 
RT OT RT OT RT OT RT OT 
100 50 100 50 100 50 120 60 

For APP problems, the aim of this research is to check the effect of 

crossover options and create new crossover options on multi-product multi-period 

APP problems. Various combinations of crossovers are tested for APP problems. 

Results are obtained for 10 iterations and compared according to different 

statistical values with a line chart. The population size is 1500, 1000, 600, 500, 

150, and 100, respectively. The number of generations is 20, 30, 50, 60, 200, and 

300, respectively, and the number of runs which have been considered for the 

experimental run is 30,000. 

 
3.2.2 Genetic algorithm for Solomon’s benchmark problem instances for VRPTW. 

Many researchers have been studied of using GA to solve VRPTW. However, 

in the research used the new crossover in GA to solve Solomon’s benchmark 

problem instances for VRPTW with apply K-mean clustering consists of three 

phases; initial population and chromosome representation, selection, and 

crossover. The detail of three phases is described as follows. 
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3.2.2.1 K-mean clustering algorithm 

K-mean clustering is a method for dividing all data into k clusters. The 

centroid of each cluster is random which determines a number of clusters. The 

objects were grouped to minimize the sum of the squared distances between them 

and their assigned cluster mean. The steps of K-means algorithm are explained as 

follows: determine K random point as initial cluster centres, define each point to 

the nearest centroid of cluster. Then examine the possible of capacity constraint, 

repeat calculate the centroid of each cluster finally, repeat until stop when 

maximum number of iterations. 

In this study, the author defined the number of clusters in the same for set 

R, set C, and set RC with type 1 and type 2. The number of clusters is 10 groups.  
 

3.2.2.2 Initial population and chromosome representation 

Solomon’s benchmark problem instances for VRPTW can be applied to 

TSP model as described in Figure 19. 

 

Figure  19 TSP model for Solomon’s benchmark problem instances for VRPTW 

The first step of GA is initialization of population. The initial population is 

generated randomly and the size of initial population used is 2,000. In this 

research, chromosome representation is represented by a series of number that 
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shown in Figure 20. This gene keeps information about which vehicles traveled to 

which customer and in which order. 

 

Figure  20 Chromosome representation in Solomon’s benchmark problem instance for 
VRPTW 

 
3.2.2.3 Selection 

Roulette wheel is used. The workflows of the roulette wheel selection are 

divided the circle wheel, where the probability for selection an individual is depend 

on fitness value. Therefore, the larger fitness of individual has more chance to 

selection when the wheel is rotated. 

 
3.2.2.4 Crossover 

Crossover operator is a combination of two individuals and creates a new 

offspring. To reproduce the good combinations, there should normally be a high 

chance of a crossover operation occurring. Single point crossover, Two point 

crossover, Arithmetic crossover, and Scattered crossover are used to create a 

new offspring in this research. In addition to that, there is also a Stas crossover.  
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3.2.2.5 Problem Description for Solomon benchmark Instances for VRPTW 

In this study, the authors model and analyze the Solomon benchmark 

Instances for VRPTW with TSP model.  

For VRPTW, Solomon benchmark Instances is a set of well -known 

benchmark problems. Solomon benchmark instances are divided into six sets, 

which include C1, C2, R1, R2, RC1, and RC2. Each set contains between eight 

and twelve instances. In this study chooses  100 customers, and the Table 11 

shows Solomon benchmark Instances. Various combinations of crossovers with 

and without K-mean clustering are tested for Solomon’s benchmark problem 

instances. 

Table  10 Solomon benchmark Instances. 

Geographical data Problem sets Instance 

Randomly generated 
R101-R112 
R201-R211 

23 problems 

Clustered structures 
C101-C109 
C201-C208 

23 problems 

A mix of random and clustered structures 
RC101-RC108 
RC201-RC208 

16 problems 

Results are obtained for 10 run iterations the average value is to be reported for 

each combination. The population size is 2,000, the maximum generation is 350, the 

number of clusters is 10 groups, and the number of runs which have been considered 

for the experimental run is 2,000 iterations.  
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CHAPTER 4 
A NOVEL CROSSOVER OPERATOR FOR GENETIC ALGORITHM 

 In this chapter, the results were divided into three parts, including a new 

crossover operator, Stas Crossover for Aggregate Production Planning Problem, and 

Stas Crossover with K-mean Clustering for Vehicle Routing Problem with Time Window. 

A novel crossover operator for genetic algorithm is called “Stas Crossover ". It is a 

combination of four crossover operators, including Single point crossover, Two points 

crossover, Arithmetic crossover, and Scattered crossover. It then presents the 

performance of this crossover operator, and finally tests multi -product and multi-period 

APP problems with an interactive decision variable and chooses approximate crossover 

options. Moreover, the research used the new crossover to solve VRPTW by developing 

the problem with K-mean clustering. After that, we compared Stas crossover with four 

crossover operators and adjusted the area of probability for Stas crossover. It has been 

tested on Solomon benchmark instances for VRPTW with six problem sets of different 

problem types.  

 
4.1 A new crossover operator 

 The proposed crossover operator in this study is a combination of four crossover 

operators, including Single point crossover, Two points crossover, Arithmetic crossover, 

and Scattered crossover. Crossover operators are used to combine the genetic 

information of two parents to create a new offspring. The probability that each operator is 

the same in creating a new offspring is equal to 25%. The new crossover operator is 

called “Stas Crossover". The following Figure 21 illustrates the process of Stas Crossover, 

and shows that the new offspring will have the same probability of occurring. 
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Figure  21 Illustration of Stas crossover process 
 

 Stas crossover can be adjusted according to the size of the probability area in 

each operator. The probability of creating a new offspring for each operator is not the 

same. This results in more variety than traditional crossover. To adjust the size of the 

probability area, the number after Stas represents the probability of each operator. There 

is also an adjusted probability of Single point crossover of 70%, Two points crossover of 

10%, Arithmetic crossover of 10%, and Scattered crossover of 10%. It is called Stas7111 

crossover. Figure 22 illustrates Stas7111 crossover process, and shows that the 

offspring have not equal probability of occurring. The chance of occurrence depends on 

the size of the probability area. 
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Figure  22 Illustration of Stas7111 crossover process 
 

 Stas crossover operator chooses two parents, such as p1 and p2. In order to 

arrange all of the crossover operators on a roulette wheel with an equal area probability, 

the roulette is turned, and in order to determine which way to create offspring, the 

crossover operators are chosen at random and include Single point crossover, Two 

points crossover, Arithmetic crossover, and Scattered crossover. The relevant crossover 

options are selected to create the new offspring according to the following conditions: 

Each experiment is randomized, which means that if 10 runs are given, a different 

crossover operator will be chosen on each run. For example, if the first experiment run is 

selected as a Single point crossover, that means the second experiment run may be 

selected as a Single point crossover again or select different crossover operators. 

 

4.2 Stas Crossover for Aggregate Production Planning Problems 

 In this study, the algorithm was tested by using the APP problems with multi-

product and multi-period. The problems are generated with various condition parameters 

that determine the size of the problem. The crossover operators have 7 types: include 

Single point crossover, Two point crossover, Arithmetic crossover, Scat tered crossover, 
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Stas crossover, Stas1117 crossover, and Stas0055 crossover. This study attended on 

the large size of the problem and focused on the optimal solution by changing production 

costs, backorder costs, production capacity, and forecast demand, which means the 

actual value of the answer is ignored. 

 The problems are defined based on the size of the problems, in which 40 

different crossover options are tested for 12 types of problems and 10 iterations. Results 

are obtained for 10 run iterations and compared according to different statistical values 

with a line chart. The scenarios for each product include 2 products, 3 products, 4 

products, and 5 products as shown in Figure 23 – 26, respectively. 

 

 

Figure  23 Scenario of 2 products 
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Figure  24 Scenario of 3 products 
 

 

Figure  25 Scenario of 4 products 
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Figure  26 Scenario of 5 products 
 

Furthermore, Figure 27 shows the proportion of the number needed to find the 

best performance for each crossover operator. The results found that, Stas1117 

crossover was able to find the best performance in 28 out of 72 results, which means 

that by changing the area probability, it’s better than other Stas crossover and other 

operators, too. 

 

 

Figure  27 Proportion of the best performance for each crossover operators 
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Table 11 shows the cost value obtained using different combinations of crossover 

procedures. The results show that Stas0055 crossover and Stas1117 crossover perform 

better than Single point crossover, Two points crossover, and Arithmetic crossover. 

Moreover, the population size is 150 chromosomes and the number of generations is 

200 generations, both of which are the best possible answers. It has achieved better 

performance than other crossovers for 9 results out of 12 results, which are shown with 

bold values according to the minimum cost value. 

Table  11 Cost value obtained by using different combinations of crossover procedures 

Size of Problem Chromosome/ 
Generation 

Crossover 
Operator 

Cost value 

2p12p6s 150ch,200gen Scattered 11,652 

2p12p12s 150ch,200gen Stas1117 13,093 

2p12p24s 150ch,200gen Stas1117 26,194 

3p12p6s 500ch,60gen Stas0055 16,368 

3p12p12s 150ch,200gen Scattered 27,606 

3p12p24s 150ch,200gen Stas0055 29,347 

4p12p6s 1000ch, 30gen Stas1117 14,407 

4p12p12s 150ch, 200gen Stas0055 21,852 

4p12p24s 150ch, 200gen Stas 28,901 

5p12p6s 1000ch, 30gen Stas0055 17,960 

5p12p12s 150ch, 200gen Stas1117 27,983 

5p12p24s 600ch, 50gen Stas1117 35,940 
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4.3 Stas Crossover with K-mean Clustering for Vehicle Routing Problems with Time 
Windows 

 In this study, Stas crossover in GA was modified to solve VRPTW by developing 

the problem with K-mean clustering. The crossover operators have 8 types: include 

Single point crossover, Two point crossover, Arithmetic crossover, Scattered crossover, 

Stas crossover, Stas1117 crossover, Stas7111 crossover, and Stas0055 crossover. The 

standard Solomon’s benchmark problem instances for VRPTW were used for the 

experiments, which are described as C1, R1, RC1, C2, R2, and RC2. Each set contains 

between eight to twelve 100-node problems. The population size is 2,000, the maximum 

generation is 350, the number of clusters is 10 groups, and the code has been run for up 

to 2,000 iterations. Results are obtained for 10 run iterations and reported as the 

minimum distance and average distance for each option. The scenario of six problem 

sets with the location and dispersion characteristics of the cluster  as shown in Figure   

28 - 30, respectively. The results found that K-mean clustering has better performance in 

routing than without K-mean clustering. As both type 1 and type 2 in set C can be seen 

obviously, the paths with K-mean clustering are arranged into groups and are orderly, 

but the paths without K-mean clustering are disordered. Furthermore, Set R and Set RC 

are the same for both types. 

 

Figure  28 Scenario of Set R type 1 and type 2 
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Figure  29 Scenario of Set C type 1 and type 2 

 

Figure  30 Scenario of Set RC type 1 and type 2 
 

Table 12 compares the crossover operator performance on instances of the 

Solomon benchmark with Set R type 1 and type 2. Set R is generated randomly from the 

customer locations. The results show that in minimum distance without K -mean 

clustering, Single point crossover is recommended for Set R type 1, Single point 

crossover or Scatter crossover is recommended for Set R type 2. In minimum distance 

with K-mean clustering, Stas1117 crossover is recommended for Set R type 1, Stas5005 

crossover is recommended for Set R type 2. In average distance without K-mean 

clustering, Scatter crossover is recommended for Set R type 1, Scatter crossover is 

recommended for Set R type 2. In average distance with K-mean clustering, Stas1117 

crossover is recommended for Set R type 1, and Stas1117 crossover is recommended 

for Set R type 2. 
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Table  12 Comparison of the crossover operator performance on instances of the 
Solomon benchmark with Set R type 1 and type 2. 

Instance 
Minimum Distance Average Distance 

Without K-mean 
clustering 

K-mean clustering 
Without K-mean 

clustering 
K-mean clustering 

R101 Stas1117 2661.54 Stas7111 1176.85 Scatter 2741.76 Stas7111 1203.86 
R102 Stas5005 2624.53 Scatter 1207.91 Scatter 2737.38 Stas1117 1236.01 
R103 Scatter 2631.42 Stas1117 1272.30 Single 2742.82 Stas7111 1297.40 
R104 Single 2687.98 Stas5005 1160.19 Scatter 2740.94 Stas5005 1201.04 
R105 Single 2626.82 Single 1255.75 Scatter 2712.62 Stas1117 1274.15 
R106 Single 2638.98 Stas1117 1177.49 Stas5005 2721.67 Scatter 1194.37 
R107 Single 2655.12 Scatter 1269.40 Single 2753.53 Single 1280.79 
R108 Stas5005 2658.86 Stas1117 1149.87 Scatter 2736.72 Scatter 1186.05 
R109 Scatter 2597.00 Stas1117 1160.15 stas1117 2711.99 Stas1117 1186.65 
R110 Scatter 2636.11 Stas5005 1275.23 Stas7111 2716.47 Stas1117 1314.48 
R111 Scatter 2695.78 Stas7111 1176.79 Single 2742.46 Scatter 1197.66 
R112 Single 2690.56 Single 1204.94 Stas7111 2739.33 Single 1221.31 
R201 Single 2569.49 Scatter 1203.32 Stas1117 2727.72 Stas5005 1225.15 
R202 Scatter 2661.34 Single 1252.15 Single 2720.70 Scatter 1287.60 
R203 Stas1117 2633.12 Stas5005 1289.26 Scatter 2716.15 Stas5005 1308.46 
R204 Single 2678.35 Stas1117 1214.08 Scatter 2739.97 Single 1234.28 
R205 Stas1117 2666.82 Stas5005 1138.55 Stas1117 2719.96 Stas1117 1161.81 
R206 Scatter 2527.57 Scatter 1168.98 Stas1117 2721.75 Single 1202.86 
R207 Single 2657.99 Stas 1221.14 Stas7111 2712.93 Stas 1241.62 
R208 Scatter 2652.14 Single 1160.64 Scatter 2704.79 Scatter 1184.85 
R209 Scatter 2670.66 Stas5005 1191.89 Scatter 2728.46 Stas1117 1226.74 
R210 Stas1117 2666.41 Stas7111 1234.09 Single 2727.43 Stas7111 1258.13 
R211 Single 2669.43 Stas1117 1129.32 Scatter 2727.98 Stas1117 1146.94 
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Table 13 compares the crossover operator performance on instances of the 

Solomon benchmark with Set C type 1 and type 2. Set C clusters all of the customer 

location coordinates. The results show that in minimum distance without K -mean 

clustering, Single point crossover is recommended for Set C type 1, Single point 

crossover or Scatter crossover is recommended for Set C type 2. In minimum distance 

with K-mean clustering, Stas7111 crossover is recommended for Set C type 1, Single 

point crossover is recommended for Set C type 2. In average distance without K-mean 

clustering, Scatter crossover is recommended for Set C type 1, Single point crossover, 

Scatter crossover or Stas1117 crossover is recommended for Set C type 2. In average 

distance with K-mean clustering, Stas7111 crossover is recommended for Set C type 1, 

and Scatter crossover is recommended for Set C type 2. 

Table  13 Comparison of the crossover operator performance on instances of the 
Solomon benchmark with Set C type 1 and type 2. 

Instance 
Minimum Distance Average Distance 

Without K-mean 
clustering 

K-mean clustering 
Without K-mean 

clustering 
K-mean clustering 

C101 Stas7111 3085.22 Stas7111 931.92 Scatter 3162.29 Stas7111 948.93 
C102 Single 3009.74 Stas 946.25 Single 3143.85 Stas 957.96 
C103 Single 3068.65 Stas7111 931.45 Scatter 3151.30 Stas7111 942.93 
C104 Stas5005 3020.30 Single 903.38 Stas7111 3133.30 Scatter 919.49 
C105 Single 2916.59 Stas1117 834.57 Stas7111 3126.38 Stas5005 854.71 
C106 Single 3013.41 Stas7111 887.89 Scatter 3123.65 Stas7111 908.07 
C107 Scatter 3049.58 Single 880.56 Single 3125.00 Scatter 894.64 
C108 Single 3005.27 Stas 856.68 Scatter 3125.57 Stas 872.13 
C109 Single 3036.13 Stas5005 917.99 Stas 3126.49 Stas5005 932.37 
C201 Single 3030.71 Stas1117 1131.23 Scatter 3183.54 Stas1117 1151.99 
C202 Stas1117 3039.12 Stas5005 1146.95 Stas1117 3166.01 Stas5005 1190.10 
C203 Stas 3083.54 Single 1169.85 Stas7111 3194.94 Scatter 1202.78 
C204 Single 3053.46 Stas7111 1149.25 Stas1117 3178.60 Scatter 1181.14 
C205 Scatter 3118.02 Single 1117.09 Stas 3196.28 Scatter 1144.59 
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Table 13 Comparison of the crossover operator performance on instances of the 
Solomon benchmark with Set C type 1 and type 2. (Continue) 

Instance 
Minimum Distance Average Distance 

Without K-mean 
clustering 

K-mean clustering 
Without K-mean 

clustering 
K-mean clustering 

C206 Stas7111 3083.63 Scatter 1189.92 Scatter 3191.40 Stas5005 1213.57 
C207 Stas5005 3098.08 Single 1109.08 Single 3207.74 Stas5005 1136.67 
C208 Scatter 3124.39 Stas 1172.29 Single 3201.71 Scatter 1208.24 

Table 14 compares the crossover operator performance on instances of the 

Solomon benchmark with Set RC type 1 and type 2. Set RC is  a mix of Set R and Set C. 

The results show that in minimum distance without K -mean clustering, Single point 

crossover is recommended for Set RC type 1, Scatter crossover, Stas crossover or 

Stas7111 crossover is recommended for Set RC type 2. In minimum distance with K-

mean clustering, Stas7111 crossover is recommended for Set RC type 1, Stas1117 

crossover is recommended for Set RC type 2. In average distance without K-mean 

clustering, Stas1117 crossover is recommended for Set RC type 1, Scatter crossover is 

recommended for Set RC type 2. In average distance with K-mean clustering, Stas7111 

crossover is recommended for Set RC type 1, and Stas1117 crossover is recommended 

for Set RC type 2. 

Table  14 Comparison of the crossover operator performance on instances of the 
Solomon benchmark with Set RC type 1 and type 2. 

Instance 
Minimum Distance Average Distance 

Without K-mean 
clustering 

K-mean clustering 
Without K-mean 

clustering K-mean clustering 
RC101 Stas1117 3388.78 Single 1317.54 Scatter 3563.52 Stas7111 1347.91 
RC102 Single 3404.87 Scatter 1301.06 Stas7111 3561.81 Scatter 1326.59 
RC103 Scatter 3417.54 Stas7111 1231.68 Stas1117 3543.58 Stas7111 1257.56 
RC104 Stas5005 3422.21 Stas7111 1312.75 Stas5005 3569.62 Stas7111 1353.25 
RC105 Single 3364.39 Stas1117 1233.67 Stas1117 3543.06 Single 1281.75 
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Table  14 Comparison of the crossover operator performance on instances of the 

Solomon benchmark with Set RC type 1 and type 2. (Continue) 

Instance 
Minimum Distance Average Distance 

Without K-mean 
clustering 

K-mean clustering 
Without K-mean 

clustering K-mean clustering 
RC106 Stas7111 3428.35 Stas5005 1290.10 Scatter 3576.80 Stas5005 1323.63 
RC107 Single 3467.97 Single 1344.91 Stas1117 3544.65 Scatter 1374.80 
RC108 Stas1117 3468.41 Stas7111 1204.56 Stas1117 3559.11 Single 1264.83 
RC201 Stas1117 3464.40 Stas1117 1249.62 Single 3574.83 Stas1117 1272.89 
RC202 Stas7111 3497.97 Stas 1195.54 Scatter 3590.15 Scatter 1234.26 
RC203 Stas7111 3470.91 Single 1240.28 Stas7111 3582.81 Stas1117 1266.12 
RC204 Single 3493.42 Stas1117 1196.61 Scatter 3548.85 Stas1117 1231.88 
RC205 Stas 3423.66 Stas7111 1287.49 Scatter 3578.89 Stas1117 1339.55 
RC206 Scatter 3364.38 Stas1117 1263.11 Stas1117 3566.50 Stas1117 1279.64 
RC207 Scatter 3414.01 Scatter 1309.64 Scatter 3570.89 Single 1341.80 
RC208 Stas 3436.73 Single 1234.96 Stas 3540.55 Single 1269.57 

Table 15 compares the algorithm performance on the Solomon Benchmark 

instance for type 1 and type 2. Stas crossover applied with K-mean clustering is 

significantly improved as it allows more diversity to select how to create offspring and 

arrange orderly paths. Directly increases the opportunity of creating offspring with good 

genetic information. Some of the results performed better in comparison to the previous 

best-published studies. However, it is shown that the proposed algorithm outperforms 

Set R and Set RC in some instances, which means that K-means clustering affects Set R 

and Set RC due to the paths being arranged into orderly groups. Moreover, K -mean 

clustering has not affected Set C due to the location coordinates of all customers already 

clustered. It has been shown that adding K-mean clustering to the Stas crossover 

efficiently contributes to its performance. The bolder results show the best performance 

in minimizing the number of vehicles and the total distance traveled. 



  72 

Table  15 Comparison of the algorithm performance on instances of the Solomon 
Benchmark for type 1 and type 2. 

Instance 
Best-know solution 

Ref. 
Proposed Stas crossover 
with K-mean Clustering 

vehicles distance vehicles distance 
R101 11 1125.00 May et al. (2021) 10 1176.85 
R102 11 1128.00 May et al. (2021) 10 1207.91 
R103 11 1212.00 May et al. (2021) 10 1272.30 
R104 9 1007.31 Mester et al. (2007) 10 1160.19 
R105 11 1260.00 May et al. (2021) 10 1255.75 

R106 12 1251.00 May et al. (2021) 10 1177.49 

R107 10 1104.66 Shaw (1997) 10 1269.40 
R108 9 960.88 Berger et al. (2001) 10 1149.87 

R109 11 1194.73 
Homberger & Gehring 

(1999) 
10 1160.15 

R110 10 1104.00 May et al. (2021) 10 1275.23 
R111 10 1096.72 Rousseau et al. (2002) 10 1176.79 
R112 9 982.14 Gambardella et al. (1999) 10 1204.94 
C101 10 828.94 Rochat & Taillard (1995) 10 931.92 
C102 10 828.94 Rochat & Taillard (1995) 10 946.25 
C103 10 828.06 Rochat & Taillard (1995) 10 931.45 
C104 10 824.78 Rochat & Taillard (1995) 10 903.38 
C105 10 828.94 Rochat & Taillard (1995) 10 834.57 
C106 10 828.94 Rochat & Taillard (1995) 10 887.89 
C107 10 828.94 Rochat & Taillard (1995) 10 880.56 
C108 10 828.94 Rochat & Taillard (1995) 10 856.68 
C109 10 828.94 Rochat & Taillard (1995) 10 917.99 

RC101 12 1474.00 May et al. (2021) 10 1317.54 

RC102 11 1338.00 May et al. (2021) 10 1301.06 

RC103 11 1250.00 May et al. (2021) 10 1231.68 

RC104 10 1135.48 Cordeau et al. (2000) 10 1312.75 
RC105 11 1274.00 May et al. (2021) 10 1233.67 
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Table  15 Comparison of the algorithm performance on instances of the Solomon 

Benchmark for type 1 and type 2. (Continue) 

Instance 
Best-know solution 

Ref. 
Proposed Stas crossover 
with K-mean Clustering 

vehicles distance vehicles distance 
RC106 11 1270.00 May et al. (2021) 10 1290.10 
RC107 11 1230.48 Shaw (1997) 10 1344.91 
RC108 10 1139.82 Taillard et al. (1997) 10 1204.56 
R201 2 791.00 May et al. (2021) 10 1203.32 
R202 2 740.00 May et al. (2021) 10 1252.15 
R203 2 738.00 May et al. (2021) 10 1289.26 
R204 2 734.00 May et al. (2021) 10 1214.08 
R205 2 726.00 May et al. (2021) 10 1138.55 
R206 2 728.00 May et al. (2021) 10 1168.98 
R207 2 742.00 May et al. (2021) 10 1221.14 
R208 2 732.00 May et al. (2021) 10 1160.64 
R209 2 733.00 May et al. (2021) 10 1191.89 
R210 2 732.00 May et al. (2021) 10 1234.09 
R211 2 751.00 May et al. (2021) 10 1129.32 
C201 3 591.56 Rochat & Taillard (1995) 10 1131.23 
C202 3 591.56 Rochat & Taillard (1995) 10 1146.95 
C203 3 591.17 Rochat & Taillard (1995) 10 1169.85 
C204 3 590.60 Rochat & Taillard (1995) 10 1149.25 
C205 3 588.88 Rochat & Taillard (1995) 10 1117.09 
C206 3 588.49 Rochat & Taillard (1995) 10 1189.92 
C207 3 588.29 Rochat & Taillard (1995) 10 1109.08 
C208 3 588.32 Rochat & Taillard (1995) 10 1172.29 

RC201 2 708.00 May et al. (2021) 10 1249.62 
RC202 2 717.00 May et al. (2021) 10 1195.54 
RC203 2 722.00 May et al. (2021) 10 1240.28 
RC204 2 711.00 May et al. (2021) 10 1196.61 
RC205 2 713.00 May et al. (2021) 10 1287.49 
RC206 2 718.00 May et al. (2021) 10 1263.11 
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Table  15 Comparison of the algorithm performance on instances of the Solomon 

Benchmark for type 1 and type 2. (Continue) 

Instance 
Best-know solution 

Ref. 
Proposed Stas crossover 
with K-mean Clustering 

vehicles distance vehicles distance 
RC207 2 718.00 May et al. (2021) 10 1309.64 
RC208 2 717.00 May et al. (2021) 10 1234.96 
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CHAPTER 5 
CONCLUSION 

 It is a long evolution phase for GA algorithms. GA is the search algorithms and 

optimization methods. The basic concept is based on the mechanism of evolution and 

natural selection, according to the Darwin’s theory of survival of the fittest. John Holland 

in the 1970s introduced this idea by considering difficult optimization problems . It can 

be solved with such an evolutionary approach. Therefore, the author s aw that there are 

good opportunities for future contributions. In this study, the author proposed to create a 

new crossover operator to solve multi -product and multi-period AGG problems and 

Solomon’s benchmark problem instances for VRPTW.  

A novel crossover operator for genetic algorithm is called “Stas Crossover". It is a 

combination of four crossover operators, including Single point crossover, Two points 

crossover, Arithmetic crossover, and Scattered crossover. It can be adjusted according 

to the size of the probability area in each operator, which means the probability of 

creating a new offspring for each operator is not an equal chance. The most important 

advantage of Stas crossover is that it provides greater diversity in the choice of methods 

for creating offspring and increases the opportunity for offspring to directly obtain good 

genetic information. 

Stas crossover for aggregate production planning problems, the algorithm was 

tested by using the multi-product and multi-period APP problems to minimize total costs 

in terms of regular time, overtime, backordering, and inventory costs. This study focused 

on the large size of the problem and the optimal solution by changing production costs, 

backorder costs, production capacity, and forecast demand, which means the actual 

value of the answer is ignored. A detailed comparison is presented of GA approach for 

solving APP problems using four different crossover options and a new crossover to 

compare the behavior of the crossover and choose appropriate crossover options for 

solving the APP problem. For APP problems, Scattered crossover is shown as having the 
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best performance, but Stas crossover performs better than another crossover. The initial 

assumption is reduced the percentage of Single point crossover and Two points 

crossover resulting in an improvement in the answer’s better performance than adjusting 

the size of the area probability of other Stas crossovers, including Stas0055 crossover 

and Stas1117 crossover. 

Stas crossover with K-mean clustering for vehicle routing problems with time 

windows was tested by the standard Solomon’s benchmark problem instances for 

VRPTW. This study focused on 8 types of crossover operators, which are described with 

six problem sets of different problem types C1, R1, RC1, C2, R2, and RC2. Each set 

contained between eight to twelve 100-node problems, and appropriated crossover 

operators are recommended for each type of problem. In this part, the author divided the 

results into four parts, including minimum distance with K-mean clustering, minimum 

distance without K-mean clustering, average distance with K-mean clustering, and 

average distance without K-mean clustering. The results shown that K-mean clustering 

is better than without K-mean clustering for minimum distance and average distance for 

Set R, Set C, and Set RC with type 1 and type 2. The paths with K-mean clustering are 

arranged into groups and are orderly, but the paths without  K-mean clustering are 

disordered in terms of location and dispersion characteristics of the customer. Moreover, 

the results shown that the proposed algorithm outperforms Set R and Set RC in some 

instances, which meant that K-means clustering affects Set R and Set RC due to the 

paths being arranged into orderly groups. Moreover, K-mean clustering has not affected 

Set C due to the location coordinates of all customers already clustered. It has been 

shown that adding K-mean clustering to the Stas crossover efficiently contributes to its 

performance. Furthermore, the proposed research will serve as a guideline for a real -

world case study. This model can be applied to linear and non-linear programming 

which is a large problem. 
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